[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6389751B2 - Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof - Google Patents

Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP6389751B2
JP6389751B2 JP2014246669A JP2014246669A JP6389751B2 JP 6389751 B2 JP6389751 B2 JP 6389751B2 JP 2014246669 A JP2014246669 A JP 2014246669A JP 2014246669 A JP2014246669 A JP 2014246669A JP 6389751 B2 JP6389751 B2 JP 6389751B2
Authority
JP
Japan
Prior art keywords
parts
group
hydroxy
aromatic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014246669A
Other languages
Japanese (ja)
Other versions
JP2016108268A (en
Inventor
栄次郎 青柳
栄次郎 青柳
次俊 和佐野
次俊 和佐野
優子 堀田
優子 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014246669A priority Critical patent/JP6389751B2/en
Publication of JP2016108268A publication Critical patent/JP2016108268A/en
Application granted granted Critical
Publication of JP6389751B2 publication Critical patent/JP6389751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、誘電特性に優れるとともに、耐熱性や硬化性にも優れたヒドロキシ樹脂及びその硬化物に関するものである。   The present invention relates to a hydroxy resin excellent in dielectric characteristics and excellent in heat resistance and curability and a cured product thereof.

近年、携帯電話等の情報通信機器の信号帯域、コンピュータのCPUクロックタイムはGHz帯に達し、高周波数化が進行している。   In recent years, the signal band of information communication devices such as mobile phones and the CPU clock time of computers have reached the GHz band, and higher frequencies have been advanced.

電気信号の誘電損失は、回路を形成する絶縁体の比誘電率の平方根,誘電正接及び使用される信号の周波数の積に比例する。そのため、使用される信号の周波数が高いほど誘電損失が大きくなる。   The dielectric loss of an electrical signal is proportional to the product of the square root of the dielectric constant of the insulator forming the circuit, the dielectric loss tangent and the frequency of the signal used. Therefore, the higher the frequency of the signal used, the greater the dielectric loss.

誘電損失は、電気信号を減衰させて信号の信頼性を損なうので、これを抑制するために絶縁体には誘電率、誘電正接の小さな材料を選定する必要がある。   Dielectric loss attenuates an electrical signal and impairs the reliability of the signal. Therefore, in order to suppress this, it is necessary to select a material having a small dielectric constant and dielectric loss tangent for the insulator.

そのため、フッ素樹脂、硬化性ポリオレフィン、シアネートエステル系樹脂、硬化性ポリフェニレンオキサイド、アリル変性ポリフェニレンエーテル、ジビニルベンゼン又はジビニルナフタレンで変性したポリエーテルイミド等の高分子材料が提案されている。これらの樹脂は極性基数が少なく、低誘電率・低誘電正接な材料ではあるが、極性基数が少ないために金属との接着力や、他樹脂との接着力が著しく乏しいという課題があった。また、接着力に優れるエポキシ樹脂は、硬化後にグリシジルエーテル基由来の2級水酸基が生じるために誘電率及び誘電正接が高くなるという課題があった。   Therefore, polymer materials such as fluororesin, curable polyolefin, cyanate ester resin, curable polyphenylene oxide, allyl-modified polyphenylene ether, polyether imide modified with divinylbenzene or divinylnaphthalene have been proposed. Although these resins have a low number of polar groups and are low dielectric constant / low dielectric loss tangent materials, they have a problem that their adhesion to metals and adhesion to other resins are extremely poor due to the small number of polar groups. Moreover, the epoxy resin which is excellent in adhesive force has a problem that a dielectric constant and a dielectric loss tangent are increased because a secondary hydroxyl group derived from a glycidyl ether group is generated after curing.

誘電正接を低下させるためエポキシ樹脂のグリシジルエーテル由来の2級水酸基数を削減する方法として、硬化物中の活性水素基数を低減する手法がある。特許文献1にはオキシメチレン基を有するエポキシ樹脂が開示されており、その中間体としてオキシメチレン基を有するヒドロキシ樹脂が開示されているが、これを硬化剤に用いた場合、モル体積が低く、誘電率が高くなってしまうことから好ましくない。特許文献2には多官能フェノールに置換反応によって芳香族を導入し、モル体積を大きくする手法が開示されているが、最大限置換しても、活性水素基の低減が不十分であり、低誘電正接化が不十分であった。また、芳香族基を一定以上の割合で導入した場合、ガラス転移温度が著しく低下するといった課題を有していた。特許文献3には、芳香族変性を含むオキシメチレン基を有するエポキシ樹脂の中間体としてヒドロキシ樹脂が開示されているが、芳香族変性量が多い場合、ガラス転移温度が著しく低下するという課題があった。   As a method of reducing the number of secondary hydroxyl groups derived from the glycidyl ether of the epoxy resin in order to reduce the dielectric loss tangent, there is a method of reducing the number of active hydrogen groups in the cured product. Patent Document 1 discloses an epoxy resin having an oxymethylene group, and a hydroxy resin having an oxymethylene group as an intermediate is disclosed, but when this is used as a curing agent, the molar volume is low, This is not preferable because the dielectric constant becomes high. Patent Document 2 discloses a technique of introducing aromatics into a polyfunctional phenol by a substitution reaction to increase the molar volume. However, even when the maximum substitution is performed, the reduction of active hydrogen groups is insufficient, Insufficient dielectric loss tangent. Further, when the aromatic group is introduced at a certain ratio or more, the glass transition temperature is remarkably lowered. Patent Document 3 discloses a hydroxy resin as an intermediate of an epoxy resin having an oxymethylene group containing an aromatic modification. However, when the amount of the aromatic modification is large, there is a problem that the glass transition temperature is remarkably lowered. It was.

特開昭62−41222号公報JP 62-41222 A 特許第5324712号公報Japanese Patent No. 5324712 特開2014−111712号公報JP 2014-111712 A

本発明は、芳香族変性及びオキシメチレン基の導入によってモル体積が大きくなることから低誘電率性に優れるとともに、活性水素基数が少なく低誘電正接性にも優れ、芳香族変性量を規定することにより耐熱性や硬化性にも優れたヒドロキシ樹脂、その製造方法、エポキシ樹脂組成物及び硬化物を提供することを目的とするものである。   The present invention is excellent in low dielectric constant because the molar volume is increased by introduction of aromatic modification and oxymethylene groups, and has low active tangent properties and low dielectric loss tangent, and defines the amount of aromatic modification. It aims at providing the hydroxyl resin excellent also in heat resistance and sclerosis | hardenability, its manufacturing method, an epoxy resin composition, and hardened | cured material.

すなわち、本発明は下記一般式(1)で表されるヒドロキシ樹脂である。

Figure 0006389751
(式中、mは平均の繰り返し数であり0.1<m<10を示し、A及びAは独立に炭素数6〜50の2価の芳香族基を示し、Rは下記式(2)又は(3)で表される置換基を示し、pは0.2〜3.5の数を示す。)
Figure 0006389751
(式中、R及びRは独立に炭素数1〜10の炭化水素基又はハロゲン原子を示し、n及びqは独立に0〜3の整数を示す。) That is, the present invention is a hydroxy resin represented by the following general formula (1).
Figure 0006389751
(In the formula, m is the average number of repetitions and represents 0.1 <m <10, A 1 and A 2 independently represent a divalent aromatic group having 6 to 50 carbon atoms, and R 1 represents the following formula: (2) The substituent represented by (3) is shown, p shows the number of 0.2-3.5.)
Figure 0006389751
(Wherein, R 2 and R 3 independently represents a hydrocarbon group or a halogen atom having 1 to 10 carbon atoms, n and q is independently an integer of 0-3.)

上記A及びAが、独立に下記式(4a)、(4b)又は(4c)で表される基のいずれかであることが好ましい。

Figure 0006389751
(式中、Rは単結合、炭素数1〜4のアルキル基もしくは炭素数6〜20の芳香族基で置換してもよいメチレン基、炭素数1〜4のアルキル基で置換してもよいシクロヘキシレン基、フルオレニル基、−O−、−CO−、−S−、又は−SO−のいずれかを示し、Rは独立に炭素数1〜10の炭化水素基又はハロゲン原子のいずれかを示し、kは0〜3の整数を示す。)
上記ヒドロキシ樹脂は、25℃におけるモル体積が400〜1400cm/molの範囲であることが好ましく、また水酸基当量が240〜800g/eq.の範囲であることが好ましい。 It is preferable that A 1 and A 2 are independently any of groups represented by the following formulas (4a), (4b), or (4c).
Figure 0006389751
(In the formula, R 4 may be substituted with a single bond, an alkyl group having 1 to 4 carbon atoms or an methylene group which may be substituted with an aromatic group having 6 to 20 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. good cyclohexylene group, a fluorenyl group, -O -, - CO -, - S-, or -SO 2 - either indicates either, R 5 is independently a C1-10 hydrocarbon group or a halogen atom And k represents an integer of 0 to 3.)
The hydroxy resin preferably has a molar volume in the range of 400 to 1400 cm 3 / mol at 25 ° C. and a hydroxyl group equivalent of 240 to 800 g / eq. It is preferable that it is the range of these.

また、本発明は、下記一般式(5)で表される2価芳香族ヒドロキシ化合物(a)1モルに対し、下記一般式(6)で表されるスチレン類及び下記一般式(7)で表されるインデン類から選ばれる1種又は2種以上の芳香族オレフィン類(b)0.2〜3.5モルを酸触媒の存在下で反応させて、芳香族オレフィン類で変性された芳香族変性ヒドロキシ化合物(c)を得た後、芳香族変性ヒドロキシ化合物(c)と、下記一般式(8)で表される2官能のハロゲン化メチル基含有化合物(d)とを、塩基性物質の存在下で反応させることを特徴とする上記ヒドロキシ樹脂の製造方法である。

Figure 0006389751
(式中、Aは炭素数6〜50の2価の芳香族基を示す。)
Figure 0006389751
(式中、R及びRは独立に炭素数1〜10の炭化水素基又はハロゲン原子を示し、n及びqは独立に0〜3の整数を示す。)
Figure 0006389751
(式中、Aは炭素数6〜50の2価の芳香族基を示し、Xはハロゲン原子を示す。) Moreover, this invention is styrene represented by following General formula (6) with respect to 1 mol of divalent aromatic hydroxy compounds (a) represented by following General formula (5), and following General formula (7). Fragrance modified with aromatic olefins by reacting 0.2 to 3.5 moles of one or more aromatic olefins (b) selected from the indenes represented in the presence of an acid catalyst After obtaining the aromatic modified hydroxy compound (c), the aromatic modified hydroxy compound (c) and the bifunctional halogenated methyl group-containing compound (d) represented by the following general formula (8) are converted into a basic substance. It is made to react in presence of this, It is a manufacturing method of the said hydroxy resin characterized by the above-mentioned.
Figure 0006389751
(In the formula, A 1 represents a divalent aromatic group having 6 to 50 carbon atoms.)
Figure 0006389751
(Wherein, R 2 and R 3 independently represents a hydrocarbon group or a halogen atom having 1 to 10 carbon atoms, n and q is independently an integer of 0-3.)
Figure 0006389751
(In the formula, A 2 represents a divalent aromatic group having 6 to 50 carbon atoms, and X represents a halogen atom.)

上記2価芳香族ヒドロキシ化合物(a)と上記芳香族オレフィン類(b)とを、溶媒として沸点185℃以下の極性非プロトン性溶媒を使用し、上記芳香族オレフィン類(b)に対して0.01〜1.0質量%の酸触媒の存在下、40〜140℃の温度で反応させることが好ましい。また、上記2価芳香族ヒドロキシ化合物(a)が、それぞれ炭素数1〜10の炭化水素基もしくはハロゲン原子が置換してもよいヒドロキシフェノール、ジヒドロキシナフタレン、ジヒドロキシビフェニル、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルスルフィド、ジヒドロキシフェニルメタン、ジヒドロキシフェニルシクロヘキサン及びジヒドロキシフェニルトリメチルシクロヘキサンからなる群から選択される化合物またはこれらの混合物が好ましい。   A polar aprotic solvent having a boiling point of 185 ° C. or lower is used as the solvent for the divalent aromatic hydroxy compound (a) and the aromatic olefins (b), and 0 for the aromatic olefins (b). It is preferable to make it react at the temperature of 40-140 degreeC in presence of an acid catalyst of 0.01-1.0 mass%. In addition, the divalent aromatic hydroxy compound (a) is a hydroxyphenol, dihydroxynaphthalene, dihydroxybiphenyl, dihydroxydiphenyl ether, dihydroxydiphenyl sulfide, dihydroxy which may be substituted by a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom. Preference is given to compounds selected from the group consisting of phenylmethane, dihydroxyphenylcyclohexane and dihydroxyphenyltrimethylcyclohexane or mixtures thereof.

さらに、本発明は、上記ヒドロキシ樹脂とエポキシ樹脂とを必須成分とするエポキシ樹脂組成物である。また、本発明は、上記エポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物である。   Furthermore, this invention is an epoxy resin composition which has the said hydroxy resin and an epoxy resin as an essential component. Moreover, this invention is an epoxy resin hardened | cured material formed by hardening | curing the said epoxy resin composition.

本発明のヒドロキシ樹脂は、エポキシ樹脂組成物に配合されるフェノール硬化剤として優れ、エポキシ樹脂組成物又はそれから得られる硬化物の硬化性、誘電率、誘電正接、低弾性率等を向上させ、半導体基板材料、層間絶縁材料、電気・電子部品類の封止、プリント配線板材料等の用途に好適に使用することが可能である。   The hydroxy resin of the present invention is excellent as a phenol curing agent blended in an epoxy resin composition, improves the curability, dielectric constant, dielectric loss tangent, low elastic modulus, etc. of the epoxy resin composition or a cured product obtained therefrom, and is a semiconductor. It can be suitably used for applications such as substrate materials, interlayer insulating materials, sealing of electrical / electronic components, and printed wiring board materials.

実施例1で得られたヒドロキシ樹脂のGPCチャートである。1 is a GPC chart of a hydroxy resin obtained in Example 1. 実施例1で得られたヒドロキシ樹脂のIRチャートである。2 is an IR chart of the hydroxy resin obtained in Example 1. FIG.

