[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6389941B2 - Semiconductor device, electronic device, and manufacturing method of semiconductor device - Google Patents

Semiconductor device, electronic device, and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP6389941B2
JP6389941B2 JP2017192504A JP2017192504A JP6389941B2 JP 6389941 B2 JP6389941 B2 JP 6389941B2 JP 2017192504 A JP2017192504 A JP 2017192504A JP 2017192504 A JP2017192504 A JP 2017192504A JP 6389941 B2 JP6389941 B2 JP 6389941B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
inductor
wiring board
chip
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017192504A
Other languages
Japanese (ja)
Other versions
JP2018026577A (en
Inventor
優一 宮川
優一 宮川
藤井 英樹
英樹 藤井
古屋 賢二
賢二 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of JP2018026577A publication Critical patent/JP2018026577A/en
Application granted granted Critical
Publication of JP6389941B2 publication Critical patent/JP6389941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、インダクタを用いて信号を送受信する半導体装置、電子装置、及び半導体装置の製造方法に関する。   The present invention relates to a semiconductor device, an electronic device, and a method for manufacturing a semiconductor device that transmit and receive signals using an inductor.

入力される電気信号の電位が互いに異なる2つの回路の間で電気信号を伝達する場合、フォトカプラを用いることが多い。フォトカプラは、発光ダイオードなどの発光素子とフォトトランジスタなどの受光素子を有しており、入力された電気信号を発光素子で光に変換し、この光を受光素子で電気信号に戻すことにより、電気信号を伝達している。しかし、フォトカプラは発光素子と受光素子を有しているため、小型化が難しい。また、電気信号の周波数が高い場合には電気信号に追従できなくなる。これらの問題を解決する技術として、2つ(一組)のインダクタを対向配置して、各々のインダクタを誘導結合させることにより、電気信号を伝達する技術が開発されている。   When an electric signal is transmitted between two circuits having different electric signal potentials, a photocoupler is often used. The photocoupler has a light emitting element such as a light emitting diode and a light receiving element such as a phototransistor, and converts an inputted electric signal into light by the light emitting element, and returns this light to an electric signal by the light receiving element. An electrical signal is transmitted. However, since the photocoupler has a light emitting element and a light receiving element, it is difficult to reduce the size. Further, when the frequency of the electrical signal is high, it becomes impossible to follow the electrical signal. As a technique for solving these problems, a technique has been developed in which two (a set) of inductors are arranged to face each other and each inductor is inductively coupled to transmit an electrical signal.

特許文献1及び特許文献2には、半導体チップの多層配線を活用して、1つの半導体チップ内に、それぞれ垂直(図1)、水平(図2)の2つ(一組)のインダクタが対向配置されている。これらは、標準的なCMOSプロセスにて製造することができ、対向配置されている2つのインダクタの位置精度を高くすることができるとされている。   In Patent Document 1 and Patent Document 2, two (a set of) inductors (vertical (FIG. 1) and horizontal (FIG. 2)) are opposed to each other in one semiconductor chip by utilizing the multilayer wiring of the semiconductor chip. Has been placed. These can be manufactured by a standard CMOS process, and the positional accuracy of the two inductors arranged opposite to each other can be increased.

また、特許文献3及び特許文献4に記載の半導体装置は、第1インダクタと第2インダクタとを有している。この半導体装置において、入出力信号端子間は絶縁されている。そして第1インダクタは第1の半導体チップに設けられており、入力部に入力された電気信号に基づいて電磁信号を発生させる。また第2の半導体インダクタは第2の半導体チップに設けられており、第1インダクタからの電磁信号を受けて電気信号を発生し、発生した電気信号を出力部から出力する。第1の半導体チップと第2の半導体チップとは、それぞれ各々のリードフレーム上に設けられると共に、第1及び第2インダクタが互いに電気的に絶縁された状態で対向配置されている。これにより、第1インダクタと第2インダクタとが電気的に接触することがなく、容易に第1インダクタと第2インダクタとの間の絶縁をとることが可能となる、とされている。また、インダクタ間に厚い絶縁膜が設けられないため、この半導体装置を標準的なCMOSプロセスにて製造することが可能になる、とされている。   The semiconductor devices described in Patent Document 3 and Patent Document 4 include a first inductor and a second inductor. In this semiconductor device, the input / output signal terminals are insulated. The first inductor is provided in the first semiconductor chip, and generates an electromagnetic signal based on the electrical signal input to the input unit. The second semiconductor inductor is provided in the second semiconductor chip, receives an electromagnetic signal from the first inductor, generates an electrical signal, and outputs the generated electrical signal from the output unit. The first semiconductor chip and the second semiconductor chip are provided on each lead frame, respectively, and are arranged to face each other in a state where the first and second inductors are electrically insulated from each other. Thus, the first inductor and the second inductor are not in electrical contact with each other, and the insulation between the first inductor and the second inductor can be easily obtained. Further, since a thick insulating film is not provided between the inductors, this semiconductor device can be manufactured by a standard CMOS process.

特開2006−066769号公報JP 2006-0667669 A 特開2005−005685号公報JP-A-2005-005685 特開2007−123650号公報JP 2007-123650 A 特開2007−123649号公報JP 2007-123649 A

インダクタを用いてエネルギーの送受信を行う場合、その効率を上げるためには、2つのインダクタを精度良く対向させる必要がある。このためには、第1インダクタと第2インダクタを同一の基板に形成することが好ましい。本発明者は、第1インダクタと第2インダクタとを、巻き軸方向が基板と水平方向に向けることを検討した。そしてこの場合、第1インダクタと第2インダクタの間の絶縁性に問題が生じる可能性があると考えた。   When transmitting and receiving energy using an inductor, in order to increase the efficiency, it is necessary to make the two inductors face each other with high accuracy. For this purpose, it is preferable to form the first inductor and the second inductor on the same substrate. The present inventor studied that the winding axis direction of the first inductor and the second inductor is in the horizontal direction with respect to the substrate. In this case, it was considered that there may be a problem in the insulation between the first inductor and the second inductor.

本発明によれば、配線基板と、
前記配線基板の第1面上に実装され、多層配線層を有する半導体チップと、
前記多層配線層に形成され、巻き軸方向が前記配線基板と水平方向を向いている第1インダクタと、
前記多層配線層に形成され、巻き軸方向が前記配線基板と水平方向を向いており、前記第1インダクタに対向している第2インダクタと、
前記多層配線層に形成され、前記第1インダクタと前記第2インダクタの間に位置している溝と、
を備える半導体装置が提供される。
According to the present invention, a wiring board;
A semiconductor chip mounted on the first surface of the wiring board and having a multilayer wiring layer;
A first inductor formed in the multilayer wiring layer and having a winding axis direction parallel to the wiring board;
A second inductor formed in the multilayer wiring layer, the winding axis direction being parallel to the wiring substrate and facing the first inductor;
A groove formed in the multilayer wiring layer and positioned between the first inductor and the second inductor;
A semiconductor device is provided.

本発明によれば、封止樹脂と多層配線層の界面には溝が形成されている。この溝は、少なくとも第1インダクタと第2インダクタの間に位置している部分の全域に形成されている。このため、第1インダクタと第2インダクタの絶縁が確保できなくなることを抑制できる。   According to the present invention, the groove is formed at the interface between the sealing resin and the multilayer wiring layer. This groove is formed at least over the entire portion located between the first inductor and the second inductor. For this reason, it can suppress that insulation of a 1st inductor and a 2nd inductor cannot be ensured.

本発明によれば、半導体装置と、
前記半導体装置を実装している実装基板と、
を備え、
前記半導体装置は、
配線基板と、
前記配線基板の第1面上に実装され、多層配線層を有する半導体チップと、
前記多層配線層に形成され、巻き軸方向が前記配線基板と水平方向を向いている第1インダクタと、
前記多層配線層に形成され、巻き軸方向が前記配線基板と水平方向を向いており、前記第1インダクタに対向している第2インダクタと、
前記多層配線層に形成され、前記第1インダクタと前記第2インダクタの間に位置している溝と、
を備える電子装置が提供される。
According to the present invention, a semiconductor device;
A mounting substrate on which the semiconductor device is mounted;
With
The semiconductor device includes:
A wiring board;
A semiconductor chip mounted on the first surface of the wiring board and having a multilayer wiring layer;
A first inductor formed in the multilayer wiring layer and having a winding axis direction parallel to the wiring board;
A second inductor formed in the multilayer wiring layer, the winding axis direction being parallel to the wiring substrate and facing the first inductor;
A groove formed in the multilayer wiring layer and positioned between the first inductor and the second inductor;
An electronic device is provided.

本発明によれば、基板と、基板上に形成された多層配線層と、前記多層配線層に形成されていて巻き軸方向が前記基板と水平方向を向いている第1インダクタと、前記多層配線層に形成されていて巻き軸方向が前記配線基板と水平方向を向いており、前記第1インダクタに対向している第2インダクタと、を備える半導体装置を形成する工程と、
前記多層配線層に、前記第1インダクタと前記第2インダクタの間に位置している溝を形成する工程と、
を備える半導体装置の製造方法が提供される。
According to the present invention, a substrate, a multilayer wiring layer formed on the substrate, a first inductor formed on the multilayer wiring layer and having a winding axis direction parallel to the substrate, and the multilayer wiring Forming a semiconductor device comprising: a second inductor formed in a layer and having a winding axis direction horizontal to the wiring substrate and facing the first inductor;
Forming a groove located between the first inductor and the second inductor in the multilayer wiring layer;
A method for manufacturing a semiconductor device is provided.

本発明によれば、第1インダクタと第2インダクタの絶縁が確保できなくなることを抑制できる。   According to the present invention, it is possible to prevent the insulation between the first inductor and the second inductor from being secured.

第1の実施形態に係る半導体装置の構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of a semiconductor device according to a first embodiment. 半導体チップの構成を示す断面拡大図である。It is a cross-sectional enlarged view which shows the structure of a semiconductor chip. 図2のA−A´断面図である。It is AA 'sectional drawing of FIG. 第1インダクタ及び第2インダクタの幅を説明するための平面概略図である。It is the plane schematic for demonstrating the width | variety of a 1st inductor and a 2nd inductor. 図1に示した半導体装置の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method for manufacturing the semiconductor device shown in FIG. 1. 図1に示した半導体装置を用いた電子装置の断面図である。It is sectional drawing of the electronic device using the semiconductor device shown in FIG. 第1の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 1st Embodiment. 第2の実施形態に係る電子装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electronic device which concerns on 2nd Embodiment. 第3の実施形態に係る電子装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electronic device which concerns on 3rd Embodiment. 第4の実施形態に係る電子装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electronic device which concerns on 4th Embodiment. 半導体装置を実装基板に実装する方法の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the method of mounting a semiconductor device in a mounting substrate. 半導体装置を実装基板に実装する方法の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the method of mounting a semiconductor device in a mounting substrate. 第5の実施形態に係る半導体装置の平面概略図である。It is a plane schematic diagram of the semiconductor device concerning a 5th embodiment. 第6の実施形態に係る半導体装置の断面概略図である。It is a section schematic diagram of a semiconductor device concerning a 6th embodiment. 第6の実施形態に係る電子装置の断面概略図である。It is a section schematic diagram of an electronic device concerning a 6th embodiment. 第7の実施形態に係る半導体装置の断面概略図である。It is a section schematic diagram of a semiconductor device concerning a 7th embodiment. 第7の実施形態に係る電子装置の断面概略図である。It is a section schematic diagram of an electronic device concerning a 7th embodiment. 第8の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 8th Embodiment. 第8の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 8th Embodiment. 第9の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 9th Embodiment. 第9の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 9th Embodiment. 第9の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 9th Embodiment. 第10の実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on 10th Embodiment. 第11の実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on 11th Embodiment. 第11の実施形態に係る半導体装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the semiconductor device which concerns on 11th Embodiment. 第12の実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on 12th Embodiment. 第12の実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on 12th Embodiment. 第13の実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on 13th Embodiment. 第14の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 14th Embodiment. 第15の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 15th Embodiment. 第15の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 15th Embodiment. 第16の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 16th Embodiment. 第16の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 16th Embodiment. 第17の実施形態に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on 17th Embodiment. 第18の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 18th Embodiment. 図36の変形例を示す図である。It is a figure which shows the modification of FIG. 第19の実施形態に係る半導体チップの構成を示す平面図である。It is a top view which shows the structure of the semiconductor chip based on 19th Embodiment. 第20の実施形態に係る半導体装置の構成を示す図であるIt is a figure which shows the structure of the semiconductor device which concerns on 20th Embodiment. 第21の実施形態に係る半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device which concerns on 21st Embodiment. 第22の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 22nd Embodiment. 第22の実施形態に係る半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the semiconductor device which concerns on 22nd Embodiment. (a)は第23の実施形態に係る半導体装置の構成を示す平面図であり、(b)は、この半導体装置の裏面図である。(A) is a top view which shows the structure of the semiconductor device based on 23rd Embodiment, (b) is a back view of this semiconductor device. 図43(b)の変形例を示す図である。It is a figure which shows the modification of FIG.43 (b). 図43(b)の変形例を示す図である。It is a figure which shows the modification of FIG.43 (b). (a)は第24の実施形態に係る半導体装置の構成を示す平面図であり、(b)は、この半導体装置の裏面図である。(A) is a top view which shows the structure of the semiconductor device based on 24th Embodiment, (b) is a back view of this semiconductor device. 図46(b)の変形例を示す図である。It is a figure which shows the modification of FIG.46 (b). 第25の実施形態に係る半導体装置の構成を示す図である。It is a figure which shows the structure of the semiconductor device which concerns on 25th Embodiment. 第26の実施形態に係る半導体チップを有する電子装置の機能ブロック図である。FIG. 38 is a functional block diagram of an electronic device having a semiconductor chip according to a twenty-sixth embodiment.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る半導体装置の構成を示す断面図である。この半導体装置は、配線基板200、半導体チップ100、第1インダクタ112、第2インダクタ122、封止樹脂400、及び溝500を備えている。半導体チップ100は配線基板200の第1面上に実装されており、多層配線層106(図2に図示)を有している。第1インダクタ112は多層配線層106に形成されており、巻き軸方向が配線基板200と水平方向を向いている。第2インダクタ122は多層配線層106に形成されており、巻き軸方向が配線基板200と水平方向を向いている。第2インダクタ122は第1インダクタ112に対向している。封止樹脂400は、配線基板200の少なくとも第1面と、半導体チップ100とを封止している。溝500は、封止樹脂400と多層配線層106の界面のうち、少なくとも第1インダクタ112と第2インダクタ122の間に位置している部分の全域に形成されている。以下、詳細に説明する。
(First embodiment)
FIG. 1 is a cross-sectional view showing the configuration of the semiconductor device according to the first embodiment. This semiconductor device includes a wiring substrate 200, a semiconductor chip 100, a first inductor 112, a second inductor 122, a sealing resin 400, and a groove 500. The semiconductor chip 100 is mounted on the first surface of the wiring substrate 200 and has a multilayer wiring layer 106 (shown in FIG. 2). The first inductor 112 is formed in the multilayer wiring layer 106, and the winding axis direction is in the horizontal direction with the wiring board 200. The second inductor 122 is formed in the multilayer wiring layer 106, and the winding axis direction is in the horizontal direction with the wiring substrate 200. The second inductor 122 is opposed to the first inductor 112. The sealing resin 400 seals at least the first surface of the wiring substrate 200 and the semiconductor chip 100. The groove 500 is formed at least over the entire portion of the interface between the sealing resin 400 and the multilayer wiring layer 106 located between the first inductor 112 and the second inductor 122. Details will be described below.

