JP6314411B2 - Hydrogenation catalyst for aromatic carboxylic acids and process for producing the same - Google Patents
Hydrogenation catalyst for aromatic carboxylic acids and process for producing the same Download PDFInfo
- Publication number
- JP6314411B2 JP6314411B2 JP2013213040A JP2013213040A JP6314411B2 JP 6314411 B2 JP6314411 B2 JP 6314411B2 JP 2013213040 A JP2013213040 A JP 2013213040A JP 2013213040 A JP2013213040 A JP 2013213040A JP 6314411 B2 JP6314411 B2 JP 6314411B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- ruthenium
- palladium
- acid
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、芳香族カルボン酸の芳香環の水素化触媒に関する。詳しくは、水素化触媒がルテニウムとパラジウムを共担持した触媒であり、ルテニウムとパラジウムが担体表面上の同一の粒子内に共存する触媒に関する。 The present invention relates to a hydrogenation catalyst for an aromatic ring of an aromatic carboxylic acid. Specifically, the present invention relates to a catalyst in which the hydrogenation catalyst is a catalyst in which ruthenium and palladium are co-supported, and ruthenium and palladium coexist in the same particle on the support surface.
芳香族カルボン酸の芳香環を水素化する貴金属触媒はこれまで多く検討されている。芳香族カルボン酸の芳香環を直接水素化する触媒として、現在は穏和な条件で水素化反応が進行するロジウム触媒の検討が多くなされている(非特許文献1、非特許文献2、特許文献1、特許文献2)。ロジウム触媒は芳香族カルボン酸の水素化触媒として活性が高く、副反応が進行せず生成物の選択率も高くなるといった利点がある。このように優れた触媒能を持つロジウムだが工業化に際してはいくつか課題が挙げられる。1点目は非常に高価であることであり、工業化の際には触媒に対する初期投資の負担が大きくなる。2点目は触媒の活性低下速度が速く、触媒を長期間使用するには賦活操作を頻繁に行わなければならない点である。賦活を組み込んだプロセスの構築も可能であるが、工業化に際してはよりシンプルなプロセスが採用できる触媒が求められている(特許文献1)。 Many noble metal catalysts for hydrogenating an aromatic ring of an aromatic carboxylic acid have been studied so far. As a catalyst for directly hydrogenating an aromatic ring of an aromatic carboxylic acid, many rhodium catalysts that undergo a hydrogenation reaction under mild conditions are currently being studied (Non-Patent Document 1, Non-Patent Document 2, and Patent Document 1). Patent Document 2). The rhodium catalyst is highly active as a hydrogenation catalyst for aromatic carboxylic acids, and has the advantage that the side reaction does not proceed and the selectivity of the product increases. Although rhodium has such excellent catalytic ability, there are several problems in industrialization. The first point is that it is very expensive, and the burden of initial investment for the catalyst becomes large during industrialization. The second point is that the rate of decrease in the activity of the catalyst is fast, and the activation operation must be frequently performed in order to use the catalyst for a long period of time. Although it is possible to construct a process incorporating activation, a catalyst capable of adopting a simpler process is required for industrialization (Patent Document 1).
芳香族カルボン酸に対して水素化能を持つ貴金属で安価なものとしてルテニウムが挙げられる。一般的にルテニウム触媒を芳香族カルボン酸の水素化に使用すると、芳香環の水素化だけでなく、側鎖のカルボキシル基の還元が生じることが知られており(非特許文献3)、脂環式カルボン酸の選択率は低くなる。このような活性を有するルテニウム触媒を芳香族カルボン酸の水素化に使用するには、カルボン酸をエステルに変換する必要があることが知られており、プロセス的に芳香族カルボン酸のエステル化と脂環式カルボン酸エステルの加水分解といった2つの工程が増えることになる(特許文献3、特許文献4)。あるいはカルボン酸をナトリウム塩のような無機塩に変換することでルテニウム触媒を芳香族カルボン酸の水素化に使用できることも知られている(特許文献5)が、上記エステル経由法と同様に、プロセス的に芳香族カルボン酸の無機塩への誘導化、脂環式カルボン酸無機塩の脱塩といった2つの工程が増えることになる。 Ruthenium is an example of a noble metal that can hydrogenate aromatic carboxylic acids and is inexpensive. In general, when a ruthenium catalyst is used for hydrogenation of an aromatic carboxylic acid, it is known that not only hydrogenation of the aromatic ring but also reduction of the side chain carboxyl group occurs (Non-patent Document 3). The selectivity of the formula carboxylic acid is low. In order to use a ruthenium catalyst having such an activity for hydrogenation of an aromatic carboxylic acid, it is known that it is necessary to convert the carboxylic acid into an ester. Two processes, such as hydrolysis of alicyclic carboxylic acid ester, will increase (Patent Document 3 and Patent Document 4). Alternatively, it is known that a ruthenium catalyst can be used for hydrogenation of an aromatic carboxylic acid by converting a carboxylic acid into an inorganic salt such as a sodium salt (Patent Document 5). In particular, the two steps of derivatization of aromatic carboxylic acid into inorganic salt and desalting of alicyclic carboxylic acid inorganic salt are increased.
比較的安価な貴金属であるルテニウムを使用し、ロジウム触媒と同等の活性およびロジウム触媒にみられる活性低下が生じない触媒として、ルテニウムとパラジウムを担体に共担持した触媒があり、このルテニウム−パラジウム共担持触媒を用いると工業的に簡便な方法で脂環式カルボン酸を製造できることが知られている (特許文献6)。 As a catalyst that uses ruthenium, which is a relatively inexpensive noble metal, and does not cause the same activity as the rhodium catalyst and the decrease in activity seen in the rhodium catalyst, there is a catalyst in which ruthenium and palladium are co-supported on a carrier. It is known that when a supported catalyst is used, an alicyclic carboxylic acid can be produced by an industrially simple method (Patent Document 6).
一般的に貴金属触媒を製造するときは、安価な塩化物が使用される。塩化物を原料として触媒を製造するときは、その製造方法によっては塩素ガスや塩化水素ガスが発生し、触媒製造装置を腐食するおそれがある。そのため焼成炉および還元装置の維持費がかかり、触媒製造コストが増大する。触媒製造装置の腐食を防ぐために、無機アルカリでルテニウム−スズ系担持触媒を処理し、触媒に含まれるハロゲンを除去する方法が知られている(特許文献7)。 In general, inexpensive chlorides are used when producing noble metal catalysts. When a catalyst is produced using chloride as a raw material, depending on the production method, chlorine gas or hydrogen chloride gas may be generated, which may corrode the catalyst production apparatus. Therefore, the maintenance cost of a calcination furnace and a reduction device is required, and the catalyst manufacturing cost increases. In order to prevent corrosion of the catalyst production apparatus, a method is known in which a ruthenium-tin-based supported catalyst is treated with an inorganic alkali to remove halogen contained in the catalyst (Patent Document 7).
特許文献6に記載の触媒は芳香族カルボン酸の芳香環の水素化触媒として有用であるが、更なる活性の向上も望まれている。また、本発明者らの検討によれば、塩化物を原料として該触媒を製造すると、焼成工程で塩素ガスおよび還元工程で塩化水素ガスが発生し、焼成炉および還元装置が腐食するおそれがあることが分かった。前述のように、特許文献7には無機アルカリで触媒を処理し、触媒に含まれるハロゲンを除去する方法が紹介されているが、ルテニウム−パラジウム共担持触媒の調製時に無機アルカリで処理すると触媒活性が低下することが判明した。
本発明の目的は、より高活性のルテニウム−パラジウム共担持触媒を提供することであり、更には、塩化物を用いて該触媒を調製する際に塩素ガスの発生を防止することで触媒製造装置の腐食を抑止し、製造装置の維持費を低減させ、触媒製造コストを低減させることである。触媒活性が高くなれば、触媒使用量の低減が可能となるので、脂環式カルボン酸の製造コストの低減に繋がり、より優勢性のある製造プロセスの構築が可能となる。
The catalyst described in Patent Document 6 is useful as a hydrogenation catalyst for an aromatic ring of an aromatic carboxylic acid, but further improvement in activity is also desired. Further, according to the study by the present inventors, when the catalyst is produced using chloride as a raw material, chlorine gas is generated in the calcination step and hydrogen chloride gas is generated in the reduction step, and the calcination furnace and the reduction device may be corroded. I understood that. As described above, Patent Document 7 introduces a method of treating a catalyst with an inorganic alkali and removing a halogen contained in the catalyst. However, when a ruthenium-palladium co-supported catalyst is treated with an inorganic alkali, catalytic activity is obtained. Turned out to be lower.
An object of the present invention is to provide a more active ruthenium-palladium co-supported catalyst, and further to prevent generation of chlorine gas when preparing the catalyst using chloride, thereby producing a catalyst production apparatus. Is to reduce the maintenance cost of the manufacturing apparatus and reduce the catalyst manufacturing cost. If the catalytic activity increases, the amount of catalyst used can be reduced, leading to a reduction in the production cost of the alicyclic carboxylic acid, and a more dominant production process can be constructed.