本発明のヒドロキシ樹脂は一般式(1)で表される。
一般式(1)中、mは平均の繰り返し数であり0.1<m<10の数を示し、好ましくは0.1〜5の数である。A及びAは独立に炭素数6〜50の2価の芳香族基を示し、好ましくは炭素数6〜21の2価の芳香族基であり、より好ましくは炭素数6〜12の2価の芳香族基である。Rは上記式(2)又は(3)で表される置換基を示し、pは0.2〜3.5の数を示し、好ましくは0.4〜3の数であり、より好ましくは0.5〜2.5の数である。式(2)又は(3)中、R及びRは独立に炭素数1〜10の炭化水素基又はハロゲン原子を示し、好ましくは炭素数1〜6のアルキル基又はフェニル基であり、より好ましくは炭素数1〜3のアルキル基である。n及びqは独立に0〜3の整数を示し、好ましくは0又は1である。
The hydroxy resin of the present invention is represented by the general formula (1).
In the general formula (1), m is an average number of repetitions and represents a number of 0.1 <m <10, preferably a number of 0.1-5. A 1 and A 2 independently represent a divalent aromatic group having 6 to 50 carbon atoms, preferably a divalent aromatic group having 6 to 21 carbon atoms, more preferably 2 having 6 to 12 carbon atoms. Valent aromatic group. R 1 represents a substituent represented by the above formula (2) or (3), p represents a number of 0.2 to 3.5, preferably a number of 0.4 to 3, more preferably It is a number between 0.5 and 2.5. In formula (2) or (3), R 2 and R 3 independently represent a hydrocarbon group or halogen atom having 1 to 10 carbon atoms, preferably an alkyl group or phenyl group having 1 to 6 carbon atoms, and more Preferably it is a C1-C3 alkyl group. n and q independently represent an integer of 0 to 3, preferably 0 or 1.

及びAは、式(4a)、(4b)又は(4c)で表される基が挙げられる。式中、Rは単結合、炭素数1〜4のアルキル基もしくは炭素数6〜20の芳香族基で置換してもよいメチレン基、炭素数1〜4のアルキル基で置換してもよいシクロヘキシレン基、フルオレニル基、−O−、−CO−、−S−、又は−SO−のいずれかを示し、Rは独立に炭素数1〜10の炭化水素基又はハロゲン原子のいずれかを示し、kは0〜3の整数を示し、好ましくは0、1又は2である。 Examples of A 1 and A 2 include groups represented by the formula (4a), (4b), or (4c). In the formula, R 4 may be substituted with a single bond, an alkyl group having 1 to 4 carbon atoms or an methylene group which may be substituted with an aromatic group having 6 to 20 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. A cyclohexylene group, a fluorenyl group, —O—, —CO—, —S—, or —SO 2 — is shown, and R 5 is independently either a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom. And k represents an integer of 0 to 3, preferably 0, 1 or 2.

本発明のヒドロキシ樹脂は、25℃におけるモル体積が400〜1400cm/molの範囲が好ましく、420〜1350cm/molの範囲がより好ましく、450〜1000cm/molの範囲がさらに好ましい。 Hydroxy resin of the present invention is preferably from molar volume at 25 ° C. is 400~1400cm 3 / mol, more preferably in the range of 420~1350cm 3 / mol, more preferably in the range of 450~1000cm 3 / mol.

本発明のヒドロキシ樹脂は、水酸基当量が240〜800g/eq.の範囲が好ましく、300〜600g/eq.の範囲がより好ましく、330〜550g/eq.の範囲がさらに好ましい。   The hydroxy resin of the present invention has a hydroxyl group equivalent of 240 to 800 g / eq. The range is preferably 300 to 600 g / eq. Is more preferable, 330-550 g / eq. The range of is more preferable.

本発明のヒドロキシ樹脂は、本発明のヒドロキシ樹脂の製造方法により有利に製造することができる。しかし、本発明のヒドロキシ樹脂は、この製造方法で得られた樹脂には限定されない。   The hydroxy resin of the present invention can be advantageously produced by the method for producing a hydroxy resin of the present invention. However, the hydroxy resin of the present invention is not limited to the resin obtained by this production method.

以下、本発明のヒドロキシ樹脂の製造方法について説明しつつ、本発明のヒドロキシ樹脂を説明する。なお、化学式において、共通する符号は、特に断りがない限り同じ意味を有すると解される。   Hereinafter, the hydroxy resin of the present invention will be described while explaining the method for producing the hydroxy resin of the present invention. In the chemical formula, common symbols are understood to have the same meaning unless otherwise specified.

本発明のヒドロキシ樹脂は、一般式(5)で表される2価芳香族ヒドロキシ化合物(a)と、一般式(6)で表されるスチレン類及び一般式(7)で表されるインデン類から選ばれる1種又は2種以上の芳香族オレフィン類(b)を酸触媒の存在下で反応させて得られる、芳香族オレフィン類で変性された芳香族変性ヒドロキシ化合物(c)を得た後、芳香族変性ヒドロキシ化合物(c)と、一般式(8)で表される2官能のハロゲン化メチル基含有化合物(d)とを塩基性物質の存在下で反応させることに得ることができる。   The hydroxy resin of the present invention includes a divalent aromatic hydroxy compound (a) represented by general formula (5), styrenes represented by general formula (6), and indenes represented by general formula (7). After obtaining an aromatic modified hydroxy compound (c) modified with an aromatic olefin obtained by reacting one or more aromatic olefins (b) selected from the above in the presence of an acid catalyst The aromatic modified hydroxy compound (c) can be obtained by reacting the bifunctional halogenated methyl group-containing compound (d) represented by the general formula (8) in the presence of a basic substance.

2価芳香族ヒドロキシ化合物(a)は、ヒドロキシフェノール、ジヒドロキシナフタレン、ジヒドロキシビフェニル又はビスフェノール類が挙げられ、これらは置換基を有してもよい。好ましくは、ヒドロキシフェノール、ジヒドロキシナフタレン、ジヒドロキシビフェニル、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルスルフィド、ジヒドロキシフェニルメタン、ジヒドロキシフェニルシクロヘキサン及びジヒドロキシフェニルトリメチルシクロヘキサンからなる群から選択される2価芳香族化合物であり、これらは炭素数1〜10の炭化水素基もしくはハロゲン原子を置換基として有してもよい。
具体的に例示すれば、ヒドロキノン、レゾルシン、カテコール、4−フェニルレゾルシノール、フェニルヒドロキノン、tert−ブチルヒドロキノン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、3−メチル−ナフタレン−1,6−ジオール、4,4’−ビフェノール、3,3’−ジメチル−4,4’−ビフェニルジオール、2,3’−ジメチル−1,1’−ビフェニル−4,4’−ジオール、3,3’−ジエチル−4,4’−ビフェニルジオール、2,3’−ジエチル−1,1’−ビフェニル−4,4’−ジオール、3,3’−ジフェニル−4,4’−ビフェニルジオール、2,2’−ジプロピル−1,1’−ビフェニル−4,4’−ジオール、ビスフェノールA、ビスフェノールF、4,4’−ジヒドロキシジフェニルエーテル、4,4’−チオビスフェノール、ビスフェノールS、ビスフェノールZ、ビスフェノールAP、4,4’−フェニルメチレンビスフェノール、4,4’−ジフェニルメチレンビスフェノール、ビスフェノールAF、ビスフェノールB、ビスフェノールE、ビスフェノールP、4,4’−[1,3−フェニレンビス(ジメチルメチレン)]ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−ジヒドロキシベンゾフェノン、ビスフェノールフルオレン、ビスフェノールC、ジメチルビスフェノールA、ジメチルビスプェノールF、ジメチルビスフェノールS、ビスクレゾールフルオレン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、4,4’−イソプロピリデンビス(2−フェニルフェノール)等が挙げられるがこれらに限定されるわけではない。上記以外の2価芳香族ヒドロキシ化合物(a)としては、3,7−ジベンゾフランジオール、1,1’−ビナフタレン−4,4’−ジオール等が挙げられる。また、ハロゲン原子を置換基として有する場合は、本発明の目的(低誘電率等)を損なわない範囲とすることがよい。
酸触媒下において開裂を伴いにくく、かつ耐熱性に優れるという観点からは、2価芳香族ヒドロキシ化合物(a)としては、4,4’−ジヒドロキシジフェニルエーテル、4,4’−チオビスフェノール、ビスフェノールS、ビスフェノールフルオレン、4,4’−ビフェノールが好ましく、これらの中でも、上記インデン類や上記スチレン類との反応性が高く、酸触媒量が低減できる4,4’−ジヒドロキシジフェニルエーテル、4,4’−チオビスフェノールがより好ましい。また、これらの2価芳香族ヒドロキシ化合物(a)は単独で使用しても2種類以上併用してもよい。
Examples of the divalent aromatic hydroxy compound (a) include hydroxyphenol, dihydroxynaphthalene, dihydroxybiphenyl, and bisphenols, and these may have a substituent. Preferably, it is a divalent aromatic compound selected from the group consisting of hydroxyphenol, dihydroxynaphthalene, dihydroxybiphenyl, dihydroxydiphenyl ether, dihydroxydiphenyl sulfide, dihydroxyphenylmethane, dihydroxyphenylcyclohexane and dihydroxyphenyltrimethylcyclohexane, and these are carbon atoms. You may have a 1-10 hydrocarbon group or a halogen atom as a substituent.
Specifically, hydroquinone, resorcin, catechol, 4-phenylresorcinol, phenylhydroquinone, tert-butylhydroquinone, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6 -Dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 3-methyl-naphthalene-1,6-diol, 4,4'-biphenol, 3,3'-dimethyl-4,4'-biphenyldiol, 2,3'- Dimethyl-1,1′-biphenyl-4,4′-diol, 3,3′-diethyl-4,4′-biphenyldiol, 2,3′-diethyl-1,1′-biphenyl-4,4′- Diol, 3,3′-diphenyl-4,4′-biphenyldiol, 2,2′-dipropyl-1,1′-biphenyl-4 4'-diol, bisphenol A, bisphenol F, 4,4'-dihydroxydiphenyl ether, 4,4'-thiobisphenol, bisphenol S, bisphenol Z, bisphenol AP, 4,4'-phenylmethylene bisphenol, 4,4'- Diphenylmethylene bisphenol, bisphenol AF, bisphenol B, bisphenol E, bisphenol P, 4,4 ′-[1,3-phenylenebis (dimethylmethylene)] diphenol, 1,1-bis (4-hydroxyphenyl) -3, 3,5-trimethylcyclohexane, 4,4′-dihydroxybenzophenone, bisphenol fluorene, bisphenol C, dimethyl bisphenol A, dimethyl bisphenol F, dimethyl bisphenol S, biscresol fluorene, , 2- bis (4-hydroxy-3-isopropylphenyl) propane, 4,4'-isopropylidene-bis (2-phenylphenol) and the like but not limited thereto. Examples of the divalent aromatic hydroxy compound (a) other than the above include 3,7-dibenzofurandol, 1,1′-binaphthalene-4,4′-diol and the like. Moreover, when it has a halogen atom as a substituent, it is good to set it as the range which does not impair the objective (low dielectric constant etc.) of this invention.
From the viewpoint of being hardly accompanied by cleavage under an acid catalyst and having excellent heat resistance, the divalent aromatic hydroxy compound (a) includes 4,4′-dihydroxydiphenyl ether, 4,4′-thiobisphenol, bisphenol S, Bisphenol fluorene and 4,4′-biphenol are preferred, and among these, 4,4′-dihydroxydiphenyl ether and 4,4′-thio, which are highly reactive with the above indenes and styrenes and can reduce the amount of acid catalyst. Bisphenol is more preferred. These divalent aromatic hydroxy compounds (a) may be used alone or in combination of two or more.

芳香族オレフィン類(b)は、一般式(6)で表されるスチレン類及び一般式(7)で表されるインデン類から選ばれる1種又は2種以上を含む。
この芳香族オレフィン類(b)は、スチレン類及びインデン類以外の少量の他の反応成分を含んでもよい。他の反応成分として、α−メチルスチレン、クマロン、ベンゾチオフェン、インドール、ビニルナフタレン、インダン等の不飽和結合含有成分を含む場合、得られる芳香族変性ヒドロキシ化合物(c)には、これらから生ずる基が芳香環上に置換した化合物が含まれることになる。よって、本発明のヒドロキシ樹脂は、このような置換基を有するヒドロキシ樹脂を含み得る。
The aromatic olefins (b) include one or more selected from styrenes represented by the general formula (6) and indenes represented by the general formula (7).
The aromatic olefins (b) may contain a small amount of other reaction components other than styrenes and indenes. When the other reactive component includes an unsaturated bond-containing component such as α-methylstyrene, coumarone, benzothiophene, indole, vinylnaphthalene, and indane, the resulting aromatic modified hydroxy compound (c) includes a group derived therefrom. Are substituted on the aromatic ring. Therefore, the hydroxy resin of the present invention can include a hydroxy resin having such a substituent.

一般式(6)において、Rは炭素数1〜10の炭化水素基又はハロゲン原子を示し、好ましくは炭素数1〜6の炭化水素基であり、nは0〜3の整数であり、好ましくは0又は1である。具体的には、スチレン、炭素数1〜3のアルキル置換スチレンが挙げられる。 In the general formula (6), R 2 represents a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, preferably a hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 0 to 3, preferably Is 0 or 1. Specific examples include styrene and C1-C3 alkyl-substituted styrene.

一般式(7)において、Rは炭素数1〜10の炭化水素基又はハロゲン原子を示し、好ましくは炭素数1〜6の炭化水素基であり、nは0〜3の整数であり、好ましくは0又は1である。具体的には、インデン、炭素数1〜3のアルキル置換インデンが挙げられる。 In the general formula (7), R 3 represents a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom, preferably a hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 0 to 3, preferably Is 0 or 1. Specific examples include indene and alkyl-substituted indene having 1 to 3 carbon atoms.

上記2価芳香族ヒドロキシ化合物(a)に対して、上記芳香族オレフィン類(b)を反応させる方法としては、塩酸等の酸触媒の存在下、120〜170℃の高温で反応を行うことが一般的である。しかし、酸触媒下において高温で反応させる場合、2価芳香族ヒドロキシ化合物が連結基部分にメチレン結合、エーテル結合又はスルフィド結合等を有する場合、これらの開裂を伴い、単価フェノールを副生する問題があった。このような副反応を抑制するため、40〜140℃の範囲に反応温度を低下させ、かつ、使用する芳香族オレフィン類(b)の総量の0.01〜1.0質量%の範囲に触媒量を低減させることにより、単価フェノールの副生を低減させることができる。こうして副生物が低減されたヒドロキシ樹脂をエポキシ樹脂の硬化剤として用いた場合、硬化性、耐熱性に優れた物性が発現される。   As a method of reacting the aromatic olefin (b) with the divalent aromatic hydroxy compound (a), the reaction is performed at a high temperature of 120 to 170 ° C. in the presence of an acid catalyst such as hydrochloric acid. It is common. However, when the reaction is carried out at a high temperature in the presence of an acid catalyst, when the divalent aromatic hydroxy compound has a methylene bond, an ether bond, a sulfide bond, or the like in the linking group portion, there is a problem that these phenols are cleaved and a unit price phenol is by-produced. there were. In order to suppress such side reactions, the reaction temperature is lowered to a range of 40 to 140 ° C., and the catalyst is set to a range of 0.01 to 1.0% by mass of the total amount of the aromatic olefins (b) to be used. By reducing the amount, the by-product of unit price phenol can be reduced. When a hydroxy resin with reduced by-products is used as a curing agent for an epoxy resin, physical properties excellent in curability and heat resistance are exhibited.