半導体チップ100は、多層配線層106が形成されている面すなわち能動面が、配線基板200とは逆を向いている。半導体チップ100は、ボンディングワイヤ300を介して配線基板200に接続している。封止樹脂400は、配線基板200の第1面、ボンディングワイヤ300、及び半導体チップ100の全体を封止している。そして溝500は、封止樹脂400の上面から半導体チップ100の多層配線層106にわたって形成されている。溝500は、半導体チップ100を貫通していない。溝500は、半導体チップ100の多層配線層106のうち少なくとも第1インダクタ112及び第2インダクタ122が形成されている層を貫通しているのが好ましい。さらに好ましくは、溝500は、多層配線層106の全体を貫通している。なお本実施形態において、第1インダクタ112と第2インダクタ122は、互いに同一の層に形成されている。   In the semiconductor chip 100, the surface on which the multilayer wiring layer 106 is formed, that is, the active surface, is opposite to the wiring substrate 200. The semiconductor chip 100 is connected to the wiring substrate 200 via bonding wires 300. The sealing resin 400 seals the entire first surface of the wiring substrate 200, the bonding wires 300, and the semiconductor chip 100. The groove 500 is formed from the upper surface of the sealing resin 400 to the multilayer wiring layer 106 of the semiconductor chip 100. The groove 500 does not penetrate the semiconductor chip 100. The trench 500 preferably penetrates at least the layer in which the first inductor 112 and the second inductor 122 are formed in the multilayer wiring layer 106 of the semiconductor chip 100. More preferably, the groove 500 penetrates the entire multilayer wiring layer 106. In the present embodiment, the first inductor 112 and the second inductor 122 are formed in the same layer.

第1インダクタ112は半導体チップ100の第1回路領域110に形成されており、第2インダクタ122は半導体チップ100の第2回路領域120に形成されている。第1インダクタ112と第2インダクタ122の巻き数や巻き方向は、互いに同一であってもよいし、互いに異なっていてもよい。第1回路領域110は発振回路を有しており、第2回路領域120は受信回路を有している。発振回路は第1インダクタ112に接続しており、受信回路は第2インダクタ122に接続している。第1回路領域110(第1インダクタ112を含む)と第2回路領域120(第2インダクタ122を含む)は、駆動時の基準電位が互いに異なっている。第1回路領域110と第2回路領域120の基準電位の差は、例えば100V以上である。例えば第1回路領域110の基準電位は3V程度であり、第2回路領域120は、例えば800V程度である。そして第1回路領域110に形成されている回路と、第2回路領域120に形成されている回路は、第1インダクタ112及び第2インダクタ122を介して信号を送受信する。   The first inductor 112 is formed in the first circuit region 110 of the semiconductor chip 100, and the second inductor 122 is formed in the second circuit region 120 of the semiconductor chip 100. The number of windings and the winding direction of the first inductor 112 and the second inductor 122 may be the same or different from each other. The first circuit area 110 has an oscillation circuit, and the second circuit area 120 has a receiving circuit. The oscillation circuit is connected to the first inductor 112, and the reception circuit is connected to the second inductor 122. The first circuit region 110 (including the first inductor 112) and the second circuit region 120 (including the second inductor 122) have different reference potentials during driving. A difference in reference potential between the first circuit region 110 and the second circuit region 120 is, for example, 100 V or more. For example, the reference potential of the first circuit region 110 is about 3V, and the second circuit region 120 is about 800V, for example. The circuit formed in the first circuit region 110 and the circuit formed in the second circuit region 120 transmit and receive signals via the first inductor 112 and the second inductor 122.

図2は、半導体チップ100の構成を示す断面拡大図である。半導体チップ100は、シリコン基板などの基板102の上に、素子が形成されている素子層104を有している。素子層104が有する素子は、例えばトランジスタである。素子層104上には多層配線層106が形成されている。多層配線層106の最上層は、パッシベーション膜108になっている。第1インダクタ112及び第2インダクタ122は、素子層104の素子に接続している。本実施形態において第1インダクタ112及び第2インダクタ122は、多層配線層106に形成されている全ての配線層を用いて形成されている。   FIG. 2 is an enlarged cross-sectional view showing the configuration of the semiconductor chip 100. The semiconductor chip 100 has an element layer 104 in which elements are formed on a substrate 102 such as a silicon substrate. An element included in the element layer 104 is a transistor, for example. A multilayer wiring layer 106 is formed on the element layer 104. The uppermost layer of the multilayer wiring layer 106 is a passivation film 108. The first inductor 112 and the second inductor 122 are connected to the element of the element layer 104. In the present embodiment, the first inductor 112 and the second inductor 122 are formed using all the wiring layers formed in the multilayer wiring layer 106.

図3(a)は、図2のA−A´断面図である。本図及び図2に示すように、第1インダクタ112及び第2インダクタ122は、3次元的に形成されており、螺旋形状を有している。図2に示す例では、第1インダクタ112及び第2インダクタ122は、4重の螺旋となっている。この螺旋を構成する各ループの平面形状は、互いに等しい。   FIG. 3A is a cross-sectional view taken along the line AA ′ of FIG. As shown in FIG. 2 and FIG. 2, the first inductor 112 and the second inductor 122 are three-dimensionally formed and have a spiral shape. In the example shown in FIG. 2, the first inductor 112 and the second inductor 122 are quadruple spirals. The planar shapes of the loops constituting the spiral are equal to each other.

図3(b)は、第1インダクタ112及び第2インダクタ122の形状の変形例を示す断面図である。本図に示す例において、第1インダクタ112及び第2インダクタ122は、素子層104の素子に接続する部分をのぞいて、2次元的に形成されている。すなわち本図に示す例では、第1インダクタ112及び第2インダクタ122の本体部分は、同一の面内に渦巻きを形成するように延伸している。   FIG. 3B is a cross-sectional view showing a modified example of the shape of the first inductor 112 and the second inductor 122. In the example shown in the figure, the first inductor 112 and the second inductor 122 are two-dimensionally formed except for the portion of the element layer 104 connected to the element. That is, in the example shown in this figure, the main body portions of the first inductor 112 and the second inductor 122 are extended so as to form a spiral in the same plane.

図4は、第1インダクタ112及び第2インダクタ122の幅を説明するための平面概略図である。第1インダクタ112及び第2インダクタ122は、半導体チップ100の幅方向で見たとき、図4(a)に示すように半導体チップ100の一部に形成されても良いし、図4(b)に示すように半導体チップ100の端を除いた全体に形成されても良い。ただし、図4(b)に示す構造を有する場合においても第1インダクタ112及び第2インダクタ122は、半導体チップ100の幅方向(図中上下方向)においてはガードリング(図示せず)の内側に位置している。なお、第1インダクタ112と溝500の間、及び第2インダクタ122と溝500の間それぞれには、ガードリング及び配線が形成されていない。   FIG. 4 is a schematic plan view for explaining the widths of the first inductor 112 and the second inductor 122. When viewed in the width direction of the semiconductor chip 100, the first inductor 112 and the second inductor 122 may be formed in a part of the semiconductor chip 100 as shown in FIG. 4A, or FIG. As shown in FIG. 2, the semiconductor chip 100 may be formed entirely except for the end. However, even in the case of the structure shown in FIG. 4B, the first inductor 112 and the second inductor 122 are inside the guard ring (not shown) in the width direction of the semiconductor chip 100 (vertical direction in the figure). positioned. A guard ring and a wiring are not formed between the first inductor 112 and the groove 500 and between the second inductor 122 and the groove 500, respectively.

図5及び図6は、図1に示した半導体装置の製造方法を示す断面図である。まず図5(a)に示すように、半導体チップ100を準備する。この段階において半導体チップ100は、第1インダクタ112及び第2インダクタ122を有している。半導体チップ100は、以下のようにして作成されている。まず、シリコンウェハなどの半導体基板に、素子分離膜を形成する。次いで、半導体基板にゲート絶縁膜及びゲート電極を形成する。次いで、半導体基板にエクステンション領域を形成し、さらにゲート電極の側壁にサイドウォールを形成する。次いで、半導体基板にソース及びドレインを形成する。これにより、半導体基板にはトランジスタが形成される。次いで、半導体基板及びトランジスタ上に、多層配線層106を形成する。その後、必要に応じて半導体基板を半導体チップ100に個片化する。   5 and 6 are cross-sectional views showing a method for manufacturing the semiconductor device shown in FIG. First, as shown in FIG. 5A, a semiconductor chip 100 is prepared. At this stage, the semiconductor chip 100 has a first inductor 112 and a second inductor 122. The semiconductor chip 100 is produced as follows. First, an element isolation film is formed on a semiconductor substrate such as a silicon wafer. Next, a gate insulating film and a gate electrode are formed on the semiconductor substrate. Next, an extension region is formed in the semiconductor substrate, and a sidewall is formed on the side wall of the gate electrode. Next, a source and a drain are formed in the semiconductor substrate. Thereby, a transistor is formed on the semiconductor substrate. Next, the multilayer wiring layer 106 is formed over the semiconductor substrate and the transistor. Thereafter, the semiconductor substrate is separated into semiconductor chips 100 as necessary.

次いで、例えば銀ペースト、非導電性接着剤、又はDAF(Die Attach Film)(図示せず)などを用いて、半導体チップ100を配線基板200上に搭載する。このとき、半導体チップ100の能動面を配線基板200とは逆側に向ける。   Next, the semiconductor chip 100 is mounted on the wiring substrate 200 using, for example, silver paste, a non-conductive adhesive, or DAF (Die Attach Film) (not shown). At this time, the active surface of the semiconductor chip 100 is directed to the side opposite to the wiring substrate 200.

次いで図5(b)に示すように、半導体チップ100と配線基板200とをボンディングワイヤ300を用いて接続する。   Next, as shown in FIG. 5B, the semiconductor chip 100 and the wiring substrate 200 are connected using bonding wires 300.

次いで図6(a)に示すように、配線基板200の第1面上、ボンディングワイヤ300、及び半導体チップ100を、封止樹脂400を用いて封止する。封止樹脂400は、半導体チップ100の多層配線層106上にも形成される。封止樹脂400は金型(図示せず)を用いて形成されるが、封止樹脂400の上面は平坦に形成される。   Next, as shown in FIG. 6A, the bonding wire 300 and the semiconductor chip 100 are sealed with a sealing resin 400 on the first surface of the wiring substrate 200. The sealing resin 400 is also formed on the multilayer wiring layer 106 of the semiconductor chip 100. The sealing resin 400 is formed using a mold (not shown), but the upper surface of the sealing resin 400 is formed flat.

次いで図6(b)に示すように、ダイシングブレード510を用いて、溝500を、封止樹脂400の上面から多層配線層106に向けて形成する。なお溝500の形成方法は、ダイシングブレード510を用いる方法に限定されない。   Next, as shown in FIG. 6B, the groove 500 is formed from the upper surface of the sealing resin 400 toward the multilayer wiring layer 106 using a dicing blade 510. The method for forming the groove 500 is not limited to the method using the dicing blade 510.

図7は、図1に示した半導体装置を用いた電子装置の断面図である。この電子装置は、図1に示した半導体装置を実装基板600に実装した構造を有している。配線基板200のうち第1面とは逆側の面には、外部接続端子としてのハンダボール620が設けられている。半導体装置は、ハンダボール620を介して実装基板600に固定されている。実装基板600は、例えばプリント基板である。   7 is a cross-sectional view of an electronic device using the semiconductor device shown in FIG. This electronic device has a structure in which the semiconductor device shown in FIG. A solder ball 620 as an external connection terminal is provided on the surface of the wiring substrate 200 opposite to the first surface. The semiconductor device is fixed to the mounting substrate 600 through solder balls 620. The mounting board 600 is, for example, a printed board.

次に、本実施形態の作用及び効果について説明する。本実施形態において、第1インダクタ112と第2インダクタ122は同一の半導体チップ100に搭載されている。従って、半導体装置の製造コストを低くすることができる。   Next, the operation and effect of this embodiment will be described. In the present embodiment, the first inductor 112 and the second inductor 122 are mounted on the same semiconductor chip 100. Therefore, the manufacturing cost of the semiconductor device can be reduced.

そして封止樹脂400と多層配線層106の界面(すなわち多層配線層106の表面)には溝500が形成されている。溝500は、少なくとも第1インダクタ112と第2インダクタ122の間に位置している部分の全域に形成されている。このため、封止樹脂400と多層配線層106の界面に剥離が生じ、この剥離した部分を介して第1インダクタ112と第2インダクタ122を構成する金属材料がマイグレーションを起こしても、第1インダクタ112と第2インダクタ122とが導通するまでに必要な金属材料の移動距離は、溝500が形成されていない場合と比較して長くなる。従って、第1インダクタ112と第2インダクタ122を構成する金属材料のマイグレーションに起因して第1インダクタ112と第2インダクタ122の絶縁が確保できなくなることを、抑制できる。   A groove 500 is formed at the interface between the sealing resin 400 and the multilayer wiring layer 106 (that is, the surface of the multilayer wiring layer 106). The groove 500 is formed at least over the entire portion located between the first inductor 112 and the second inductor 122. For this reason, even if peeling occurs at the interface between the sealing resin 400 and the multilayer wiring layer 106 and the metal material forming the first inductor 112 and the second inductor 122 undergoes migration through the peeled portion, the first inductor The movement distance of the metal material required until the 112 and the second inductor 122 become conductive is longer than that in the case where the groove 500 is not formed. Therefore, it can be suppressed that insulation of the first inductor 112 and the second inductor 122 cannot be secured due to migration of the metal material constituting the first inductor 112 and the second inductor 122.