本発明者らはルテニウム−パラジウム共担持触媒の活性をより高くするために鋭意検討した結果、担体にルテニウム化合物とパラジウム化合物を担持後に有機アルカリと接触させることで、ルテニウムとパラジウムを含有する粒子の金属分散度が大きくなり、触媒活性が向上すること、また、この方法によれば触媒調製時の塩素ガス発生を防止できることを見出し、本発明を完成するに至った。 As a result of diligent investigations to increase the activity of the ruthenium-palladium co-supported catalyst, the present inventors made contact with an organic alkali after supporting the ruthenium compound and the palladium compound on the support, and thereby the particles containing ruthenium and palladium were supported. It has been found that the metal dispersibility is increased, the catalytic activity is improved, and that the generation of chlorine gas during the preparation of the catalyst can be prevented according to this method, and the present invention has been completed.
即ち本発明は以下の[1]〜[7]の共担持触媒に関するものである。
[1]ルテニウムとパラジウムを担体に共担持した触媒であって、ルテニウムとパラジウムが担体表面上に両者を含む粒子の形態で存在し、金属分散度が46%以上であることを特徴とする、ルテニウム−パラジウム共担持触媒。
[2]担体が活性炭、アルミナ、ジルコニア、セリア、チタニアおよびシリカからなる群から選ばれる1種または2種以上の組み合わせからなる[1]記載の共担持触媒。
[3]担体がシリカである[1]記載の共担持触媒。
[4]水素化用触媒として用いられる[1]〜[3]記載の共担持触媒。
[5]芳香族カルボン酸の芳香環の水素化触媒である[4]記載の共担持触媒。
[6]芳香族カルボン酸が一般式(1)、(2)または(3)であらわされる化合物である[5]記載の共担持触媒。
(式(1)中、R1〜R6は各々COOH、CH2OH、CH3、OHまたはHであり、R1〜R6の少なくとも1つはCOOHである)
(式(2)中、R1〜R8は各々COOH、CH2OH、CH3、OHまたはHであり、R1〜R8の少なくとも1つはCOOHである)
(式(3)中、R1〜R10は各々COOH、CH2OH、CH3、OHまたはHであり、R1〜R10の少なくとも1つはCOOHである)
[7]芳香族カルボン酸がトリメリット酸、トリメシン酸またはピロメリット酸である[5]記載の共担持触媒。
That is, the present invention relates to the following co-supported catalysts [1] to [7].
[1] A catalyst in which ruthenium and palladium are co-supported on a carrier, wherein the ruthenium and palladium are present in the form of particles containing both on the carrier surface, and the metal dispersion is 46% or more. Ruthenium-palladium co-supported catalyst.
[2] The co-supported catalyst according to [1], wherein the carrier is one or a combination of two or more selected from the group consisting of activated carbon, alumina, zirconia, ceria, titania and silica.
[3] The co-supported catalyst according to [1], wherein the support is silica.
[4] The co-supported catalyst according to [1] to [3], which is used as a hydrogenation catalyst.
[5] The co-supported catalyst according to [4], which is a hydrogenation catalyst for an aromatic ring of an aromatic carboxylic acid.
[6] The co-supported catalyst according to [5], wherein the aromatic carboxylic acid is a compound represented by the general formula (1), (2) or (3).
(In formula (1), R 1 to R 6 are each COOH, CH 2 OH, CH 3 , OH or H, and at least one of R 1 to R 6 is COOH)
(In formula (2), R 1 to R 8 are each COOH, CH 2 OH, CH 3 , OH or H, and at least one of R 1 to R 8 is COOH)
(In formula (3), R 1 to R 10 are each COOH, CH 2 OH, CH 3 , OH or H, and at least one of R 1 to R 10 is COOH)
[7] The co-supported catalyst according to [5], wherein the aromatic carboxylic acid is trimellitic acid, trimesic acid or pyromellitic acid.
本発明におけるルテニウム−パラジウム共担持触媒は、触媒活性が高いため、効率的に芳香族カルボン酸の芳香環を水素化し、脂環式カルボン酸を製造できる。 Since the ruthenium-palladium co-supported catalyst in the present invention has high catalytic activity, the aromatic ring of the aromatic carboxylic acid can be efficiently hydrogenated to produce an alicyclic carboxylic acid.
本発明のルテニウム−パラジウム共担持触媒(以下「本発明の共担持触媒」と称すことがある)はルテニウムとパラジウムを担体に共担持した触媒であって、ルテニウムとパラジウムが担体表面上に両者を含む粒子の形態で存在し、金属分散度が46%以上である共担持触媒である。 The ruthenium-palladium co-supported catalyst of the present invention (hereinafter sometimes referred to as “co-supported catalyst of the present invention”) is a catalyst in which ruthenium and palladium are co-supported on a support, and both of ruthenium and palladium are supported on the support surface. It is a co-supported catalyst that exists in the form of contained particles and has a metal dispersity of 46% or more.
本発明の共担持触媒に使用する担体は、ルテニウムおよびパラジウムを担持することができれば特に制限はなく、担体の形状(例えば粉末や成型品等)や担体の物性(例えば比表面積や平均細孔径等)にも制限はない。具体的には活性炭、アルミナ、ジルコニア、セリア、チタニア、シリカ、シリカアルミナ、ゼオライト、酸化クロム、酸化タングステン、イオン交換樹脂、合成吸着材等が例示できる。これらは単独で、または2種以上を適宜混合して使用することができる。中でも活性炭、アルミナ、ジルコニア、セリア、チタニア、シリカが好ましく、特にシリカが好ましい。又、担体の粒径(平均粒径)は、懸濁床で反応を行う場合は1μm〜300μm、固定床で反応を行う場合は0.3mm〜10mmであるのが好ましい。 The support used in the co-supported catalyst of the present invention is not particularly limited as long as it can support ruthenium and palladium. The shape of the support (for example, powder or molded product) and the physical properties of the support (for example, specific surface area, average pore diameter, etc.) ) Is not limited. Specific examples include activated carbon, alumina, zirconia, ceria, titania, silica, silica alumina, zeolite, chromium oxide, tungsten oxide, ion exchange resin, and synthetic adsorbent. These may be used alone or in admixture of two or more. Among these, activated carbon, alumina, zirconia, ceria, titania, and silica are preferable, and silica is particularly preferable. The particle size (average particle size) of the carrier is preferably 1 μm to 300 μm when the reaction is carried out in a suspended bed and 0.3 mm to 10 mm when the reaction is carried out in a fixed bed.
本発明の共担持触媒は、担体表面上にルテニウムとパラジウムを含む粒子の形態で存在している、つまり同一の粒子内にルテニウムとパラジウムが共存している触媒である。ルテニウムとパラジウムが同一粒子内に共存し、互いに近接していることで芳香族化合物の芳香環の水素化に高い活性と選択率を示す。 The co-supported catalyst of the present invention is a catalyst that exists in the form of particles containing ruthenium and palladium on the support surface, that is, the ruthenium and palladium coexist in the same particle. Ruthenium and palladium coexist in the same particle and are close to each other, thereby exhibiting high activity and selectivity for hydrogenation of aromatic rings of aromatic compounds.
本発明の共担持触媒の担体表面上のルテニウムとパラジウムが共存している粒子のサイズは、ルテニウムとパラジウムが共存していれば特に限定されない。但し、ルテニウムとパラジウムが共存している粒子のサイズが大きいと粒子の外表面積が小さくなり、担持されているルテニウムとパラジウムが効率的に反応に使用されないため、ルテニウムとパラジウムを効率的に水素化反応に使用するには、粒子径は小さい方が好適であり、好ましくは1−50nmであり、より好ましくは1−15nmである。この粒径は透過型電子顕微鏡などの方法により容易に測定することができる。 The size of the particles in which ruthenium and palladium coexist on the support surface of the co-supported catalyst of the present invention is not particularly limited as long as ruthenium and palladium coexist. However, if the size of the particles in which ruthenium and palladium coexist is large, the outer surface area of the particles decreases, and the supported ruthenium and palladium are not efficiently used in the reaction, so the ruthenium and palladium are efficiently hydrogenated. For use in the reaction, a smaller particle size is suitable, preferably 1-50 nm, more preferably 1-15 nm. This particle size can be easily measured by a method such as a transmission electron microscope.
本発明の共担持触媒におけるルテニウムおよびパラジウムの担持量に制限はない。具体的にルテニウムおよびパラジウムの合計担持量は共担持触媒全体に対して好ましくは0.5〜10質量%で、より好ましくは0.5〜5質量%である。ルテニウムおよびパラジウムの合計担持量は、蛍光X線分析などにより測定することができる。 There is no limitation on the amount of ruthenium and palladium supported in the co-supported catalyst of the present invention. Specifically, the total supported amount of ruthenium and palladium is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass, based on the entire co-supported catalyst. The total supported amount of ruthenium and palladium can be measured by fluorescent X-ray analysis or the like.