したがって、上記の反応温度は40〜140℃の範囲が好ましい。これより高いと副生した単価フェノールが増え、目的のヒドロキシ樹脂をエポキシ樹脂に配合したとき、硬化性及び耐熱性を低下させる。一方、これより低いと反応性が低下し、反応時間が長時間になったり、未反応モノマーが多く残存する。より好ましい反応温度は80℃〜135℃の範囲であり、さらに好ましくは100℃〜135℃の範囲である。   Therefore, the reaction temperature is preferably in the range of 40 to 140 ° C. If it is higher than this, the by-product phenol produced as a by-product increases, and when the target hydroxy resin is blended with the epoxy resin, curability and heat resistance are lowered. On the other hand, if it is lower than this, the reactivity is lowered, the reaction time becomes longer, and a lot of unreacted monomers remain. A more preferred reaction temperature is in the range of 80 ° C to 135 ° C, and even more preferably in the range of 100 ° C to 135 ° C.

本反応は酸触媒の存在下に行う。この酸触媒としては、よく知られた無機酸、有機酸、ルイス酸等から適宜選択することができ、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p−トルエンスルホン酸、メタンスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素や固体酸等のルイス酸挙げられる。   This reaction is carried out in the presence of an acid catalyst. The acid catalyst can be appropriately selected from well-known inorganic acids, organic acids, Lewis acids and the like. For example, mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p -Lewis acids, such as organic acids, such as toluenesulfonic acid and methanesulfonic acid, and zinc chloride, aluminum chloride, iron chloride, boron trifluoride, and a solid acid.

2価芳香族ヒドロキシ化合物(a)に対し、芳香族オレフィン類(b)を反応させる際の酸触媒の量は0.01〜1.0質量%の範囲が好ましい。これより多いと単価フェノール成分の副生が増加し、これより少ないと反応性が低下し、反応時間が長時間になったり、未反応モノマーが多く残存する。より好ましくは0.03〜0.5質量%の範囲である。   The amount of the acid catalyst when the aromatic olefin (b) is reacted with the divalent aromatic hydroxy compound (a) is preferably in the range of 0.01 to 1.0% by mass. If it is more than this, the by-product of the unit price phenol component will increase, and if it is less than this, the reactivity will be lowered, the reaction time will be long, and a lot of unreacted monomers will remain. More preferably, it is the range of 0.03-0.5 mass%.

芳香族オレフィン類(b)は、上記2価芳香族ヒドロキシ化合物(a)1モルに対し、0.2モル以上3.5モル以下で使用する。0.2モル未満であると誘電率が低下せず、3.5モルより多いとガラス転移温度が低下し、ゲルタイムも長時間化し生産性が著しく劣る。そのため、0.4モル以上3.0モル以下が好ましく、0.5モル以上2.5モル以下がより好ましい。なお、上記スチレン類と上記インデン類を併用する場合の変性量は、上記スチレン類と上記インデン類の合計モル量が対象となる。
ここで、反応に使用する芳香族オレフィン類(b)は、ほぼ全量が2価芳香族ヒドロキシ化合物(a)の芳香族環に付加反応するので、得られた芳香族変性ヒドロキシ化合物(c)における変性量(変性率ともいう。)と一致する。したがって、芳香族オレフィン類(b)を2価芳香族ヒドロキシ化合物(a)1モルに対し、0.2モル〜3.5モル使用した場合、変性量も0.2モル〜3.5モルとなる。
The aromatic olefin (b) is used in an amount of 0.2 mol to 3.5 mol with respect to 1 mol of the divalent aromatic hydroxy compound (a). When the amount is less than 0.2 mol, the dielectric constant does not decrease. When the amount is more than 3.5 mol, the glass transition temperature decreases, the gel time increases, and the productivity is remarkably deteriorated. Therefore, 0.4 mol or more and 3.0 mol or less are preferable, and 0.5 mol or more and 2.5 mol or less are more preferable. In addition, the amount of modification when the styrenes and the indenes are used in combination is the total molar amount of the styrenes and the indenes.
Here, almost all of the aromatic olefins (b) used in the reaction undergo an addition reaction with the aromatic ring of the divalent aromatic hydroxy compound (a). Therefore, in the obtained aromatic modified hydroxy compound (c) This is consistent with the amount of modification (also referred to as the modification rate). Therefore, when the aromatic olefin (b) is used in an amount of 0.2 mol to 3.5 mol with respect to 1 mol of the divalent aromatic hydroxy compound (a), the amount of modification is also 0.2 mol to 3.5 mol. Become.

上記変性量が3.5モルを超えると、エポキシ樹脂硬化物のガラス転移温度を100℃以上とすることができない恐れがある。パソコンやサーバー等に用いられるマイクロプロセッサユニットの動作温度は100℃未満となっているが、周辺材料のガラス転移温度が動作温度未満であると、ガラス転移温度前後の熱膨張係数の差から、接続部にクラックや剥がれ等の不具合が生じるため接続信頼性が著しく低下する。そのため樹脂硬化物のガラス転移温度は100℃以上必要となる。   If the amount of modification exceeds 3.5 mol, the glass transition temperature of the cured epoxy resin may not be 100 ° C or higher. The operating temperature of the microprocessor unit used in personal computers and servers is less than 100 ° C. However, if the glass transition temperature of the surrounding material is lower than the operating temperature, the connection is based on the difference in thermal expansion coefficient before and after the glass transition temperature. Since the defect such as cracking or peeling occurs in the part, the connection reliability is remarkably lowered. For this reason, the glass transition temperature of the cured resin must be 100 ° C. or higher.

また、上記反応の際には、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ等のアルコール類や、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジメチルエーテル、ジエチルエーテル、ジエチレングリコールジメチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物等を溶媒として使用することができる。
特に、上記反応の後、引き続きハロゲン化メチル基含有化合物(d)との反応を行う場合は、溶剤置換の作業を省くため、後続するハロゲン化メチル基含有化合物(d)との反応に用いる溶媒と同じにすることが好ましく、極性非プロトン溶媒、例えばエチレングリコールジメチルエーテル等のエーテル類が好ましい。
In the above reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl ether, diethyl ether, diethylene glycol dimethyl ether , Ethers such as diisopropyl ether, tetrahydrofuran and dioxane, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene can be used as the solvent.
In particular, when the reaction with the halogenated methyl group-containing compound (d) is subsequently carried out after the above reaction, the solvent used for the subsequent reaction with the halogenated methyl group-containing compound (d) is omitted in order to eliminate the solvent replacement work. And a polar aprotic solvent such as ethers such as ethylene glycol dimethyl ether is preferred.

この反応を実施する具体的方法としては、(1)全原料を一括装入し、そのまま所定の温度で1〜20時間反応させる、又は、(2)2価芳香族ヒドロキシ化合物(a)と触媒を装入し、所定の温度に保ちつつ、芳香族オレフィン類(b)を滴下させながら反応させる、の2つの方法が一般的である。(2)の方法の場合、滴下時間は、通常、1〜10時間であるが、5時間以下が好ましい。また、滴下した芳香族オレフィン類(b)を完全に反応させるためにさらに滴下終了後1〜10時間反応させることが好ましい。
反応後、溶媒を使用した場合は、必要により、触媒成分を取り除いた後、溶媒を留去させて上記芳香族変性ヒドロキシ化合物(c)を得ることができる。溶媒を使用しない場合は、直接熱時排出することによって芳香族変性ヒドロキシ化合物(c)を得ることができる。また、目的によっては溶媒で希釈された溶液状にすることもできる。
ここで、上記芳香族変性ヒドロキシ化合物(c)は、2価芳香族ヒドロキシ化合物(a)の芳香族環に、式(2)又は(3)で表される置換基が結合した構造の化合物である。置換基の量は上記変性量に対応する。
As a specific method for carrying out this reaction, (1) all raw materials are charged in a lump and allowed to react at a predetermined temperature for 1 to 20 hours, or (2) a divalent aromatic hydroxy compound (a) and a catalyst. The two methods are generally used, in which the aromatic olefins (b) are allowed to react while dropping, while maintaining a predetermined temperature. In the case of the method (2), the dropping time is usually 1 to 10 hours, but preferably 5 hours or less. Moreover, in order to make the dripped aromatic olefin (b) react completely, it is preferable to make it react for 1 to 10 hours after completion | finish of dripping.
When a solvent is used after the reaction, the aromatic modified hydroxy compound (c) can be obtained by removing the catalyst component, if necessary, and then distilling off the solvent. When no solvent is used, the aromatic-modified hydroxy compound (c) can be obtained by discharging directly when heated. Further, depending on the purpose, it can be made into a solution diluted with a solvent.
Here, the aromatic modified hydroxy compound (c) is a compound having a structure in which the substituent represented by the formula (2) or (3) is bonded to the aromatic ring of the divalent aromatic hydroxy compound (a). is there. The amount of substituents corresponds to the amount of modification.

次に、こうして得られた芳香族変性ヒドロキシ化合物(c)と一般式(8)で表される2官能のハロゲン化メチル基含有化合物(d)とを、塩基性物質の存在下で反応して得られる上記一般式(1)で表されるヒドロキシ樹脂を得る。   Next, the aromatic modified hydroxy compound (c) thus obtained and the bifunctional halogenated methyl group-containing compound (d) represented by the general formula (8) are reacted in the presence of a basic substance. The resulting hydroxy resin represented by the general formula (1) is obtained.

一般式(8)において、Aは炭素数6〜50の2価の芳香族基を示し、好ましくは炭素数6〜18の2価の芳香族基であり、Xはハロゲン原子を示し、好ましくは塩素又は臭素である。ハロゲン化メチル基含有化合物(d)は、具体的には、α,α’−ジクロロ−p−キシレン、α,α’−ジブロモ−p−キシレン、α,α’−ジクロロ−m−キシレン、α,α’−ジブロモ−m−キシレン、α,α’−ジクロロ−o−キシレン、4,4’−ビス(クロロメチル)ビフェニル、4,4’−ビス(ブロモメチル)ビフェニル、ビスクロロメチルナフタレン、ビスブロモメチルナフタレン、ビスブロモメチルフルオレンが挙げられ、単独あるいは2種以上の混合物として使用することができる。 In the general formula (8), A 2 represents a divalent aromatic group having 6 to 50 carbon atoms, preferably a divalent aromatic group having 6 to 18 carbon atoms, X represents a halogen atom, preferably Is chlorine or bromine. Specific examples of the halogenated methyl group-containing compound (d) include α, α′-dichloro-p-xylene, α, α′-dibromo-p-xylene, α, α′-dichloro-m-xylene, α , Α′-dibromo-m-xylene, α, α′-dichloro-o-xylene, 4,4′-bis (chloromethyl) biphenyl, 4,4′-bis (bromomethyl) biphenyl, bischloromethylnaphthalene, bis Examples thereof include bromomethylnaphthalene and bisbromomethylfluorene, which can be used alone or as a mixture of two or more.

ハロゲン化メチル基含有化合物(d)と芳香族変性ヒドロキシ化合物(c)の割合は、芳香族変性ヒドロキシ化合物(c)1.0モルに対し、ハロゲン化メチル基含有化合物(d)は0.05〜1.0モルを反応させることがよく、好ましくは0.1〜0.8モルであり、より好ましくは0.2〜0.5モルである。ハロゲン化メチル基含有化合物(d)が1.0モルより大きいと末端基の一部又は全部がハロゲン原子となりエポキシ樹脂硬化剤に適さない。また、0.05モル未満ではエポキシ樹脂と硬化した際、誘電正接を低下させることができない恐れがある。   The ratio of the halogenated methyl group-containing compound (d) to the aromatic modified hydroxy compound (c) is 0.05 mol of the halogenated methyl group-containing compound (d) with respect to 1.0 mol of the aromatic modified hydroxy compound (c). It is good to make -1.0 mol react, Preferably it is 0.1-0.8 mol, More preferably, it is 0.2-0.5 mol. When the halogenated methyl group-containing compound (d) is larger than 1.0 mol, some or all of the terminal groups become halogen atoms and are not suitable as an epoxy resin curing agent. If it is less than 0.05 mol, the dielectric loss tangent may not be lowered when cured with an epoxy resin.

ハロゲン化メチル基含有化合物(d)と芳香族変性ヒドロキシ化合物(c)の反応温度は、20℃以上で還流温度まで、好ましくは、50℃以上で還流温度までであり、反応時間は通常1〜10時間である。   The reaction temperature of the halogenated methyl group-containing compound (d) and the aromatic modified hydroxy compound (c) is 20 ° C. or higher to the reflux temperature, preferably 50 ° C. or higher to the reflux temperature, and the reaction time is usually 1 to 10 hours.

上記塩基性物質としては、水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、アンモニア、ナトリウムメチラート、トリエチルアミン等が好ましい。反応温度でも安定的に使用できるアルカリ金属塩となる水酸化ナトリウム、水酸化カリウムがより好ましい。この使用量は、芳香族変性ヒドロキシ化合物(c)1モルに対し1.6〜2.4モルである。1.6モルより少ないと反応箇所が限定されるため、高分子量体になりやすい。また、2.4モルよりも多いと反応に寄与しない未反応の塩基性物質が多くなるため、中和に要する酸が多くなり、環境負荷の面から好ましくない。塩基性物質は、ハロゲン化メチル基含有化合物(d)と芳香族変性ヒドロキシ化合物(c)との反応で生じるハロゲン化水素(HX)を中和し、反応をするので、ハロゲン化メチル基含有化合物(d)1モルに対し、塩基性物質を2当量が必要量となる。しかしながら、塩基性物質によって、芳香族変性ヒドロキシ化合物(c)をフェノラート化した後、脱ハロゲン化水素による中和を行うことから、こうしたフェノラート化及び脱ハロゲン化を円滑に進行させるために、芳香族変性ヒドロキシ化合物(c)とハロゲン化メチル基含有化合物(d)とのモル比に応じて、塩基性物質の量を調整することが好ましく、上記のように、芳香族変性ヒドロキシ化合物(c)1モルに対し、1.6〜2.4モルの範囲で適宜調整して使用することがよい。   As the basic substance, sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonia, sodium methylate, triethylamine and the like are preferable. Sodium hydroxide and potassium hydroxide, which are alkali metal salts that can be used stably even at the reaction temperature, are more preferred. This usage-amount is 1.6-2.4 mol with respect to 1 mol of aromatic modified hydroxy compounds (c). When the amount is less than 1.6 mol, the reaction site is limited, so that it tends to be a high molecular weight product. On the other hand, when the amount is more than 2.4 mol, an unreacted basic substance that does not contribute to the reaction increases, so that an acid required for neutralization increases, which is not preferable from the viewpoint of environmental burden. Since the basic substance neutralizes and reacts with the hydrogen halide (HX) generated by the reaction between the halogenated methyl group-containing compound (d) and the aromatic modified hydroxy compound (c), the halogenated methyl group-containing compound (D) 2 equivalents of the basic substance are required per 1 mol. However, since the aromatic modified hydroxy compound (c) is phenolated with a basic substance and then neutralized with dehydrohalogenation, in order to smoothly carry out such phenolation and dehalogenation, aromatic The amount of the basic substance is preferably adjusted according to the molar ratio between the modified hydroxy compound (c) and the halogenated methyl group-containing compound (d). As described above, the aromatic modified hydroxy compound (c) 1 It is good to adjust and use suitably in the range of 1.6-2.4 mol with respect to mol.