また第1インダクタ112と第2インダクタ122とは、同一の配線層に形成されている。従って、第1インダクタ112と第2インダクタ122を互いに異なる半導体チップに形成する場合と比較して、第1インダクタ112の巻き軸の中心と第2インダクタ122の巻き軸の中心とがずれることを抑制できる。従って、第1インダクタ112と第2インダクタ122の間の信号伝達効率を高くすることができる。また、同一層に第1インダクタ112及び第2インダクタ122を形成した半導体チップ100を配線基板200に搭載した後に溝500を形成している。これにより、Agペーストなど半導体チップ100を配線基板200に固定する層の厚さのバラツキやチップ厚のバラツキの有無に関わらず、第1インダクタ112の巻き軸の中心と第2インダクタ122の巻き軸の中心とがずれることを抑制できる。従って、第1インダクタ112と第2インダクタ122の間の信号伝達効率を高くすることができる。   The first inductor 112 and the second inductor 122 are formed in the same wiring layer. Therefore, compared with the case where the first inductor 112 and the second inductor 122 are formed on different semiconductor chips, the center of the winding axis of the first inductor 112 and the center of the winding axis of the second inductor 122 are suppressed from shifting. it can. Therefore, the signal transmission efficiency between the first inductor 112 and the second inductor 122 can be increased. Further, the groove 500 is formed after the semiconductor chip 100 in which the first inductor 112 and the second inductor 122 are formed in the same layer is mounted on the wiring substrate 200. As a result, the center of the winding axis of the first inductor 112 and the winding axis of the second inductor 122 regardless of whether the thickness of the layer for fixing the semiconductor chip 100 such as the Ag paste to the wiring substrate 200 or the thickness of the chip varies. Can be prevented from deviating from the center. Therefore, the signal transmission efficiency between the first inductor 112 and the second inductor 122 can be increased.

また、第1インダクタ112と溝500の間、及び第2インダクタ122と溝500の間には、配線が形成されていない。従って、これらの間に配線が形成されている場合と比較して、第1インダクタ112と第2インダクタ122の間の信号伝達効率を高くすることができる。   In addition, no wiring is formed between the first inductor 112 and the groove 500 and between the second inductor 122 and the groove 500. Therefore, the signal transmission efficiency between the first inductor 112 and the second inductor 122 can be increased as compared with the case where wiring is formed between them.

また溝500は、ダイシングブレード510を用いて形成することができる。従って、溝500の形成コストを低くすることができる。   The groove 500 can be formed using a dicing blade 510. Therefore, the formation cost of the groove 500 can be reduced.

なお本実施形態において、溝500は、第1の溝と、第1の溝の底面に形成され第1の溝より幅が狭い第2の溝との2段構造としてもよい。インダクタ間に形成される溝を幅が狭い第2の溝とすることで、インダクタ間距離を小さくすることができる。また、溝500、又は上記第1、第2の溝の少なくとも何れかはレーザによって形成されても良い。また図8に示すように、溝500を形成するタイミングは、半導体装置を実装基板600に実装した後であってもよい。   In the present embodiment, the groove 500 may have a two-stage structure including a first groove and a second groove formed on the bottom surface of the first groove and having a narrower width than the first groove. By making the groove formed between the inductors a second groove having a narrow width, the distance between the inductors can be reduced. The groove 500 or at least one of the first and second grooves may be formed by a laser. Further, as shown in FIG. 8, the timing for forming the groove 500 may be after the semiconductor device is mounted on the mounting substrate 600.

また、溝500を形成するタイミングは、樹脂封止前でも良い。半導体チップ100が配線基板200に搭載(固定)されているため、樹脂封止前であっても溝500によって配線基板200が完全に分離されていない状態であれば、第1インダクタ112及び第2インダクタ122の相対位置の精度は、両インダクタを半導体チップ100に形成した状態そのままで維持される。また樹脂封止前であれば、例えば半導体チップ100の外形又は半導体チップ100の表面に形成されたパターンを基準に、溝500の形成位置を決定できる。このため、高い位置精度で溝500を形成することができる。これらの場合は溝500の内を封止樹脂400で充填しても良い。   The timing for forming the groove 500 may be before resin sealing. Since the semiconductor chip 100 is mounted (fixed) on the wiring substrate 200, the first inductor 112 and the second inductor 112 are provided as long as the wiring substrate 200 is not completely separated by the groove 500 even before resin sealing. The accuracy of the relative position of the inductor 122 is maintained as it is when both inductors are formed on the semiconductor chip 100. Further, before the resin sealing, for example, the formation position of the groove 500 can be determined on the basis of the outer shape of the semiconductor chip 100 or the pattern formed on the surface of the semiconductor chip 100. For this reason, the groove 500 can be formed with high positional accuracy. In these cases, the groove 500 may be filled with the sealing resin 400.

また、溝500によって半導体チップ100の基板102を完全に分離しない形状であれば、半導体チップ100を配線基板200に搭載する前に溝500を形成しても良い。この場合、ウェハから、第1インダクタ112及び第2インダクタ122が共に形成された個々の半導体チップ100を切り出すダイシングで、溝500を形成することなどが考えられる。   In addition, the groove 500 may be formed before the semiconductor chip 100 is mounted on the wiring substrate 200 as long as the shape does not completely separate the substrate 102 of the semiconductor chip 100 by the groove 500. In this case, it is conceivable to form the groove 500 by dicing by cutting out the individual semiconductor chip 100 in which the first inductor 112 and the second inductor 122 are formed together from the wafer.

(第2の実施形態)
図9は、第2の実施形態に係る電子装置の構成を示す断面図であり、第1の実施形態における図7に対応している。本実施形態に係る電子装置は、溝500の側面に封止層501が形成されている点を除いて、第1の実施形態に係る電子装置と同様の構成である。
(Second Embodiment)
FIG. 9 is a cross-sectional view showing the configuration of the electronic device according to the second embodiment, and corresponds to FIG. 7 in the first embodiment. The electronic device according to the present embodiment has the same configuration as the electronic device according to the first embodiment, except that the sealing layer 501 is formed on the side surface of the groove 500.

封止層501は、例えばエポキシ、ポリイミド、シリコーン、アクリル樹脂、又はウレタンなどの樹脂あり、溝500の側面から半導体チップ100の内部に水分等が浸透することを抑制しいている。   The sealing layer 501 is a resin such as epoxy, polyimide, silicone, acrylic resin, or urethane, for example, and suppresses moisture and the like from penetrating into the semiconductor chip 100 from the side surface of the groove 500.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、溝500の側面に封止層501を形成しているため、溝500の側面から電子装置の耐久性が劣化することを抑制できる。なお封止層501は、後述する各実施形態において形成されていても良い。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. In addition, since the sealing layer 501 is formed on the side surface of the groove 500, it is possible to suppress deterioration of the durability of the electronic device from the side surface of the groove 500. The sealing layer 501 may be formed in each embodiment described later.

(第3の実施形態)
図10は、第3の実施形態に係る電子装置の構成を示す断面図であり、第1の実施形態における図7に対応している。本実施形態に係る電子装置は、溝500が半導体チップ100を貫通している点を除いて、第1の実施形態に係る電子装置と同様の構成である。溝500は、底部が配線基板200に入り込んでいてもよい。
(Third embodiment)
FIG. 10 is a cross-sectional view showing the configuration of the electronic device according to the third embodiment, and corresponds to FIG. 7 in the first embodiment. The electronic device according to the present embodiment has the same configuration as the electronic device according to the first embodiment, except that the groove 500 penetrates the semiconductor chip 100. The bottom of the groove 500 may enter the wiring board 200.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また溝500が半導体チップ100を貫通するようにしているため、製造ばらつきが生じても、溝500を、多層配線層106と封止樹脂400の界面を確実に貫通させることができる。また、半導体チップ100の第1回路領域110と第2回路領域120を、基板102を含めて分離しているため、さらに高い絶縁耐圧を得ることができる。また、基板102を介して第1回路領域110と第2回路領域120の一方から他方にノイズが伝播することを抑制できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Since the groove 500 penetrates the semiconductor chip 100, the groove 500 can be surely penetrated through the interface between the multilayer wiring layer 106 and the sealing resin 400 even if manufacturing variation occurs. In addition, since the first circuit region 110 and the second circuit region 120 of the semiconductor chip 100 are separated including the substrate 102, a higher withstand voltage can be obtained. In addition, it is possible to suppress the propagation of noise from one of the first circuit region 110 and the second circuit region 120 to the other through the substrate 102.

(第4の実施形態)
図11は、第4の実施形態に係る電子装置の構成を示す断面図であり、第1の実施形態における図7に対応している。本実施形態に係る電子装置は、溝500が半導体チップ100及び配線基板200を貫通しており、2つの半導体装置410,420に分割されている点を除いて、第1の実施形態に係る電子装置と同様の構成である。一つの半導体装置を分割することにより形成された半導体装置410と半導体装置420は対を形成しており、実装基板600に実装される前は、一組の半導体装置として管理される。半導体装置410,420は、封止樹脂400の上面が平坦である。そして半導体装置410における封止樹脂400の上面から第1インダクタ112の巻き軸までの距離と、半導体装置420における封止樹脂400の上面から第2インダクタ122の巻き軸までの距離とは、互いに等しい。
(Fourth embodiment)
FIG. 11 is a cross-sectional view illustrating a configuration of an electronic device according to the fourth embodiment, and corresponds to FIG. 7 in the first embodiment. The electronic device according to the present embodiment is the same as the electronic device according to the first embodiment except that the groove 500 penetrates the semiconductor chip 100 and the wiring substrate 200 and is divided into two semiconductor devices 410 and 420. The configuration is the same as that of the apparatus. The semiconductor device 410 and the semiconductor device 420 formed by dividing one semiconductor device form a pair, and are managed as a set of semiconductor devices before being mounted on the mounting substrate 600. In the semiconductor devices 410 and 420, the upper surface of the sealing resin 400 is flat. The distance from the upper surface of the sealing resin 400 in the semiconductor device 410 to the winding axis of the first inductor 112 and the distance from the upper surface of the sealing resin 400 in the semiconductor device 420 to the winding axis of the second inductor 122 are equal to each other. .

図12及び図13は、半導体装置410,420を実装基板600に実装する方法の一例を説明するための断面図である。   12 and 13 are cross-sectional views for explaining an example of a method for mounting the semiconductor devices 410 and 420 on the mounting substrate 600. FIG.

まず図12(a)に示すように、吸着装置700を準備する。吸着装置700の吸着面702は平坦になっている。吸着装置700の内部には、吸着ノズル710,720が設けられている。吸着ノズル710,720は吸着面702で開放されている。   First, as shown to Fig.12 (a), the adsorption | suction apparatus 700 is prepared. The suction surface 702 of the suction device 700 is flat. Inside the suction device 700, suction nozzles 710 and 720 are provided. The suction nozzles 710 and 720 are opened at the suction surface 702.

そして吸着ノズル710を用いて、吸着装置700の吸着面702に半導体装置410の封止樹脂400の上面を吸着する。   Then, using the suction nozzle 710, the upper surface of the sealing resin 400 of the semiconductor device 410 is sucked to the suction surface 702 of the suction device 700.

次いで図12(b)に示すように、吸着ノズル720を用いて、吸着装置700の吸着面702に半導体装置420の封止樹脂400の上面を吸着する。上記したように、半導体装置410における封止樹脂400の上面から第1インダクタ112の巻き軸までの距離と、半導体装置420における封止樹脂400の上面から第2インダクタ122の巻き軸までの距離とは、互いに等しい。また吸着装置700の吸着面702は平坦になっている。このため、図12(b)に示す状態において、第1インダクタ112と第2インダクタ122は互いに対向する。   Next, as shown in FIG. 12B, the upper surface of the sealing resin 400 of the semiconductor device 420 is sucked to the suction surface 702 of the suction device 700 using the suction nozzle 720. As described above, the distance from the upper surface of the sealing resin 400 in the semiconductor device 410 to the winding axis of the first inductor 112 and the distance from the upper surface of the sealing resin 400 in the semiconductor device 420 to the winding axis of the second inductor 122 Are equal to each other. Further, the suction surface 702 of the suction device 700 is flat. For this reason, in the state shown in FIG. 12B, the first inductor 112 and the second inductor 122 face each other.

次いで図13に示すように、吸着装置700を移動させることにより、半導体装置410,420を実装基板600上に配置する。次いで、ハンダボール620を加熱し、その後冷却することにより、半導体装置410,420を実装基板600に実装する。その後、吸着装置700から半導体装置410,420を開放する。なお、吸着装置700が加熱機構及び冷却機構を有している場合、ハンダボール620の加熱及び冷却は、吸着装置700により行われる。   Next, as shown in FIG. 13, the semiconductor devices 410 and 420 are arranged on the mounting substrate 600 by moving the suction device 700. Next, the solder balls 620 are heated and then cooled, so that the semiconductor devices 410 and 420 are mounted on the mounting substrate 600. Thereafter, the semiconductor devices 410 and 420 are released from the adsorption device 700. Note that when the adsorption device 700 has a heating mechanism and a cooling mechanism, the solder ball 620 is heated and cooled by the adsorption device 700.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、対になっている一組の半導体装置410,420は、一つの半導体装置を分割することにより形成されている。従って、半導体装置410,420の製造コストを低くすることができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. The pair of semiconductor devices 410 and 420 that are paired is formed by dividing one semiconductor device. Therefore, the manufacturing cost of the semiconductor devices 410 and 420 can be reduced.

また、半導体装置410,420は一つの半導体装置400を分割することにより形成されており、また第1インダクタ112と第2インダクタ122は互いに同一層に形成されている。従って、半導体装置410における封止樹脂400の上面から第1インダクタ112の巻き軸までの距離と、半導体装置420における封止樹脂400の上面から第2インダクタ122の巻き軸までの距離とは、互いに等しい。このため、本実施形態のように、吸着装置700の吸着面702のような基準となる平坦面に、半導体装置410の封止樹脂400の上面と、半導体装置420の封止樹脂400の上面とを吸着させると、第1インダクタ112と第2インダクタ122とを容易に対向させることができる。従って、半導体装置410,420を実装基板600に実装させるときに、半導体装置410,420の相対位置を決めるときに必要な労力を少なくすることができる。また、1つの半導体装置400を実装基板600に搭載した後に、2つの半導体装置410,420に分離しても良い。本実施形態においては、半導体装置410と半導体装置420の間で配線基板200も分離されるため、配線基板200内における絶縁信頼性を向上することもできる。   The semiconductor devices 410 and 420 are formed by dividing one semiconductor device 400, and the first inductor 112 and the second inductor 122 are formed in the same layer. Therefore, the distance from the upper surface of the sealing resin 400 in the semiconductor device 410 to the winding axis of the first inductor 112 and the distance from the upper surface of the sealing resin 400 in the semiconductor device 420 to the winding axis of the second inductor 122 are mutually different. equal. Therefore, as in the present embodiment, the upper surface of the sealing resin 400 of the semiconductor device 410 and the upper surface of the sealing resin 400 of the semiconductor device 420 are formed on a reference flat surface such as the suction surface 702 of the suction device 700. By adsorbing, the first inductor 112 and the second inductor 122 can be easily opposed to each other. Therefore, when the semiconductor devices 410 and 420 are mounted on the mounting substrate 600, it is possible to reduce labor required to determine the relative positions of the semiconductor devices 410 and 420. Further, after one semiconductor device 400 is mounted on the mounting substrate 600, the two semiconductor devices 410 and 420 may be separated. In the present embodiment, since the wiring board 200 is also separated between the semiconductor device 410 and the semiconductor device 420, the insulation reliability in the wiring board 200 can be improved.