本発明の共担持触媒におけるルテニウムおよびパラジウムの割合は、ルテニウムおよびパラジウムが担体表面上の粒子に共存していれば制限はない。ルテニウムとパラジウムの合計量に対する具体的なルテニウムおよびパラジウムの割合はそれぞれ好ましくは1〜99質量%で、より好ましくは10〜90質量%で、さらに好ましくは20〜80質量%である。 The ratio of ruthenium and palladium in the co-supported catalyst of the present invention is not limited as long as ruthenium and palladium coexist in the particles on the support surface. The specific ratio of ruthenium and palladium to the total amount of ruthenium and palladium is preferably 1 to 99% by mass, more preferably 10 to 90% by mass, and still more preferably 20 to 80% by mass.
本発明の共担持触媒は金属分散度が大きく、金属表面積(金属粒子の外表面積)が大きいものであるため、担持された金属が反応に効率的に使用されるので反応速度が大きくなる。金属分散度はCOパルス法で測定できる。250℃、15分間水素気流下で触媒の前処理を行った後、50℃での触媒へのCO吸着量を求め、金属一分子にCO二分子が吸着するとして、金属表面積、金属分散度を計算することができる。CO吸着量、金属表面積、金属分散度は、具体的には実施例に記載した方法により求めることができる。好ましい触媒の金属分散度は、46%以上であり、より好ましくは47%以上である。金属分散度がこの値よりも小さいと、金属表面積が小さくなり、担持された金属が効率的に反応に使用されないため、触媒が高活性を示さない。金属表面積は190 m2/g-metal以上であることが好ましい。 Since the co-supported catalyst of the present invention has a large metal dispersion and a large metal surface area (external surface area of metal particles), the supported metal is efficiently used for the reaction, and thus the reaction rate is increased. Metal dispersion can be measured by the CO pulse method. After pretreatment of the catalyst under a hydrogen stream at 250 ° C for 15 minutes, the amount of CO adsorbed on the catalyst at 50 ° C was calculated, and assuming that two molecules of CO adsorb on one metal molecule, the metal surface area and metal dispersion degree were Can be calculated. Specifically, the CO adsorption amount, the metal surface area, and the metal dispersion degree can be determined by the methods described in the examples. The metal dispersion degree of a preferable catalyst is 46% or more, more preferably 47% or more. When the metal dispersity is smaller than this value, the metal surface area becomes small, and the supported metal is not efficiently used for the reaction, so that the catalyst does not exhibit high activity. The metal surface area is preferably 190 m 2 / g-metal or more.
本発明の共担持触媒は、担体にルテニウム化合物とパラジウム化合物を担持して触媒前駆体を調製し、次いで該触媒前駆体と有機アルカリを接触させることにより製造される。
ルテニウム化合物とパラジウム化合物を担体に担持する方法は、該共担持触媒における担体表面上の同一の粒子にルテニウムとパラジウムを共存できれば制限はなく、ルテニウムとパラジウムの他に第3の金属成分を添加することも可能である。具体的な調製方法としてはイオン交換法、含浸法、沈着法等が挙げられ、好ましくは含浸法と沈着法である。
ルテニウム化合物およびパラジウム化合物を担体に担持させる順序もとくに限定されない。具体的には同時に担持する方法、逐次に担持する方法等が挙げられる。
担体にルテニウム化合物とパラジウム化合物を担持させた触媒前駆体の調製方法としては、特許文献6にて開示される触媒の調製方法が好適に援用できる。
The co-supported catalyst of the present invention is produced by preparing a catalyst precursor by supporting a ruthenium compound and a palladium compound on a carrier and then bringing the catalyst precursor into contact with an organic alkali.
The method of supporting the ruthenium compound and the palladium compound on the support is not limited as long as ruthenium and palladium can coexist on the same particle on the support surface of the co-supported catalyst, and a third metal component is added in addition to ruthenium and palladium. It is also possible. Specific examples of the preparation method include an ion exchange method, an impregnation method, and a deposition method, and an impregnation method and a deposition method are preferable.
The order in which the ruthenium compound and the palladium compound are supported on the carrier is not particularly limited. Specifically, a method of simultaneously supporting, a method of sequentially supporting, and the like can be mentioned.
As a method for preparing a catalyst precursor in which a ruthenium compound and a palladium compound are supported on a support, the method for preparing a catalyst disclosed in Patent Document 6 can be suitably used.
ルテニウムおよびパラジウムの供給源となるルテニウム化合物やパラジウム化合物としては、塩化物、硝酸塩、酢酸塩、などの公知の塩または錯体を用いることができる。中でも安価な塩化物が使用される。 As the ruthenium compound or palladium compound serving as a supply source of ruthenium and palladium, known salts or complexes such as chlorides, nitrates and acetates can be used. Of these, inexpensive chlorides are used.
本発明においては、塩化ルテニウムと塩化パラジウムを担体に担持して触媒前駆体を調製した後に、該触媒前駆体と有機アルカリを接触させること(以下「アルカリ処理」と称すことがある)が好ましく、これにより触媒前駆体中の塩素(原子)を除去し、さらにルテニウムとパラジウムを含有する粒子の金属分散度が大きくなり、触媒活性が向上する。 In the present invention, after preparing a catalyst precursor by supporting ruthenium chloride and palladium chloride on a carrier, it is preferable to contact the catalyst precursor with an organic alkali (hereinafter sometimes referred to as “alkali treatment”). As a result, chlorine (atoms) in the catalyst precursor is removed, and further, the metal dispersion degree of the particles containing ruthenium and palladium is increased, and the catalytic activity is improved.
アルカリ処理に用いられる有機アルカリの種類は、塩化ルテニウムおよび塩化パラジウム(以下総称して「金属塩化物」と称すことがある)と反応して水酸化物を形成するアルカリならば特に限定されない。具体的には、4級アンモニウム塩、アミン類が挙げられる。中でも好ましいのはテトラアルキルアンモニウムヒドロキシドであり、特に好ましいのはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシドである。 The type of organic alkali used for the alkali treatment is not particularly limited as long as it is an alkali that forms a hydroxide by reacting with ruthenium chloride and palladium chloride (hereinafter sometimes collectively referred to as “metal chloride”). Specific examples include quaternary ammonium salts and amines. Among these, tetraalkylammonium hydroxide is preferable, and tetramethylammonium hydroxide and tetraethylammonium hydroxide are particularly preferable.
アルカリ処理を行う際に加える有機アルカリの物質量は、触媒前駆体中の塩素原子の物質量に対する比として1以上10以下が好ましい。1より小さいと、アルカリ処理後も金属塩化物が残り、焼成、還元などの際に塩素ガスや塩化水素ガスが発生し、装置の腐食を引き起こす可能性がある。逆に10より大きいと、触媒からの除去が困難になるだけでなく、過剰の有機アルカリと担体であるシリカが反応し、シリカが溶解する可能性がある。 The amount of the organic alkali substance added during the alkali treatment is preferably 1 or more and 10 or less as the ratio of the chlorine atom in the catalyst precursor to the substance amount. If it is less than 1, metal chloride remains even after alkali treatment, and chlorine gas and hydrogen chloride gas are generated during firing and reduction, which may cause corrosion of the device. On the other hand, if it is larger than 10, not only removal from the catalyst becomes difficult, but also the excess organic alkali and the silica as the carrier may react to dissolve the silica.
有機アルカリは溶液の形態で用いることができ、溶液に用いる溶媒としては、有機アルカリの一部又は全部が溶解すれば特に制限されないが、水に溶かして水溶液とすることが好ましい。この時の有機アルカリの濃度は、水に完全に溶解する濃度ならば、制限はない。濃度が薄いと、必要な有機アルカリ水溶液の量が多くなり、アルカリ処理に要する時間が長くなる。逆に濃度が濃いと、有機アルカリと担体であるシリカが反応し、シリカが溶解しやすくなる。具体的には有機アルカリの濃度が1〜50質量%の範囲で処理を行うことが好ましい。 The organic alkali can be used in the form of a solution, and the solvent used in the solution is not particularly limited as long as part or all of the organic alkali is dissolved, but it is preferably dissolved in water to form an aqueous solution. The concentration of the organic alkali at this time is not limited as long as it is completely dissolved in water. When the concentration is low, the amount of the required organic alkali aqueous solution increases, and the time required for the alkali treatment increases. Conversely, when the concentration is high, the organic alkali and the silica that is the carrier react with each other, and the silica is easily dissolved. Specifically, it is preferable to perform the treatment in the range of the organic alkali concentration in the range of 1 to 50% by mass.