本発明のヒドロキシ樹脂は上記一般式(1)で表される。ここで、mは繰り返し数であり、平均値(数平均)は0.1<m<10である。好ましくは平均値が0.1<m<5であることが必要である。mが0.1以下では水酸基量の低減が十分でなく、低誘電特性に効果がなく、mが10以上では高粘度となる恐れがある。mはハロゲン化メチル基含有化合物(d)と芳香族変性ヒドロキシ化合物(c)の反応モル比を制御することにより、調整可能である。
また、上記pは、上記2価芳香族ヒドロキシ化合物(a)に対する上記芳香族オレフィン類(b)の変性量に対応しており、0.2〜3.5の範囲である。0.2未満であると誘電率が低下せず、3.5より多いとガラス転移温度が低下し、ゲルタイムも長時間化し生産性が著しく劣る。このp(変性量)は0.4〜3.0が好ましく、0.5〜2.5がより好ましい。
The hydroxy resin of the present invention is represented by the general formula (1). Here, m is the number of repetitions, and the average value (number average) is 0.1 <m <10. Preferably, the average value needs to be 0.1 <m <5. When m is 0.1 or less, the amount of hydroxyl groups is not sufficiently reduced, and there is no effect on low dielectric properties, and when m is 10 or more, there is a possibility that the viscosity becomes high. m can be adjusted by controlling the reaction molar ratio of the halogenated methyl group-containing compound (d) and the aromatic modified hydroxy compound (c).
Moreover, said p respond | corresponds to the modification amount of the said aromatic olefin (b) with respect to the said bivalent aromatic hydroxy compound (a), and is the range of 0.2-3.5. If it is less than 0.2, the dielectric constant is not lowered, and if it is more than 3.5, the glass transition temperature is lowered, the gel time is prolonged, and the productivity is remarkably deteriorated. The p (modification amount) is preferably 0.4 to 3.0, more preferably 0.5 to 2.5.

芳香族変性ヒドロキシ化合物(c)とハロゲン化メチル基含有化合物(d)とを塩基性物質の存在下で反応に用いる溶媒は、芳香族変性ヒドロキシ化合物(c)100質量部に対し、110質量部以上1900質量部以下がよい。溶媒が110質量部よりも少ないと、本発明のヒドロキシル樹脂が生成するにつれて、粘度が高まり、撹拌が困難となる恐れがある。また、1900質量部より多いと、反応性が著しく低下し、収率が低下する恐れがある。溶媒量は、130質量部以上550質量部以下が好ましく、150質量部以上400質量部以下がより好ましく、170質量部以上300質量部以下がさらに好ましい。   The solvent used for the reaction of the aromatic modified hydroxy compound (c) and the halogenated methyl group-containing compound (d) in the presence of a basic substance is 110 parts by mass with respect to 100 parts by mass of the aromatic modified hydroxy compound (c). The amount is preferably 1900 parts by mass or less. When the amount of the solvent is less than 110 parts by mass, as the hydroxyl resin of the present invention is produced, the viscosity increases, which may make stirring difficult. On the other hand, when the amount is more than 1900 parts by mass, the reactivity is remarkably lowered and the yield may be lowered. The amount of the solvent is preferably 130 parts by mass or more and 550 parts by mass or less, more preferably 150 parts by mass or more and 400 parts by mass or less, and further preferably 170 parts by mass or more and 300 parts by mass or less.

この反応は溶媒の存在下に行うことが好ましい。溶媒としては、極性非プロトン性溶媒、又は極性非プロトン性溶媒と極性プロトン性溶媒の混合溶媒であることが好ましい。混合溶媒である場合、極性非プロトン性溶媒は20質量%以上である。全溶媒中、極性非プロトン性溶媒は20質量%未満であると、全体としては芳香族変性ヒドロキシ化合物(c)の水酸基とハロゲン化メチル基含有化合物(d)のハロゲン化メチル基との反応性が低下するが、局部的な反応が進行し、本発明のヒドロキシ樹脂の高分子量体の割合が増加しやすく、また、親電子置換反応等の副反応を引き起こす恐れがある。上記高分子量体の割合が多いと粘度が上昇し、エポキシ樹脂硬化物を作製しようとした際、空隙が生じる等均一な硬化物が得られない恐れがあり、好ましくない。また、副反応が生じるとハロゲン化末端が未反応のまま残存しやすくなり、硬化物上に金属配線を形成した際には断線を引き起こすマイグレーション等の原因となる恐れがある。そのため、全溶媒中、極性非プロトン性溶媒の割合は50質量%以上が好ましく、80質量%以上がより好ましい。一方、極性プロトン性溶媒は、上記塩基性物質を均一に溶解又は分散させることができ、芳香族変性ヒドロキシ化合物(c)を効率よくアルカリ金属塩とすることができるため、極性非プロトン性溶媒とともに併用することがよい。全溶媒中、極性プロトン性溶媒の割合は、0.5〜10質量%が好ましく、1〜5質量%がより好ましい。   This reaction is preferably carried out in the presence of a solvent. The solvent is preferably a polar aprotic solvent or a mixed solvent of a polar aprotic solvent and a polar protic solvent. In the case of a mixed solvent, the polar aprotic solvent is 20% by mass or more. If the polar aprotic solvent is less than 20% by mass in all the solvents, the reactivity of the hydroxyl group of the aromatic modified hydroxy compound (c) and the methyl halide group of the halogenated methyl group-containing compound (d) as a whole However, local reaction proceeds, the ratio of the high molecular weight polymer of the hydroxy resin of the present invention tends to increase, and there is a risk of causing side reactions such as electrophilic substitution reaction. When the proportion of the high molecular weight substance is large, the viscosity increases, and when an epoxy resin cured product is to be produced, there is a possibility that a uniform cured product such as voids may not be obtained, which is not preferable. In addition, when a side reaction occurs, the halogenated terminal tends to remain unreacted, which may cause migration or the like that causes disconnection when a metal wiring is formed on the cured product. Therefore, the proportion of the polar aprotic solvent is preferably 50% by mass or more and more preferably 80% by mass or more in the total solvent. On the other hand, the polar protic solvent can uniformly dissolve or disperse the basic substance, and can efficiently convert the aromatic modified hydroxy compound (c) into an alkali metal salt. It is good to use together. The ratio of the polar protic solvent in all the solvents is preferably 0.5 to 10% by mass, and more preferably 1 to 5% by mass.

上記極性非プロトン性溶媒としては、アセトン等のケトン類、酢酸メチル、炭酸ジメチル、炭酸プロピレン等のエステル類、アセトニトリル等のニトリル類、ジエチレングリコールジメチルエーテル等のエーテル類、テトラヒドロフラン等の環状エーテル類、N−メチルホルムアミド、N,N−ジメチルホルムアミド等のアミド類が挙げられる。また、沸点が185℃以上の極性非プロトン性溶媒を用いた場合、高温で留去するか、過剰な貧溶媒中に滴下し抽出しなければならず、環境負荷の観点から好ましくない。そのため溶媒の沸点は185℃未満が好ましく、170℃以下がより好ましい。極性非プロトン性溶媒としては、テトラヒドロフラン等の環状エーテル類、ジエチレングリコールジメチルエーテル等のエーテル類が好ましい。
併用しても良い極性プロトン性溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等のアルコール類、酢酸、水等が挙げられる。
Examples of the polar aprotic solvent include ketones such as acetone, esters such as methyl acetate, dimethyl carbonate and propylene carbonate, nitriles such as acetonitrile, ethers such as diethylene glycol dimethyl ether, cyclic ethers such as tetrahydrofuran, N- Amides such as methylformamide and N, N-dimethylformamide are exemplified. Further, when a polar aprotic solvent having a boiling point of 185 ° C. or higher is used, it must be distilled off at a high temperature or dropped into an excess poor solvent for extraction, which is not preferable from the viewpoint of environmental burden. Therefore, the boiling point of the solvent is preferably less than 185 ° C, and more preferably 170 ° C or less. As the polar aprotic solvent, cyclic ethers such as tetrahydrofuran and ethers such as diethylene glycol dimethyl ether are preferable.
Examples of polar protic solvents that may be used in combination include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, and isobutanol, acetic acid, water, and the like.

これら極性溶媒とともに、全溶媒中10質量%未満であれば、無極性溶媒を併用してもよい。併用しても良い無極性溶媒としては、トルエン、キシレン、メシチレン等の芳香族系炭化水素類、ヘキサン等の直鎖状炭化水素類等が挙げられる。これらは混合して用いてもよい。   Along with these polar solvents, a nonpolar solvent may be used in combination as long as it is less than 10% by mass in the total solvent. Nonpolar solvents that may be used in combination include aromatic hydrocarbons such as toluene, xylene, and mesitylene, and linear hydrocarbons such as hexane. These may be used as a mixture.

これらの溶媒は、反応過程において、必要に応じて中間生成物や反応混合物に添加することが好ましい。   These solvents are preferably added to the intermediate product or reaction mixture as necessary in the course of the reaction.

本発明の製造方法で合成したヒドロキシ樹脂は溶媒を留去することなく、溶液状で保管することもできる。   The hydroxy resin synthesized by the production method of the present invention can be stored in the form of a solution without distilling off the solvent.

本発明の製造方法では、必要に応じて、中間体の芳香族変性ヒドロキシ化合物(c)を予め製造し、中和工程を行って製品として系外に取り出した後、改めて、得られた芳香族変性ヒドロキシ化合物(c)を用いて、別の製造工程で、本発明のヒドロキシ樹脂を得ても良い。しかしながら、中間体の芳香族変性ヒドロキシ化合物(c)を得た後、連続して、ハロゲン化メチル基含有化合物(d)との反応を行う方が、中間体の芳香族変性ヒドロキシ化合物(c)を得るための中和以降の工程を省略できるため好ましい。
また、本発明の製造方法においては、前段の反応工程、すなわち2価芳香族ヒドロキシ化合物(a)と芳香族オレフィン類(b)とを反応させて中間体としての芳香族変性ヒドロキシ化合物(c)を得る工程が、酸触媒の存在下で行われる一方、後段の反応工程、すなわち芳香族変性ヒドロキシ化合物(c)とハロゲン化メチル基含有化合物(d)とを反応させてヒドロキシ樹脂を得る工程が、塩基性物質の存在下で行われる。そのため、中間体(c)を製品として取り出す場合には、残存する酸触媒を中和するために、中和剤として塩基性物質を添加することが必要であるが、連続して反応を行う場合は、後段の反応工程が塩基性物質の存在下で行われるため、ほとんどの場合、中和用の塩基性物質を別途添加する必要はない。なお、後段の反応工程においては、残存する塩基性物質を中和するために、逆に中和剤として酸性物質を添加する。
In the production method of the present invention, if necessary, the aromatic modified hydroxy compound (c) as an intermediate is produced in advance, and after neutralization, the product is taken out of the system as a product. You may obtain the hydroxy resin of this invention in another manufacturing process using a modified | denatured hydroxy compound (c). However, after obtaining the intermediate aromatic-modified hydroxy compound (c), the reaction with the halogenated methyl group-containing compound (d) is preferably performed continuously. It is preferable because the steps after neutralization for obtaining the above can be omitted.
In the production method of the present invention, the reaction step in the previous stage, that is, the divalent aromatic hydroxy compound (a) and the aromatic olefin (b) are reacted to form an aromatic modified hydroxy compound (c) as an intermediate. Is obtained in the presence of an acid catalyst, while a subsequent reaction step, that is, a step of reacting the aromatic modified hydroxy compound (c) with the halogenated methyl group-containing compound (d) to obtain a hydroxy resin. In the presence of a basic substance. Therefore, when taking out the intermediate (c) as a product, it is necessary to add a basic substance as a neutralizing agent in order to neutralize the remaining acid catalyst. Since the latter reaction step is performed in the presence of a basic substance, in most cases, it is not necessary to add a neutral substance for neutralization separately. In the subsequent reaction step, an acidic substance is added as a neutralizing agent to neutralize the remaining basic substance.

本発明の製造方法で得られるヒドロキシ樹脂は、25℃におけるモル体積が400〜1400cm/mol、好ましくは420〜1350cm/mol、より好ましくは450〜1000cm/molの範囲にあり、かつ、水酸基当量が240〜800g/eq.、好ましくは300〜600g/eq.、330〜550g/eq.の範囲にある。そのため、誘電率や誘電正接が低く誘電特性に優れるとともに、耐熱性や硬化性にも優れた硬化物となる。 The hydroxy resin obtained by the production method of the present invention has a molar volume at 25 ° C. of 400 to 1400 cm 3 / mol, preferably 420 to 1350 cm 3 / mol, more preferably 450 to 1000 cm 3 / mol, and Hydroxyl equivalent weight is 240-800 g / eq. , Preferably 300 to 600 g / eq. 330-550 g / eq. It is in the range. Therefore, it becomes a cured product having a low dielectric constant and dielectric loss tangent, excellent dielectric properties, and excellent heat resistance and curability.

なお、モル体積(cm/mol)はモル質量(g/mol)を密度(g/cm)で除することで求められる。また、本発明の製造方法で得られるヒドロキシ樹脂は必ず2官能になり、1モル中に2個の水酸基を有するので、ヒドロキシ樹脂の水酸基当量(g/eq.)を2倍(eq./mol)すれば、モル質量(g/mol)となる。したがって、モル体積(cm/mol)は次式で計算できる。
モル体積[cm/mol]=水酸基当量[g/eq.]×2[eq./mol]÷密度[g/cm
The molar volume (cm 3 / mol) can be obtained by dividing the molar mass (g / mol) by the density (g / cm 3 ). Moreover, since the hydroxy resin obtained by the production method of the present invention is necessarily bifunctional and has two hydroxyl groups in one mole, the hydroxyl equivalent (g / eq.) Of the hydroxy resin is doubled (eq./mol). ), The molar mass (g / mol) is obtained. Therefore, the molar volume (cm 3 / mol) can be calculated by the following formula.
Molar volume [cm 3 / mol] = hydroxyl equivalent [g / eq. ] × 2 [eq. / Mol] ÷ density [g / cm 3 ]

本発明の製造方法の典型例を、以下に反応式(9)及び(10)で表す。この反応原料は、2価芳香族ヒドロキシ化合物(a)が4,4’−ジヒドロキシジフェニルエーテル(DHDE)、芳香族オレフィン類(b)がスチレンであり、ハロゲン化メチル基含有化合物(d)が4,4’−ビス(クロロメチル)ビフェニルの例である。そして、中間体の芳香族変性ヒドロキシ化合物(c)は、反応式(9)の生成物である。

Figure 0006389751
Figure 0006389751
ここで、DHDEは2つのベンゼン環を有し、2つのベンゼン環に置換する置換基の数の和(P+P)は、式(1)のPに対応する。なお、2つのPは同一であっても異なってもよい。また、mは式(1)のmに対応する。 The typical example of the manufacturing method of this invention is represented by Reaction formula (9) and (10) below. In this reaction raw material, the divalent aromatic hydroxy compound (a) is 4,4′-dihydroxydiphenyl ether (DHDE), the aromatic olefin (b) is styrene, and the halogenated methyl group-containing compound (d) is 4, This is an example of 4′-bis (chloromethyl) biphenyl. The intermediate aromatic modified hydroxy compound (c) is a product of the reaction formula (9).
Figure 0006389751
Figure 0006389751
Here, DHDE has two benzene rings, and the sum (P 1 + P 1 ) of the number of substituents substituted on the two benzene rings corresponds to P in the formula (1). Two P 1 may be the same or different. Also, m 1 corresponds to m of formula (1).