(第5の実施形態)
図14は、第5の実施形態に係る半導体装置の平面概略図であり、第1の実施形態における図4に相当している。本実施形態に係る半導体装置は、磁気遮蔽層114,124を備えている点を除いて、第1の実施形態に係る半導体装置と同様の構成である。磁気遮蔽層114,124は、例えば配線層を構成する導体層を積み重ねることにより形成されており、その長さは第1インダクタ112,122よりも長い。磁気遮蔽層114は、第1インダクタ112と第1回路領域110の他の回路を遮蔽する位置に形成されており、磁気遮蔽層124は、第2インダクタ122と第2回路領域120の他の回路を遮蔽する位置に形成されている。磁気遮蔽層114,124には定電位、例えばグラウンド電位又は電源電位が与えられている。
(Fifth embodiment)
FIG. 14 is a schematic plan view of the semiconductor device according to the fifth embodiment, and corresponds to FIG. 4 in the first embodiment. The semiconductor device according to the present embodiment has the same configuration as that of the semiconductor device according to the first embodiment, except that the magnetic shielding layers 114 and 124 are provided. The magnetic shielding layers 114 and 124 are formed, for example, by stacking conductor layers constituting a wiring layer, and the length thereof is longer than that of the first inductors 112 and 122. The magnetic shielding layer 114 is formed at a position that shields the first inductor 112 and other circuits in the first circuit region 110, and the magnetic shielding layer 124 is composed of the second inductor 122 and other circuits in the second circuit region 120. It is formed in the position which shields. The magnetic shielding layers 114 and 124 are given a constant potential, for example, a ground potential or a power supply potential.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また磁気遮蔽層114,124を備えているため、第1インダクタ112及び第2インダクタ122で発生する磁界が第1回路領域110及び第2回路領域120の他の回路の動作に影響を与えることを抑制できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. In addition, since the magnetic shielding layers 114 and 124 are provided, the magnetic field generated by the first inductor 112 and the second inductor 122 affects the operation of other circuits in the first circuit region 110 and the second circuit region 120. Can be suppressed.

(第6の実施形態)
図15は、第6の実施形態に係る半導体装置の断面概略図である。本実施形態に係る半導体装置は、溝500の中に樹脂層520を充填している点を除いて、第1の実施形態又は第3の実施形態に係る半導体装置と同様の構成である。樹脂層520は、例えばエポキシ、ポリイミド、シリコーン、又はウレタンなどの樹脂である。ただし、樹脂層520がエポキシである場合、樹脂層520は封止樹脂400よりもフィラーの含有率が低いのが好ましい。ここでフィラーの含有率は、例えば断面においてフィラーが占める面積として定義される。そしてこれらの半導体装置を用いて、図16に示すように、第1の実施形態と同様の電子装置を形成することができる。
(Sixth embodiment)
FIG. 15 is a schematic cross-sectional view of a semiconductor device according to the sixth embodiment. The semiconductor device according to this embodiment has the same configuration as that of the semiconductor device according to the first embodiment or the third embodiment except that the resin layer 520 is filled in the groove 500. The resin layer 520 is a resin such as epoxy, polyimide, silicone, or urethane, for example. However, when the resin layer 520 is epoxy, the resin layer 520 preferably has a lower filler content than the sealing resin 400. Here, the content rate of a filler is defined as the area which a filler occupies in a cross section, for example. Then, using these semiconductor devices, an electronic device similar to that of the first embodiment can be formed as shown in FIG.

本実施形態によっても、第1の実施形態又は第2の実施形態と同様の効果を得ることができる。また溝500の中に樹脂層520を充填しているため、溝500を形成したことによって半導体装置の耐久性(例えば耐湿性)が低下することを抑制できる。また、樹脂層520がエポキシ樹脂であり、かつ封止樹脂400よりもフィラーの含有率が低い場合、溝500の幅が狭い(例えば30μm以下)であっても、ボイドが発生することを抑制できる。これにより、樹脂層520内のボイドを介して第1回路領域110における多層配線層106の界面と、第2回路領域120における多層配線層106の界面とが繋がることを抑制できる。これにより、半導体装置の耐久性(例えば耐湿性)が低下することを抑制できる。   According to this embodiment, the same effect as that of the first embodiment or the second embodiment can be obtained. In addition, since the resin layer 520 is filled in the groove 500, it is possible to suppress a decrease in durability (for example, moisture resistance) of the semiconductor device due to the formation of the groove 500. In addition, when the resin layer 520 is an epoxy resin and the filler content is lower than that of the sealing resin 400, the generation of voids can be suppressed even when the width of the groove 500 is narrow (for example, 30 μm or less). . Thereby, it is possible to suppress the connection between the interface of the multilayer wiring layer 106 in the first circuit region 110 and the interface of the multilayer wiring layer 106 in the second circuit region 120 via a void in the resin layer 520. Thereby, it can suppress that durability (for example, moisture resistance) of a semiconductor device falls.

(第7の実施形態)
図17は、第7の実施形態に係る半導体装置の断面概略図である。本実施形態に係る半導体装置は、樹脂層520の中に透磁部材522が設けられている点を除いて、第6の実施形態に係る半導体装置と同様の構成である。透磁部材522は、例えば鉄などの透磁率が高い材料により形成されており、第1インダクタ112と第2インダクタ122の巻き軸を互いに結ぶ直線上に配置されている。そしてこれらの半導体装置を用いて、図18に示すように、第1の実施形態と同様の電子装置を形成することができる。
(Seventh embodiment)
FIG. 17 is a schematic cross-sectional view of a semiconductor device according to the seventh embodiment. The semiconductor device according to the present embodiment has the same configuration as that of the semiconductor device according to the sixth embodiment, except that a magnetically permeable member 522 is provided in the resin layer 520. The magnetically permeable member 522 is formed of a material having high magnetic permeability such as iron, and is disposed on a straight line connecting the winding axes of the first inductor 112 and the second inductor 122. Then, using these semiconductor devices, as shown in FIG. 18, an electronic device similar to that of the first embodiment can be formed.

本実施形態によっても、第6の実施形態と同様の効果を得ることができる。また、第1インダクタ112と第2インダクタ122の間に透磁部材522が配置されているため、第1インダクタ112と第2インダクタ122の間の結合係数を高くすることができる。   Also in this embodiment, the same effect as that in the sixth embodiment can be obtained. Further, since the magnetically permeable member 522 is disposed between the first inductor 112 and the second inductor 122, the coupling coefficient between the first inductor 112 and the second inductor 122 can be increased.

(第8の実施形態)
図19及び図20は、第8の実施形態に係る半導体装置の製造方法を示す断面図である。まず図19(a)に示すように、半導体チップ100を配線基板200上に搭載する。半導体チップ100には、第1インダクタ112及び第2インダクタ122の代わりに、インダクタ130が形成されている。インダクタ130は、図19(b)に示すように、互いに平行な2つの配線132,134と、これらと互いに接続するループ型の複数の配線136を備えている。複数の配線136は互いに平行に形成されており、それぞれ一端が配線132に接続しており、他端が配線134に接続している。そして2つの配線132,134は、それぞれ、一端が第1回路領域110に設けられた発振回路に接続しており、他端が第2回路領域120に設けられた受信回路に接続している。
(Eighth embodiment)
19 and 20 are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the eighth embodiment. First, as shown in FIG. 19A, the semiconductor chip 100 is mounted on the wiring board 200. In the semiconductor chip 100, an inductor 130 is formed instead of the first inductor 112 and the second inductor 122. As shown in FIG. 19B, the inductor 130 includes two wirings 132 and 134 that are parallel to each other and a plurality of loop-type wirings 136 that are connected to each other. The plurality of wirings 136 are formed in parallel with each other, each having one end connected to the wiring 132 and the other end connected to the wiring 134. Each of the two wirings 132 and 134 has one end connected to the oscillation circuit provided in the first circuit region 110 and the other end connected to the receiving circuit provided in the second circuit region 120.

次いで、ボンディングワイヤ300及び封止樹脂400を形成する。これらの形成方法は、第1の実施形態と同様である。   Next, the bonding wire 300 and the sealing resin 400 are formed. These forming methods are the same as those in the first embodiment.

次いで図20(a)に示すように、ダイシングブレード510を用いて溝500を形成する。溝500は、インダクタ130が形成されている配線層を貫通している。これにより、インダクタ130は、溝500により第1インダクタ112と第2インダクタ122に分割される。
その後の工程は、第1の実施形態と同様である。
Next, as shown in FIG. 20A, a groove 500 is formed using a dicing blade 510. The trench 500 penetrates the wiring layer in which the inductor 130 is formed. As a result, the inductor 130 is divided into the first inductor 112 and the second inductor 122 by the groove 500.
The subsequent steps are the same as those in the first embodiment.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、第1の実施形態のように第1インダクタ112と第2インダクタ122を予め形成しておく場合、ダイシングブレード510による溝500の形成位置に誤差が生じた場合、溝500の形成位置が第1インダクタ112又は第2インダクタ122と重なり、第1インダクタ112又は第2インダクタ122が除去される可能性がある。本実施形態によれば、インダクタ130をダイシングブレード510で分割することにより、第1インダクタ112と第2インダクタ122とを形成している。従って、確実に第1インダクタ112と第2インダクタ122とを残すことができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, when the first inductor 112 and the second inductor 122 are formed in advance as in the first embodiment, when an error occurs in the formation position of the groove 500 by the dicing blade 510, the formation position of the groove 500 is the first position. The first inductor 112 or the second inductor 122 may overlap with the first inductor 112 or the second inductor 122, and the first inductor 112 or the second inductor 122 may be removed. According to the present embodiment, the first inductor 112 and the second inductor 122 are formed by dividing the inductor 130 by the dicing blade 510. Therefore, the first inductor 112 and the second inductor 122 can be reliably left.

(第9の実施形態)
図21及び図22は、第9の実施形態に係る半導体装置の製造方法を示す断面図である。
まず図21(a)に示すように、半導体チップ100を配線基板200上に搭載する。このとき、半導体チップ100の能動面を配線基板200とは逆側に向ける。次いで、半導体チップ100と配線基板200とをボンディングワイヤ300を用いて接続する。次いで、配線基板200の第1面上、ボンディングワイヤ300、及び半導体チップ100を、封止樹脂400を用いて封止する。このとき、封止樹脂400にヒートシンク150を埋め込む。ヒートシンク150は平面視で半導体チップ100と重なっており、一面が封止樹脂400の上面から露出している。ヒートシンク150のこの一面と封止樹脂400の上面は、同一平面を形成している。
(Ninth embodiment)
21 and 22 are cross-sectional views showing a method for manufacturing a semiconductor device according to the ninth embodiment.
First, as shown in FIG. 21A, the semiconductor chip 100 is mounted on the wiring board 200. At this time, the active surface of the semiconductor chip 100 is directed to the side opposite to the wiring substrate 200. Next, the semiconductor chip 100 and the wiring substrate 200 are connected using the bonding wires 300. Next, the bonding wire 300 and the semiconductor chip 100 are sealed with the sealing resin 400 on the first surface of the wiring substrate 200. At this time, the heat sink 150 is embedded in the sealing resin 400. The heat sink 150 overlaps the semiconductor chip 100 in plan view, and one surface is exposed from the upper surface of the sealing resin 400. This one surface of the heat sink 150 and the upper surface of the sealing resin 400 form the same plane.

次いで図21(b)に示すように、ダイシングブレード510を用いて、溝500を、ヒートシンク150の上面から多層配線層106に向けて形成する。すなわち本実施形態では、溝500は、ヒートシンク150及び封止樹脂400を貫通している。   Next, as shown in FIG. 21B, the groove 500 is formed from the upper surface of the heat sink 150 toward the multilayer wiring layer 106 using a dicing blade 510. That is, in this embodiment, the groove 500 penetrates the heat sink 150 and the sealing resin 400.

そして溝500を形成した半導体装置を用いて、図22示すように、第1の実施形態と同様の電子装置を形成することができる。   Then, using the semiconductor device in which the groove 500 is formed, an electronic device similar to that of the first embodiment can be formed as shown in FIG.

なお図23の各図に示すように、溝500は、半導体チップ100を貫通していてもよい(図23(a))し、半導体チップ100及び配線基板200を貫通していてもよい(図23(b))。また、ヒートシンク150と同層に位置している部分を含め、溝500内を樹脂層520で充填しても良い。
本実施形態によっても第1の実施形態と同様の効果を得ることができる。
23, the groove 500 may penetrate the semiconductor chip 100 (FIG. 23 (a)), or may penetrate the semiconductor chip 100 and the wiring board 200 (FIG. 23). 23 (b)). Further, the groove 500 may be filled with the resin layer 520 including a portion located in the same layer as the heat sink 150.
According to this embodiment, the same effect as that of the first embodiment can be obtained.

(第10の実施形態)
図24は、第10の実施形態に係る半導体装置の構成を示す断面図である。本実施形態に係る半導体装置は、溝500の位置を除いて、第9の実施形態に係る半導体装置と同様の構成である。
(Tenth embodiment)
FIG. 24 is a cross-sectional view showing the configuration of the semiconductor device according to the tenth embodiment. The semiconductor device according to the present embodiment has the same configuration as that of the semiconductor device according to the ninth embodiment except for the position of the groove 500.

本実施形態において、溝500は、ダイシングブレード510を用いて、配線基板200の底面から配線基板200及び半導体チップ100を貫通するように形成されている。ただし溝500はヒートシンク150を貫通していない。   In the present embodiment, the groove 500 is formed so as to penetrate the wiring substrate 200 and the semiconductor chip 100 from the bottom surface of the wiring substrate 200 using a dicing blade 510. However, the groove 500 does not penetrate the heat sink 150.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。またヒートシンク150を除いて半導体装置を2分割しているが、2分割された半導体装置はヒートシンク150で一体になっている。このため、半導体装置を実装基板600に実装するとき、2つの半導体装置の高さ方向の位置あわせが不要になり、半導体装置の実装時の労力が増えることを抑制できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the semiconductor device is divided into two parts except for the heat sink 150, but the divided semiconductor device is integrated with the heat sink 150. For this reason, when the semiconductor device is mounted on the mounting substrate 600, alignment in the height direction of the two semiconductor devices becomes unnecessary, and an increase in labor during mounting of the semiconductor devices can be suppressed.

(第11の実施形態)
図25は、第11の実施形態に係る半導体装置の構成を示す断面図である。本実施形態に係る半導体装置は、以下の点を除いて第1の実施形態に係る半導体装置と同様の構成である。
(Eleventh embodiment)
FIG. 25 is a cross-sectional view showing the configuration of the semiconductor device according to the eleventh embodiment. The semiconductor device according to the present embodiment has the same configuration as the semiconductor device according to the first embodiment except for the following points.