アルカリ処理は、塩化ルテニウムおよび塩化パラジウムを担持した触媒前駆体に有機アルカリを添加することで行うことが好ましい。具体的には、触媒前駆体に有機アルカリ水溶液を添加し、水酸化ルテニウムおよび水酸化パラジウムを形成させる。添加した有機アルカリ水溶液中の水を蒸発させることで、水酸化物を担体に担持させる。この操作は複数回行ってもよい。その際、得られた触媒を水で洗浄し、生成した有機アルカリ塩化物および過剰の有機アルカリを触媒から除去することが好ましい。処理後の触媒は、適宜乾燥、焼成、還元を行うことも可能である。 The alkali treatment is preferably performed by adding an organic alkali to a catalyst precursor supporting ruthenium chloride and palladium chloride. Specifically, an organic alkali aqueous solution is added to the catalyst precursor to form ruthenium hydroxide and palladium hydroxide. The hydroxide is supported on the carrier by evaporating water in the added aqueous organic alkali solution. This operation may be performed a plurality of times. In that case, it is preferable to wash the resulting catalyst with water to remove the produced organic alkali chloride and excess organic alkali from the catalyst. The treated catalyst can be appropriately dried, calcined and reduced.
アルカリ処理を行う際の温度は、有機アルカリと金属塩化物が反応する温度以上であれば、制限はない。温度が低すぎると、有機アルカリと金属塩化物の反応速度が遅く、アルカリ処理に要する時間が長くなり、また、未反応の金属塩化物が残りやすくなる。逆に温度を高くしすぎても、効果が向上するわけではない。具体的には、40〜100℃の範囲で処理を行うことができる。 If the temperature at the time of performing an alkali treatment is more than the temperature which an organic alkali and a metal chloride react, there will be no restriction | limiting. If the temperature is too low, the reaction rate between the organic alkali and the metal chloride is slow, the time required for the alkali treatment becomes long, and unreacted metal chloride tends to remain. Conversely, increasing the temperature too much does not improve the effect. Specifically, the treatment can be performed in the range of 40 to 100 ° C.
アルカリ処理を行うために触媒前駆体に有機アルカリを添加するときは、触媒前駆体の細孔容積以下の容量を添加する。添加する有機アルカリの容量が細孔容積よりも多いと、金属塩化物と有機アルカリの反応が担体上で起こらず、担体に担持されない金属粒子が生成する恐れがある。 When an organic alkali is added to the catalyst precursor to perform the alkali treatment, a capacity equal to or less than the pore volume of the catalyst precursor is added. When the volume of the organic alkali to be added is larger than the pore volume, the reaction between the metal chloride and the organic alkali does not occur on the support, and there is a possibility that metal particles not supported on the support are generated.
本発明の共担持触媒は芳香族化合物の芳香環を水素化する触媒として有用であり、特に芳香族カルボン酸の芳香環を水素化して脂環式カルボン酸を製造する触媒として好適である。芳香族カルボン酸は芳香環にカルボキシル基を有する化合物であれば特に限定されず、公知の芳香族カルボン酸が使用できる。このような芳香族カルボン酸としては前記一般式(1)、(2)または(3)であらわされるものを使用することができる。 The co-supported catalyst of the present invention is useful as a catalyst for hydrogenating an aromatic ring of an aromatic compound, and is particularly suitable as a catalyst for producing an alicyclic carboxylic acid by hydrogenating an aromatic ring of an aromatic carboxylic acid. The aromatic carboxylic acid is not particularly limited as long as it is a compound having a carboxyl group in the aromatic ring, and a known aromatic carboxylic acid can be used. As such an aromatic carboxylic acid, those represented by the general formula (1), (2) or (3) can be used.
具体的には、安息香酸等の芳香族モノカルボン酸;フタル酸、イソフタル酸、テレフタル酸、1,2-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,2'-ビフェニルジカルボン酸、3,3'-ビフェニルジカルボン酸、4,4'-ビフェニルジカルボン酸等の芳香族ジカルボン酸;ヘミメリット酸、トリメリット酸、トリメシン酸、1,2,4-ナフタレントリカルボン酸、2,5,7-ナフタレントリカルボン酸等の芳香族トリカルボン酸;メロフアン酸、プレーニト酸、ピロメリット酸、3,3'4,4'-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸等の芳香族テトラカルボン酸;ベンゼンペンタカルボン酸等の芳香族ペンタカルボン酸;ベンゼンヘキサカルボン酸等の芳香族ヘキサカルボン酸などが例示される。これらは、単独でまたは2種以上を適宜組み合わせて使用することができる。 Specifically, aromatic monocarboxylic acids such as benzoic acid; phthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2, 3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,2'-biphenyldicarboxylic acid, 3,3'-biphenyldicarboxylic acid, 4, Aromatic dicarboxylic acids such as 4'-biphenyldicarboxylic acid; aromatic tricarboxylic acids such as hemimellitic acid, trimellitic acid, trimesic acid, 1,2,4-naphthalenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid; Melofuanic acid, planitic acid, pyromellitic acid, 3,3'4,4'-biphenyltetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, etc. The aromatic tetraca Bon acid; aromatic penta carboxylic acids such as benzene penta carboxylic acid; and aromatic hexacarboxylic acids, such as benzene hexacarboxylic acid. These may be used alone or in appropriate combination of two or more.
中でも、ベンゼン環に2〜4個のカルボキシル基を有する芳香族ジカルボン酸、芳香族トリカルボン酸、芳香族テトラカルボン酸が好ましく、具体的には、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸であり、さらに好ましいのはトリメリット酸、トリメシン酸、ピロメリット酸である。これらは単独で、または2種以上を適宜組み合わせて使用することができる。 Among them, aromatic dicarboxylic acids having 2 to 4 carboxyl groups in the benzene ring, aromatic tricarboxylic acids, and aromatic tetracarboxylic acids are preferable, and specifically, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, Trimesic acid and pyromellitic acid are preferable, and trimellitic acid, trimesic acid, and pyromellitic acid are more preferable. These may be used alone or in appropriate combination of two or more.
水素化反応には反応溶媒が好適に用いられる。この水素化反応溶媒は芳香族カルボン酸を溶解し、反応を阻害しなければ特に限定されない。
具体的には水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノールといったアルコール類;ジエチルエーテル、ジイソプロピルエーテル、n-ブチルエーテル、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、THFといったエーテル類;酢酸メチル、酢酸エチルといったエステル類;アセトン、メチルエチルケトンといったケトン類が挙げられる。
中でも好ましいのは水、メタノール、エタノール、1-プロパノール、2-プロパノールであり、さらに好ましいのは水である。これらは単独で、または2種以上を適宜混合して使用することができる。
A reaction solvent is preferably used for the hydrogenation reaction. The hydrogenation reaction solvent is not particularly limited as long as it dissolves the aromatic carboxylic acid and does not inhibit the reaction.
Specifically, alcohols such as water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol; diethyl ether, diisopropyl ether, n-butyl ether, cyclopentyl methyl ether And ethers such as tert-butyl methyl ether and THF; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone.
Of these, water, methanol, ethanol, 1-propanol and 2-propanol are preferable, and water is more preferable. These may be used alone or in admixture of two or more.
水素化反応において、芳香族カルボン酸は溶媒中に溶解させても懸濁させてもよく、濃度も特に限定されない。具体的な芳香族カルボン酸の濃度は、芳香族カルボン酸と溶媒の合計に対する芳香族カルボン酸として、好ましくは1〜50質量%であり、より好ましくは2〜40質量%であり、さらに好ましくは2〜20質量%である。 In the hydrogenation reaction, the aromatic carboxylic acid may be dissolved or suspended in a solvent, and the concentration is not particularly limited. The specific concentration of the aromatic carboxylic acid is preferably 1 to 50% by mass, more preferably 2 to 40% by mass, and still more preferably as the aromatic carboxylic acid with respect to the total of the aromatic carboxylic acid and the solvent. 2 to 20% by mass.
水素化反応に使用する触媒量に制限はなく、ルテニウムおよびパラジウムの含有量と反応に用いる芳香族カルボン酸の量を勘案し、目的とする反応時間になるよう適宜決めればよい。 There is no limitation on the amount of catalyst used in the hydrogenation reaction, and it may be appropriately determined so as to achieve the desired reaction time in consideration of the content of ruthenium and palladium and the amount of aromatic carboxylic acid used in the reaction.
水素化反応の温度に制限はなく、温度が低すぎると、反応速度が小さくなり、水素化反応の完結に要する時間が長くなり、逆に温度が高すぎると、反応速度は大きくなり、水素化反応の完結に要する時間は短くなるが、目的とする脂環式カルボン酸の選択率は低くなる。40〜150℃の温度範囲で反応を行うことができ、好ましくは40〜100℃の温度範囲である。 There is no restriction on the temperature of the hydrogenation reaction. If the temperature is too low, the reaction rate decreases, and the time required for completion of the hydrogenation reaction increases. Conversely, if the temperature is too high, the reaction rate increases and the hydrogenation reaction increases. Although the time required for completion of the reaction is shortened, the selectivity of the desired alicyclic carboxylic acid is lowered. The reaction can be carried out in the temperature range of 40 to 150 ° C, preferably in the temperature range of 40 to 100 ° C.