次に、本発明のエポキシ樹脂組成物について説明する。エポキシ樹脂組成物に用いるエポキシ樹脂を具体的に例示すれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン、4,4’−ビフェノール、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類から得られる共縮合樹脂のエポキシ化物、クレゾール類とホルムアルデヒドとアルコキシ基置換ナフタレン類から得られる共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から得られるフェノールアラルキル樹脂のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は単独で使用しても2種類以上併用してもよい。   Next, the epoxy resin composition of the present invention will be described. Specific examples of the epoxy resin used in the epoxy resin composition include bisphenol A, bisphenol F, bisphenol S, bisphenol fluorene, 4,4′-biphenol, 3,3 ′, 5,5′-tetramethyl-4, Epoxidized products of divalent phenols such as 4′-dihydroxybiphenyl, resorcin, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol Epoxides of trivalent or higher phenols such as novolak and o-cresol novolak, epoxidized products of cocondensation resins obtained from dicyclopentadiene and phenols, and cocondensation resins obtained from cresols, formaldehyde and alkoxy group-substituted naphthalenes Epoxidized material, Fe It is synthesized from epoxidized phenol aralkyl resins obtained from alcohols and paraxylylene dichloride, epoxidized biphenyl aralkyl type phenol resins obtained from phenols and bischloromethylbiphenyl, naphthols and paraxylylene dichloride, etc. And epoxidized naphthol aralkyl resins. These epoxy resins may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物は、硬化剤成分として上記一般式(1)で表されるヒドロキシ樹脂を必須のヒドロキシ樹脂としているが、本発明の目的を損なわない範囲で、例えば硬化剤全量に対して50質量%未満の量で、他の硬化剤を併用することもできる。   The epoxy resin composition of the present invention uses the hydroxy resin represented by the above general formula (1) as an essential hydroxy resin as a curing agent component, but is within a range that does not impair the object of the present invention, for example, with respect to the total amount of the curing agent. The other curing agent can be used in combination in an amount of less than 50% by mass.

本発明のエポキシ樹脂組成物に併用してもよい硬化剤としては、各種フェノール樹脂類、活性エステル類、シアネートエステル類、酸無水物類、アミン類、又はヒドラジッド類等の通常使用されるエポキシ樹脂用硬化剤を使用することができ、これらの硬化剤は1種類だけ使用しても2種類以上使用してもよい。低誘電正接化には硬化後に官能基濃度の低くなる硬化剤が好ましく、高水酸基当量フェノール樹脂や活性エステル類が好ましい。   Examples of the curing agent that may be used in combination with the epoxy resin composition of the present invention include various phenol resins, active esters, cyanate esters, acid anhydrides, amines, hydrazides and other commonly used epoxy resins. Curing agents can be used, and these curing agents may be used alone or in combination of two or more. For lowering the dielectric loss tangent, a curing agent that lowers the functional group concentration after curing is preferred, and high hydroxyl equivalent phenol resins and active esters are preferred.

硬化剤の種類を具体的に例示すれば、フェノール樹脂類としては、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ジシクロペンタジエン型フェノール樹脂、フェノールアラルキル樹脂等に代表される3価以上のフェノール化合物や、フェノール類、ナフトール類、又はビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール等の2価フェノール化合物とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、p−キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル、ジビニルビフェニル、ジイソプロペニルビフェニル等の架橋剤との反応により合成される多価フェノール化合物や、フェノール類とビスクロロメチルビフェニル等から得られるビフェニルアラルキル型フェノール樹脂、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂等が挙げられる。   Specific examples of the type of curing agent include phenolic resins such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o- Cresol novolak, naphthol novolak, dicyclopentadiene type phenol resin, trivalent or higher phenolic compounds represented by phenol aralkyl resin, etc., phenols, naphthols, or bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, biphenol, Dihydric phenol compounds such as hydroquinone, resorcin, catechol, naphthalene diol, and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-ki Obtained from polyhydric phenol compounds synthesized by reaction with crosslinkers such as rylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxymethylbiphenyl, divinylbiphenyl, diisopropenylbiphenyl, phenols and bischloromethylbiphenyl, etc. And biphenylaralkyl type phenol resins, naphthol aralkyl resins synthesized from naphthols and paraxylylene dichloride, and the like.

活性エステル類を硬化剤に用いた場合、活性エステル類としては、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。   When active esters are used as curing agents, the active esters generally include ester groups having high reaction activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and heterocyclic hydroxy compound esters. A compound having two or more in one molecule is preferably used. The active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.

シアネートエステル類を硬化剤に用いた場合、シアネートエステル類としては、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型等)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型等)シアネートエステル系硬化剤が挙げられる。より具体的に例示すると、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート))、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2−ビス(4−シアネート)フェニルプロパン、1,1−ビス(4−シアネートフェニルメタン)、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、ビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマー等が挙げられる。   When cyanate esters are used as curing agents, the cyanate esters include novolak type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type curing agents, dicyclopentadiene type cyanate ester type curing agents, and bisphenol type (bisphenol A). Type, bisphenol F type, bisphenol S type, etc.) cyanate ester curing agents. More specifically, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate)), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′- Ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3,5-dimethylphenyl) Bifunctional cyanate resins such as methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether, phenol novolac, cresol Novolac and Dish Polyfunctional cyanate resin derived from Ropentajien structure-containing phenol resin, these cyanate resins prepolymers and the like obtained by partly triazine of.

酸無水物類を具体的に例示すると、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸、メチルナジック酸等が挙げられる。アミン類を具体的に例示すると、ジエチレントリアミン、イソホロンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド等が挙げられ、ヒドラジッド類を具体的に例示すると、アジピン酸ヒドラジッド、セパチン酸ヒドラジッド、イソフタル酸ヒドラジッド等が挙げられる。   Specific examples of acid anhydrides include methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, methyl nadic acid and the like. Specific examples of amines include diethylenetriamine, isophoronediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and dicyandiamide. Specific examples of hydrazides include adipic acid hydrazide, sepatin hydrazide, and isophthalic acid hydrazide. It is done.

本発明のエポキシ樹脂組成物において、エポキシ樹脂と硬化剤の配合量は、エポキシ樹脂のエポキシ基1モルに対して、硬化剤の活性水素基が0.4〜1.2モルの範囲が好ましく、0.5〜1.1モルがより好ましく、0.7〜1.0モルがさらに好ましい。例えば、硬化剤にフェノール樹脂類、活性エステル類、アミン類を用いた場合は、エポキシ基に対して活性水素基をほぼ当モル配合する。硬化剤に酸無水物類を用いた場合は、エポキシ基1モルに対して酸無水物基を0.5〜1.2モル、好ましくは、0.6〜1.0モル配合する。硬化剤にシアネートエステル類を用いた場合は、硬化剤全量に対して50質量%未満の量で用いることが好ましい。シアネートエステル類はエポキシ樹脂と硬化しオキサゾリドン環を形成するほか、シアネートエステル類同士が硬化し、トリアジン環を形成する。そのため、エポキシ樹脂に対し、過剰に用いたとしても硬化反応は進むが、シアネートエステル類の割合が多いと導体層との密着性が低下する恐れがある。また、イミダゾール化合物類やカチオン重合開始剤等の様に接触して反応が進行する場合はエポキシ樹脂に対する所定の質量比で配合されることもある。
本発明でいう活性水素基とはエポキシ基と反応性の活性水素を有する官能基のことであり、具体的には、酸無水物基やカルボキシル基やアミノ基やフェノール性水酸基や活性エステル類中のアリールカルボニルオキシ基等が挙げられる。なお、活性水素基に関して、1モルのカルボキシル基やフェノール性水酸基は1モルと、アミノ基(−NH)は2モルと計算される。
In the epoxy resin composition of the present invention, the blending amount of the epoxy resin and the curing agent is preferably in the range of 0.4 to 1.2 mol of the active hydrogen group of the curing agent with respect to 1 mol of the epoxy group of the epoxy resin, 0.5-1.1 mol is more preferable, and 0.7-1.0 mol is more preferable. For example, when phenol resins, active esters, or amines are used as the curing agent, the active hydrogen groups are mixed in an equimolar amount with respect to the epoxy groups. When acid anhydrides are used as the curing agent, 0.5 to 1.2 mol, preferably 0.6 to 1.0 mol, of acid anhydride group is added to 1 mol of epoxy group. When cyanate esters are used as the curing agent, it is preferably used in an amount of less than 50% by mass with respect to the total amount of the curing agent. Cyanate esters are cured with an epoxy resin to form an oxazolidone ring, and the cyanate esters are cured to form a triazine ring. For this reason, the curing reaction proceeds even if used excessively with respect to the epoxy resin, but if the ratio of the cyanate ester is large, the adhesion with the conductor layer may be lowered. Further, when the reaction proceeds by contact like imidazole compounds or cationic polymerization initiators, they may be blended at a predetermined mass ratio with respect to the epoxy resin.
The active hydrogen group in the present invention is a functional group having an active hydrogen reactive with an epoxy group, and specifically includes an acid anhydride group, a carboxyl group, an amino group, a phenolic hydroxyl group, and active esters. And arylcarbonyloxy group. In addition, regarding an active hydrogen group, 1 mol of carboxyl groups and phenolic hydroxyl groups are calculated as 1 mol, and an amino group (—NH 2 ) is calculated as 2 mol.

本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を使用することができる。使用できる硬化促進剤を具体的に例示すれば、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィントリフェニルボラン等のホスフィン類、オクチル酸スズ等の金属化合物が挙げられる。硬化促進剤は単独で使用しても2種類以上併用してもよい。硬化促進剤は本発明のエポキシ樹脂組成物中のエポキシ樹脂100質量部に対して0.02〜5.0質量部が必要に応じて用いられる。硬化促進剤を用いることにより、硬化温度を低下することが可能であり、硬化時間を短縮することができる。   A curing accelerator can be used in the epoxy resin composition of the present invention as necessary. Specific examples of curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza. -Tertiary amines such as bicyclo (5,4,0) undecene-7, phosphines such as triphenylphosphine, tricyclohexylphosphine and triphenylphosphine triphenylborane, and metal compounds such as tin octylate. A hardening accelerator may be used independently or may be used together 2 or more types. 0.02-5.0 mass parts is used as needed for a hardening accelerator with respect to 100 mass parts of epoxy resins in the epoxy resin composition of this invention. By using a curing accelerator, the curing temperature can be lowered and the curing time can be shortened.

本発明のエポキシ樹脂組成物には、粘度調整剤としての有機溶剤も用いることができる。具体的に例示すれば、N,N−ジメチルホルムアミド等のアミド類、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素類が挙げられる。これらの粘度調整剤は単独で使用しても2種類以上混合して使用してもよい。   An organic solvent as a viscosity modifier can also be used in the epoxy resin composition of the present invention. Specifically, amides such as N, N-dimethylformamide, ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, aromatics such as benzene and toluene And hydrocarbons. These viscosity modifiers may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物は、特性を損ねない範囲でエポキシ樹脂以外の硬化性樹脂や熱可塑性樹脂を配合してもよい。具体的に例示すれば、フェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、インデンクマロン樹脂、フェノキシ樹脂、シアネート樹脂、エポキシアクリレート樹脂、ビニル化合物、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ビスマレイミドトリアジン樹脂、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリビニルホルマール等が挙げられるが、これらに限定されるものではない。   The epoxy resin composition of the present invention may be blended with a curable resin or a thermoplastic resin other than the epoxy resin as long as the characteristics are not impaired. Specifically, phenol resin, acrylic resin, petroleum resin, indene resin, indene coumarone resin, phenoxy resin, cyanate resin, epoxy acrylate resin, vinyl compound, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyether Examples thereof include, but are not limited to, imide, bismaleimide triazine resin, polyethersulfone, polysulfone, polyetheretherketone, polyphenylene sulfide, and polyvinyl formal.

本発明のエポキシ樹脂組成物には必要に応じてフィラーを用いることができる。具体的には水酸化アルミニウム、水酸化マグネシウム、タルク、焼成タルク、クレー、カオリン、水酸化チタン、ガラス粉末、シリカバルーン等の無機フィラーが挙げられるが、有機系又は無機系の耐湿顔料、鱗片状顔料等顔料等を配合してもよい。一般的無機充填剤を用いる理由として、耐衝撃性の向上が挙げられる。また、ガラス繊維、パルプ繊維、合成繊維、セラミック繊維等の繊維質充填剤や、微粒子ゴム、熱可塑性エラストマー等の有機充填剤等を配合することができる。   A filler can be used for the epoxy resin composition of this invention as needed. Specific examples include inorganic fillers such as aluminum hydroxide, magnesium hydroxide, talc, calcined talc, clay, kaolin, titanium hydroxide, glass powder, silica balloon, etc., but organic or inorganic moisture resistant pigments, scaly You may mix | blend pigments, such as a pigment. The reason for using a general inorganic filler is an improvement in impact resistance. Moreover, fibrous fillers, such as glass fiber, a pulp fiber, a synthetic fiber, a ceramic fiber, organic fillers, such as fine particle rubber and a thermoplastic elastomer, etc. can be mix | blended.

また、本発明のエポキシ樹脂組成物には、必要に応じて、難燃剤、揺変性付与材、流動性向上剤等の添加剤を配合してもよい。揺変性付与材としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げ類ことができる。更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の潤滑剤を配合できる。   Moreover, you may mix | blend additives, such as a flame retardant, a thixotropic agent, and a fluidity improver, with the epoxy resin composition of this invention as needed. Examples of the thixotropic agent include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite. Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a colorant such as carbon black, a flame retardant such as antimony trioxide, a low stress agent such as silicon oil, A lubricant such as calcium stearate can be blended.

また、本発明のエポキシ樹脂組成物を加熱硬化させれば、エポキシ樹脂硬化物とすることができ、この硬化物は低誘電特性、耐熱性、低吸湿性等の点で優れたものとなる。この硬化物は、エポキシ樹脂組成物を注型、圧縮形成、トランスファー形成等の方法により、成型加工して得ることができる。この際の温度は通常、120〜250℃の範囲である。   Moreover, if the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained, and this cured product is excellent in terms of low dielectric properties, heat resistance, low hygroscopicity, and the like. This hardened | cured material can be obtained by shape | molding an epoxy resin composition by methods, such as casting, compression formation, and transfer formation. The temperature at this time is usually in the range of 120 to 250 ° C.