まず、半導体チップ100は配線基板200の第1面にフリップチップ実装されている。半導体チップ100の能動面と配線基板200の第1面の間の空間は、封止樹脂(アンダーフィル樹脂)402によって封止されている。そして溝500は、半導体チップ100の裏面側から封止樹脂402に向けて形成されている。   First, the semiconductor chip 100 is flip-chip mounted on the first surface of the wiring board 200. A space between the active surface of the semiconductor chip 100 and the first surface of the wiring substrate 200 is sealed with a sealing resin (underfill resin) 402. The groove 500 is formed from the back surface side of the semiconductor chip 100 toward the sealing resin 402.

なお図25に示す例では、溝500は、半導体チップ100を貫通し、封止樹脂402は貫通していない。ただし図26に示すように、溝500は、半導体チップ100及び封止樹脂402を貫通していてもよいし、半導体チップ100、封止樹脂402、及び配線基板200を貫通していてもよい。   In the example shown in FIG. 25, the groove 500 penetrates the semiconductor chip 100 and the sealing resin 402 does not penetrate. However, as shown in FIG. 26, the groove 500 may penetrate the semiconductor chip 100 and the sealing resin 402, or may penetrate the semiconductor chip 100, the sealing resin 402, and the wiring substrate 200.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained.

(第12の実施形態)
図27及び図28は、第12の実施形態に係る半導体装置の構成を示す断面図である。本実施形態に係る半導体装置は、以下の点を除いて第11の実施形態にかかる半導体装置と同様の構成である。
(Twelfth embodiment)
27 and 28 are cross-sectional views showing the configuration of the semiconductor device according to the twelfth embodiment. The semiconductor device according to the present embodiment has the same configuration as that of the semiconductor device according to the eleventh embodiment except for the following points.

まず、半導体チップ100の裏面にはヒートシンク150が取り付けられている。そして溝500は、少なくともヒートシンク150及び半導体チップ100を貫通している。   First, a heat sink 150 is attached to the back surface of the semiconductor chip 100. The groove 500 penetrates at least the heat sink 150 and the semiconductor chip 100.

本実施形態によっても、第11の実施形態と同様の効果を得ることができる。   Also in this embodiment, the same effect as that in the eleventh embodiment can be obtained.

(第13の実施形態)
図29は、第13の実施形態に係る半導体装置の構成を示す断面図である。本実施形態に係る半導体装置は、溝500の位置を除いて、第12の実施形態に係る半導体装置と同様の構成である。
(13th Embodiment)
FIG. 29 is a cross-sectional view showing the configuration of the semiconductor device according to the thirteenth embodiment. The semiconductor device according to this embodiment has the same configuration as that of the semiconductor device according to the twelfth embodiment except for the position of the groove 500.

本実施形態において、溝500は、ダイシングブレード510を用いて、配線基板200の底面から配線基板200、封止樹脂402、及び半導体チップ100を貫通するように形成されている。ただし溝500はヒートシンク150を貫通していない。   In the present embodiment, the groove 500 is formed using the dicing blade 510 so as to penetrate the wiring substrate 200, the sealing resin 402, and the semiconductor chip 100 from the bottom surface of the wiring substrate 200. However, the groove 500 does not penetrate the heat sink 150.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。またヒートシンク150を除いて半導体装置を2分割しているが、2分割された半導体装置はヒートシンク150で一体になっている。このため、半導体装置を実装基板600に実装するとき、2つの半導体装置の高さ方向の位置あわせが不要になり、半導体装置の実装時の労力が増えることを抑制できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the semiconductor device is divided into two parts except for the heat sink 150, but the divided semiconductor device is integrated with the heat sink 150. For this reason, when the semiconductor device is mounted on the mounting substrate 600, alignment in the height direction of the two semiconductor devices becomes unnecessary, and an increase in labor during mounting of the semiconductor devices can be suppressed.

(第14の実施形態)
図30の各図は、第14の実施形態に係る半導体装置の製造方法を示す断面図である。本実施形態において、半導体チップ100はリードフレーム220に実装される。
(Fourteenth embodiment)
Each drawing in FIG. 30 is a cross-sectional view showing the method of manufacturing a semiconductor device according to the fourteenth embodiment. In the present embodiment, the semiconductor chip 100 is mounted on the lead frame 220.

まず図30(a)に示すように、リードフレーム220のダイパッド222上に、半導体チップ100を実装し、さらに半導体チップ100とリードフレーム220のリード224とを、ボンディングワイヤ300を用いて接続する。   First, as shown in FIG. 30A, the semiconductor chip 100 is mounted on the die pad 222 of the lead frame 220, and the semiconductor chip 100 and the leads 224 of the lead frame 220 are connected using bonding wires 300.

次いで、リードフレーム220及び半導体チップ100を、封止樹脂400を用いて封止する。この工程において、封止樹脂400の上面は平坦に形成される。   Next, the lead frame 220 and the semiconductor chip 100 are sealed with a sealing resin 400. In this step, the upper surface of the sealing resin 400 is formed flat.

次いで図30(b)に示すように、ダイシングブレード510を用いて、封止樹脂400の上面から半導体チップ100に向けて溝500を形成する。本実施形態において溝500は、半導体チップ100を貫通していない。   Next, as shown in FIG. 30B, a groove 500 is formed from the upper surface of the sealing resin 400 toward the semiconductor chip 100 using a dicing blade 510. In the present embodiment, the groove 500 does not penetrate the semiconductor chip 100.

次いで図30(c)に示すように、ダイシングブレード510を用いて、封止樹脂400及びリードフレーム220を半導体チップ100別に個片化する。なお図30(b)に示した工程と図30(c)に示した工程とは、同時に行ってもよい。この場合、ダイシングブレード510を図中右から左に一方向に動かしつつ、溝500の形成と個片化のための切断とが交互に行われる。ここでデュアルダイサ(ダイシングブレードが2つ以上ある装置)を用いてもよい。   Next, as shown in FIG. 30C, the dicing blade 510 is used to separate the sealing resin 400 and the lead frame 220 for each semiconductor chip 100. Note that the step shown in FIG. 30B and the step shown in FIG. 30C may be performed simultaneously. In this case, while the dicing blade 510 is moved in one direction from the right to the left in the drawing, the formation of the groove 500 and the cutting for dividing into pieces are alternately performed. Here, a dual dicer (an apparatus having two or more dicing blades) may be used.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。なお図30に示す例では、リードフレーム220としてQFN(Quad Flat No-Lead)型の例を示したが、リードフレーム200はQFP(Quad Flat Package)やSOP(Small Outline Package)でも良い。また、ダイパッド222上に半導体チップ100を搭載した後、溝500を形成し、溝500内を樹脂層520で充填した後、半導体チップ100を封止樹脂400で封止しても良い。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. In the example shown in FIG. 30, a QFN (Quad Flat No-Lead) type example is shown as the lead frame 220, but the lead frame 200 may be a QFP (Quad Flat Package) or SOP (Small Outline Package). Alternatively, after mounting the semiconductor chip 100 on the die pad 222, the groove 500 may be formed, and the groove 500 may be filled with the resin layer 520, and then the semiconductor chip 100 may be sealed with the sealing resin 400.

(第15の実施形態)
図31及び図32は、第15の実施形態に係る半導体装置の製造方法を示す断面図である。本実施形態に係る半導体装置の製造方法は、溝500の代わりに第1溝502及び第2溝504を形成する点を除いて、第1の実施形態に係る半導体装置の製造方法と同様である。
(Fifteenth embodiment)
31 and 32 are cross-sectional views showing a method for manufacturing a semiconductor device according to the fifteenth embodiment. The manufacturing method of the semiconductor device according to the present embodiment is the same as the manufacturing method of the semiconductor device according to the first embodiment, except that the first groove 502 and the second groove 504 are formed instead of the groove 500. .

まず、図31(a)に示すように、半導体チップ100を配線基板200上に搭載する。次いで、半導体チップ100と配線基板200とをボンディングワイヤ300を用いて接続する。次いで、配線基板200の第1面上、ボンディングワイヤ300、及び半導体チップ100を、封止樹脂400を用いて封止する。   First, as shown in FIG. 31A, the semiconductor chip 100 is mounted on the wiring board 200. Next, the semiconductor chip 100 and the wiring substrate 200 are connected using the bonding wires 300. Next, the bonding wire 300 and the semiconductor chip 100 are sealed with the sealing resin 400 on the first surface of the wiring substrate 200.

次いで、ダイシングブレード510を用いて、封止樹脂400のうち第1インダクタ112と第2インダクタ122の間に位置する部分に、第1溝502を形成する。このとき、第1溝502の底面が半導体チップ100に到達しないようにする。   Next, a first groove 502 is formed in a portion of the sealing resin 400 located between the first inductor 112 and the second inductor 122 using the dicing blade 510. At this time, the bottom surface of the first groove 502 is prevented from reaching the semiconductor chip 100.

次いで、図31(b)に示すように、ダイシングブレード512を用いて、第1溝502の底部に第2溝504を形成する。ダイシングブレード512は、ダイシングブレード510よりも薄い。ここで、第2溝504の底部を、少なくとも半導体チップ100のうち第1インダクタ112及び第2インダクタ122が形成されている層よりも下に位置させる。   Next, as shown in FIG. 31B, a second groove 504 is formed at the bottom of the first groove 502 using a dicing blade 512. The dicing blade 512 is thinner than the dicing blade 510. Here, the bottom of the second groove 504 is positioned below at least a layer of the semiconductor chip 100 where the first inductor 112 and the second inductor 122 are formed.

このようにして、図32に示す半導体装置が形成される。この半導体装置において、第1インダクタ112と第2インダクタ122の間には、第2溝504が形成されている。第2溝504の幅は、第1溝502の幅よりも小さい。   In this way, the semiconductor device shown in FIG. 32 is formed. In this semiconductor device, a second groove 504 is formed between the first inductor 112 and the second inductor 122. The width of the second groove 504 is smaller than the width of the first groove 502.

なお、第1溝502及び第2溝504の形成タイミングは、例えば、半導体チップ100、配線基板200、及び封止樹脂400を有する半導体装置を個片化する前である。すなわち、上記した工程は、配線基板200に複数の半導体チップ100を搭載し、これら複数の半導体チップ100を封止樹脂400で一括封止した後に、行われる。   In addition, the formation timing of the 1st groove | channel 502 and the 2nd groove | channel 504 is before separating the semiconductor device which has the semiconductor chip 100, the wiring board 200, and the sealing resin 400, for example. That is, the above-described steps are performed after mounting a plurality of semiconductor chips 100 on the wiring substrate 200 and collectively sealing the plurality of semiconductor chips 100 with the sealing resin 400.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、第1インダクタ112と第2インダクタ122の間に位置する第2溝504の幅を狭くすることができる。このため、第1インダクタ112と第2インダクタ122を近づけて、これら2つのインダクタの結合を強くすることができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. In addition, the width of the second groove 504 positioned between the first inductor 112 and the second inductor 122 can be reduced. For this reason, the first inductor 112 and the second inductor 122 can be brought close to each other to strengthen the coupling between these two inductors.

(第16の実施形態)
図33及び図34は、まず、図33(a)に示すように、半導体ウェハ40に、素子(図示せず)、第1インダクタ112、及び第2インダクタ122を形成する。半導体ウェハ40からは複数の半導体チップ100が切り出されるが、これら素子、第1インダクタ112、及び第2インダクタ122は、複数の半導体チップ100それぞれに設けられる。
(Sixteenth embodiment)
33 and 34, first, as shown in FIG. 33A, an element (not shown), a first inductor 112, and a second inductor 122 are formed on a semiconductor wafer 40. A plurality of semiconductor chips 100 are cut out from the semiconductor wafer 40, and these elements, the first inductor 112, and the second inductor 122 are provided in each of the plurality of semiconductor chips 100.

次いで、半導体ウェハ40を半導体チップ100に個片化する前に、レーザダイシングを用いて、第1インダクタ112と第2インダクタ122の間に、溝500を形成する。   Next, before the semiconductor wafer 40 is separated into semiconductor chips 100, a groove 500 is formed between the first inductor 112 and the second inductor 122 using laser dicing.

次いで、図33(b)に示すように、ダイシングブレードを用いて、半導体ウェハ40を複数の半導体チップ100に個片化する。   Next, as shown in FIG. 33B, the semiconductor wafer 40 is divided into a plurality of semiconductor chips 100 using a dicing blade.

次いで、図34に示すように、半導体チップ100を配線基板200上に搭載する。次いで、半導体チップ100と配線基板200とをボンディングワイヤ300を用いて接続する。次いで、配線基板200の第1面上、ボンディングワイヤ300、及び半導体チップ100を、封止樹脂400を用いて封止する。このとき、溝500の内部に封止樹脂400が入り込む。封止樹脂400は、例えばエポキシ樹脂である。   Next, as shown in FIG. 34, the semiconductor chip 100 is mounted on the wiring board 200. Next, the semiconductor chip 100 and the wiring substrate 200 are connected using the bonding wires 300. Next, the bonding wire 300 and the semiconductor chip 100 are sealed with the sealing resin 400 on the first surface of the wiring substrate 200. At this time, the sealing resin 400 enters the groove 500. The sealing resin 400 is, for example, an epoxy resin.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、半導体チップ100を形成するときに、予め溝500を形成することができる。このため、溝500の位置精度を高くすることができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, when the semiconductor chip 100 is formed, the groove 500 can be formed in advance. For this reason, the positional accuracy of the groove 500 can be increased.

また、レーザダイシングを用いているため、溝500の幅を狭くすることができる。このため、第1インダクタ112と第2インダクタ122を近づけて、これら2つのインダクタの結合を強くすることができる。   In addition, since laser dicing is used, the width of the groove 500 can be reduced. For this reason, the first inductor 112 and the second inductor 122 can be brought close to each other to strengthen the coupling between these two inductors.

また、溝500の内部には封止樹脂400が入り込んでいる。このため、溝500の内部に封止樹脂400を設けない場合と比較して、第1インダクタ112と第2インダクタ122の結合強度を高めることができる。   In addition, the sealing resin 400 enters the groove 500. For this reason, compared with the case where the sealing resin 400 is not provided in the groove 500, the coupling strength between the first inductor 112 and the second inductor 122 can be increased.

(第17の実施形態)
図35は、第17の実施形態に係る半導体装置の構成を示す断面図である。本実施形態に係る半導体装置は、溝500に樹脂508を埋め込んでいる点を除いて、第16の実施形態に係る半導体装置と同様の構成である。
(Seventeenth embodiment)
FIG. 35 is a cross-sectional view showing the configuration of the semiconductor device according to the seventeenth embodiment. The semiconductor device according to this embodiment has the same configuration as that of the semiconductor device according to the sixteenth embodiment except that the resin 508 is embedded in the groove 500.