水素化反応の水素圧力は特に制限はなく、水素圧力が低いと、反応速度が小さくなり、水素化反応の完結に要する時間が長くなり、逆に水素圧力が高いと、水素化反応の完結に要する時間は短くなるが、装置の耐圧仕様等の装置への投資が大きくなる。具体的には水素圧力は0.5〜15MPaの範囲で水素化反応を行うことができ、好ましくは1〜10MPaである。 The hydrogen pressure of the hydrogenation reaction is not particularly limited. If the hydrogen pressure is low, the reaction rate decreases, and the time required for completing the hydrogenation reaction increases. Conversely, if the hydrogen pressure is high, the hydrogenation reaction is completed. Although the time required is shortened, the investment in the apparatus such as the breakdown voltage specification of the apparatus increases. Specifically, the hydrogenation reaction can be carried out in the range of 0.5 to 15 MPa, preferably 1 to 10 MPa.
水素化反応は回分式、半回分式、連続式といった反応形式に制限はない。目的とする生産量が少量の場合は回分式や半回分式での製造プロセスを構築すればよく、生産量が多量の場合は連続式での製造プロセスを構築すればよい。 The hydrogenation reaction is not limited to batch, semi-batch and continuous reaction modes. If the target production amount is small, a batch or semi-batch production process may be constructed, and if the production amount is large, a continuous production process may be constructed.
水素化反応は、上記の芳香族カルボン酸の量、触媒量、反応温度、水素圧力、反応形式を適宜組み合わせることで、目的の反応時間で目的とする選択率の脂環式カルボン酸の製造が可能となる。 The hydrogenation reaction can be carried out by appropriately combining the amount of the aromatic carboxylic acid, the amount of the catalyst, the reaction temperature, the hydrogen pressure, and the reaction type to produce an alicyclic carboxylic acid having a desired selectivity in a desired reaction time. It becomes possible.
本発明の共担持触媒は、水素化反応前、特に芳香族カルボン酸等の水素化原料と接触させる前に水素と接触させて前処理することにより、水素化反応を行った際の触媒活性低下を抑制することができる。活性低下抑制のメカニズムは明らかではないが、触媒を水素と接触させることで触媒中のルテニウムやパラジウムに水素が吸着され、これらの触媒金属に対する芳香族カルボン酸の作用を軽減させることが考えられる。 The co-supported catalyst of the present invention is pretreated by contacting with hydrogen before the hydrogenation reaction, in particular before contacting with a hydrogenation raw material such as aromatic carboxylic acid, thereby reducing the catalytic activity when the hydrogenation reaction is performed. Can be suppressed. Although the mechanism for suppressing the decrease in activity is not clear, it is conceivable that when the catalyst is brought into contact with hydrogen, hydrogen is adsorbed on ruthenium or palladium in the catalyst, thereby reducing the action of the aromatic carboxylic acid on these catalyst metals.
本発明の共担持触媒は、回分式や半回分式による水素化反応においては反応毎の大きな活性低下が見られないので賦活操作をしなくても再利用が可能であるが、反応毎に水素での前処理を実施することで、活性低下のさらなる抑制が可能となる。触媒を再利用できる回数が増加するので、触媒の交換頻度を減らすことができ、より効率的に脂環式カルボン酸の製造が可能となる。連続式においても、水素前処理を実施してから反応を開始すると、時間が経過しても触媒の大きな活性低下はみられず、より効率的に脂環式カルボン酸の製造が可能となる。 The co-supported catalyst of the present invention can be reused without performing an activation operation in a batch-type or semi-batch-type hydrogenation reaction because no significant decrease in activity is observed for each reaction. By carrying out the pretreatment in step 1, it is possible to further suppress the decrease in activity. Since the frequency | count that a catalyst can be reused increases, the replacement frequency of a catalyst can be reduced and alicyclic carboxylic acid can be produced more efficiently. Even in the continuous system, when the reaction is started after the hydrogen pretreatment is performed, the catalyst is not greatly reduced in activity over time, and the alicyclic carboxylic acid can be more efficiently produced.
次に本発明を実施例により、更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
<塩素含量>
触媒前駆体中の塩素含量は塩化ルテニウムと塩化パラジウムの仕込み量から計算した。
触媒前駆体以外の触媒中の塩素含量は、エネルギー分散型X線分光法(EDX、日立製S-3400N)にて測定した。
<CO吸着量・金属表面積・金属分散度>
使用した触媒のCO吸着量、金属表面積、金属分散度は以下の方法にて求めた。
分析装置:日本ベル株式会社製 金属表面積測定装置BET-METAL-1
測定前に250℃、15分間水素気流下で触媒の前処理を行った後、50℃でCOを吸着させ、吸着量を求めた。また、金属表面積、金属分散度は、以下の式に従って求めた。化学量論比は2として計算した。
金属分散度(%) = CO吸着量(cm3)×SF/22414×MW/C×100
金属表面積(m2/g-metal) = CO吸着量(cm3)×SF/22414×6.02×1023×σm×10-18/C
MW: 金属原子量(g/mol)
MW = (MWRu×wt%Ru/MWRu+MWPd×wt%Pd/MWPd)/(wt%Ru/MWRu+wt%Pd/MWPd)
MWRu、MWPd: ルテニウム、パラジウムの原子量(g/mol)
wt%Ru、wt%Pd: ルテニウム、パラジウムの担持量(質量%)
SF: 化学量論比
C : 測定試料中の金属重量(g)
σm: 金属1原子の断面積(nm2)
<転化率・選択率>
芳香族カルボン酸の転化率、脂環式カルボン酸の選択率は、反応生成物をメチルエステル体に誘導体化後、ガスクロマトグラフィーにて分析して求めた。
<反応速度定数>
反応速度定数kは、以下の式に従って求めた。
k = 1/反応時間(hr)×ln(1/(1-転化率(%)/100))
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
<Chlorine content>
The chlorine content in the catalyst precursor was calculated from the amounts of ruthenium chloride and palladium chloride charged.
The chlorine content in the catalyst other than the catalyst precursor was measured by energy dispersive X-ray spectroscopy (EDX, Hitachi S-3400N).
<CO adsorption amount, metal surface area, metal dispersion degree>
The amount of CO adsorption, metal surface area, and metal dispersion of the catalyst used were determined by the following methods.
Analyzing device: Nippon Bell Co., Ltd. Metal surface area measuring device
Before the measurement, the catalyst was pretreated at 250 ° C. for 15 minutes under a hydrogen stream, and then CO was adsorbed at 50 ° C. to determine the amount of adsorption. Moreover, the metal surface area and the metal dispersity were determined according to the following equations. The stoichiometric ratio was calculated as 2.
Metal dispersity (%) = CO adsorption (cm 3 ) x SF / 22414 x MW / C x 100
Metal surface area (m 2 / g-metal) = CO adsorption (cm 3 ) × SF / 22414 × 6.02 × 10 23 × σ m × 10 -18 / C
MW: Metal atomic weight (g / mol)
MW = (MW Ru x wt% Ru / MW Ru + MW Pd x wt% Pd / MW Pd ) / (wt% Ru / MW Ru + wt% Pd / MW Pd )
MW Ru , MW Pd : atomic weight of ruthenium, palladium (g / mol)
wt% Ru , wt% Pd : Ruthenium, palladium loading (mass%)
SF: Stoichiometric ratio
C: Metal weight in the measurement sample (g)
σ m : cross section of one metal atom (nm 2 )
<Conversion rate / selectivity>
The conversion rate of the aromatic carboxylic acid and the selectivity of the alicyclic carboxylic acid were obtained by derivatizing the reaction product into a methyl ester and analyzing it by gas chromatography.
<Reaction rate constant>
The reaction rate constant k was determined according to the following formula.
k = 1 / reaction time (hr) x ln (1 / (1-conversion (%) / 100))
<調製例>
塩化ルテニウムn水和物(和光純薬製)0.647gと塩化パラジウム(和光純薬製)0.417gを水に溶解させた。シリカゲル(富士シリシア化学製キャリアクトQ-6、粒径75-150μm)10gに塩化ルテニウムと塩化パラジウムを溶解させた水溶液を添加し、総重量を60gとした。アスピレーター減圧下、水浴で加熱して、水分を蒸発させて塩化ルテニウムと塩化パラジウムを担体に担持させた。その後、空気雰囲気下で乾燥させ、触媒前駆体Xを調製した。触媒前駆体X中の塩素含量は4.4%であった。
<Preparation example>
0.647 g of ruthenium chloride n hydrate (manufactured by Wako Pure Chemical Industries) and 0.417 g of palladium chloride (manufactured by Wako Pure Chemical Industries) were dissolved in water. An aqueous solution in which ruthenium chloride and palladium chloride are dissolved in 10 g of silica gel (Fuji Silysia Chemical Caractect Q-6, particle size 75-150 μm) was added to a total weight of 60 g. Heating was carried out in a water bath under reduced pressure of the aspirator to evaporate the water, and ruthenium chloride and palladium chloride were supported on the carrier. Then, it was made to dry in air atmosphere and the catalyst precursor X was prepared. The chlorine content in the catalyst precursor X was 4.4%.