本発明のエポキシ樹脂組成物は、低誘電特性、高耐熱性に優れた硬化物を与えるため、積層板用途や絶縁シート等の電材用途での使用が好ましい。また優れた接着性を有するため、プリプレグ、接着剤、又は接着シートでの使用がより好ましい。   Since the epoxy resin composition of the present invention gives a cured product excellent in low dielectric properties and high heat resistance, it is preferably used in electrical materials such as laminates and insulating sheets. Moreover, since it has the outstanding adhesiveness, use with a prepreg, an adhesive agent, or an adhesive sheet is more preferable.

以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれに限定されるものではない。実施例において、特に断りがない限り「部」は質量部を表し、「%」は質量%を表す。なお、本発明では以下の試験方法を使用した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to this. In Examples, unless otherwise specified, “part” represents part by mass, and “%” represents mass%. In the present invention, the following test method was used.

(1)モル体積:モル体積は、以下の計算式で求めた。
モル体積[cm/mol]=水酸基当量[g/eq.]×2[eq./mol]÷密度[g/cm]
なお、水酸基当量は後記の測定方法によって求めた。また、密度はJIS K−7112、水中置換法に準拠した電子比重計MD−300S(アルファーミラージュ株式会社製)を使用して25℃にて測定した。
(1) Molar volume: The molar volume was determined by the following formula.
Molar volume [cm 3 / mol] = hydroxyl equivalent [g / eq.] × 2 [eq./mol]÷density [g / cm 3 ]
The hydroxyl group equivalent was determined by the measurement method described later. Further, the density was measured at 25 ° C. using an electronic hydrometer MD-300S (manufactured by Alpha Mirage Co., Ltd.) based on JIS K-7112, an underwater substitution method.

(2)水酸基当量:試料に4%のメタノールを含むテトラヒドロフランを加え完全に溶解した後、10%テトラブチルアンモニウムヒドロキシドを加えて、紫外可視分光光度計を用いて波長400nmから250nm間の吸光度を測定し、フェノール性水酸基を水酸基1当量当たりの試料のg数として求めた。 (2) Hydroxyl equivalent: Tetrahydrofuran containing 4% methanol was added to the sample and completely dissolved, 10% tetrabutylammonium hydroxide was added, and the absorbance between 400 nm and 250 nm was measured using an ultraviolet-visible spectrophotometer. The phenolic hydroxyl group was measured as the number of grams of the sample per equivalent of hydroxyl group.

(3)軟化点の測定
JIS K 7234規格、環球法に準拠して測定した。具体的には、自動軟化点装置(株式会社メイテック製、ASP−MG4)を用いた。
(3) Measurement of softening point It measured based on JISK7234 specification and the ring and ball method. Specifically, an automatic softening point apparatus (manufactured by Meitec Co., Ltd., ASP-MG4) was used.

(4)ガラス転移温度:JIS K−7121、示差走査熱量測定に準拠して測定した。SII社製EXTERDSC6200を使用して、20℃から10℃/分の昇温速度により測定し、2サイクル目に得られたDSCチャートの補外ガラス転移開始温度(Tig)より求めた。 (4) Glass transition temperature: Measured according to JIS K-7121, differential scanning calorimetry. Using an EXTERDSC6200 manufactured by SII, the temperature was measured at a rate of temperature increase from 20 ° C. to 10 ° C./min, and was determined from the extrapolated glass transition start temperature (Tig) of the DSC chart obtained in the second cycle.

(5)比誘電率及び誘電正接:空洞共振法(ベクトルネットワークアナライザー(VNA)E8363B(アジレント・テクノロジー製)、空洞共振器摂動法誘電率測定装置(関東電子応用開発製)によって、25℃における1GHzの値を測定した。 (5) Dielectric constant and dielectric loss tangent: 1 GHz at 25 ° C. by cavity resonance method (vector network analyzer (VNA) E8363B (manufactured by Agilent Technologies), cavity resonator perturbation method dielectric constant measurement device (manufactured by Kanto Electronics Application Development)) The value of was measured.

実施例1
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4口フラスコに、2価芳香族ヒドロキシ化合物成分としてジヒドロキシジフェニルエーテル(DHDE、水酸基当量101g/eq.)を200部、極性非プロトン性溶媒としてジエチレングリコールジメチルエーテル(以後、ジグライムという)50部、酸触媒としてp−トルエンスルホン酸0.15部(スチレンに対し0.05%)を仕込み135℃に昇温した。次に、撹拌しながら、芳香族オレフィン類としてスチレン308.9部(DHDE1モルに対し3.0モル)を3時間かけて滴下し反応させ、滴下終了後さらに135℃にて2時間反応した。その際、中間生成物の一部(0.1部)を抜出し別の容器に入れ、メチルイソブチルケトン(MIBK)を0.3部加えた後、中和、水洗、脱水、濾過した後、減圧留去により溶媒を留去して得た試料を用いて、GPCにて反応完了を確認した。次に、反応生成物に、MIBKを940部、20%水酸化カリウム水溶液0.23部を添加して中和し、次いで水洗を2回行った。脱水した後、120℃まで昇温しMIBKを回収し、固形分が70%になるよう希釈溶媒(中間生成物の希釈剤)としてジグライムを168部投入、溶解後、濾過して、中間生成物の樹脂ワニス(A1)712部を得た。
Example 1
200 parts of dihydroxydiphenyl ether (DHDE, hydroxyl group equivalent 101 g / eq.) As a divalent aromatic hydroxy compound component in a 4-necked flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device, polar aprotic solvent Was charged with 50 parts of diethylene glycol dimethyl ether (hereinafter referred to as diglyme) and 0.15 part of p-toluenesulfonic acid (0.05% with respect to styrene) as an acid catalyst, and the temperature was raised to 135 ° C. Next, with stirring, 308.9 parts of styrene (3.0 moles relative to 1 mole of DHDE) as an aromatic olefin was added dropwise over 3 hours to react, and after completion of the dropwise addition, the reaction was further carried out at 135 ° C. for 2 hours. At that time, a part (0.1 part) of the intermediate product was extracted and placed in another container, 0.3 parts of methyl isobutyl ketone (MIBK) was added, neutralized, washed with water, dehydrated, filtered, and then decompressed. The completion of the reaction was confirmed by GPC using a sample obtained by distilling off the solvent. Next, 940 parts of MIBK and 0.23 part of 20% potassium hydroxide aqueous solution were added to the reaction product to neutralize it, and then washed twice with water. After dehydration, the temperature was raised to 120 ° C., MIBK was recovered, and 168 parts of diglyme was added as a diluent solvent (diluent for the intermediate product) to a solid content of 70%. 712 parts of resin varnish (A1) was obtained.

得られた中間生成物の樹脂ワニス(A1)を200部、塩基性物質として水酸化カリウムを32部、ジグライムを191部、極性プロトン溶媒として水を3.2部、撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4口フラスコに投入し、室温で撹拌し、アルカリ金属塩とした。次に、ハロゲン化メチル基含有化合物として4,4’−ビス(クロロメチル)ビフェニル(以後、BCMBという)を27.4部投入し、80℃まで撹拌昇温して反応を開始した。反応開始から一時間後に反応生成物の一部(0.1部)を抜出し別の容器に入れ、トルエンを0.3部加えた後、中和、水洗、脱水、濾過した後、減圧留去により溶媒を留去して得た試料を用いて、GPCにて反応完了を確認した。GPCチャートを図1に示した。残りの反応生成物に希釈溶媒(反応生成物の希釈剤)としてトルエンを372部加え、中和剤として20%リン酸水溶液を76部添加して中和し、次いで水洗を2回行った。脱水、濾過した後、減圧留去により溶媒を留去し、褐色固体の樹脂1(一般式(1)におけるmは0.4、pは3.0)を147部得た。得られた樹脂1のモル体積は850cm/molであり、水酸基当量は488g/eq.であり、軟化点は84℃だった。また、得られた樹脂1のIRスペクトルの測定結果を図2に示した。 200 parts of the resulting intermediate product resin varnish (A1), 32 parts of potassium hydroxide as basic substance, 191 parts of diglyme, 3.2 parts of water as polar proton solvent, stirrer, thermometer, cooling The solution was put into a four-necked flask equipped with a tube and a nitrogen gas introducing device, and stirred at room temperature to obtain an alkali metal salt. Next, 27.4 parts of 4,4′-bis (chloromethyl) biphenyl (hereinafter referred to as BCMB) was added as a halogenated methyl group-containing compound, and the temperature was stirred and heated to 80 ° C. to initiate the reaction. One hour after the start of the reaction, a part (0.1 part) of the reaction product was extracted and placed in another container, 0.3 parts of toluene was added, neutralized, washed with water, dehydrated, filtered, and then distilled off under reduced pressure. The completion of the reaction was confirmed by GPC using a sample obtained by distilling off the solvent. A GPC chart is shown in FIG. To the remaining reaction product, 372 parts of toluene was added as a diluent solvent (a diluent for the reaction product), 76 parts of 20% aqueous phosphoric acid was added as a neutralizing agent to neutralize it, and then washed twice with water. After dehydration and filtration, the solvent was distilled off under reduced pressure to obtain 147 parts of a brown solid resin 1 (m in the general formula (1) was 0.4, p was 3.0). The obtained resin 1 has a molar volume of 850 cm 3 / mol and a hydroxyl group equivalent of 488 g / eq. The softening point was 84 ° C. Moreover, the measurement result of IR spectrum of the obtained resin 1 is shown in FIG.

実施例2
実施例1で得られた樹脂ワニス(A1)をそのまま使用し、ジグライムを170部、BCMBを13.7部、トルエンを349部、20%リン酸水溶液を101部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂2(m=0.2、p=3.0)を138部得た。得られた樹脂2のモル体積は620cm/molであり、水酸基当量は344g/eq.であり、軟化点は61℃だった。
Example 2
Example 1 except that the resin varnish (A1) obtained in Example 1 was used as it was, and changed to 170 parts of diglyme, 13.7 parts of BCMB, 349 parts of toluene, and 101 parts of 20% aqueous phosphoric acid solution. The same apparatus and procedure were used to obtain 138 parts of a brown solid resin 2 (m = 0.2, p = 3.0). The obtained resin 2 has a molar volume of 620 cm 3 / mol and a hydroxyl group equivalent of 344 g / eq. The softening point was 61 ° C.

実施例3
実施例1で得られた樹脂ワニス(A1)をそのまま使用し、ジグライムを212部、BCMBを41部、トルエンを395部、20%リン酸水溶液を50部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂3(m=0.6、p=3.0)を155部得た。得られた樹脂3のモル体積は1310cm/molであり、水酸基当量は776g/eq.であり、軟化点は98℃だった。
Example 3
Same as Example 1 except that the resin varnish (A1) obtained in Example 1 was used as it was, and changed to 212 parts of diglyme, 41 parts of BCMB, 395 parts of toluene, and 50 parts of 20% aqueous phosphoric acid solution. And 155 parts of a brown solid resin 3 (m = 0.6, p = 3.0) was obtained. The obtained resin 3 has a molar volume of 1310 cm 3 / mol and a hydroxyl group equivalent of 776 g / eq. The softening point was 98 ° C.

実施例4
実施例1で得られた樹脂ワニス(A1)をそのまま使用しジグライムを179部、BCMBの代わりにα,α’−ジクロロ−p−キシレン(DCX)を19.1部、トルエンを353部、20%リン酸水溶液を76部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂4(m=0.4、p=3.0)を139部得た。得られた樹脂4のモル体積は790cm/molであり、水酸基当量は462g/eq.であり、軟化点は76℃だった。
Example 4
The resin varnish (A1) obtained in Example 1 was used as it was, 179 parts of diglyme, 19.1 parts of α, α'-dichloro-p-xylene (DCX) instead of BCMB, 353 parts of toluene, 20 parts The synthesis was performed in the same apparatus and procedure as in Example 1 except that the amount of the aqueous phosphoric acid solution was changed to 76 parts to obtain 139 parts of a brown solid resin 4 (m = 0.4, p = 3.0). The obtained resin 4 has a molar volume of 790 cm 3 / mol and a hydroxyl group equivalent of 462 g / eq. The softening point was 76 ° C.

実施例5
芳香族オレフィン類としてスチレンの代わりにインデン344.6部(DHDE1モルに対し3.0モル)、p−トルエンスルホン酸を0.17部(インデンに対し0.05%)、ジグライムを183部に変更した以外は実施例1と同様の装置及び手順で合成を行い、中間生成物の樹脂ワニス(A2)762部を得た。
Example 5
As aromatic olefins, instead of styrene, 344.6 parts of indene (3.0 moles per mole of DHDE), 0.17 parts of p-toluenesulfonic acid (0.05% of indene), and 183 parts of diglyme Except having changed, it synthesize | combined by the apparatus and procedure similar to Example 1, and obtained 762 parts of resin varnish (A2) of an intermediate product.

樹脂ワニス(A1)の代わりに樹脂ワニス(A2)を200部、ジグライムを188部、水酸化カリウムを29.9部、水を3部、BCMBを25.6部、トルエンを369部、20%リン酸水溶液を71部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂5(m=0.4、p=3.0)を145部得た。得られた樹脂5のモル体積は900cm/molであり、水酸基当量は518g/eq.であり、軟化点は88℃だった。 200 parts of resin varnish (A2) instead of resin varnish (A1), 188 parts of diglyme, 29.9 parts of potassium hydroxide, 3 parts of water, 25.6 parts of BCMB, 369 parts of toluene, 20% The synthesis was performed in the same apparatus and procedure as in Example 1 except that the phosphoric acid aqueous solution was changed to 71 parts, and 145 parts of a brown solid resin 5 (m = 0.4, p = 3.0) was obtained. The obtained resin 5 has a molar volume of 900 cm 3 / mol and a hydroxyl group equivalent of 518 g / eq. The softening point was 88 ° C.

実施例6
芳香族オレフィン類としてスチレンを154.5部(DHDE1モルに対し1.5モル)とインデンを172.3部(DHDE1モルに対し1.5モル)、p−トルエンスルホン酸を0.16部(スチレンとインデンの合計に対し0.05%)、ジグライムを176部に変更した以外は実施例1と同様の装置及び手順で合成を行い、中間生成物の樹脂ワニス(A3)737部を得た。
Example 6
As aromatic olefins, 154.5 parts of styrene (1.5 moles per mole of DHDE), 172.3 parts of indene (1.5 moles per mole of DHDE), and 0.16 parts of p-toluenesulfonic acid ( The synthesis was performed in the same apparatus and procedure as in Example 1 except that diglyme was changed to 176 parts, and 737 parts of an intermediate product resin varnish (A3) was obtained. .