樹脂508は封止樹脂400とは異なる材料であり、封止樹脂400とは透磁率が異なる。例えばポリイミド、SiO、SiN、SiON、MSQ、及びHSQのいずれか一つである。 The resin 508 is a material different from that of the sealing resin 400 and has a magnetic permeability different from that of the sealing resin 400. For example, it is any one of polyimide, SiO 2 , SiN, SiON, MSQ, and HSQ.

本実施形態に係る半導体装置の製造方法は、溝500を形成した後、封止樹脂400を形成する前に、溝500の内部に樹脂508を埋め込む点を除いて、第16の実施形態に係る半導体装置と同様である。   The method for manufacturing a semiconductor device according to the present embodiment relates to the sixteenth embodiment except that the resin 508 is embedded in the groove 500 after the groove 500 is formed and before the sealing resin 400 is formed. It is the same as the semiconductor device.

本実施形態によっても、第16の実施形態と同様の効果を得ることができる。また、樹脂508は、封止樹脂400に対して材料の選択の自由度が高い。従って、第16の実施形態よりも、第1インダクタ112と第2インダクタ122の結合強度を高めることができる。   Also in this embodiment, the same effect as that in the sixteenth embodiment can be obtained. Further, the resin 508 has a high degree of freedom in selecting a material with respect to the sealing resin 400. Therefore, the coupling strength between the first inductor 112 and the second inductor 122 can be increased as compared with the sixteenth embodiment.

なお本実施形態において、半導体ウェハ40を複数の半導体チップ100に個片化する前に、溝500内に樹脂508を充填しても良い。このようにすると、半導体ウェハ40を半導体チップ100に個片化する際に、溝500内に切削屑などの異物が入り込むことを抑制できる。   In this embodiment, the resin 508 may be filled in the groove 500 before the semiconductor wafer 40 is divided into a plurality of semiconductor chips 100. If it does in this way, when dividing the semiconductor wafer 40 into the semiconductor chip 100, it can suppress that foreign materials, such as cutting waste, enter into the groove | channel 500. FIG.

(第18の実施形態)
図36は、第18の実施形態に係る半導体装置の製造方法を示す断面図である。本実施形態に係る半導体装置の製造方法は、溝500を形成するタイミング及び溝500の形成方法を除いて、第1の実施形態に係る半導体装置と同様の構成である。
(Eighteenth embodiment)
FIG. 36 is a cross-sectional view showing the method for manufacturing the semiconductor device according to the eighteenth embodiment. The manufacturing method of the semiconductor device according to this embodiment has the same configuration as that of the semiconductor device according to the first embodiment, except for the timing of forming the groove 500 and the method of forming the groove 500.

本実施形態において、溝500は、半導体ウェハ40に素子層104、多層配線層106、及びパッシベーション膜108を形成する工程、すなわち所謂前工程で形成される。   In the present embodiment, the trench 500 is formed in a process of forming the element layer 104, the multilayer wiring layer 106, and the passivation film 108 on the semiconductor wafer 40, that is, a so-called previous process.

具体的には、図36(a)に示すように、半導体ウェハ40に、複数のトランジスタを形成する。次いで、これらトランジスタ上及び半導体ウェハ40上に、多層配線層106を形成する。このとき、多層配線層106には第1インダクタ112及び第2インダクタ122が形成される。次いで、多層配線層106上にパッシベーション膜108を形成する。   Specifically, a plurality of transistors are formed on the semiconductor wafer 40 as shown in FIG. Next, a multilayer wiring layer 106 is formed on these transistors and the semiconductor wafer 40. At this time, the first inductor 112 and the second inductor 122 are formed in the multilayer wiring layer 106. Next, a passivation film 108 is formed on the multilayer wiring layer 106.

次いで図36(b)に示すように、パッシベーション膜108及び多層配線層106上に、マスクパターン(図示せず)を形成する。次いで、このマスクパターンをマスクとして、パッシベーション膜108及び多層配線層106をエッチングする。ここでのエッチングは、異方性エッチングが好ましい。これにより、パッシベーション膜108及び多層配線層106には溝500が形成される。   Next, as shown in FIG. 36B, a mask pattern (not shown) is formed on the passivation film 108 and the multilayer wiring layer 106. Next, using this mask pattern as a mask, the passivation film 108 and the multilayer wiring layer 106 are etched. The etching here is preferably anisotropic etching. As a result, a groove 500 is formed in the passivation film 108 and the multilayer wiring layer 106.

なお、図37(a)に示すように、溝500の底部は、半導体ウェハ40に入り込んでいても良い。また図37(b)に示すように、溝500の少なくとも側面は、絶縁膜506により覆われていても良い。絶縁膜506は、例えばSiO、SiN、SiONである。絶縁膜506は、例えば溝500を形成した後、CVD法又はALD法を行うことにより、形成される。なお、絶縁膜506は、溝500の底面、及びパッシベーション膜108上にも形成される。絶縁膜506を形成することにより、溝500の側面から多層配線層106の中に水分等が浸入することを抑制できる。 Note that, as shown in FIG. 37A, the bottom of the groove 500 may enter the semiconductor wafer 40. In addition, as shown in FIG. 37B, at least the side surface of the trench 500 may be covered with an insulating film 506. Insulating film 506, for example SiO 2, SiN, a SiON. The insulating film 506 is formed, for example, by performing the CVD method or the ALD method after forming the trench 500. Note that the insulating film 506 is also formed on the bottom surface of the trench 500 and on the passivation film 108. By forming the insulating film 506, moisture and the like can be prevented from entering the multilayer wiring layer 106 from the side surface of the trench 500.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、溝500をエッチングにより形成しているため、溝500の幅を狭くすることができる。このため、第1インダクタ112と第2インダクタ122を近づけて、これら2つのインダクタの結合を強くすることができる。また、溝500を形成するときのエッチングとして異方性エッチングを用いると、溝500の幅をさらに狭くすることができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, since the groove 500 is formed by etching, the width of the groove 500 can be reduced. For this reason, the first inductor 112 and the second inductor 122 can be brought close to each other to strengthen the coupling between these two inductors. Further, if anisotropic etching is used as the etching for forming the groove 500, the width of the groove 500 can be further reduced.

(第19の実施形態)
図38は、第19の実施形態に係る半導体チップ100の構成を示す平面図である。本実施形態に係る半導体チップ100は、溝500が第1インダクタ112と第2インダクタ122の間にのみ形成されており、半導体チップ100の縁までは伸びていない点を除いて、第16〜第18の実施形態のいずれかと同様である。
(Nineteenth embodiment)
FIG. 38 is a plan view showing the configuration of the semiconductor chip 100 according to the nineteenth embodiment. In the semiconductor chip 100 according to the present embodiment, the groove 500 is formed only between the first inductor 112 and the second inductor 122 and does not extend to the edge of the semiconductor chip 100. This is similar to any of the 18 embodiments.

本実施形態によっても、第16〜第18の実施形態のいずれかと同様の効果を得ることができる。また、溝500が第1インダクタ112と第2インダクタ122の間にのみ形成されているため、半導体装置の強度を高くすることができる。   Also according to this embodiment, the same effect as any of the sixteenth to eighteenth embodiments can be obtained. Further, since the trench 500 is formed only between the first inductor 112 and the second inductor 122, the strength of the semiconductor device can be increased.

なお、本実施形態において溝500をエッチング(例えば異方性エッチング)により形成する場合、溝500の長さ及び形成位置も精度が高くなる。このため、溝500と、溝500の周囲に位置する回路領域(トランジスタなどの素子は配線が形成される領域)とのマージンを狭くすることができるため、回路領域を広くすることができる。従って、半導体チップ100を設計するときのレイアウト制約を小さくすることができる。   In the present embodiment, when the groove 500 is formed by etching (for example, anisotropic etching), the length and the formation position of the groove 500 are also highly accurate. For this reason, since the margin between the groove 500 and a circuit region located around the groove 500 (a region in which an element such as a transistor is formed with a wiring) can be narrowed, the circuit region can be widened. Therefore, layout restrictions when designing the semiconductor chip 100 can be reduced.

(第20の実施形態)
図39は、第20の実施形態に係る半導体装置の構成を示す図である。本実施形態において、半導体チップ100は、パッシベーション膜108上にポリイミド膜109を有している。ポリイミド膜109は、多層配線層106に設けられた電極パッド(図示せず)上に、開口を有している。
(20th embodiment)
FIG. 39 is a diagram showing a configuration of the semiconductor device according to the twentieth embodiment. In the present embodiment, the semiconductor chip 100 has a polyimide film 109 on the passivation film 108. The polyimide film 109 has an opening on an electrode pad (not shown) provided in the multilayer wiring layer 106.

また、半導体チップ100は、固定層800を介して配線基板200上に固定されている。固定層800は、銀ペースト、又はDAFである。   Further, the semiconductor chip 100 is fixed on the wiring substrate 200 via the fixed layer 800. The fixed layer 800 is a silver paste or DAF.

そして溝500は、ポリイミド膜109に開口が形成されていない領域に設けられている。溝500の底面は、配線基板200に入り込んでいる。なお溝500は、例えばダイシングブレード510を用いて形成される。   The groove 500 is provided in a region where no opening is formed in the polyimide film 109. The bottom surface of the groove 500 enters the wiring board 200. The groove 500 is formed using, for example, a dicing blade 510.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、ダイシングブレード510は、ポリイミド膜109のうち開口が形成されていない部分に溝500を形成する。従って、溝500を形成するときに多層配線層106に欠陥が入ることを抑制できる。このため、多層配線層106内の配線がショートすることを抑制できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the dicing blade 510 forms a groove 500 in a portion of the polyimide film 109 where no opening is formed. Therefore, it is possible to suppress defects in the multilayer wiring layer 106 when the groove 500 is formed. For this reason, it is possible to suppress a short circuit in the wiring in the multilayer wiring layer 106.

(第21の実施形態)
図40は、第21の実施形態に係る半導体装置の構成を示す図である。本実施形態に係る半導体装置は、ポリイミド膜109に、溝500が形成される部分に開口を有している点を除いて、第20の実施形態に係る半導体装置と同様の構成である。
(21st Embodiment)
FIG. 40 is a diagram showing a configuration of the semiconductor device according to the twenty-first embodiment. The semiconductor device according to the present embodiment has the same configuration as that of the semiconductor device according to the twentieth embodiment except that the polyimide film 109 has an opening at a portion where the groove 500 is formed.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、溝500を形成するとき、ダイシングブレード510がポリイミド膜109を切断しなくて済むため、溝500内にポリイミド膜109の切断屑が入り込むことを防止できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, since the dicing blade 510 does not need to cut the polyimide film 109 when forming the groove 500, it is possible to prevent the cutting waste of the polyimide film 109 from entering the groove 500.

さらに、ポリイミド膜109の開口を基準に、溝500を形成するときの位置出しを行うことができる。従って、溝500の位置精度は向上する。さらに、溝500を形成した後、ポリイミド膜109の開口と溝500とが重なっているか否かを視覚的に確認することができるため、溝500の位置を容易に検査できる。   Further, positioning when forming the groove 500 can be performed with reference to the opening of the polyimide film 109. Therefore, the positional accuracy of the groove 500 is improved. Further, after the groove 500 is formed, it can be visually confirmed whether or not the opening of the polyimide film 109 and the groove 500 overlap each other, so that the position of the groove 500 can be easily inspected.

(第22の実施形態)
図41及び図42は、第22の実施形態に係る半導体装置の製造方法を示す断面図である。まず、図41(a)に示すように、半導体チップ100を吸着装置700の吸着面702に吸着する。吸着装置700の吸着面702には、凹部704が形成されている。凹部704は、平面視で、第1インダクタ112と第2インダクタ122の間に位置している。本図に示す例では、半導体チップ100は、能動面が吸着面702に吸着されている。ただし、半導体チップ100が配線基板200にフリップチップ実装される場合、半導体チップ100は、裏面が吸着面702に吸着されても良い。
(Twenty-second embodiment)
41 and 42 are cross-sectional views showing a method for manufacturing a semiconductor device according to the twenty-second embodiment. First, as shown in FIG. 41A, the semiconductor chip 100 is sucked onto the suction surface 702 of the suction device 700. A recess 704 is formed on the suction surface 702 of the suction device 700. The recess 704 is located between the first inductor 112 and the second inductor 122 in plan view. In the example shown in this figure, the active surface of the semiconductor chip 100 is adsorbed by the adsorption surface 702. However, when the semiconductor chip 100 is flip-chip mounted on the wiring substrate 200, the back surface of the semiconductor chip 100 may be adsorbed on the adsorption surface 702.

次いで図41(b)に示すように、例えばダイシングブレード(図示せず)を用いて、半導体チップ100に溝500を形成する。吸着面702には凹部704が形成されているため、ダイシングブレードが吸着装置700に接触することを抑制できる。なお、溝500は半導体チップ100を貫通している。   Next, as shown in FIG. 41B, a groove 500 is formed in the semiconductor chip 100 using, for example, a dicing blade (not shown). Since the concave portion 704 is formed on the suction surface 702, the dicing blade can be prevented from coming into contact with the suction device 700. The groove 500 penetrates the semiconductor chip 100.

次いで図42に示すように、吸着装置700を用いて、半導体チップ100を配線基板200上に搭載する。なお、配線基板200の代わりにリードフレーム220を用いても良い。その後、ボンディングワイヤ300及び封止樹脂400を形成する。   Next, as shown in FIG. 42, the semiconductor chip 100 is mounted on the wiring substrate 200 using the suction device 700. Note that a lead frame 220 may be used instead of the wiring board 200. Thereafter, a bonding wire 300 and a sealing resin 400 are formed.

なお、図41(a)に示す状態において、半導体チップ100の裏面にDAFが設けられていても良い。このようにすると、半導体チップ100が溝500により2つに分割されている場合において、配線基板200上に半導体チップ100を搭載するときに、2つの個片の高さがばらつくことを抑制できる。   In the state shown in FIG. 41A, a DAF may be provided on the back surface of the semiconductor chip 100. In this way, when the semiconductor chip 100 is divided into two by the groove 500, when the semiconductor chip 100 is mounted on the wiring board 200, the height of the two pieces can be suppressed from varying.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、半導体チップ100を2つの個片に分割したとき、これら2つの個片の高さがばらつくことを抑制できる。従って、第1インダクタ112と第2インダクタ122の結合が弱くなることを抑制できる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. In addition, when the semiconductor chip 100 is divided into two pieces, it is possible to suppress variations in the height of these two pieces. Therefore, weak coupling between the first inductor 112 and the second inductor 122 can be suppressed.