<実施例1>
触媒前駆体X 1gをフラスコに入れ、水浴で60℃に加熱した。ここに15wt%テトラメチルアンモニウムヒドロキシド水溶液(TMAH、和光純薬製)を0.5ml添加し、アスピレーターで減圧にして、水分を蒸発させた。この操作を6回繰り返し、金属塩化物とTMAHを反応させた。アスピレーター減圧下で加熱して、水分を完全に蒸発させた。得られた触媒を水洗し、塩素原子およびTMAHを除去した。空気雰囲気下150℃で2時間乾燥させた(塩素含量は検出限界以下であった)。その後、250℃で4時間気相水素還元を実施することで、ルテニウム−パラジウム共担持触媒(2.5重量%Ru-2.5重量%Pd/SiO2、以下「触媒A」と称す)を調製した。触媒AのCO吸着量は3.8 cm3/g(STP)、金属表面積は286 m2/g-metal、金属分散度は70%であった。
<Example 1>
1 g of catalyst precursor X was placed in a flask and heated to 60 ° C. in a water bath. To this, 0.5 ml of 15 wt% tetramethylammonium hydroxide aqueous solution (TMAH, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the water was evaporated by reducing the pressure with an aspirator. This operation was repeated 6 times to react the metal chloride with TMAH. The water was completely evaporated by heating under reduced pressure of the aspirator. The obtained catalyst was washed with water to remove chlorine atoms and TMAH. It was dried at 150 ° C. for 2 hours in an air atmosphere (the chlorine content was below the detection limit). Thereafter, a ruthenium-palladium co-supported catalyst (2.5 wt% Ru-2.5 wt% Pd / SiO2, hereinafter referred to as “catalyst A”) was prepared by performing gas phase hydrogen reduction at 250 ° C. for 4 hours. Catalyst A had a CO adsorption amount of 3.8 cm 3 / g (STP), a metal surface area of 286 m 2 / g-metal, and a metal dispersity of 70%.
200mlのSUS316製オートクレーブに触媒A 0.4g、水40gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換し、水素雰囲気とした。水素雰囲気で、電磁式撹拌羽根で30分間、室温で撹拌した。その後、フランジを開放しオートクレーブにトリメリット酸(東京化成工業社製)4g、水8gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換した。水素で9MPaまで昇圧し、電磁式撹拌羽根で撹拌しながら50℃に昇温し、昇温開始から60分で反応を停止した。反応生成物をメチルエステル体に誘導化後、ガスクロマトグラフィーで分析すると、トリメリット酸の転化率は100%、水素化トリメリット酸(1,2,4-シクロヘキサントリカルボン酸)の選択率は97.7%となった。また昇温開始から30分での反応速度定数を求めたところ、4.6 hr-1であった。 A 200 ml SUS316 autoclave was charged with 0.4 g of catalyst A and 40 g of water. After replacing the gas phase part 3 times with nitrogen 1 MPa, the gas phase part was replaced 3 times with hydrogen 1 MPa to form a hydrogen atmosphere. The mixture was stirred at room temperature for 30 minutes with a magnetic stirring blade in a hydrogen atmosphere. Thereafter, the flange was opened, and 4 g of trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 8 g of water were charged into the autoclave. After replacing the gas phase part 3 times with 1 MPa of nitrogen, the gas phase part was replaced 3 times with 1 MPa of hydrogen. The pressure was increased to 9 MPa with hydrogen, the temperature was raised to 50 ° C. while stirring with an electromagnetic stirring blade, and the reaction was stopped 60 minutes after the start of the temperature increase. When the reaction product is derivatized to a methyl ester and analyzed by gas chromatography, the conversion of trimellitic acid is 100% and the selectivity for hydrogenated trimellitic acid (1,2,4-cyclohexanetricarboxylic acid) is 97.7. %. The reaction rate constant at 30 minutes from the start of temperature increase was 4.6 hr −1 .
<実施例2>
触媒前駆体X 1gをフラスコに入れ、水浴で60℃に加熱した。ここに5wt%テトラエチルアンモニウムヒドロキシド水溶液(TEAH)を0.5ml添加し、アスピレーターで減圧にして、水分を蒸発させた。この操作を12回繰り返し、金属塩化物とTEAHを反応させた。アスピレーター減圧下で加熱して、水分を完全に蒸発させた。得られた触媒を水洗し、塩素原子およびTEAHを除去した。空気雰囲気下150℃で2時間乾燥させた(塩素含量は検出限界以下であった)。その後、250℃で4時間気相水素還元を実施することで、ルテニウム−パラジウム共担持触媒(2.5重量%Ru-2.5重量%Pd/SiO2、以下「触媒B」と称す)を調製した。触媒BのCO吸着量は3.4 cm3/g(STP)、金属表面積は256 m2/g-metal、金属分散度は63%であった。
<Example 2>
1 g of catalyst precursor X was placed in a flask and heated to 60 ° C. in a water bath. 0.5 ml of 5 wt% tetraethylammonium hydroxide aqueous solution (TEAH) was added thereto, and the water was evaporated by reducing the pressure with an aspirator. This operation was repeated 12 times to react the metal chloride with TEAH. The water was completely evaporated by heating under reduced pressure of the aspirator. The obtained catalyst was washed with water to remove chlorine atoms and TEAH. It was dried at 150 ° C. for 2 hours in an air atmosphere (the chlorine content was below the detection limit). Thereafter, a ruthenium-palladium co-supported catalyst (2.5 wt% Ru-2.5 wt% Pd / SiO2, hereinafter referred to as “catalyst B”) was prepared by performing gas phase hydrogen reduction at 250 ° C. for 4 hours. Catalyst B had a CO adsorption amount of 3.4 cm 3 / g (STP), a metal surface area of 256 m 2 / g-metal, and a metal dispersity of 63%.
200mlのSUS316製オートクレーブに触媒B 0.5g、水50gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換し、水素雰囲気とした。水素雰囲気で、電磁式撹拌羽根で30分間、室温で撹拌した。その後、フランジを開放しオートクレーブにトリメリット酸(東京化成工業社製)5g、水10gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換した。水素で9MPaまで昇圧し、電磁式撹拌羽根で撹拌しながら50℃に昇温し、昇温開始から60分で反応を停止した。反応生成物をメチルエステル体に誘導化後、ガスクロマトグラフィーで分析すると、トリメリット酸の転化率は100%、水素化トリメリット酸(1,2,4-シクロヘキサントリカルボン酸)の選択率は97.5%となった。また昇温開始から30分での反応速度定数を求めたところ、2.5 hr-1であった。 A 200 ml SUS316 autoclave was charged with 0.5 g of catalyst B and 50 g of water. After replacing the gas phase part 3 times with nitrogen 1 MPa, the gas phase part was replaced 3 times with hydrogen 1 MPa to form a hydrogen atmosphere. The mixture was stirred at room temperature for 30 minutes with a magnetic stirring blade in a hydrogen atmosphere. Thereafter, the flange was opened, and 5 g of trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of water were charged into the autoclave. After replacing the gas phase part 3 times with 1 MPa of nitrogen, the gas phase part was replaced 3 times with 1 MPa of hydrogen. The pressure was increased to 9 MPa with hydrogen, the temperature was raised to 50 ° C. while stirring with an electromagnetic stirring blade, and the reaction was stopped 60 minutes after the start of the temperature increase. When the reaction product is derivatized to a methyl ester and analyzed by gas chromatography, the conversion of trimellitic acid is 100%, and the selectivity for hydrogenated trimellitic acid (1,2,4-cyclohexanetricarboxylic acid) is 97.5. %. The reaction rate constant at 30 minutes from the start of temperature increase was 2.5 hr −1 .