樹脂ワニス(A1)の代わりに樹脂ワニス(A3)を200部、ジグライムを190部、水酸化カリウムを30.9部、水を3.1部、BCMBを26.4部、トルエンを370部、20%リン酸水溶液を73部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂6(m=0.4、p=3.0)を146部得た。得られた樹脂6のモル体積は870cm/molであり、水酸基当量は503g/eq.であり、軟化点は86℃だった。 200 parts of resin varnish (A3) instead of resin varnish (A1), 190 parts of diglyme, 30.9 parts of potassium hydroxide, 3.1 parts of water, 26.4 parts of BCMB, 370 parts of toluene, The synthesis was performed in the same apparatus and procedure as in Example 1 except that the 20% phosphoric acid aqueous solution was changed to 73 parts to obtain 146 parts of brown solid resin 6 (m = 0.4, p = 3.0). . The obtained resin 6 has a molar volume of 870 cm 3 / mol and a hydroxyl group equivalent of 503 g / eq. The softening point was 86 ° C.

実施例7
芳香族オレフィン類としてスチレンを30.9部(DHDE1モルに対し0.3モル)、酸触媒としてp−トルエンスルホン酸を0.02部(スチレンに対し0.05%)、ジグライムを49部に変更した以外は実施例1と同様の装置及び手順で合成を行い、中間生成物の樹脂ワニス(A4)320部を得た。
Example 7
30.9 parts styrene as aromatic olefins (0.3 moles per mole of DHDE), 0.02 parts p-toluenesulfonic acid (0.05% based on styrene) as acid catalyst, 49 parts diglyme Except having changed, it synthesize | combined with the apparatus and procedure similar to Example 1, and obtained 320 parts of resin varnish (A4) of an intermediate product.

樹脂ワニス(A1)の代わりに樹脂ワニス(A4)を200部、ジグライムを240部、水酸化カリウムを70.5部、水を7.1部、BCMBを60.3部、トルエンを427部、20%リン酸水溶液を167部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂7(m=0.4、p=0.3)を168.2部得た。得られた樹脂7のモル体積は430cm/molであり、水酸基当量は254g/eq.であり、軟化点は75℃だった。 200 parts of resin varnish (A4) instead of resin varnish (A1), 240 parts of diglyme, 70.5 parts of potassium hydroxide, 7.1 parts of water, 60.3 parts of BCMB, 427 parts of toluene, The synthesis was performed in the same apparatus and procedure as in Example 1 except that the 20% phosphoric acid aqueous solution was changed to 167 parts, and 168.2 parts of brown solid resin 7 (m = 0.4, p = 0.3) was obtained. Obtained. The obtained resin 7 has a molar volume of 430 cm 3 / mol and a hydroxyl group equivalent of 254 g / eq. The softening point was 75 ° C.

実施例8
2価芳香族ヒドロキシ化合物成分としてジヒドロキシジフェニルスルフィド(DHDS、水酸基当量109g/eq.)を200部、芳香族オレフィン類としてスチレンを286.2部(DHDS1モルに対し3.0モル)、p−トルエンスルホン酸0.14部(スチレンに対し0.05%)、ジグライムを158部に変更した以外は実施例1と同様の装置及び手順で合成を行い、中間生成物の樹脂ワニス(A5)681部を得た。
Example 8
200 parts of dihydroxydiphenyl sulfide (DHDS, hydroxyl group equivalent 109 g / eq.) As a divalent aromatic hydroxy compound component, 286.2 parts of styrene as an aromatic olefin (3.0 moles per mole of DHDS), p-toluene Synthesis was performed in the same apparatus and procedure as in Example 1 except that 0.14 part of sulfonic acid (0.05% with respect to styrene) and diglyme were changed to 158 parts, and 681 parts of resin varnish (A5) as an intermediate product Got.

樹脂ワニス(A1)の代わりに樹脂ワニス(A5)を200部、ジグライムを190部、水酸化カリウムを31部、水を3.1部、BCMBを26.5部、トルエンを371部、20%リン酸水溶液を73部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂8(m=0.4、p=3.0)を146部得た。得られた樹脂8のモル体積870cm/molであり、水酸基当量は501g/eq.であり、軟化点は76℃だった。 200 parts of resin varnish (A5) instead of resin varnish (A1), 190 parts of diglyme, 31 parts of potassium hydroxide, 3.1 parts of water, 26.5 parts of BCMB, 371 parts of toluene, 20% The synthesis was performed in the same apparatus and procedure as in Example 1 except that the phosphoric acid aqueous solution was changed to 73 parts, and 146 parts of brown solid resin 8 (m = 0.4, p = 3.0) was obtained. The obtained resin 8 has a molar volume of 870 cm 3 / mol and a hydroxyl group equivalent of 501 g / eq. The softening point was 76 ° C.

実施例9
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4口フラスコに、2価芳香族ヒドロキシ化合物成分としてDHDEを79部、ジグライムを20部、酸触媒としてp−トルエンスルホン酸0.03部(スチレンに対し0.05%)を仕込み135℃に昇温した。次に、撹拌しながら、芳香族オレフィン類としてスチレン61部(DHDE1モルに対し1.5モル)を3時間かけて滴下し反応させ、滴下終了後さらに135℃にて2時間反応した。実施例1と同様の操作で反応完了を確認した後、ジグライムを249部(中間生成物の希釈溶媒40部と反応溶媒209部の合計)、塩基性物質として水酸化カリウムを46部、極性プロトン溶媒として水を4.6部投入し、室温で撹拌し、アルカリ金属塩とした。次に、ハロゲン化メチル基含有化合物としてBCMBを39.3部投入し、80℃まで撹拌昇温して反応を開始した。実施例1と同様の操作で反応完了を確認した後、反応生成物の希釈溶媒としてトルエンを392部加え、20%リン酸水溶液を109部添加して中和し、次いで水洗を2回行った。脱水、濾過した後、減圧留去により溶媒を留去し、褐色固体の樹脂9(m=0.4、p=1.5)を155部得た。得られた樹脂9のモル体積は620cm/molであり、水酸基当量は358g/eq. であり、軟化点は80℃だった。
Example 9
In a four-necked flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device, 79 parts of DHDE, 20 parts of diglyme as a divalent aromatic hydroxy compound component, and 0.03 of p-toluenesulfonic acid as an acid catalyst Part (0.05% with respect to styrene) was charged and the temperature was raised to 135 ° C. Next, with stirring, 61 parts of styrene (1.5 mol with respect to 1 mol of DHDE) as an aromatic olefin was added dropwise over 3 hours to react, and after completion of the addition, reaction was further performed at 135 ° C. for 2 hours. After confirming the completion of the reaction by the same operation as in Example 1, 249 parts of diglyme (total of 40 parts of diluted intermediate product solvent and 209 parts of reaction solvent), 46 parts of potassium hydroxide as basic substance, polar proton 4.6 parts of water was added as a solvent and stirred at room temperature to obtain an alkali metal salt. Next, 39.3 parts of BCMB was added as a halogenated methyl group-containing compound, and the temperature was stirred and heated to 80 ° C. to initiate the reaction. After confirming the completion of the reaction by the same operation as in Example 1, 392 parts of toluene was added as a dilution solvent for the reaction product, neutralized by adding 109 parts of a 20% aqueous phosphoric acid solution, and then washed twice with water. . After dehydration and filtration, the solvent was distilled off under reduced pressure to obtain 155 parts of brown solid resin 9 (m = 0.4, p = 1.5). The obtained resin 9 had a molar volume of 620 cm 3 / mol, a hydroxyl group equivalent of 358 g / eq., And a softening point of 80 ° C.

実施例10
2価芳香族ヒドロキシ化合物成分としてビスフェノールF(BPF、水酸基当量100g/eq.)を200部、芳香族オレフィン類としてスチレンを156部(BPF1モルに対し1.5モル)、p−トルエンスルホン酸0.08部(スチレンに対し0.05%)、ジグライムを103部に変更した以外は実施例1と同様の装置及び手順で合成を行い、中間生成物の樹脂ワニス(A6)499部を得た。
Example 10
200 parts of bisphenol F (BPF, hydroxyl group equivalent 100 g / eq.) As a divalent aromatic hydroxy compound component, 156 parts of styrene as aromatic olefins (1.5 mol with respect to 1 mol of BPF), p-toluenesulfonic acid 0 .08 parts (0.05% with respect to styrene), except that diglyme was changed to 103 parts, synthesis was performed in the same apparatus and procedure as in Example 1 to obtain 499 parts of an intermediate product resin varnish (A6). .

樹脂ワニス(A1)の代わりに樹脂ワニス(A6)を200部、ジグライムを209部、水酸化カリウムを45.8部、水を4.6部、BCMBを39.1部、トルエンを391部、20%リン酸水溶液を108部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の樹脂10(m=0.4、p=1.5)を154部得た。得られた樹脂10のモル体積は640cm/molであり、水酸基当量は359g/eq.であり、軟化点は78℃だった。 200 parts of resin varnish (A6) instead of resin varnish (A1), 209 parts of diglyme, 45.8 parts of potassium hydroxide, 4.6 parts of water, 39.1 parts of BCMB, 391 parts of toluene, The synthesis was performed in the same apparatus and procedure as in Example 1 except that the 20% phosphoric acid aqueous solution was changed to 108 parts, and 154 parts of a brown solid resin 10 (m = 0.4, p = 1.5) was obtained. . The obtained resin 10 has a molar volume of 640 cm 3 / mol and a hydroxyl group equivalent of 359 g / eq. The softening point was 78 ° C.

比較例1
芳香族オレフィン類としてスチレンを10.3部(DHDE1モルに対し0.1モル)、酸触媒としてp−トルエンスルホン酸を0.01部(スチレンに対し0.05%)、ジグライムを40部に変更した以外は実施例1と同様の装置及び手順で合成を行い、中間生成物の樹脂ワニス(A7)294部を得た。
Comparative Example 1
10.3 parts of styrene as aromatic olefins (0.1 mole per mole of DHDE), 0.01 parts of p-toluenesulfonic acid (0.05% of styrene) as acid catalyst, 40 parts of diglyme Except having changed, it synthesize | combined with the apparatus and procedure similar to Example 1, and obtained 294 parts of resin varnish (A7) of the intermediate product.

樹脂ワニス(A1)の代わりに樹脂ワニス(A7)を200部、ジグライムを249部、水酸化カリウムを77.5部、水を7.7部、BCMBを66.2部、トルエンを436部、20%リン酸水溶液を183部に変更した以外は実施例1と同様の装置及び手順で合成を行い、褐色固体の比較樹脂1(m=0.4、p=0.1)を172部得た。得られた比較樹脂1のモル体積は390cm/molであり、水酸基当量は236g/eq.であり、軟化点は72℃だった。 200 parts of resin varnish (A7) instead of resin varnish (A1), 249 parts of diglyme, 77.5 parts of potassium hydroxide, 7.7 parts of water, 66.2 parts of BCMB, 436 parts of toluene, The synthesis was performed in the same apparatus and procedure as in Example 1 except that the 20% phosphoric acid aqueous solution was changed to 183 parts, and 172 parts of a brown solid comparative resin 1 (m = 0.4, p = 0.1) was obtained. It was. The molar volume of the obtained comparative resin 1 is 390 cm 3 / mol, and the hydroxyl group equivalent is 236 g / eq. The softening point was 72 ° C.

比較例2
DHDEを45.8部、スチレンを94.2部(DHDE1モルに対し4.0モル)、初期ジグライムを11部、p−トルエンスルホン酸を0.05部(スチレンに対し0.05%)、追加ジグライムを233部(中間生成物の希釈溶媒49部と反応溶媒184部の合計)、水酸化カリウムを26.6部、水を2.7部、BCMBを22.8部、トルエンの代わりにMBIKを364部、20%リン酸水溶液を63部に変更した以外は実施例9と同様の装置及び手順で合成を行い、褐色固体の比較樹脂2(m=0.4、p=4.0)を144部得た。得られた比較樹脂2のモル体積は1080cm/molであり、水酸基当量は574g/eq.であり、軟化点は88℃だった。
Comparative Example 2
45.8 parts DHDE, 94.2 parts styrene (4.0 moles per mole of DHDE), 11 parts initial diglyme, 0.05 parts p-toluenesulfonic acid (0.05% based on styrene), 233 parts of additional diglyme (total of 49 parts of diluting solvent for intermediate product and 184 parts of reaction solvent), 26.6 parts of potassium hydroxide, 2.7 parts of water, 22.8 parts of BCMB, instead of toluene Synthesis was performed using the same apparatus and procedure as in Example 9 except that 364 parts of MBIK and 63 parts of 20% phosphoric acid aqueous solution were changed, and comparative resin 2 (m = 0.4, p = 4.0) of brown solid. 144 parts) were obtained. The molar volume of the obtained comparative resin 2 is 1080 cm 3 / mol, and the hydroxyl group equivalent is 574 g / eq. The softening point was 88 ° C.

実施例1〜10のヒドロキシ樹脂の組成及び物性を表1に示す。また、比較例1、2のヒドロキシ樹脂の組成及び物性を表2に示す。なお、表中の−は不使用を表す。   The composition and physical properties of the hydroxy resins of Examples 1 to 10 are shown in Table 1. Table 2 shows the composition and physical properties of the hydroxy resins of Comparative Examples 1 and 2. In addition,-in a table | surface represents non-use.

Figure 0006389751
Figure 0006389751

Figure 0006389751
Figure 0006389751

実施例11
ヒドロキシ樹脂として実施例9で得られた樹脂9を6.7部と、エポキシ樹脂としてYDPN−638(フェノールノボラック型エポキシ樹脂、エポキシ当量=176g/eq.、新日鉄住金化学株式会社製)を3.3部、温度170℃で均一になるまで混合した後、硬化促進剤として2E4MZ(2−エチル−4−メチルイミダゾール、四国化成株式会社製)0.10部を添加し、撹拌、溶解してエポキシ樹脂組成物を得た。この組成物を減圧下で脱泡した後、型の中に流し込み、オーブン中にて190℃で2時間硬化させて硬化物試験片を得た。
Example 11
6.7 parts of the resin 9 obtained in Example 9 as a hydroxy resin and 3. YDPN-638 (phenol novolac type epoxy resin, epoxy equivalent = 176 g / eq., Manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as an epoxy resin After mixing 3 parts until uniform at a temperature of 170 ° C., 0.10 parts of 2E4MZ (2-ethyl-4-methylimidazole, manufactured by Shikoku Kasei Co., Ltd.) is added as a curing accelerator, stirred, dissolved, and epoxy A resin composition was obtained. The composition was degassed under reduced pressure, poured into a mold, and cured in an oven at 190 ° C. for 2 hours to obtain a cured product test piece.