なお本実施形態において、半導体チップ100の上面は、吸着装置700ではなく固定部材(図示せず)に固定されてもよい。この場合、半導体チップ100が固定部材に固定された状態で、溝500が形成される。そして半導体チップ100は、固定部材ごと、配線基板200上に搭載される。このようにしても、半導体チップ100を2つの個片に分割したとき、これら2つの個片の高さがばらつくことを抑制できる。従って、第1インダクタ112と第2インダクタ122の結合が弱くなることを抑制できる。   In the present embodiment, the upper surface of the semiconductor chip 100 may be fixed to a fixing member (not shown) instead of the suction device 700. In this case, the groove 500 is formed in a state where the semiconductor chip 100 is fixed to the fixing member. The semiconductor chip 100 is mounted on the wiring substrate 200 together with the fixing member. Even in this case, when the semiconductor chip 100 is divided into two pieces, it is possible to suppress variations in the heights of the two pieces. Therefore, weak coupling between the first inductor 112 and the second inductor 122 can be suppressed.

(第23の実施形態)
図43(a)は、第23の実施形態に係る半導体装置の構成を示す平面図である。図43(b)は、この半導体装置の裏面図である。本実施形態に示す半導体装置は、半導体チップ100、ボンディングワイヤ300、及び配線基板200を有している。この半導体装置では、ハンダボール620は格子状に形成されている。半導体チップ100及び配線基板200はいずれも矩形であり、互いに対向する辺が平行になっている。また半導体チップ100及び配線基板200は、互いの中心が重なっている。そして溝500は、半導体チップ100及び配線基板200の中心を通っている。ただし、平面視で溝500が通る直線A上及びその周囲位置する格子点には、ハンダボール620が形成されていない。また、配線基板200の4つの角部の近くには、ハンダボール620が配置されている。
(23rd embodiment)
FIG. 43A is a plan view showing the configuration of the semiconductor device according to the twenty-third embodiment. FIG. 43B is a rear view of this semiconductor device. The semiconductor device shown in this embodiment includes a semiconductor chip 100, bonding wires 300, and a wiring board 200. In this semiconductor device, the solder balls 620 are formed in a lattice shape. The semiconductor chip 100 and the wiring substrate 200 are both rectangular, and the sides facing each other are parallel. Further, the semiconductor chip 100 and the wiring substrate 200 are overlapped with each other in the center. The groove 500 passes through the centers of the semiconductor chip 100 and the wiring substrate 200. However, solder balls 620 are not formed on the lattice points located on and around the straight line A through which the groove 500 passes in plan view. In addition, solder balls 620 are disposed near the four corners of the wiring board 200.

これにより、第1回路領域110に接続するハンダボール620と、第2回路領域120に接続するハンダボール620を互いに離すことができる。従って、第1回路領域110と第2回路領域120の間の耐圧を高めることができる。また、第1回路領域110と第2回路領域120が相互に干渉することを抑制できる。   Thereby, the solder ball 620 connected to the first circuit region 110 and the solder ball 620 connected to the second circuit region 120 can be separated from each other. Therefore, the breakdown voltage between the first circuit region 110 and the second circuit region 120 can be increased. In addition, the first circuit region 110 and the second circuit region 120 can be prevented from interfering with each other.

また、配線基板200のうち直線Aに平行な辺(図中上下方向の辺)に沿って配置されたハンダボール620の数は、配線基板200のうち直線Aに垂直な辺(図中左右方向の辺)に沿って配置されたハンダボール620の数よりも多い。すなわち、配線基板200のうち直線Aに平行な辺(図中左右方向の辺)に沿って配置されたハンダボール620は、間引いていない。このため、配線基板200の裏面に配置可能なハンダボール620の数が減少することを抑制できる。   Further, the number of solder balls 620 arranged along the side parallel to the straight line A (the vertical side in the figure) of the wiring board 200 is equal to the side perpendicular to the straight line A of the wiring board 200 (the horizontal direction in the figure). More than the number of solder balls 620 arranged along That is, the solder balls 620 arranged along the side parallel to the straight line A (the side in the left-right direction in the drawing) of the wiring board 200 are not thinned out. For this reason, it can suppress that the number of the solder balls 620 which can be arrange | positioned on the back surface of the wiring board 200 reduces.

また、直線Aを基準とした場合、ハンダボール620は線対称に配置されている。なお、ハンダボール620の一部は、線対称性を確保するために、ダミーであってもよい。このようにすると、溝500を形成するときに半導体装置に熱履歴が加わる場合であっても、この熱履歴に起因した半導体装置の反りに再現性を与えることができる。すなわち、半導体装置の反りにばらつきが生じることを抑制できる。   Further, when the straight line A is used as a reference, the solder balls 620 are arranged in line symmetry. A part of the solder ball 620 may be a dummy in order to ensure line symmetry. In this case, even when a thermal history is applied to the semiconductor device when forming the groove 500, reproducibility can be given to the warp of the semiconductor device due to the thermal history. That is, variation in warpage of the semiconductor device can be suppressed.

なお、ハンダボール620のレイアウトは、図44(a)〜(c)のようにしても良い。これらの例では、図43(b)に示した例に加え、さらに、相対的に配線基板200の中心側に位置するハンダボール620の一部が間引かれている。特に図44(a),(b)に示す例では、平面視で半導体チップ100の中心と重なる部分にはハンダボール620が配置されていない。ただし、いずれの例においても、直線Aを基準とした場合、ハンダボール620は線対称に配置されている。   Note that the layout of the solder balls 620 may be as shown in FIGS. In these examples, in addition to the example shown in FIG. 43 (b), a part of the solder ball 620 relatively positioned on the center side of the wiring board 200 is thinned out. In particular, in the example shown in FIGS. 44A and 44B, the solder ball 620 is not disposed in a portion overlapping the center of the semiconductor chip 100 in plan view. However, in any example, when the straight line A is used as a reference, the solder balls 620 are arranged symmetrically.

また、図45の各図に示す例では、第1回路領域110の下方に位置する領域と、リードフレーム220の下方に位置する領域とで、ハンダボール620の配置の規則性が異なっている。例えば図45(a)に示す例では、一方の領域に位置するハンダボール620と、他方の領域に位置するハンダボール620は、数、及び大きさが異なっている。また図45(b)〜(d)に示す例では、ハンダボール620の大きさは同一であるが、配置密度が異なっている。ただし、いずれの例においても、各領域のみで見た場合、ハンダボール620は、直線Aと平行な直線を基準にした場合、線対称に配置されている。また図46(c),(d)に示す例では、直線Aの垂直2等分線を基準とした場合、ハンダボール620は線対称に配置されている。   In the example shown in each drawing of FIG. 45, the regularity of the arrangement of the solder balls 620 differs between the region located below the first circuit region 110 and the region located below the lead frame 220. For example, in the example shown in FIG. 45A, the number and size of the solder balls 620 located in one region are different from those of the solder balls 620 located in the other region. In the example shown in FIGS. 45B to 45D, the size of the solder balls 620 is the same, but the arrangement density is different. However, in any example, when viewed only in each region, the solder balls 620 are arranged symmetrically with respect to a straight line parallel to the straight line A. In the example shown in FIGS. 46C and 46D, when the perpendicular bisector of the straight line A is used as a reference, the solder balls 620 are arranged in line symmetry.

配線基板200のうち、第1回路領域110に対応する領域と第2回路領域120に対応する領域とで、互いに異なる設計ルールを適用しなければならない場合がある。このような場合においても、図45に示す例によれば、各領域ごとに線対称にハンダボール620が配置されているため、各領域内での配線の引き回しが容易になる。   In the wiring substrate 200, different design rules may have to be applied to the region corresponding to the first circuit region 110 and the region corresponding to the second circuit region 120. Even in such a case, according to the example shown in FIG. 45, since the solder balls 620 are arranged symmetrically with respect to each region, wiring can be easily routed within each region.

(第24の実施形態)
図46(a)は、第24の実施形態に係る半導体装置の構成を示す平面図である。図46(b)、及び図47の各図は、この半導体装置の裏面図である。本実施形態に示す半導体装置は、以下の点を除いて、第23の実施形態に係る半導体装置と同様の構成である。
(24th Embodiment)
FIG. 46A is a plan view showing the configuration of the semiconductor device according to the twenty-fourth embodiment. Each of FIGS. 46B and 47 is a rear view of the semiconductor device. The semiconductor device shown in the present embodiment has the same configuration as that of the semiconductor device according to the twenty-third embodiment except for the following points.

まず、半導体チップ100及び配線基板200は、互いの中心がずれており、これに伴って溝500も配線基板200の中心からずれている。ただし、第1回路領域110に対応する領域と第2回路領域120に対応する領域それぞれにおいて、ハンダボール620は、直線Aの垂直2等分線を基準として線対称に配置されている。また、図46(b)に示す例では、直線Aに平行な線を基準にしても、第1回路領域110に対応する領域と第2回路領域120に対応する領域それぞれにおいて、ハンダボール620は線対称に配置されている。このため、第1回路領域110に対応する領域と第2回路領域120に対応する領域とで、互いに異なる設計ルールを適用しなければならない場合においても、各領域内での配線の引き回しが容易になる。   First, the center of the semiconductor chip 100 and the wiring board 200 are shifted from each other, and accordingly, the groove 500 is also shifted from the center of the wiring board 200. However, in each of the region corresponding to the first circuit region 110 and the region corresponding to the second circuit region 120, the solder balls 620 are arranged symmetrically with respect to the perpendicular bisector of the straight line A. In the example shown in FIG. 46B, the solder balls 620 are formed in each of the region corresponding to the first circuit region 110 and the region corresponding to the second circuit region 120, with reference to a line parallel to the straight line A. They are arranged in line symmetry. For this reason, even when different design rules must be applied to the region corresponding to the first circuit region 110 and the region corresponding to the second circuit region 120, it is easy to route the wiring in each region. Become.

(第25の実施形態)
図48(a)は、第25の実施形態にかかる半導体装置の構成を示す図である。本実施形態において、半導体チップ100は配線基板200に対して斜めに配置されている。そして溝500は、配線基板200の対角線上に位置している。
(25th Embodiment)
FIG. 48A is a diagram showing a configuration of the semiconductor device according to the twenty-fifth embodiment. In the present embodiment, the semiconductor chip 100 is disposed obliquely with respect to the wiring board 200. The groove 500 is located on the diagonal line of the wiring board 200.

また、図48(b)に示すように、溝500は、配線基板200の対角線に対して平行となっていても良い。   Further, as shown in FIG. 48B, the groove 500 may be parallel to the diagonal line of the wiring board 200.

本実施形態によれば、半導体チップ100を配線基板200に載置した後、溝500を形成する場合、溝500を形成すべき位置、すなわちダイシングブレード510を通すべき位置を容易に定めることができる。また、半導体チップ100に溝500を形成してから配線基板200に載置する場合、半導体チップ100載置位置の精度を高くすることができる。   According to the present embodiment, when the groove 500 is formed after the semiconductor chip 100 is placed on the wiring substrate 200, a position where the groove 500 should be formed, that is, a position where the dicing blade 510 should be passed can be easily determined. . In addition, when the groove 500 is formed in the semiconductor chip 100 and then placed on the wiring substrate 200, the accuracy of the placement position of the semiconductor chip 100 can be increased.

(第26の実施形態)
図49は、半導体チップ100を有する電子装置の機能ブロック図である。半導体チップ100は、上記したいずれかの実施形態に示した構造により、配線基板200に載置されている。半導体チップ100の第2回路領域120には、電力制御素子20が形成されている。電力制御素子20は、電源10から負荷30に供給される電力を制御している。
(26th Embodiment)
FIG. 49 is a functional block diagram of an electronic device having the semiconductor chip 100. The semiconductor chip 100 is mounted on the wiring board 200 with the structure shown in any of the above embodiments. A power control element 20 is formed in the second circuit region 120 of the semiconductor chip 100. The power control element 20 controls the power supplied from the power source 10 to the load 30.

半導体チップ100の第1回路領域110に位置する回路は、電力制御素子20を制御するための回路である。ここで生成された生後信号は、第1インダクタ112及び第2インダクタ122を介して、電力制御素子20に伝達される。   A circuit located in the first circuit region 110 of the semiconductor chip 100 is a circuit for controlling the power control element 20. The postnatal signal generated here is transmitted to the power control element 20 via the first inductor 112 and the second inductor 122.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

10 電源
20 電力制御素子
30 負荷
40 半導体ウェハ
100 半導体チップ
102 基板
104 素子層
106 多層配線層
108 パッシベーション膜
109 ポリイミド膜
110 第1回路領域
112 第1インダクタ
114 磁気遮蔽層
120 第2回路領域
122 第2インダクタ
124 磁気遮蔽層
130 インダクタ
132 配線
134 配線
136 配線
150 ヒートシンク
200 配線基板
220 リードフレーム
222 ダイパッド
224 リード
300 ボンディングワイヤ
400 封止樹脂
402 封止樹脂
410 半導体装置
420 半導体装置
500 溝
501 封止層
502 第1溝
504 第2溝
506 絶縁膜
508 樹脂
510 ダイシングブレード
512 ダイシングブレード
520 樹脂層
522 透磁部材
600 実装基板
620 ハンダボール
700 吸着装置
702 吸着面
704 凹部
710 吸着ノズル
720 吸着ノズル
800 固定層
10 power supply 20 power control element 30 load 40 semiconductor wafer 100 semiconductor chip 102 substrate 104 element layer 106 multilayer wiring layer 108 passivation film 109 polyimide film 110 first circuit region 112 first inductor 114 magnetic shielding layer 120 second circuit region 122 second Inductor 124 Magnetic shielding layer 130 Inductor 132 Wiring 134 Wiring 136 Wiring 150 Heat sink 200 Wiring board 220 Lead frame 222 Die pad 224 Lead 300 Bonding wire 400 Sealing resin 402 Sealing resin 410 Semiconductor device 420 Semiconductor device 500 Groove 501 Sealing layer 502 First 1 groove 504 2nd groove 506 Insulating film 508 Resin 510 Dicing blade 512 Dicing blade 520 Resin layer 522 Magnetic permeable member 600 Mounting substrate 620 Solder ball 7 0 adsorber 702 suction surface 704 recess 710 suction nozzle 720 suction nozzle 800 fixed layer

Claims (7)