<実施例3>
触媒前駆体X 1gをフラスコに入れ、水浴で60℃に加熱した。ここに15wt%テトラエチルアンモニウムヒドロキシド水溶液(TEAH)を0.5ml添加し、アスピレーターで減圧にして、水分を蒸発させた。この操作を6回繰り返し、金属塩化物とTEAHを反応させた。アスピレーター減圧下で加熱して、水分を完全に蒸発させた。得られた触媒を水洗し、塩素原子およびTEAHを除去した。空気雰囲気下150℃で2時間乾燥させた(塩素含量は検出限界以下であった)。その後、250℃で4時間気相水素還元を実施することで、ルテニウム−パラジウム共担持触媒(2.5重量%Ru-2.5重量%Pd/SiO2、以下「触媒C」と称す)を調製した。触媒CのCO吸着量は2.6 cm3/g(STP)、金属表面積は192 m2/g-metal、金属分散度は47%であった。
<Example 3>
1 g of catalyst precursor X was placed in a flask and heated to 60 ° C. in a water bath. To this, 0.5 ml of 15 wt% tetraethylammonium hydroxide aqueous solution (TEAH) was added, and the pressure was reduced with an aspirator to evaporate water. This operation was repeated 6 times to react the metal chloride with TEAH. The water was completely evaporated by heating under reduced pressure of the aspirator. The obtained catalyst was washed with water to remove chlorine atoms and TEAH. It was dried at 150 ° C. for 2 hours in an air atmosphere (the chlorine content was below the detection limit). Thereafter, a ruthenium-palladium co-supported catalyst (2.5 wt% Ru-2.5 wt% Pd / SiO2, hereinafter referred to as “catalyst C”) was prepared by performing gas phase hydrogen reduction at 250 ° C. for 4 hours. The CO adsorption amount of catalyst C was 2.6 cm 3 / g (STP), the metal surface area was 192 m 2 / g-metal, and the metal dispersion degree was 47%.
200mlのSUS316製オートクレーブに触媒C 0.5g、水50gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換し、水素雰囲気とした。水素雰囲気で、電磁式撹拌羽根で30分間、室温で撹拌した。その後、フランジを開放しオートクレーブにトリメリット酸(東京化成工業社製)5g、水10gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換した。水素で9MPaまで昇圧し、電磁式撹拌羽根で撹拌しながら50℃に昇温し、昇温開始から60分で反応を停止した。反応生成物をメチルエステル体に誘導化後、ガスクロマトグラフィーで分析すると、トリメリット酸の転化率は100%、水素化トリメリット酸(1,2,4-シクロヘキサントリカルボン酸)の選択率は96.8%となった。また昇温開始から30分での反応速度定数を求めたところ、2.2 hr-1であった。 A 200 ml SUS316 autoclave was charged with 0.5 g of catalyst C and 50 g of water. After replacing the gas phase part 3 times with nitrogen 1 MPa, the gas phase part was replaced 3 times with hydrogen 1 MPa to form a hydrogen atmosphere. The mixture was stirred at room temperature for 30 minutes with a magnetic stirring blade in a hydrogen atmosphere. Thereafter, the flange was opened, and 5 g of trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of water were charged into the autoclave. After replacing the gas phase part 3 times with 1 MPa of nitrogen, the gas phase part was replaced 3 times with 1 MPa of hydrogen. The pressure was increased to 9 MPa with hydrogen, the temperature was raised to 50 ° C. while stirring with an electromagnetic stirring blade, and the reaction was stopped 60 minutes after the start of the temperature increase. When the reaction product is derivatized to a methyl ester and analyzed by gas chromatography, the conversion of trimellitic acid is 100% and the selectivity for hydrogenated trimellitic acid (1,2,4-cyclohexanetricarboxylic acid) is 96.8. %. The reaction rate constant at 30 minutes from the start of temperature increase was 2.2 hr −1 .
<比較例1>
触媒前駆体X 1gを空気雰囲気下400℃で4時間焼成、250℃で4時間気相水素還元を実施することで、ルテニウム−パラジウム共担持触媒(2.5重量%Ru-2.5重量%Pd/SiO2、以下「触媒D」と称す)を調製した。焼成時には微量ではあるが塩素ガスの発生が確認された。触媒DのCO吸着量は1.8 cm3/g(STP)、金属表面積は138 m2/g-metal、金属分散度は34%であった。
<Comparative Example 1>
The catalyst precursor X 1g was calcined at 400 ° C. for 4 hours in an air atmosphere and subjected to gas phase hydrogen reduction at 250 ° C. for 4 hours, whereby a ruthenium-palladium co-supported catalyst (2.5 wt% Ru-2.5 wt% Pd / SiO2, (Hereinafter referred to as “Catalyst D”) was prepared. The generation of chlorine gas was confirmed at the time of firing. The CO adsorption amount of catalyst D was 1.8 cm 3 / g (STP), the metal surface area was 138 m 2 / g-metal, and the metal dispersity was 34%.
200mlのSUS316製オートクレーブに触媒D 0.5g、水50gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換し、水素雰囲気とした。水素雰囲気で、電磁式撹拌羽根で30分間、室温で撹拌した。その後、フランジを開放しオートクレーブにトリメリット酸(東京化成工業社製)5g、水10gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換した。水素で9MPaまで昇圧し、電磁式撹拌羽根で撹拌しながら50℃に昇温し、昇温開始から60分で反応を停止した。反応生成物をメチルエステル体に誘導化後、ガスクロマトグラフィーで分析すると、トリメリット酸の転化率は97.7%、水素化トリメリット酸(1,2,4-シクロヘキサントリカルボン酸)の選択率は96.8%となった。また昇温開始から30分での反応速度定数を求めたところ、2.1 hr-1であった。 A 200 ml SUS316 autoclave was charged with 0.5 g of catalyst D and 50 g of water. After replacing the gas phase part 3 times with nitrogen 1 MPa, the gas phase part was replaced 3 times with hydrogen 1 MPa to form a hydrogen atmosphere. The mixture was stirred at room temperature for 30 minutes with a magnetic stirring blade in a hydrogen atmosphere. Thereafter, the flange was opened, and 5 g of trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of water were charged into the autoclave. After replacing the gas phase part 3 times with 1 MPa of nitrogen, the gas phase part was replaced 3 times with 1 MPa of hydrogen. The pressure was increased to 9 MPa with hydrogen, the temperature was raised to 50 ° C. while stirring with an electromagnetic stirring blade, and the reaction was stopped 60 minutes after the start of the temperature increase. When the reaction product is derivatized to a methyl ester and analyzed by gas chromatography, the conversion of trimellitic acid is 97.7% and the selectivity for hydrogenated trimellitic acid (1,2,4-cyclohexanetricarboxylic acid) is 96.8%. %. The reaction rate constant at 30 minutes from the start of temperature increase was 2.1 hr −1 .
<比較例2>
触媒前駆体X 1gをフラスコに入れ、水浴で60℃に加熱した。ここに0.2N(0.8wt%) 水酸化ナトリウム水溶液(NaOH, 和光純薬製)を0.5ml添加し、アスピレーターで減圧にして、水分を蒸発させた。この操作を13回繰り返し、金属塩化物とNaOHを反応させた。アスピレーター減圧下で加熱して、水分を完全に蒸発させた。得られた触媒を水洗し、塩素原子およびNaOHを除去した。空気雰囲気下150℃で2時間乾燥させた(塩素含量は検出限界以下であった)。その後、250℃で4時間気相水素還元を実施することで、ルテニウム−パラジウム共担持触媒(2.5重量%Ru-2.5重量%Pd/SiO2、以下「触媒E」と称す)を調製した。触媒EのCO吸着量は2.4 cm3/g(STP)、金属表面積は183 m2/g-metal、金属分散度は45%であった。
<Comparative example 2>
1 g of catalyst precursor X was placed in a flask and heated to 60 ° C. in a water bath. To this, 0.5 ml of 0.2N (0.8 wt%) aqueous sodium hydroxide solution (NaOH, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the water was evaporated by reducing the pressure with an aspirator. This operation was repeated 13 times to react the metal chloride with NaOH. The water was completely evaporated by heating under reduced pressure of the aspirator. The obtained catalyst was washed with water to remove chlorine atoms and NaOH. It was dried at 150 ° C. for 2 hours in an air atmosphere (the chlorine content was below the detection limit). Thereafter, a ruthenium-palladium co-supported catalyst (2.5 wt% Ru-2.5 wt% Pd / SiO2, hereinafter referred to as “catalyst E”) was prepared by performing gas phase hydrogen reduction at 250 ° C. for 4 hours. The amount of CO adsorbed by catalyst E was 2.4 cm 3 / g (STP), the metal surface area was 183 m 2 / g-metal, and the metal dispersion was 45%.