実施例12
ヒドロキシ樹脂として上記樹脂9を6.78部と、エポキシ樹脂としてESN−375(ナフタレンアラルキル型エポキシ樹脂、エポキシ当量=170g/eq.、新日鉄住金化学株式会社製)を3.22部用いた以外は実施例11と同様の装置及び手順で硬化物試験片を得た。
Example 12
Except for using 6.78 parts of the resin 9 as a hydroxy resin and 3.22 parts of ESN-375 (a naphthalene aralkyl epoxy resin, epoxy equivalent = 170 g / eq., Manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) as an epoxy resin. A cured product test piece was obtained using the same apparatus and procedure as in Example 11.

実施例13
ヒドロキシ樹脂として上記樹脂9を6.77部と、エポキシ樹脂として上記YDPN−638を1.65部とZX−1059(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合エポキシ樹脂、エポキシ当量=170g/eq.、新日鉄住金化学株式会社製)を1.58部用いた以外は実施例11と同様の装置及び手順で硬化物試験片を得た。
Example 13
6.77 parts of the resin 9 as a hydroxy resin, 1.65 parts of the YDPN-638 as an epoxy resin and ZX-1059 (mixed epoxy resin of bisphenol A type epoxy resin and bisphenol F type epoxy resin, epoxy equivalent = 170 g) / Eq., Manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), a cured product specimen was obtained using the same apparatus and procedure as in Example 11.

実施例14
ヒドロキシ樹脂として上記樹脂9を3.42部とBRG−557(フェノールノボラック型硬化剤、水酸基当量=105g/eq.、昭和電工株式会社製)を1.94部と、エポキシ樹脂として上記ZX−1059を4.63部用いた以外は実施例11と同様の装置及び手順で硬化物試験片を得た。
Example 14
3.42 parts of the above resin 9 as a hydroxy resin and 1.94 parts of BRG-557 (phenol novolac type curing agent, hydroxyl group equivalent = 105 g / eq., Showa Denko KK) and ZX-1059 as an epoxy resin A cured product test piece was obtained by the same apparatus and procedure as in Example 11 except that 4.63 parts were used.

比較例3
ヒドロキシ樹脂としてBRG−557を3.74部と、エポキシ樹脂としてYDPN−638を6.26部用いた以外は実施例11と同様の装置及び手順で硬化物試験片を得た。
Comparative Example 3
A cured product test piece was obtained by the same apparatus and procedure as in Example 11 except that 3.74 parts of BRG-557 as a hydroxy resin and 6.26 parts of YDPN-638 as an epoxy resin were used.

比較例4
ヒドロキシ樹脂として比較例1で得られた比較樹脂1を5.73部と、エポキシ樹脂としてYDPN−638を4.27部用いた以外は実施例11と同様の装置及び手順で硬化物試験片を得た。
Comparative Example 4
A cured product test piece was prepared in the same apparatus and procedure as in Example 11 except that 5.73 parts of Comparative Resin 1 obtained in Comparative Example 1 as a hydroxy resin and 4.27 parts of YDPN-638 as an epoxy resin were used. Obtained.

比較例5
ヒドロキシ樹脂として比較例2で得られた比較樹脂2を7.65部と、エポキシ樹脂としてYDPN−638を2.35部用いた以外は実施例11と同様の装置及び手順で硬化物試験片を得た。
Comparative Example 5
A cured product test piece was prepared in the same apparatus and procedure as in Example 11 except that 7.65 parts of Comparative Resin 2 obtained in Comparative Example 2 was used as the hydroxy resin and 2.35 parts of YDPN-638 was used as the epoxy resin. Obtained.

得られた硬化物のガラス転移温度(Tg)、比誘電率、誘電正接の測定結果を、表3に示す。なお、表中の−は不使用を示す。   Table 3 shows the measurement results of glass transition temperature (Tg), relative dielectric constant, and dielectric loss tangent of the obtained cured product. In addition,-in a table | surface shows non-use.

Figure 0006389751
Figure 0006389751

表1〜3から明らかなように、本発明のヒドロキシ樹脂を使用した硬化物は、ガラス転移温度も高く、誘電特性にも優れるため電子材料用途に好適に使用することができる。一方、比較例3は本発明のヒドロキシ樹脂を使わない例であり、ガラス転移温度は高かったが、誘電率及び誘電正接が高く誘電特性の劣った硬化物であった。また、比較例4は、スチレン変性量が低いために、ガラス転移温度は実施例と同水準だったが、誘電率及び誘電正接が高く誘電特性の劣った硬化物であった。比較例5は、スチレン変性量が高いために、ガラス転移温度が低く実使用上問題のある硬化物であった。   As is apparent from Tables 1 to 3, the cured product using the hydroxy resin of the present invention has a high glass transition temperature and excellent dielectric properties, so that it can be suitably used for electronic materials. On the other hand, Comparative Example 3 was an example in which the hydroxy resin of the present invention was not used, and although it had a high glass transition temperature, it was a cured product having a high dielectric constant and dielectric loss tangent and poor dielectric properties. Further, Comparative Example 4 was a cured product having a high dielectric constant and dielectric loss tangent and inferior dielectric properties, although the glass transition temperature was the same as that of the Example because of the low amount of styrene modification. Comparative Example 5 was a cured product having a low glass transition temperature and problematic in practical use because of its high styrene modification amount.

Claims (9)

下記一般式(1)で表されることを特徴とするヒドロキシ樹脂。
Figure 0006389751
(式中、mは平均の繰り返し数であり0.1<m<10を示し、A及びAは独立に炭素数6〜50の2価の芳香族基を示し、Rは下記式(2)又は(3)で表される置換基を示し、pは0.2〜3.5の数を示す。)
Figure 0006389751
(式中、R及びRは独立に炭素数1〜10の炭化水素基又はハロゲン原子を示し、n及びqは独立に0〜3の整数を示す。)
A hydroxy resin represented by the following general formula (1).
Figure 0006389751
(In the formula, m is the average number of repetitions and represents 0.1 <m <10, A 1 and A 2 independently represent a divalent aromatic group having 6 to 50 carbon atoms, and R 1 represents the following formula: (2) The substituent represented by (3) is shown, p shows the number of 0.2-3.5.)
Figure 0006389751
(Wherein, R 2 and R 3 independently represents a hydrocarbon group or a halogen atom having 1 to 10 carbon atoms, n and q is independently an integer of 0-3.)
上記A及びAが、独立に下記式(4a)、(4b)又は(4c)で表される基のいずれかである請求項1に記載のヒドロキシ樹脂。
Figure 0006389751
(式中、Rは単結合、炭素数1〜4のアルキル基もしくは炭素数6〜20の芳香族基で置換してもよいメチレン基、炭素数1〜4のアルキル基で置換してもよいシクロヘキシレン基、フルオレニル基、−O−、−CO−、−S−、又は−SO−のいずれかを示し、Rは独立に炭素数1〜10の炭化水素基又はハロゲン原子のいずれかを示し、kは0〜3の整数を示す。)
The hydroxy resin according to claim 1, wherein A 1 and A 2 are each independently a group represented by the following formula (4a), (4b), or (4c).
Figure 0006389751
(In the formula, R 4 may be substituted with a single bond, an alkyl group having 1 to 4 carbon atoms or an methylene group which may be substituted with an aromatic group having 6 to 20 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. good cyclohexylene group, a fluorenyl group, -O -, - CO -, - S-, or -SO 2 - either indicates either, R 5 is independently a C1-10 hydrocarbon group or a halogen atom And k represents an integer of 0 to 3.)
25℃におけるモル体積が400〜1400cm/molである請求項1又は2に記載のヒドロキシ樹脂。 The hydroxy resin according to claim 1 or 2, wherein the molar volume at 25 ° C is 400 to 1400 cm 3 / mol. 水酸基当量が240〜800g/eq.の範囲である請求項1又は2に記載のヒドロキシ樹脂。   Hydroxyl equivalent weight is 240-800 g / eq. The hydroxy resin according to claim 1 or 2, which is in a range of 下記一般式(5)で表される2価芳香族ヒドロキシ化合物(a)1モルに対し、下記一般式(6)で表されるスチレン類及び下記一般式(7)で表されるインデン類から選ばれる1種又は2種以上の芳香族オレフィン類(b)0.2〜3.5モルを酸触媒の存在下で反応させて、芳香族オレフィン類で変性された芳香族変性ヒドロキシ化合物(c)を得た後、芳香族変性ヒドロキシ化合物(c)と、下記一般式(8)で表される2官能のハロゲン化メチル基含有化合物(d)とを、塩基性物質の存在下で反応させることを特徴とする請求項1に記載のヒドロキシ樹脂の製造方法。
Figure 0006389751
(式中、Aは炭素数6〜50の2価の芳香族基を示す。)
Figure 0006389751
(式中、R及びRは独立に炭素数1〜10の炭化水素基又はハロゲン原子を示し、n及びqは独立に0〜3の整数を示す。)
Figure 0006389751
(式中、Aは炭素数6〜50の2価の芳香族基を示し、Xはハロゲン原子を示す。)
From 1 mole of the divalent aromatic hydroxy compound (a) represented by the following general formula (5), from styrene represented by the following general formula (6) and indene represented by the following general formula (7) An aromatic modified hydroxy compound (c) modified with an aromatic olefin by reacting 0.2 to 3.5 mol of one or more selected aromatic olefins (b) in the presence of an acid catalyst. ), The aromatic modified hydroxy compound (c) is reacted with the bifunctional halogenated methyl group-containing compound (d) represented by the following general formula (8) in the presence of a basic substance. The method for producing a hydroxy resin according to claim 1.
Figure 0006389751
(In the formula, A 1 represents a divalent aromatic group having 6 to 50 carbon atoms.)
Figure 0006389751
(Wherein, R 2 and R 3 independently represents a hydrocarbon group or a halogen atom having 1 to 10 carbon atoms, n and q is independently an integer of 0-3.)
Figure 0006389751
(In the formula, A 2 represents a divalent aromatic group having 6 to 50 carbon atoms, and X represents a halogen atom.)
上記2価芳香族ヒドロキシ化合物(a)と上記芳香族オレフィン類(b)とを、溶媒として沸点185℃以下の極性非プロトン性溶媒を使用し、芳香族オレフィン類(b)に対して0.01〜1.0質量%の酸触媒の存在下、40〜140℃の温度で反応させる請求項5に記載のヒドロキシ樹脂の製造方法。   A polar aprotic solvent having a boiling point of 185 ° C. or lower is used as the solvent for the divalent aromatic hydroxy compound (a) and the aromatic olefins (b), and the aromatic olefins (b) have a concentration of 0. 6. The method for producing a hydroxy resin according to claim 5, wherein the reaction is carried out at a temperature of 40 to 140 [deg.] C. in the presence of an acid catalyst of 01 to 1.0 mass%. 上記2価芳香族ヒドロキシ化合物(a)が、それぞれ炭素数1〜10の炭化水素基もしくはハロゲン原子が置換してもよいヒドロキシフェノール、ジヒドロキシナフタレン、ジヒドロキシビフェニル、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルスルフィド、ジヒドロキシフェニルメタン、ジヒドロキシフェニルシクロヘキサン及びジヒドロキシフェニルトリメチルシクロヘキサンからなる群から選択される化合物の1以上である請求項5に記載のヒドロキシ樹脂の製造方法。   The divalent aromatic hydroxy compound (a) is a hydroxyphenol, dihydroxynaphthalene, dihydroxybiphenyl, dihydroxydiphenyl ether, dihydroxydiphenyl sulfide, dihydroxyphenylmethane, each of which a hydrocarbon group having 1 to 10 carbon atoms or a halogen atom may be substituted. The method for producing a hydroxy resin according to claim 5, wherein the hydroxy resin is one or more compounds selected from the group consisting of dihydroxyphenylcyclohexane and dihydroxyphenyltrimethylcyclohexane. 請求項1〜4のいずれかに記載のヒドロキシ樹脂と、エポキシ樹脂とを必須成分とするエポキシ樹脂組成物。   An epoxy resin composition comprising the hydroxy resin according to any one of claims 1 to 4 and an epoxy resin as essential components. 請求項8に記載のエポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物。   An epoxy resin cured product obtained by curing the epoxy resin composition according to claim 8.
JP2014246669A 2014-12-05 2014-12-05 Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof Active JP6389751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246669A JP6389751B2 (en) 2014-12-05 2014-12-05 Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246669A JP6389751B2 (en) 2014-12-05 2014-12-05 Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2016108268A JP2016108268A (en) 2016-06-20
JP6389751B2 true JP6389751B2 (en) 2018-09-12

Family

ID=56121820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246669A Active JP6389751B2 (en) 2014-12-05 2014-12-05 Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP6389751B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809871B2 (en) * 2016-11-04 2021-01-06 エア・ウォーター株式会社 Raw material, active ester resin, thermosetting resin composition, cured product of the thermosetting resin composition, interlayer insulating material, prepreg, and method for producing prepreg.
JP7296191B2 (en) * 2018-01-09 2023-06-22 味の素株式会社 Curable resin composition, resin sheet, printed wiring board and semiconductor device
CN108690640B (en) * 2018-07-17 2022-02-25 烟台显华化工科技有限公司 Compound containing indene ring and liquid crystal medium
WO2022085475A1 (en) * 2020-10-21 2022-04-28 株式会社Adeka Composition, cured product, method for producing cured product, and additive

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490068A (en) * 1987-08-14 1989-04-05 Montedison Spa Metal base plate coated with liquid crystal polymer and method for manufacture thereof
US5976418A (en) * 1998-11-05 1999-11-02 Xerox Corporation Conducting compositions
JP2011190336A (en) * 2010-03-15 2011-09-29 Adeka Corp Adhesive composition and adhesive sheet

Also Published As

Publication number Publication date
JP2016108268A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP5181769B2 (en) Epoxy resin composition and cured product thereof
JP6429569B2 (en) Epoxy resin composition and cured product thereof
JP6011745B2 (en) Epoxy resin composition and cured product thereof
JP6389751B2 (en) Hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP2016190891A (en) Polyvalent hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP2016069524A (en) Modified polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured matter thereof
WO2002014334A1 (en) Phenol compounds, resin compositions and products of curing thereof
JP2007297540A (en) Resin having carbazole skeleton, epoxy resin having carbazole skeleton, epoxy resin composition and cured product thereof
JP2011057588A (en) Polyvalent hydroxy compound, method of producing the same, epoxy resin composition, and cured product thereof
JP5328064B2 (en) Polyhydric phenol compound, thermosetting resin composition and cured product thereof
JP2017119768A (en) Polyhydric hydroxy resin and method for producing epoxy resin
TW201902714A (en) Epoxy resin, production method, epoxy resin composition, and cured product thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP6429570B2 (en) Epoxy resin composition and cured product thereof
JP6183918B2 (en) Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP2019214736A (en) Polyvalent hydroxy resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
JP6335562B2 (en) Method for producing epoxy resin, and composition and cured product containing epoxy resin obtained by the method
JP5832016B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2010235826A (en) Polyhydroxy resin, production method of the same, and epoxy resin composition and cured product of the same
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP7193337B2 (en) Polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP7158229B2 (en) Aromatic modified polyhydric hydroxy resin, aromatic modified epoxy resin, epoxy resin composition and cured product thereof
JP7158228B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6389751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250