表面、前記表面とは反対側の裏面、第1辺、前記第1辺とは反対側の第2辺、前記第1および第2辺と交差する第3辺、前記第1および第2辺と交差し、且つ前記第3辺とは反対側の第4辺、前記表面上に配置された複数の電極パッド、および前記裏面上に配置された複数のハンダボールを有する配線基板と、
第1主面、前記第1主面上の第1チップ辺、前記第1チップ辺とは反対側の第2チップ辺、前記第1主面上に配置され、前記第2チップ辺に沿って配置された第1インダクタを有し、前記配線基板の前記表面上に、前記第1チップ辺が前記配線基板の前記第1辺と対向し、且つ前記配線基板の前記第2辺よりも前記第1辺の近く配置されるように搭載された第1半導体チップと、
第2主面、前記第2主面上の第3チップ辺、前記第3チップ辺とは反対側の第4チップ辺、前記第2主面上に形成され、前記第4チップ辺に沿って配置された第2インダクタを有し、平面視において前記第1半導体チップの前記第2チップ辺と前記第4チップ辺が対向するように前記第1半導体チップと並んで、前記配線基板の前記表面上に搭載された第2半導体チップと、
前記第1半導体チップの前記第1主面および前記第2半導体チップの前記第2主面のそれぞれと、前記配線基板の前記複数の電極パッドとを接続する複数のボンディングワイヤと、
前記配線基板の前記表面、前記第1および第2半導体チップ、および前記複数のボンディングワイヤを樹脂で封止した封止体と、
を備え、
前記第1半導体チップと前記第2半導体チップは、平面視において重なっておらず、
前記配線基板の前記複数の電極パッドは、平面視において前記配線基板の前記第1辺と前記第1半導体チップの前記第1チップ辺の間に配置された複数の第1電極パッド、および前記配線基板の第2辺と前記第2半導体チップの前記第3チップ辺の間に配置された複数の第2電極パッド、を含み、
前記配線基板の前記裏面は、前記第2辺よりも前記第1辺の近くに位置し、且つ前記第1辺、第3辺および第4辺に接する第1領域、前記第1辺よりも前記第2辺の近くに位置し、且つ前記第2辺、第3辺および第4辺に接する第2領域、前記第1領域と前記第2領域に挟まれた間に位置し、且つ前記第1領域、前記第2領域、前記第3辺、および前記第4辺に接する第3領域を有し、
前記複数のハンダボールは、前記配線基板の前記第1領域に格子状に配置された複数の第1ハンダボール、および前記配線基板の前記第2領域に格子状に配置された複数の第2ハンダボール、
を含み、
前記複数の第1ハンダボールは、前記配線基板の前記第2辺の最も近くに配置された第1ボール電極を含み、
前記複数の第2ハンダボールは、前記配線基板の前記第1辺の最も近くに配置された第2ボール電極を含み、
前記複数のボンディングワイヤは、複数の第1ワイヤおよび複数の第2ワイヤを含み、
前記配線基板の前記複数の第1電極パッドと前記第1半導体チップの前記第1主面とは、前記複数の第1ワイヤを介して接続されており、
前記配線基板の前記複数の第2電極パッドと前記第2半導体チップの前記第2主面とは、前記複数の第2ワイヤを介して接続されており、
前記複数の第1ハンダボールと前記複数の第1電極パッドとは、前記配線基板を介して接続されており、
前記複数の第2ハンダボールと前記複数の第2電極パッドとは、前記配線基板を介して接続されており、
平面視において、前記配線基板の前記第3領域には、ハンダボールが配置されておらず、且つ前記第1半導体チップの前記第2チップ辺および前記第2半導体チップの前記第4チップ辺で挟まれた領域を内包しており、前記第1ボール電極と前記第2ボール電極との間隔は、前記配線基板の前記第1辺と直交する第1方向において前記第1半導体チップの前記第2チップ辺と前記第2半導体チップの前記第4チップ辺との間隔よりも大きく、
前記第1半導体チップと前記第2半導体チップは、電気的に絶縁されており、
前記第1ボール電極と前記第2ボール電極は、電気的に絶縁されており、
前記複数の第1および第2ハンダボールは、平面視において前記第1方向に2列以上のハンダボールが配列され、且つ前記第1方向とは垂直な第2方向に沿って配置されたハンダボールの数が、前記第1方向に沿って配置されたハンダボールの数よりも多く、
前記配線基板の前記複数の第1ハンダボールの配置の規則性は、平面視において前記配線基板の前記複数の第2ハンダボールの配置の規則性と、異なる半導体装置。
A front surface, a back surface opposite to the front surface, a first side, a second side opposite to the first side, a third side intersecting with the first and second sides, the first and second sides, and A wiring substrate having a fourth side intersecting and opposite to the third side, a plurality of electrode pads disposed on the front surface, and a plurality of solder balls disposed on the back surface;
A first main surface, a first chip side on the first main surface, a second chip side opposite to the first chip side, and disposed on the first main surface, along the second chip side A first inductor disposed, the first chip side facing the first side of the wiring board on the surface of the wiring board, and the first side of the wiring board than the second side of the wiring board; A first semiconductor chip mounted so as to be arranged near one side;
A second main surface, a third chip side on the second main surface, a fourth chip side opposite to the third chip side, and formed on the second main surface, along the fourth chip side The front surface of the wiring board has a second inductor disposed, and is arranged in line with the first semiconductor chip so that the second chip side and the fourth chip side of the first semiconductor chip face each other in a plan view. A second semiconductor chip mounted thereon;
A plurality of bonding wires connecting each of the first main surface of the first semiconductor chip and the second main surface of the second semiconductor chip and the plurality of electrode pads of the wiring board;
A sealing body in which the surface of the wiring substrate, the first and second semiconductor chips, and the plurality of bonding wires are sealed with resin;
With
The first semiconductor chip and the second semiconductor chip do not overlap in plan view,
The plurality of electrode pads of the wiring board includes a plurality of first electrode pads disposed between the first side of the wiring board and the first chip side of the first semiconductor chip in plan view, and the wiring A plurality of second electrode pads disposed between a second side of the substrate and the third chip side of the second semiconductor chip;
The back surface of the wiring board is located closer to the first side than the second side, and is in contact with the first side, the third side, and the fourth side, and more than the first side. A second region located near the second side and in contact with the second side, the third side and the fourth side; located between the first region and the second region; and the first side A third region in contact with the region, the second region, the third side, and the fourth side;
The plurality of solder balls include a plurality of first solder balls arranged in a grid pattern in the first area of the wiring board, and a plurality of second solders arranged in a grid pattern in the second area of the wiring board. ball,
Including
The plurality of first solder balls include a first ball electrode disposed closest to the second side of the wiring board;
The plurality of second solder balls include a second ball electrode disposed closest to the first side of the wiring board,
The plurality of bonding wires includes a plurality of first wires and a plurality of second wires,
The plurality of first electrode pads of the wiring board and the first main surface of the first semiconductor chip are connected via the plurality of first wires,
The plurality of second electrode pads of the wiring board and the second main surface of the second semiconductor chip are connected via the plurality of second wires,
The plurality of first solder balls and the plurality of first electrode pads are connected via the wiring board,
The plurality of second solder balls and the plurality of second electrode pads are connected via the wiring board,
In a plan view, no solder ball is disposed in the third region of the wiring board and is sandwiched between the second chip side of the first semiconductor chip and the fourth chip side of the second semiconductor chip. The second chip of the first semiconductor chip in a first direction perpendicular to the first side of the wiring board. Greater than a distance between a side and the fourth chip side of the second semiconductor chip;
The first semiconductor chip and the second semiconductor chip are electrically insulated,
The first ball electrode and the second ball electrode are electrically insulated,
The plurality of first and second solder balls are arranged in a second direction perpendicular to the first direction, in which two or more rows of solder balls are arranged in the first direction in a plan view. Is greater than the number of solder balls disposed along the first direction,
The regularity of the arrangement of the plurality of first solder balls on the wiring board is different from the regularity of the arrangement of the plurality of second solder balls on the wiring board in plan view.
請求項1に記載の半導体装置において、
前記第1半導体チップに印加される電圧と前記第2半導体チップに印加される電圧は、異なる半導体装置。
The semiconductor device according to claim 1,
The voltage applied to the first semiconductor chip and the voltage applied to the second semiconductor chip are different semiconductor devices.
請求項2に記載の半導体装置において、
前記第1半導体チップに印加される電圧と前記第2半導体チップに印加される電圧は、100V以上異なる半導体装置。
The semiconductor device according to claim 2,
A semiconductor device in which a voltage applied to the first semiconductor chip is different from a voltage applied to the second semiconductor chip by 100 V or more.
請求項1に記載の半導体装置において、
前記第1半導体チップは、更に前記第1主面上に送信用の第1回路を有しており、
前記第2半導体チップは、更に前記第2主面上に受信用の第2回路を有しており、
前記第1回路は、前記第1インダクタと接続されており、
前記第2回路は、前記第2インダクタに接続されており、
前記第1回路と前記第2回路は電気的に絶縁されている半導体装置。
The semiconductor device according to claim 1,
The first semiconductor chip further includes a first circuit for transmission on the first main surface,
The second semiconductor chip further includes a second circuit for reception on the second main surface,
The first circuit is connected to the first inductor;
The second circuit is connected to the second inductor;
A semiconductor device in which the first circuit and the second circuit are electrically insulated.
請求項1に記載の半導体装置において、
平面視において前記第1ボール電極は複数のハンダボールが前記配線基板の前記第1辺に平行に配列された第1ハンダボール群であり、
平面視において前記第2ボール電極は複数のハンダボールが前記配線基板の前記第2辺に平行に配列された第2ハンダボール群であり、
平面視において前記第1ハンダボール群と前記第2ハンダボール群の距離は、前記第1方向において前記第1半導体チップの前記第2辺と前記第2半導体チップの前記第4辺の距離よりも大きい半導体装置。
The semiconductor device according to claim 1,
In plan view, the first ball electrode is a first solder ball group in which a plurality of solder balls are arranged in parallel to the first side of the wiring board;
In plan view, the second ball electrode is a second solder ball group in which a plurality of solder balls are arranged in parallel to the second side of the wiring board;
In plan view, the distance between the first solder ball group and the second solder ball group is greater than the distance between the second side of the first semiconductor chip and the fourth side of the second semiconductor chip in the first direction. Large semiconductor device.
請求項1に記載の半導体装置において、
前記第1半導体チップの前記第1インダクタの巻き数と巻方向は、実質的に前記第2半導体チップの前記第2インダクタの巻き数と巻方向と同一である半導体装置。
The semiconductor device according to claim 1,
The number of turns and the winding direction of the first inductor of the first semiconductor chip are substantially the same as the number of turns and the winding direction of the second inductor of the second semiconductor chip.
請求項1に記載の半導体装置において、
前記封止体は、上面を有しており、
前記第1半導体チップの前記第1主面および前記第2半導体チップの前記第2主面はそれぞれ、前記上面と対向しており、
前記配線基板の膜厚方向において、前記上面から前記第1インダクタの巻き軸までの距離は、前記上面から前記第2インダクタの巻き軸までの距離と実質的に等しい半導体装置。
The semiconductor device according to claim 1,
The sealing body has an upper surface;
The first main surface of the first semiconductor chip and the second main surface of the second semiconductor chip are respectively opposed to the upper surface;
In the film thickness direction of the wiring board, the distance from the upper surface to the winding axis of the first inductor is substantially equal to the distance from the upper surface to the winding axis of the second inductor.
JP2017192504A 2010-08-06 2017-10-02 Semiconductor device, electronic device, and manufacturing method of semiconductor device Active JP6389941B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010178012 2010-08-06
JP2010178012 2010-08-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015203759A Division JP6496651B2 (en) 2010-08-06 2015-10-15 Semiconductor device, electronic device, and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2018026577A JP2018026577A (en) 2018-02-15
JP6389941B2 true JP6389941B2 (en) 2018-09-12

Family

ID=53376335

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014260040A Active JP5827393B2 (en) 2010-08-06 2014-12-24 Semiconductor device, electronic device, and manufacturing method of semiconductor device
JP2015203759A Active JP6496651B2 (en) 2010-08-06 2015-10-15 Semiconductor device, electronic device, and manufacturing method of semiconductor device
JP2017192504A Active JP6389941B2 (en) 2010-08-06 2017-10-02 Semiconductor device, electronic device, and manufacturing method of semiconductor device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2014260040A Active JP5827393B2 (en) 2010-08-06 2014-12-24 Semiconductor device, electronic device, and manufacturing method of semiconductor device
JP2015203759A Active JP6496651B2 (en) 2010-08-06 2015-10-15 Semiconductor device, electronic device, and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (3) JP5827393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675504B2 (en) 2010-08-06 2015-02-25 ルネサスエレクトロニクス株式会社 Semiconductor device, electronic device, and manufacturing method of semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG130055A1 (en) * 2005-08-19 2007-03-20 Micron Technology Inc Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices
JP4918795B2 (en) * 2006-03-16 2012-04-18 富士電機株式会社 Power electronics equipment
JP4353976B2 (en) * 2006-12-22 2009-10-28 Necエレクトロニクス株式会社 System in package
US7525185B2 (en) * 2007-03-19 2009-04-28 Advanced Chip Engineering Technology, Inc. Semiconductor device package having multi-chips with side-by-side configuration and method of the same
JP4528841B2 (en) * 2008-03-12 2010-08-25 日立オートモティブシステムズ株式会社 Power converter
JPWO2009113372A1 (en) * 2008-03-13 2011-07-21 日本電気株式会社 Semiconductor device
JP5303167B2 (en) * 2008-03-25 2013-10-02 ローム株式会社 Switch control device and motor drive device using the same
JP5359264B2 (en) * 2008-12-26 2013-12-04 富士電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP6496651B2 (en) 2019-04-03
JP2018026577A (en) 2018-02-15
JP5827393B2 (en) 2015-12-02
JP2015099928A (en) 2015-05-28
JP2016015521A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5675504B2 (en) Semiconductor device, electronic device, and manufacturing method of semiconductor device
KR102591624B1 (en) Semiconductor packages
US8735222B2 (en) Semiconductor device and method of manufacturing the same
KR100716871B1 (en) Carrier frame for semiconductor package and semiconductor package using it and its manufacturing method
US20190057911A1 (en) Method for fabricating electronic package
US9117770B2 (en) Semiconductor device
US20130127033A1 (en) Semiconductor device
KR101166575B1 (en) Semiconductor multi-package module having wire bond interconnection between stacked packages
KR20130075251A (en) Semiconductor package having interposer comprising a plurality of segments
KR101563911B1 (en) Semiconductor package
KR102228633B1 (en) Leadframe substrate having modulator and crack inhibiting structure and flip chip assembly using the same
KR101546575B1 (en) Semiconductor Package And Fabricating Method Thereof
US8178971B2 (en) Semiconductor device and method of manufacturing the same
US8098496B2 (en) Wiring board for semiconductor device
JP6389941B2 (en) Semiconductor device, electronic device, and manufacturing method of semiconductor device
JP2010263108A (en) Semiconductor device and manufacturing method of the same
US9112061B2 (en) Semiconductor device and method of forming the same
TW201517217A (en) Semiconductor device and method of manufacturing the same
JP2009182004A (en) Semiconductor device
JP2009283835A (en) Semiconductor device and method of manufacturing the same
TWI553841B (en) Chip package and manufacturing method thereof
US11817439B2 (en) Semiconductor device having distinguishable electrodes
JP2001007238A (en) Method of packaging wafer-level integrated circuit device
JP2013157433A (en) Semiconductor device
JP2011233672A (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6389941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150