200mlのSUS316製オートクレーブに触媒E 0.5g、水50gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換し、水素雰囲気とした。水素雰囲気で、電磁式撹拌羽根で30分間、室温で撹拌した。その後、フランジを開放しオートクレーブにトリメリット酸(東京化成工業社製)5g、水10gを仕込んだ。気相部を窒素1MPaで3回置換した後、水素1MPaで3回気相部を置換した。水素で9MPaまで昇圧し、電磁式撹拌羽根で撹拌しながら50℃に昇温し、昇温開始から60分で反応を停止した。反応生成物をメチルエステル体に誘導化後、ガスクロマトグラフィーで分析すると、トリメリット酸の転化率は84.3%、水素化トリメリット酸(1,2,4-シクロヘキサントリカルボン酸)の選択率は96.6%となった。また昇温開始から30分での反応速度定数を求めたところ、1.7 hr-1であった。 A 200 ml SUS316 autoclave was charged with 0.5 g of catalyst E and 50 g of water. After replacing the gas phase part 3 times with nitrogen 1 MPa, the gas phase part was replaced 3 times with hydrogen 1 MPa to form a hydrogen atmosphere. The mixture was stirred at room temperature for 30 minutes with a magnetic stirring blade in a hydrogen atmosphere. Thereafter, the flange was opened, and 5 g of trimellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 g of water were charged into the autoclave. After replacing the gas phase part 3 times with 1 MPa of nitrogen, the gas phase part was replaced 3 times with 1 MPa of hydrogen. The pressure was increased to 9 MPa with hydrogen, the temperature was raised to 50 ° C. while stirring with an electromagnetic stirring blade, and the reaction was stopped 60 minutes after the start of the temperature increase. When the reaction product is derivatized to a methyl ester form and analyzed by gas chromatography, the conversion of trimellitic acid is 84.3%, and the selectivity for trimellitic acid hydride (1,2,4-cyclohexanetricarboxylic acid) is 96.6. %. The reaction rate constant at 30 minutes from the start of temperature increase was 1.7 hr −1 .
共担持触媒を調製する際に触媒前駆体に対し有機アルカリにて処理を行った実施例1〜3では反応速度が速く、反応時間60分で転化率100%に達し、目的物の選択率も良好であった。これに対し、特許文献6にて開示される触媒に相当する比較例1(金属分散度34%)では反応速度が不充分であった。また、触媒前駆体を無機アルカリで処理した比較例2では比較例1よりも劣る反応成績であった。 In Examples 1 to 3, where the catalyst precursor was treated with an organic alkali when preparing the co-supported catalyst, the reaction rate was fast, the conversion rate reached 100% in 60 minutes, and the selectivity of the target product was also high. It was good. On the other hand, in Comparative Example 1 (metal dispersion degree 34%) corresponding to the catalyst disclosed in Patent Document 6, the reaction rate was insufficient. In Comparative Example 2 in which the catalyst precursor was treated with an inorganic alkali, the reaction results were inferior to those of Comparative Example 1.
Claims (3)
後に、該触媒前駆体と有機アルカリを接触させることにより製造され、さらに、前記触媒はトリメリット酸、トリメシン酸またはピロメリット酸の芳香環を水素化する触媒として用いることを特徴とする、ルテニウム−パラジウム共担持触媒の製造方法。 A method for producing a catalyst in which ruthenium and palladium are co-supported on a support, wherein ruthenium and palladium are present in the form of particles containing both on the support surface, the metal dispersion is 46% or more, The catalyst precursor is prepared by supporting ruthenium and palladium chloride on a support and then contacting the catalyst precursor with an organic alkali. Further, the catalyst is a fragrance of trimellitic acid, trimesic acid or pyromellitic acid. A method for producing a ruthenium-palladium co-supported catalyst, which is used as a catalyst for hydrogenating a ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013213040A JP6314411B2 (en) | 2013-10-10 | 2013-10-10 | Hydrogenation catalyst for aromatic carboxylic acids and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013213040A JP6314411B2 (en) | 2013-10-10 | 2013-10-10 | Hydrogenation catalyst for aromatic carboxylic acids and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015073960A JP2015073960A (en) | 2015-04-20 |
JP6314411B2 true JP6314411B2 (en) | 2018-04-25 |
Family
ID=52999243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013213040A Active JP6314411B2 (en) | 2013-10-10 | 2013-10-10 | Hydrogenation catalyst for aromatic carboxylic acids and process for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6314411B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210109358A (en) * | 2020-02-27 | 2021-09-06 | 한국화학연구원 | Elimination Method of Chlorine in Inorganics Using Bases and Selective Catalytic Reduction(SCR) Catalysts Manufactured Thereby |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102223388B1 (en) * | 2017-09-29 | 2021-03-04 | 한화솔루션 주식회사 | Preparation method of ruthenium-platinum-tin catalyst for hydrogenation of cyclohexane dicarboxylic acid (CHDA) and method for producing cyclohexane dimethanol (CHDM) using said catalyst |
KR102238548B1 (en) | 2017-12-29 | 2021-04-08 | 한화솔루션 주식회사 | Noble metal-transition metal complex catalyst of carbon coated silica-alumina and preparation method of thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0640958B2 (en) * | 1987-09-25 | 1994-06-01 | 日揮株式会社 | Method for producing silica catalyst supporting platinum group metal |
JP2002020346A (en) * | 2000-07-04 | 2002-01-23 | Mitsubishi Chemicals Corp | Method for producing cyclohexanecarboxylic acid |
EP1323700B1 (en) * | 2001-12-28 | 2007-08-22 | Mitsubishi Gas Chemical Company, Inc. | process for producing hydrogenated aromatic polycarboxylic acid and process for producing hydrogenated aromatic polycarboxylic anhydride |
GB0227086D0 (en) * | 2002-11-20 | 2002-12-24 | Exxonmobil Res & Eng Co | Hydrogenation processes |
JP2006124313A (en) * | 2004-10-28 | 2006-05-18 | Nippon Steel Chem Co Ltd | Method for producing alicyclic polycarboxylic acid and anhydride of the same |
JP4840584B2 (en) * | 2006-03-02 | 2011-12-21 | 独立行政法人科学技術振興機構 | Polysilane-supported transition metal catalysts for organic synthesis reactions |
JP2009040717A (en) * | 2007-08-08 | 2009-02-26 | Sumitomo Seika Chem Co Ltd | Method for producing cyclohexanecarboxylic acid |
EP2682380B1 (en) * | 2011-03-01 | 2018-07-04 | Mitsubishi Gas Chemical Company, Inc. | Method for producing alicyclic carboxylic acid and catalyst used in same |
TWI418405B (en) * | 2011-05-13 | 2013-12-11 | Univ Nat Central | Preparation of ruthenium supported on mesoporous mcm-41 and its application in hydrogenation of p-xylene |
JP6083270B2 (en) * | 2013-03-19 | 2017-02-22 | 三菱瓦斯化学株式会社 | Method for producing alicyclic carboxylic acid |
-
2013
- 2013-10-10 JP JP2013213040A patent/JP6314411B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210109358A (en) * | 2020-02-27 | 2021-09-06 | 한국화학연구원 | Elimination Method of Chlorine in Inorganics Using Bases and Selective Catalytic Reduction(SCR) Catalysts Manufactured Thereby |
KR102382083B1 (en) * | 2020-02-27 | 2022-04-01 | 한국화학연구원 | Elimination Method of Chlorine in Inorganics Using Bases and Selective Catalytic Reduction(SCR) Catalysts Manufactured Thereby |
Also Published As
Publication number | Publication date |
---|---|
JP2015073960A (en) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6146301B2 (en) | Process for producing alicyclic carboxylic acid and catalyst used in the process | |
JP6314411B2 (en) | Hydrogenation catalyst for aromatic carboxylic acids and process for producing the same | |
JP2009500171A (en) | Improvement of catalyst | |
EP2776155A1 (en) | A catalyst for direct synthesis of hydrogen peroxide | |
JP6083270B2 (en) | Method for producing alicyclic carboxylic acid | |
US20220062868A1 (en) | Carbon-based, precious metal-transition metal composite catalyst and preparation method therefor | |
JP2007203284A (en) | Palladium-supported catalyst and its manufacturing method | |
JP2009090283A (en) | Catalyst | |
JP3911955B2 (en) | A method for producing a ruthenium-tin supported catalyst. | |
JP4728761B2 (en) | Method for producing supported catalyst containing palladium and tellurium, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride | |
JP5530074B2 (en) | Composite and production method thereof | |
WO2019205101A1 (en) | Process for preparing dispersed pd nanoparticles on a support | |
JP2011235215A (en) | METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID | |
JP6687813B2 (en) | Method for producing 1,3-cyclohexanedicarboxylic acid | |
JP5906752B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2004137180A (en) | Method for producing carboxylate | |
JP2001097904A (en) | Method for producing 1,6-hexanediol | |
JP2005539078A (en) | Continuous process for optically pure (S) -β-hydroxy-γ-butyrolactone | |
JP2007185623A (en) | Method for producing alpha,beta-unsaturated carboxylic acid, catalyst to be used therein and method for manufacturing the catalyst | |
JP5069660B2 (en) | Palladium-containing catalyst | |
JP5609394B2 (en) | Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP4922082B2 (en) | Palladium catalyst for selective catalytic reduction reaction | |
JP2013138974A (en) | Method for producing catalyst for producing unsaturated hydrocarbon and method for producing unsaturated hydrocarbon | |
JP2008212818A (en) | Method of manufacturing palladium-containing supported catalyst | |
JP2013215648A (en) | Porous body having transition metal component and surfactant supported within mesopore and method of producing six-membered alicyclic ketone compound using the porous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170919 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180312 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6314411 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |