[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6386625B2 - Ag electrorefining equipment - Google Patents

Ag electrorefining equipment Download PDF

Info

Publication number
JP6386625B2
JP6386625B2 JP2017117309A JP2017117309A JP6386625B2 JP 6386625 B2 JP6386625 B2 JP 6386625B2 JP 2017117309 A JP2017117309 A JP 2017117309A JP 2017117309 A JP2017117309 A JP 2017117309A JP 6386625 B2 JP6386625 B2 JP 6386625B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic
cathode
current
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017117309A
Other languages
Japanese (ja)
Other versions
JP2017155343A (en
Inventor
雅亮 増田
雅亮 増田
遼 河野
遼 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Pretec Corp
Original Assignee
Asahi Pretec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Pretec Corp filed Critical Asahi Pretec Corp
Priority to JP2017117309A priority Critical patent/JP6386625B2/en
Publication of JP2017155343A publication Critical patent/JP2017155343A/en
Application granted granted Critical
Publication of JP6386625B2 publication Critical patent/JP6386625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明はAgの電解精製技術に関し、詳細にはAgの電解精製に用いる電解精製装置に関するものである。   The present invention relates to a technique for electrolytically purifying Ag, and more particularly to an electrolytic purification apparatus used for electrolytic purification of Ag.

Agは食器、宝飾品、歯科材料、各種電子機器などの日用品、工業製品において幅広く使用されている。例えば宝飾品や電子機器の配線などでは各種金属との合金(Ag含有合金)が使用されている。また用途によってはAgと共にAg以外の金属や非金属も併用されており、例えば歯科材料は、金銀パラジウム合金とセラミックスなどの非金属で構成されている。   Ag is widely used in daily goods and industrial products such as tableware, jewelry, dental materials, and various electronic devices. For example, alloys (Ag-containing alloys) with various metals are used for jewelry and wiring of electronic devices. Further, depending on applications, Ag and other metals and non-metals are used together. For example, dental materials are made of non-metal such as gold-silver palladium alloy and ceramics.

上記のように各種製品にAgが汎用されている一方で、使用済み製品からAgを回収してリサイクルすることが行われている。例えば使用済みのAg含有原料を加工して作製した陽極を電解液中で電解精製することで、陽極中のAgを溶解させると共に、陰極にAgを析出させてAgを精製している(電解精製方法)。   As described above, Ag is widely used in various products, while Ag is collected and recycled from used products. For example, an anode produced by processing a used Ag-containing raw material is electrolytically purified in an electrolytic solution, whereby Ag in the anode is dissolved and Ag is deposited on the cathode to purify Ag (electrolytic purification). Method).

ところが、陽極中のAgの含有率(電解液に溶解する全金属に対するAgの割合:[Ag質量/(Ag質量+電解液に溶解する不純物金属元素の質量)×100])が95質量%未満である場合(以下、「低Ag含有率」ということがある)、電解液中のAg濃度が低下して、精製したAgの純度が低くなる上に、陰極に析出するAgの形状がデンドライト状(樹枝状)から粉末状へと変化して析出Agの嵩が約10倍程度増加してしまうため、大型の電解槽が必要となり、また電解後の析出Agの洗浄も困難になるという問題があった。   However, the Ag content in the anode (ratio of Ag to the total metal dissolved in the electrolyte: [Ag mass / (Ag mass + mass of impurity metal element dissolved in the electrolyte) × 100]) is less than 95% by mass. (Hereinafter, sometimes referred to as “low Ag content”), the Ag concentration in the electrolytic solution is lowered, the purity of the purified Ag is lowered, and the shape of the Ag deposited on the cathode is dendritic. Since it changes from (dendritic) to powdery and the volume of precipitated Ag increases by about 10 times, a large electrolytic cell is required, and it is difficult to clean the precipitated Ag after electrolysis. there were.

そのため、前処理を行ってAg含有原料中のAg含有率をできるだけ高めたり、あるいは電解精製中に薬品を添加して電解液中のAg濃度を制御することなどが行われている。   Therefore, pretreatment is performed to increase the Ag content in the Ag-containing raw material as much as possible, or chemicals are added during electrolytic purification to control the Ag concentration in the electrolytic solution.

例えば特許文献1では電解精製に先立って乾式精製あるいは湿式精製によってAg含有率を高める技術が提案されている。   For example, Patent Document 1 proposes a technique for increasing the Ag content by dry purification or wet purification prior to electrolytic purification.

また特許文献2では、pH調整剤(AgO)を添加して電解液中のAg濃度を高める技術が提案されている。 Patent Document 2 proposes a technique for increasing the Ag concentration in the electrolytic solution by adding a pH adjusting agent (Ag 2 O).

なお、電解精製で回収できなかったAgは電解後の電解液(使用済み電解液)に残存しているためAgを別途回収する必要があった。例えば使用済み電解液に塩素分を加えてAgClとして回収することが行われている。使用済み電解液にはAg以外の不純物が多く溶解しているが、AgClとすることでそれらの不純物と分離できるからである。回収したAgClは還元後、再度、電解精製工程に戻してAgの回収が行われている。   In addition, since Ag which could not be recovered by electrolytic purification remained in the electrolytic solution after electrolysis (used electrolytic solution), it was necessary to separately collect Ag. For example, a chlorine component is added to a used electrolytic solution and recovered as AgCl. This is because many impurities other than Ag are dissolved in the used electrolytic solution, but by using AgCl, these impurities can be separated. After the recovered AgCl is reduced, it is returned again to the electrolytic purification process, and Ag is recovered.

特開平07−34147号公報JP 07-34147 A 特開2000−38692号公報JP 2000-38692 A

前述した従来技術はいずれも高純度のAgを得るには別途処理が必要であるため、その処理を行うための設備・薬剤を準備しなければならず、さらに使用済み電解液に残存したAgを回収する設備・薬剤も必要となる。そのためコストの増加や、処理が煩雑になる等の新たな問題が生じていた。本発明は上記のような事情に着目してなされたものであって、その目的は、従来技術のように前処理や薬剤の添加を行うことなく電解精製だけで高純度のAgが得られる技術を確立することにある。好ましくはAg含有率が95質量%未満のAg含有原料を陽極に用いた場合でも、純度99.9%以上の高純度Agを精製できる技術を提供することにある。更に好ましくは、新たな設備や薬剤を別途準備することなく、使用済み電解液からAgを回収する技術も併せて提供することにある。   All of the above-described conventional techniques require separate processing to obtain high-purity Ag. Therefore, facilities and chemicals for performing the processing must be prepared, and further, the remaining Ag in the used electrolyte can be removed. Equipment and chemicals to collect are also required. Therefore, new problems such as an increase in cost and complicated processing have occurred. The present invention has been made paying attention to the above-described circumstances, and the purpose thereof is a technique in which high-purity Ag can be obtained only by electrolytic purification without performing pretreatment or addition of chemicals as in the prior art. Is to establish. It is preferable to provide a technique capable of purifying high-purity Ag having a purity of 99.9% or more even when an Ag-containing raw material having an Ag content of less than 95% by mass is used for the anode. More preferably, the present invention also provides a technique for collecting Ag from the used electrolyte without separately preparing new equipment and chemicals.

上記課題を解決し得た本発明の電解精製装置は、Ag含有原料を陽極に用いたAgの電解精製装置であって、前記電解精製装置の電解槽は、隔膜により仕切られた第一電解槽と第二電解槽で構成されており、前記第一電解槽は前記陽極、および第一陰極を備え、前記第二電解槽は第二陰極を備えると共に、前記陽極と前記第一陰極間、および前記陽極と前記第二陰極間の電流値を制御する電流制御機構を備えていることに要旨を有する。   The electrolytic purification apparatus of the present invention capable of solving the above problems is an Ag electrolytic purification apparatus using an Ag-containing raw material as an anode, and the electrolytic tank of the electrolytic purification apparatus is a first electrolytic tank partitioned by a diaphragm And the second electrolytic cell comprises the anode and the first cathode, the second electrolytic cell comprises the second cathode, and between the anode and the first cathode, and The gist is that a current control mechanism for controlling a current value between the anode and the second cathode is provided.

前記陽極は、Agよりもイオン化傾向の小さい金属を含む陽極泥を透過しないアノードバッグを備えていることも好ましい実施態様である。   In another preferred embodiment, the anode includes an anode bag that does not pass through anode mud containing a metal having a smaller ionization tendency than Ag.

本発明の装置を用いれば、第一陰極でのAg析出量を抑えつつ、陽極でのAgの溶出量を高めることができる。よって電解液に溶解する不純物を多く含む原料を陽極に用いた場合でも、上記前処理や薬剤の添加などを行なうことなく、電解精製だけで従来技術と同程度の純度のAgを精製できる。   If the apparatus of this invention is used, the elution amount of Ag in an anode can be raised, suppressing the amount of Ag precipitation in a 1st cathode. Therefore, even when a raw material containing a large amount of impurities dissolved in the electrolytic solution is used for the anode, Ag having the same degree of purity as that of the prior art can be purified only by electrolytic purification without performing the pretreatment or the addition of chemicals.

また本発明によれば、電解液に溶解しない不純物を含む原料を陽極に用いた場合でも、陽極から発生する該不純物の粒子(陽極泥)が析出したAgに混入するのを防ぐことができ、従来技術よりも容易に高純度Agを得ることができる。   Further, according to the present invention, even when a raw material containing an impurity that does not dissolve in the electrolytic solution is used for the anode, the impurity particles (anode mud) generated from the anode can be prevented from being mixed into the precipitated Ag, High purity Ag can be obtained more easily than in the prior art.

本発明の装置の電流制御機構により陽極と第一陰極間、および前記陽極と第二陰極間の電流を夫々制御し、第一電解液のAg濃度の低下を制御することにより、嵩密度の高いデンドライト状のAgを得ることができる。   By controlling the current between the anode and the first cathode and between the anode and the second cathode by the current control mechanism of the apparatus of the present invention, and controlling the decrease in the Ag concentration of the first electrolyte, the bulk density is high. Dendritic Ag can be obtained.

更に本発明によれば、使用済み電解液にAgが残存する場合でも、Ag回収のための新たな回収設備の設置や薬剤の添加を行うことなく、Agを回収できる。   Furthermore, according to the present invention, even when Ag remains in the used electrolyte, it is possible to recover Ag without installing a new recovery facility for collecting Ag or adding a chemical.

図1は本発明の電解精製装置の概略構成図である。FIG. 1 is a schematic configuration diagram of the electrolytic purification apparatus of the present invention. 図2は本発明の電解精製装置の他の概略構成図である。FIG. 2 is another schematic configuration diagram of the electrolytic purification apparatus of the present invention. 図3は従来の電解精製装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a conventional electrolytic purification apparatus. 図4は実施例1の電解液中のAg濃度と電解時間の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the Ag concentration in the electrolyte solution of Example 1 and the electrolysis time. 図5は実施例2の電解液中のAg濃度と電解時間の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the Ag concentration in the electrolyte solution of Example 2 and the electrolysis time. 図6は実施例3の電解液中のAg濃度と電解時間の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the Ag concentration in the electrolyte solution of Example 3 and the electrolysis time. 図7は比較例の電解液中のAg濃度と電解時間の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the Ag concentration in the electrolytic solution of the comparative example and the electrolysis time.

本発明者らは図3に示すような従来の電解精製装置を用いて低Ag含有率の原料を陽極に用いて電解精製を行った場合に、陰極にAg以外のCuなどの不純物金属が析出して精製したAgの純度が低くなる原因について検討を重ねた。   When the present inventors performed electrolytic purification using a low-Ag content raw material for the anode using a conventional electrolytic purification apparatus as shown in FIG. 3, impurity metals such as Cu other than Ag are deposited on the cathode. Thus, the cause of the lower purity of the purified Ag was repeatedly investigated.

一般的に不純物金属が析出する現象は次のように考えられている。まず、陽極にAgよりもイオン化傾向が大きい不純物金属(例えばCu、Ni、Fe、Cr、Znなど、以下、「溶解性不純物金属」という)が含まれていると、陽極ではAgよりも溶解性不純物金属が優先的に溶出する。一方、陰極ではイオン化傾向の小さいAgが溶解性不純物金属よりも優先的に析出する。したがって陽極のAg含有率が低い場合、電解時間の経過に伴って電解液中のAg濃度が低下すると共に、溶解性不純物金属の濃度が上昇する。   In general, the phenomenon of impurity metal precipitation is considered as follows. First, when the anode contains an impurity metal having a higher ionization tendency than Ag (for example, Cu, Ni, Fe, Cr, Zn, etc., hereinafter referred to as “soluble impurity metal”), the anode is more soluble than Ag. Impurity metals elute preferentially. On the other hand, Ag having a small ionization tendency is preferentially deposited over the soluble impurity metal at the cathode. Therefore, when the Ag content of the anode is low, the Ag concentration in the electrolytic solution decreases as the electrolysis time elapses, and the concentration of the soluble impurity metal increases.

そして電解液中のAg濃度が低下して溶解性不純物金属濃度がある程度高まると、溶解性不純物金属の一部が還元されて析出し始めるため、陰極で析出するAg(以下、「電着Ag」ということがある)の純度が低下する。   Then, when the Ag concentration in the electrolytic solution decreases and the soluble impurity metal concentration increases to some extent, a part of the soluble impurity metal starts to be reduced and deposited, so that Ag deposited at the cathode (hereinafter referred to as “electrodeposited Ag”). The purity may decrease.

上記現象に基づき本発明者らが検討した結果、低Ag含有率の原料を陽極に用いても、Ag析出速度とAg溶出速度を制御し、溶解性不純物金属が析出しないように電解液中のAg濃度を適切に制御すれば、陰極での溶解性不純物金属の析出を抑制でき、高純度Agを精製できるとの結論に達した。   As a result of the study by the present inventors based on the above phenomenon, even when a raw material having a low Ag content is used for the anode, the Ag deposition rate and the Ag elution rate are controlled so that the soluble impurity metal does not precipitate. It was concluded that if the Ag concentration is appropriately controlled, precipitation of soluble impurity metals at the cathode can be suppressed, and high-purity Ag can be purified.

もっとも、図3に示すような従来の電解精製装置では、陽極のAg含有率が低い場合、Agの溶解に必要な電気量とAgの析出に必要な電気量のアンバランスを解消できないため、電解液中のAg濃度の低下を抑制できなかった。   However, in the conventional electrolytic refining apparatus as shown in FIG. 3, when the Ag content of the anode is low, an imbalance between the amount of electricity necessary for dissolution of Ag and the amount of electricity necessary for precipitation of Ag cannot be eliminated. A decrease in Ag concentration in the liquid could not be suppressed.

そこで、本発明者らは電解精製装置の構成について鋭意研究を重ねた結果、後記する構成を有する電解精製装置であれば、上記電気量のアンバランスの問題を解消し、Agの溶解とAgの析出に必要な電流を制御して、電解液中のAg濃度の低下を抑制できるため、溶解性不純物金属の析出を防止して高純度のAgを得ることができることを見出し、本発明に至った。以下、本発明の電解精製装置について説明する。   Therefore, as a result of intensive studies on the structure of the electrolytic purification apparatus, the present inventors have solved the above problem of unbalance in the amount of electricity, and dissolved Ag and dissolved Ag. Since the current required for the precipitation can be controlled to suppress the decrease in the Ag concentration in the electrolytic solution, it has been found that high-purity Ag can be obtained by preventing the precipitation of the soluble impurity metal, leading to the present invention. . Hereinafter, the electrolytic purification apparatus of the present invention will be described.

本発明の電解精製装置は隔膜により仕切られた第一電解槽と第二電解槽を備えた電解槽で構成されており、第一電解槽は陽極、および第一陰極を備えており、また第二電解槽は第二陰極を備えている。更に陽極と第一陰極間、陽極と第二陰極間の電流を制御する機構(電流制御機構)を備えていることに要旨を有する。   The electrolytic purification apparatus of the present invention comprises an electrolytic cell comprising a first electrolytic cell and a second electrolytic cell separated by a diaphragm, the first electrolytic cell comprises an anode and a first cathode, and The two electrolytic cell has a second cathode. Furthermore, the gist is that a mechanism (current control mechanism) for controlling the current between the anode and the first cathode and between the anode and the second cathode is provided.

本発明の電解精製装置では電気的に並列となるように隔膜を挟んで陰極を複数設けることで、第一陰極と陽極間に流れる電流(電流A)と第二陰極と陽極間に流れる電流(電流B)とを合算した電流(電流A+電流B)を陽極に流すことができる。すなわち、陽極電流値を第一陰極電流値よりも大きくできる(陽極:電流A+電流B>第一陰極:電流A)。そのため第一陰極に流れる電流を小さくしつつ、陽極に流れる電流値を大きくすることで、第一陰極でのAg析出量を抑えつつ、陽極でのAgの溶出量を高めることができる。このような各電極間の電流の流れは電流制御機構で適切に制御することができる。   In the electrolytic purification apparatus of the present invention, by providing a plurality of cathodes with a diaphragm so as to be electrically in parallel, a current flowing between the first cathode and the anode (current A) and a current flowing between the second cathode and the anode ( A current (current A + current B) obtained by adding the current B) can flow to the anode. That is, the anode current value can be made larger than the first cathode current value (anode: current A + current B> first cathode: current A). Therefore, by increasing the value of the current flowing through the anode while decreasing the current flowing through the first cathode, the amount of Ag eluted at the anode can be increased while suppressing the amount of Ag deposited at the first cathode. Such a current flow between the electrodes can be appropriately controlled by a current control mechanism.

図1は、本発明の電解精製装置の概略構成図である。電解槽1は隔膜4で仕切られた第一電解槽2と第二電解槽3で構成されている。   FIG. 1 is a schematic configuration diagram of the electrolytic purification apparatus of the present invention. The electrolytic cell 1 is composed of a first electrolytic cell 2 and a second electrolytic cell 3 separated by a diaphragm 4.

電解槽1の構造は特に限定されず、任意の構造の電解槽を使用できる。電解槽1を隔膜4で区切ることで、各電極間に電流を流しても、第一電解槽2に充填した電解液(以下、「第一電解液」という)に含まれるAgを第二陰極7に析出させることなく電流の流れを制御できる。そのため、陽極6と第二陰極7間の電流を制御すれば、第一電解液に含まれるAg濃度のコントロールが容易にできる。   The structure of the electrolytic cell 1 is not particularly limited, and an electrolytic cell having an arbitrary structure can be used. By separating the electrolytic cell 1 with the diaphragm 4, Ag contained in the electrolytic solution (hereinafter referred to as “first electrolytic solution”) filled in the first electrolytic cell 2 can be used as the second cathode even when current flows between the electrodes. It is possible to control the flow of current without precipitating to 7. Therefore, if the current between the anode 6 and the second cathode 7 is controlled, the concentration of Ag contained in the first electrolyte can be easily controlled.

隔膜4は、電気的導通(イオン透過性)が可能であって、且つ電解液を透過させない性質を有する膜であれば特に限定されない。もっとも第一電解槽2側から第二電解槽3側へのAgイオンの透過性の高い隔膜を用いると、第一陰極5でのAgの回収率(陽極6から溶出したAgの回収率)が低下すると共に、第一電解槽2内の電解液中のAg濃度も低下する。そのため隔膜4としては素焼きの壁、半透膜、イオン交換膜なども使用可能であるが、Agイオンの透過率が低い隔膜を用いることが好ましい。具体的には陽イオンの透過率が低い隔膜が好ましく、このような輸率差のある隔膜として陰イオン交換膜やバイポーラ膜が例示される。   The diaphragm 4 is not particularly limited as long as it is capable of electrical conduction (ion permeability) and has a property of not allowing the electrolytic solution to pass therethrough. However, when a diaphragm having high permeability of Ag ions from the first electrolytic cell 2 side to the second electrolytic cell 3 side is used, the Ag recovery rate at the first cathode 5 (the recovery rate of Ag eluted from the anode 6) is high. Along with the decrease, the Ag concentration in the electrolytic solution in the first electrolytic cell 2 also decreases. Therefore, as the diaphragm 4, an unglazed wall, a semipermeable membrane, an ion exchange membrane, or the like can be used, but a diaphragm having a low Ag ion permeability is preferably used. Specifically, a diaphragm having a low cation permeability is preferable, and examples of such a diaphragm having a difference in transport number include an anion exchange membrane and a bipolar membrane.

本発明の第一電解槽2は、第一陰極5と陽極6とを備える。陽極6はAgを含み、残部はAg以外の金属、および/または非金属である。陽極6に用いるAg含有原料は上記したように広範な用途に使用され、Ag以外にも様々な金属が含まれており、Ag含有率も異なる。また用途によっては非金属(セラミックス、ガラスなど)が含まれている場合がある。したがって陽極6を構成するAg、Ag以外の金属、および非金属の割合は特に限定されない。特に本発明によればAg含有率が低くても高純度Agを精製できるため、陽極6中のAg含有率(Ag質量及び溶解性不純物金属質量の合計に対するAg質量の割合。以下同じ)は95質量%未満であってもよく、更には80質量%以下であってもよい。Ag含有率の下限も特に限定されないが、Ag含有率が低すぎると電解精製に時間を要し、回収効率が悪くなるため、好ましくは5質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上である。   The first electrolytic cell 2 of the present invention includes a first cathode 5 and an anode 6. The anode 6 contains Ag, and the balance is a metal other than Ag and / or a nonmetal. The Ag-containing raw material used for the anode 6 is used in a wide range of applications as described above, and various metals other than Ag are contained, and the Ag content is also different. Depending on the application, non-metals (ceramics, glass, etc.) may be included. Therefore, the ratio of Ag, metal other than Ag, and nonmetal constituting the anode 6 is not particularly limited. In particular, according to the present invention, high-purity Ag can be purified even if the Ag content is low. Therefore, the Ag content in the anode 6 (the ratio of Ag mass to the total of Ag mass and soluble impurity metal mass, the same applies hereinafter) is 95. It may be less than mass%, and may be 80 mass% or less. The lower limit of the Ag content is not particularly limited, but if the Ag content is too low, it takes time for electrolytic purification and the recovery efficiency deteriorates. Therefore, it is preferably 5% by mass or more, more preferably 20% by mass or more, and still more preferably. Is 30% by mass or more.

また陽極6にはAgよりもイオン化傾向が小さい金属(Au、Pd、Pt:以下、「不溶性不純物金属」ということがある)が含まれていてもよいが、不溶性不純物金属の合計含有率が多くなりすぎると陽極6の溶解速度が著しく低下するため、好ましくは陽極6に含まれる全金属元素に対して50質量%以下、より好ましくは35質量%以下であることが望ましい。   The anode 6 may contain a metal having a smaller ionization tendency than Ag (Au, Pd, Pt: hereinafter referred to as “insoluble impurity metal”), but the total content of insoluble impurity metals is large. If the amount is too large, the dissolution rate of the anode 6 is remarkably reduced. Therefore, the amount is preferably 50% by mass or less, more preferably 35% by mass or less, based on the total metal elements contained in the anode 6.

なお、陽極6は例えば組成の異なる複数のAg含有原料で構成されていてもよく、また使用形態も例えばAg含有原料を粒状にして導電性を有する容器に収納し、陽極6として用いることもできる。また陽極6は所望の形状でよく、板状、円柱状など所望の形状に成形して使用することもできる。   The anode 6 may be composed of, for example, a plurality of Ag-containing raw materials having different compositions, and the usage form may be used as the anode 6 by, for example, storing the Ag-containing raw material in a granular container. . The anode 6 may have a desired shape, and can be used after being formed into a desired shape such as a plate shape or a cylindrical shape.

第一陰極5は、電解液によって腐食しないものであれば特に限定されず、例えばステンレス、チタンなどの電極材料が挙げられる。   The first cathode 5 is not particularly limited as long as it does not corrode by the electrolytic solution, and examples thereof include electrode materials such as stainless steel and titanium.

本発明の第二電解槽3は、第二陰極7を有する。第二陰極7は、上記第一陰極5と同様、ステンレスやチタンなどの電解液に対する耐腐食性に優れた電極材料であればよい。   The second electrolytic cell 3 of the present invention has a second cathode 7. Similar to the first cathode 5, the second cathode 7 may be an electrode material having excellent corrosion resistance against an electrolytic solution such as stainless steel or titanium.

なお、第一陰極5と第二陰極7の電極材料は同じであっても、異なっていてもよい。また各陰極の形状は特に限定されず、棒状、多孔状、板状など任意の形状を採用できる。更に各電解層に設置する電極の数は特に限定されず、複数設けることも可能である。   In addition, the electrode material of the 1st cathode 5 and the 2nd cathode 7 may be the same, or may differ. Moreover, the shape of each cathode is not specifically limited, Arbitrary shapes, such as rod shape, porous shape, and plate shape, are employable. Furthermore, the number of electrodes provided in each electrolytic layer is not particularly limited, and a plurality of electrodes may be provided.

本発明の電解精製装置は、第一陰極5と陽極6間、および陽極6と第二陰極7間の電流を制御する電流制御機構8を備えている。本発明の電流制御機構8は、電極間に直流電圧を印加する電源、および電極間の電流値を測定する測定器を備えている。電源は電極間に所定の電圧を印加して電流を流す機能を有する。また測定器は各電極間の電流値を測定し、該測定電流値に基づいて電源を制御する機能を有する。特に本発明の電流制御機構8は、必要に応じて通電を停止または電圧を変化させて任意の電極間の電流値を制御できるように構成されている。   The electrolytic purification apparatus of the present invention includes a current control mechanism 8 that controls the current between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7. The current control mechanism 8 of the present invention includes a power source that applies a DC voltage between electrodes and a measuring instrument that measures a current value between the electrodes. The power supply has a function of flowing a current by applying a predetermined voltage between the electrodes. The measuring instrument has a function of measuring a current value between the electrodes and controlling the power source based on the measured current value. In particular, the current control mechanism 8 of the present invention is configured to be able to control the current value between any electrodes by stopping energization or changing the voltage as necessary.

例えば図1では電流制御機構8は、第一陰極5と陽極6間に電源8a、陽極6と第二陰極7間に電源8bと、夫々の電源に図示しない測定器を有する構成であり、電源8a、電源8bによって各電極間の電流値を独立に制御できるように構成されている。また図2では電源制御機構8は可変抵抗器9、電源8c、および測定器(図示せず)を有しており、測定器からの測定結果に応じて可変抵抗の抵抗値を調節することで電源8cからの電流の流れを制御して、第一陰極5と陽極6間、および陽極6と第二陰極7間の電流を制御できるように構成されている。   For example, in FIG. 1, the current control mechanism 8 has a configuration in which a power source 8a is provided between the first cathode 5 and the anode 6, a power source 8b is provided between the anode 6 and the second cathode 7, and a measuring instrument (not shown) is included in each power source. The current value between the electrodes can be independently controlled by the power source 8b and the power source 8b. In FIG. 2, the power supply control mechanism 8 includes a variable resistor 9, a power supply 8 c, and a measuring device (not shown), and by adjusting the resistance value of the variable resistor according to the measurement result from the measuring device. The current flow from the power source 8c is controlled so that the current between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 can be controlled.

本発明ではAu、Pd、PtのようにAgよりもイオン化傾向が小さい金属は、電解精製してもそのほとんどがイオン化することなく単体の微粒子として陽極から遊離する不溶性の不純物となる。これら不溶性の不純物はいわゆる陽極泥(アノードスライム)であり、第一陰極5に電着するAgにAuなどが混入すると精製したAg純度が低下する。本発明では、電解精製中に陽極6から発生する陽極泥の電解液中への拡散を防止する観点から、陽極6はAgよりもイオン化傾向の小さい金属を含む陽極泥を透過せず、Agイオンが透過する性質を有するアノードバッグ(容器)10を備えていることが好ましい。またセラミックスなどの電解液に溶解しない非金属、あるいはAgよりもイオン化傾向が大きいが電解精製しても溶解しない金属なども不溶性の不純物となることから、これらも透過しない性質を有するアノードバッグがより好ましい。   In the present invention, metals having a smaller ionization tendency than Ag, such as Au, Pd, and Pt, are insoluble impurities that are liberated from the anode as single particles without being ionized even after electrolytic purification. These insoluble impurities are so-called anode mud (anode slime), and the purity of the purified Ag is lowered when Au or the like is mixed into Ag electrodeposited on the first cathode 5. In the present invention, from the viewpoint of preventing diffusion of anode mud generated from the anode 6 during electrolytic purification into the electrolytic solution, the anode 6 does not permeate anode mud containing a metal having a smaller ionization tendency than Ag, and Ag ions It is preferable to include an anode bag (container) 10 having a property of transmitting water. In addition, non-metals that do not dissolve in electrolytes such as ceramics, or metals that have a higher ionization tendency than Ag but do not dissolve even after electrolytic purification become insoluble impurities. preferable.

アノードバッグ10の形状は特に限定されず、バスケット状(上部開口)、袋状など各種公知の形状を採用できる。またアノードバッグ10は電解液に溶解しない材料(例えばPETなどの樹脂や、金属など)で構成されていればよい。またアノードバッグ10を使用する場合、陽極6とアノードバッグ10の間に空隙を設けることで、発生した陽極泥に起因して生じる電解液と陽極6との接触不良を抑制できる。なお、アノードバッグ内の陽極泥は別途回収して精製することで、陽極泥から所望の貴金属等を回収できる。   The shape of the anode bag 10 is not particularly limited, and various known shapes such as a basket shape (upper opening) and a bag shape can be adopted. Moreover, the anode bag 10 should just be comprised with the material (For example, resin, such as PET, a metal etc.) which does not melt | dissolve in electrolyte solution. In addition, when the anode bag 10 is used, by providing a gap between the anode 6 and the anode bag 10, poor contact between the electrolyte solution and the anode 6 caused by the generated anode mud can be suppressed. Note that the anode mud in the anode bag is separately collected and purified, so that a desired noble metal or the like can be collected from the anode mud.

本発明の電解精製装置は以上のように構成されている。以下、本発明の電解精製装置を用いた電解精製方法について図1に基づいて説明する。   The electrolytic purification apparatus of the present invention is configured as described above. Hereinafter, the electrolytic purification method using the electrolytic purification apparatus of this invention is demonstrated based on FIG.

隔膜4で区切られている第一電解槽2に充填する第一電解液としてはAgの電解精製に用いられている各種公知の電解液を用いることができる。例えば硝酸、硫酸などの酸系電解液はAgがイオンの状態で安定して存在できるため好ましい。特に硝酸はAgの溶解性に優れているためより好ましい。   As a 1st electrolyte solution with which the 1st electrolytic cell 2 divided by the diaphragm 4 is filled, the various well-known electrolyte solution used for the electrolytic purification of Ag can be used. For example, an acid electrolyte such as nitric acid or sulfuric acid is preferable because Ag can exist stably in an ionic state. In particular, nitric acid is more preferable because it is excellent in solubility of Ag.

なお、Agよりもイオン化傾向の小さい金属(Au、Pt、Pd)を溶解できる電解液は第一電解液としては好ましくない。例えばシアン化アルカリ溶液や王水もAgの電解液として用いられるが、シアン化アルカリ溶液や王水を用いるとAgよりもイオン化傾向の小さい金属も溶解されてしまうと共に、イオン化傾向の小さい金属がAgよりも優先的に析出してしまって本発明の実施が困難となるからである。   In addition, the electrolyte solution which can melt | dissolve the metal (Au, Pt, Pd) whose ionization tendency is smaller than Ag is not preferable as a 1st electrolyte solution. For example, an alkali cyanide solution or aqua regia is also used as an electrolytic solution of Ag. However, when an alkali cyanide solution or aqua regia is used, a metal having a lower ionization tendency than Ag is dissolved, and a metal having a lower ionization tendency is agglomerated. This is because it is difficult to implement the present invention because it is preferentially deposited.

第一電解液の酸濃度は電解条件等によって変動するため特に限定されないが、0.01〜1.5mol/Lであることが好ましい。第一電解液の酸濃度が低すぎると精製したAgが微細になりすぎて、電解精製後のろ過が難しく、Ag回収率が低下する。一方、第一電解液の酸濃度を高くし過ぎると、析出したAgが再溶解されてしまうことがある。   The acid concentration of the first electrolytic solution is not particularly limited because it varies depending on electrolysis conditions and the like, but is preferably 0.01 to 1.5 mol / L. If the acid concentration of the first electrolytic solution is too low, the purified Ag becomes too fine, and filtration after the electrolytic purification is difficult, and the Ag recovery rate decreases. On the other hand, if the acid concentration of the first electrolyte is too high, the precipitated Ag may be redissolved.

酸濃度の調整方法は特に限定されず、各種公知の方法を採用できる。好ましくは水(より好ましくはイオン交換水)によって希釈することが推奨される。なお、酸濃度は例えば水酸化アルカリなどのアルカリ剤で中和することもできるが、陽極にCuなどの重金属が含まれている場合、それが第一電解液中に溶出すると水酸化物として析出し、精製したAgの純度が低下することがあるため好ましくない。   The method for adjusting the acid concentration is not particularly limited, and various known methods can be employed. It is recommended to dilute with water (more preferably with ion exchange water). The acid concentration can be neutralized with, for example, an alkali agent such as alkali hydroxide, but when the anode contains a heavy metal such as Cu, it is precipitated as a hydroxide when it is eluted in the first electrolyte. In addition, the purity of the purified Ag may decrease, which is not preferable.

第二電解槽3に充填する電解液(以下、「第二電解液」ということがある)としては、導電性を有する電解液であれば特に限定されず、各種公知の電解液を用いることができる。例えば第一電解液と同様、酸系電解液を用いてもよい。酸濃度は特に限定されず、上記第一電解液と同程度でもよいが、第二陰極7に析出する金属の再溶解防止など、第二電解液に含まれている金属の種類や含有量などに応じて適宜設定すればよい。あるいは、電解精製後の第一電解液(使用済み第一電解液)を、第二電解槽3に充填してもよい。Ag回収率を高める観点からは、所定の電解精製後、使用済み第一電解液を第二電解槽3に充填し、第一電解槽2には新たな電解液を充填してAgの電解回収をおこなうことが望ましい。このように第二電解槽3に使用済み第一電解液を充填してAgの電解回収をおこなうと、陽極6と第二陰極7間に流れる電流によって第二電解液(使用済み第一電解液)中のAgを第二陰極7に析出させることができるため、Ag回収率を高めることができ、また電力の有効活用も図ることができる。   The electrolytic solution (hereinafter sometimes referred to as “second electrolytic solution”) filled in the second electrolytic cell 3 is not particularly limited as long as it is a conductive electrolytic solution, and various known electrolytic solutions can be used. it can. For example, an acid electrolyte solution may be used like the first electrolyte solution. The acid concentration is not particularly limited and may be the same level as the first electrolytic solution. However, the type and content of the metal contained in the second electrolytic solution, such as prevention of re-dissolution of the metal deposited on the second cathode 7. What is necessary is just to set suitably according to. Or you may fill the 2nd electrolytic vessel 3 with the 1st electrolyte solution (used 1st electrolyte solution) after electrolytic purification. From the viewpoint of increasing the Ag recovery rate, after the predetermined electrolytic purification, the used first electrolytic solution is filled in the second electrolytic cell 3, and the first electrolytic cell 2 is filled with a new electrolytic solution, and the electrolytic recovery of Ag is performed. It is desirable to do. As described above, when the second electrolytic cell 3 is filled with the used first electrolytic solution and the electrolytic recovery of Ag is performed, the second electrolytic solution (used first electrolytic solution) is generated by the current flowing between the anode 6 and the second cathode 7. ) Can be deposited on the second cathode 7, the Ag recovery rate can be increased, and the electric power can be effectively utilized.

なお、第二電解液としては、隔膜4の表面に金属を析出させる性質を有する電解液は好ましくない。このような電解液は第一電解槽2側から隔膜4を透過したAgイオンを隔膜4表面に析出させ、隔膜4を閉塞させて電解精製を阻害する原因となる。例えば塩素イオンを含む電解液は、隔膜4の表面にAgを析出(AgCl)させる場合がある。またアルカリ性電解液は隔膜4の表面に重金属の水酸化物を析出させることがある。   In addition, as a 2nd electrolyte solution, the electrolyte solution which has the property to deposit a metal on the surface of the diaphragm 4 is not preferable. Such an electrolytic solution causes Ag ions that have permeated through the diaphragm 4 from the first electrolytic cell 2 side to precipitate on the surface of the diaphragm 4, thereby blocking the diaphragm 4 and inhibiting electrolytic purification. For example, an electrolytic solution containing chlorine ions may precipitate Ag (AgCl) on the surface of the diaphragm 4. The alkaline electrolyte may cause heavy metal hydroxide to precipitate on the surface of the diaphragm 4.

本発明の電解精製方法では電解液の供給方法は特に限定されず、一定量の電解液を第一電解槽2に供給して、所定時間電解精製した後、使用済み第一電解液を第一電解槽2から取り出すバッチ式でもよく、あるいは一定速度で電解液を第一電解槽2に供給して供給量と同量の電解液を第一電解槽2から取り出す連続式でもよい。使用済み第一電解液はポンプ(図示せず)などの送液手段を介して管路(図示しない)で第二電解槽3と接続して第二電解槽3に供給すればよい。   In the electrolytic purification method of the present invention, the supply method of the electrolytic solution is not particularly limited. After a certain amount of electrolytic solution is supplied to the first electrolytic tank 2 and electrolytically purified for a predetermined time, the used first electrolytic solution is changed to the first electrolytic solution. It may be a batch type that is taken out from the electrolytic cell 2 or may be a continuous type that supplies the electrolytic solution to the first electrolytic cell 2 at a constant speed and extracts the same amount of electrolytic solution from the first electrolytic cell 2. The used first electrolytic solution may be supplied to the second electrolytic cell 3 by being connected to the second electrolytic cell 3 via a pipe line (not illustrated) through a liquid feeding means such as a pump (not illustrated).

電解精製中の第一電解液、および第二電解液の温度も特に限定されず、例えば20℃〜25℃程度であればよい。   The temperature of the first electrolytic solution and the second electrolytic solution during electrolytic purification is not particularly limited, and may be, for example, about 20 ° C. to 25 ° C.

本発明では第一電解液に含まれる溶解性不純物金属が析出しないように第一電解液に含まれるAg濃度を制御しながら電解精製する。具体的には陽極6と第一陰極5間、および陽極6と第二陰極7間の電流を電流制御機構8で夫々制御して溶解性不純物金属が第一陰極5に析出しないように第一電解液に含まれるAg濃度を制御する。   In the present invention, electrolytic purification is performed while controlling the concentration of Ag contained in the first electrolyte so that the soluble impurity metal contained in the first electrolyte does not precipitate. Specifically, the current between the anode 6 and the first cathode 5 and between the anode 6 and the second cathode 7 is controlled by the current control mechanism 8 so that the soluble impurity metal does not deposit on the first cathode 5. The Ag concentration contained in the electrolytic solution is controlled.

第一陰極5と陽極6間に流す電流(電流A)、および陽極6と第二陰極7間に流す電流(電流B)は、例えば次のように決めることができる。第一電解液のAg濃度低下を抑制するため、第一陰極5でAg析出に消費される電流Aは、陽極6からのAg溶出に消費される電流を超えないように制御することが好ましい。そのため電流Aの比率(電流A/(電流A+電流B))が下記式(1)で定まる値D1以下となるように電流Aおよび電流Bを制御すればよい。   The current (current A) that flows between the first cathode 5 and the anode 6 and the current (current B) that flows between the anode 6 and the second cathode 7 can be determined as follows, for example. In order to suppress a decrease in Ag concentration of the first electrolyte solution, it is preferable to control so that the current A consumed for Ag deposition at the first cathode 5 does not exceed the current consumed for Ag elution from the anode 6. Therefore, the current A and the current B may be controlled so that the ratio of the current A (current A / (current A + current B)) is not more than the value D1 determined by the following formula (1).

Figure 0006386625
(式中、M(Ag):陽極6に含有されるAgのモル百分率
M(i):陽極6に含有される各元素のうち、電解液に溶解する金属のモル百分率
V(i):陽極6に含有される各元素のイオン価数
なお、モル百分率は、Ag及び溶解性不純物金属の和に対する百分率を意味する)
Figure 0006386625
(In the formula, M (Ag): mole percentage of Ag contained in anode 6 M (i): mole percentage of metal dissolved in electrolyte among elements contained in anode 6 V (i): anode The ionic valence of each element contained in 6 Note that the mole percentage means the percentage of the sum of Ag and soluble impurity metal)

陽極6に流す電流値(電流A+電流B)は電解効率と目的とするAg生産量により任意に決定することができる。陽極6に流す電流を大きくするために電圧を上げすぎると、電解液中の溶媒成分(例えば水)の電解が起こり、電流効率が低下する。また溶媒成分の電解に伴う気体の発生により第一陰極5におけるAgの析出状態が不安定になる。したがって陽極6に流す電流は、溶媒成分の電解する電圧以下となるように制御することが望ましい。なお、溶媒成分が電解する電圧は、第一電解液の組成により異なるが、溶媒成分が電解すると電解液中に気泡が発生するため、気泡が発生しないように制御することが好ましい。   The current value (current A + current B) that flows through the anode 6 can be arbitrarily determined depending on the electrolysis efficiency and the target Ag production amount. If the voltage is increased too much in order to increase the current flowing through the anode 6, electrolysis of the solvent component (for example, water) in the electrolytic solution occurs, and the current efficiency decreases. Further, the generation of gas accompanying electrolysis of the solvent component makes the Ag deposition state at the first cathode 5 unstable. Therefore, it is desirable to control the current flowing through the anode 6 to be equal to or lower than the voltage at which the solvent component is electrolyzed. The voltage at which the solvent component is electrolyzed varies depending on the composition of the first electrolytic solution. However, since the bubbles are generated in the electrolytic solution when the solvent component is electrolyzed, it is preferable to control so that no bubbles are generated.

電流Aと電流Bに流す電流の割合は適宜変更してもよく、電解中常にAg析出速度とAg溶出速度が同じになるように、あるいはAg析出速度よりもAg溶出速度が速くなるように各電極間に流れる電流を電流制御機構8で制御することが好ましい。なお、溶解性不純物金属が析出しない程度にAg濃度を維持できれば、電解中にAg析出速度がAg溶出速度よりも速いことも許容される。   The ratio of the current to be applied to the current A and the current B may be changed as appropriate. Each time so that the Ag precipitation rate and the Ag elution rate are always the same during electrolysis, or the Ag elution rate is higher than the Ag precipitation rate. It is preferable to control the current flowing between the electrodes by the current control mechanism 8. If the Ag concentration can be maintained to such an extent that the soluble impurity metal does not precipitate, it is allowed that the Ag deposition rate is faster than the Ag elution rate during electrolysis.

また第一電解液中のAg濃度を所定の濃度に高めてから第一陰極5にAgを析出させることも望ましい。予め第一電解液中のAg濃度を高めておくと、電解精製中も溶解性不純物金属が析出しない程度に第一電解液中のAg濃度を高く維持することが容易である。そのため溶解性不純物金属の許容濃度も高くでき、溶解性不純物金属の析出をより効果的に抑えることができる。したがって例えば電流制御機構8を制御し、第一電解液のAg濃度が所定の濃度に達するまで、第一陰極5と陽極6間に流れる電流を抑制または停止すると共に、第二陰極7と陽極6間に流れる電流を大きくすればよい。例えば図1の場合、第一陰極5と陽極6間に流れる電流は、電源8aをオフあるいは電源8aを制御して第一陰極5と陽極6間に流れる電流を抑制し、第一陰極5でAgを析出させないか、析出速度を抑える。また第二陰極7と陽極6間に流れる電流は、電源8bで電流量を制御して、陽極6からのAg溶出速度が速くなるようにすれば、第一電解液のAg濃度を高めることが容易にできる。   It is also desirable to deposit Ag on the first cathode 5 after increasing the Ag concentration in the first electrolyte to a predetermined concentration. If the Ag concentration in the first electrolytic solution is increased in advance, it is easy to maintain the Ag concentration in the first electrolytic solution so high that the soluble impurity metal does not precipitate during electrolytic purification. Therefore, the allowable concentration of the soluble impurity metal can be increased, and the precipitation of the soluble impurity metal can be more effectively suppressed. Therefore, for example, the current control mechanism 8 is controlled, and the current flowing between the first cathode 5 and the anode 6 is suppressed or stopped and the second cathode 7 and the anode 6 are controlled until the Ag concentration of the first electrolyte reaches a predetermined concentration. What is necessary is just to enlarge the electric current which flows between them. For example, in the case of FIG. 1, the current flowing between the first cathode 5 and the anode 6 suppresses the current flowing between the first cathode 5 and the anode 6 by turning off the power supply 8a or controlling the power supply 8a. Do not precipitate Ag or reduce the deposition rate. Further, the current flowing between the second cathode 7 and the anode 6 can increase the Ag concentration of the first electrolyte by controlling the amount of current with the power source 8b so that the Ag elution rate from the anode 6 is increased. Easy to do.

そして第一電解液のAg濃度が所定の濃度に達してから第一陰極5と陽極6間に流れる電流と第二陰極7と陽極6間に流れる電流を電源制御機構8(電源8a、電源8b)で適切に制御し、溶解性不純物金属が第一陰極5に析出しないように第一電解液のAg濃度、すなわち、Ag溶出量とAg析出量を制御すればよい。   Then, the current flowing between the first cathode 5 and the anode 6 and the current flowing between the second cathode 7 and the anode 6 after the Ag concentration of the first electrolyte reaches a predetermined concentration are converted into the power supply control mechanism 8 (power supply 8a, power supply 8b). And the Ag concentration of the first electrolyte solution, that is, the Ag elution amount and the Ag deposition amount, may be controlled so that the soluble impurity metal does not deposit on the first cathode 5.

電解精製は第一電解液中のAgが全て還元されて析出するまで継続する必要はなく、任意の電解精製時間経過後、電解精製を終了してもよい。例えば上記電流制御機構8を制御して電解精製中のAg濃度を所望の値に維持していても、電解精製時間の経過に伴って溶解性不純物金属濃度が高くなって溶解性不純物金属が析出することがある。   The electrolytic purification does not need to be continued until all the Ag in the first electrolytic solution is reduced and deposited, and the electrolytic purification may be terminated after an arbitrary electrolytic purification time elapses. For example, even if the current control mechanism 8 is controlled and the Ag concentration during electrolytic purification is maintained at a desired value, the soluble impurity metal concentration increases as the electrolytic purification time elapses, so that the soluble impurity metal is deposited. There are things to do.

溶解性不純物金属の濃度がどの程度高くなれば析出するかについては未だ不明な点が多く、陽極の構成元素、電解液の性質、電流値などによって溶解性不純物金属の析出挙動が異なる。そのため、一義的に電解条件を決定することはできないが、予備実験によって電解条件を決定したり、または電解精製中に第一電解液のAg濃度や溶解性不純物金属濃度をモニタリングしたり、あるいは第一陰極5の析出物を監視するなどすれば、溶解性不純物金属が析出しない条件で電解精製できる。   There are still many unclear points about how high the concentration of the soluble impurity metal is, and the precipitation behavior of the soluble impurity metal varies depending on the constituent elements of the anode, the properties of the electrolyte, the current value, and the like. Therefore, although the electrolysis conditions cannot be determined uniquely, the electrolysis conditions are determined by preliminary experiments, or the Ag concentration or soluble impurity metal concentration of the first electrolytic solution is monitored during the electrolytic purification, If the deposit on the one cathode 5 is monitored, electrolytic purification can be performed under the condition that the soluble impurity metal does not precipitate.

電解精製中の第一電解液のAg濃度は電解条件、電解液の性質、陽極の組成などによって異なるため、特に限定されないが、上記したようにAg濃度が低下すると第一陰極5に溶解性不純物金属が析出し、精製したAgの純度が低下すると共に、電着したAgの形状もデンドライト状から粉状となる。したがって電解精製中の第一電解液のAg濃度は溶解性不純物金属の析出などの問題が生じないように適切に制御することが望ましい。本発明では電解精製中の第一電解液のAg濃度は、好ましくは5g/L以上、更に好ましくは30g/L以上に維持することが推奨される。   The Ag concentration of the first electrolytic solution during electrolytic purification varies depending on the electrolysis conditions, the properties of the electrolytic solution, the composition of the anode, etc., and is not particularly limited. However, as described above, when the Ag concentration decreases, The metal precipitates and the purity of the refined Ag decreases, and the shape of the electrodeposited Ag also changes from dendritic to powdery. Therefore, it is desirable to appropriately control the Ag concentration of the first electrolytic solution during electrolytic purification so that problems such as precipitation of soluble impurity metals do not occur. In the present invention, it is recommended that the Ag concentration of the first electrolytic solution during electrolytic purification is preferably maintained at 5 g / L or more, more preferably 30 g / L or more.

所定の電解精製を行った後の使用済み第一電解液にAgが残存している場合、Ag回収率を高める観点から、使用済み第一電解液に化学還元などの各種処理を施してAgの回収を行ってもよい。Agの回収方法としては、使用済み第一電解液を第二電解槽3に充填すると共に、第一電解槽2には新たな電解液を充填して電解精製することが好ましい。電解精製とAgの回収を並行して実施できるため、従来技術のようにAg回収に薬剤を添加したり、新たな回収設備を設ける必要がなく、また電力の効率的な利用も図れる。なお、使用済み第一電解液を第二電解槽3に充填する場合、第二電解槽3に充填した使用済み第一電解液(第二電解液)のAg濃度が所定の濃度まで低下したら該電解液を第二電解槽3より抜き出し、新たに使用済み第一電解液を第二電解槽3に充填すればよい。また第二陰極7に析出したAgの純度が低い場合は、更にAgの精製を行ってもよい。例えば公知の方法による精製も可能であるが、陽極6の製造工程に戻して精製してもよい。   In the case where Ag remains in the used first electrolytic solution after performing the predetermined electrolytic purification, from the viewpoint of increasing the Ag recovery rate, the used first electrolytic solution is subjected to various treatments such as chemical reduction and the like. Recovery may be performed. As a method for recovering Ag, it is preferable to fill the second electrolytic cell 3 with the used first electrolytic solution and to purify the first electrolytic cell 2 with a new electrolytic solution. Since electrolytic purification and Ag recovery can be performed in parallel, it is not necessary to add a chemical to Ag recovery or provide a new recovery facility as in the prior art, and efficient use of electric power can be achieved. In addition, when filling the used 1st electrolyte solution in the 2nd electrolytic vessel 3, if the Ag density | concentration of the used 1st electrolyte solution (2nd electrolyte solution) with which the 2nd electrolytic vessel 3 was filled falls to predetermined | prescribed density | concentration, What is necessary is just to extract electrolyte solution from the 2nd electrolytic vessel 3, and to fill the 2nd electrolytic vessel 3 with the newly used 1st electrolytic solution. Further, when the purity of Ag deposited on the second cathode 7 is low, further purification of Ag may be performed. For example, purification by a known method is possible, but purification may be performed by returning to the manufacturing process of the anode 6.

第一陰極5や第二陰極7に析出したAgは任意の手段で回収すればよく、例えばスクレーパーなどの掻き取り手段によって、容易に回収できる。回収したAgは、各種公知の処理を施してもよい。例えば純水で洗浄(ろ過などの作業を含む)した後、乾燥することで、高純度の精製Agを得ることができる。   Ag deposited on the first cathode 5 and the second cathode 7 may be collected by any means, and can be easily collected by scraping means such as a scraper. The collected Ag may be subjected to various known processes. For example, high-purity purified Ag can be obtained by washing with pure water (including operations such as filtration) and then drying.

陽極6にアノードバッグ10を用いた場合、アノードバッグ10内の陽極泥を例えば王水、過酸化水素を加えた塩酸などで溶解した後、湿式精製することで、陽極泥から所望の金属(例えばAu、Pt、Pdなど)を分離回収できる。   When the anode bag 10 is used as the anode 6, the anode mud in the anode bag 10 is dissolved in, for example, aqua regia, hydrochloric acid to which hydrogen peroxide is added, and then wet-purified to obtain a desired metal (for example, Au, Pt, Pd, etc.) can be separated and recovered.

上記本発明の電解精製方法によれば、Ag含有率が低い原料から高純度Agを精製できる。   According to the electrolytic purification method of the present invention, high purity Ag can be purified from a raw material having a low Ag content.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
本発明の装置、および方法に基づいて、低Ag含有原料を陽極に用いたAgの電解精製を行った。具体的には図1に示す構成を有する電解精製装置を用いて以下の実験を行った。隔膜4には、陰イオン交換膜(会社名ランクセス社、製品名MA−3475)を用いた。陽極6には板状(縦横サイズ2cm×3.5cm、電極面積14cm2(表裏2面))に鋳造した表1に示す組成のAg含有合金板120gを用いた。また第一陰極5にはステンレス(縦横サイズ2cm×3.5cm、電極面積7cm2)を用いた。なお、陽極6はアノードバッグ10(PET製布袋)内に挿入した状態で設置した。
Example 1
Based on the apparatus and method of the present invention, electrolytic purification of Ag was performed using a low Ag-containing raw material for the anode. Specifically, the following experiment was conducted using an electrolytic purification apparatus having the configuration shown in FIG. As the diaphragm 4, an anion exchange membrane (a company name LANXESS, product name MA-3475) was used. As the anode 6, 120 g of an Ag-containing alloy plate having the composition shown in Table 1 cast into a plate shape (length and width size: 2 cm × 3.5 cm, electrode area: 14 cm 2 (front and back two surfaces)) was used. The first cathode 5 was made of stainless steel (length and width size 2 cm × 3.5 cm, electrode area 7 cm 2 ). In addition, the anode 6 was installed in the state inserted in the anode bag 10 (PET cloth bag).

第一電解槽2には第一電解液として0.3mol/L硝酸水溶液(100mL)を充填した。第二電解槽3には0.3mol/L硝酸水溶液100mLを充填してから電解精製を行った。第一陰極5と陽極6間、陽極6と第二陰極7間の電流は電流制御機構8で制御した。第一陰極5と陽極6間に流す電流(電流A)の割合の上限は、陽極を構成するAg含有合金板のモル百分率に基づいて上記式(1)により計算した。
D1={8.2/(8.2×1+1.7×3+74.8×2+2.7×2+4.5×2+3.8×3+1.5×2+2.8×2)}×100=4.1%
The first electrolytic cell 2 was filled with a 0.3 mol / L nitric acid aqueous solution (100 mL) as the first electrolytic solution. The second electrolytic cell 3 was filled with 100 mL of a 0.3 mol / L nitric acid aqueous solution and then subjected to electrolytic purification. The current between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 was controlled by the current control mechanism 8. The upper limit of the ratio of the current (current A) flowing between the first cathode 5 and the anode 6 was calculated by the above formula (1) based on the mole percentage of the Ag-containing alloy plate constituting the anode.
D1 = {8.2 / (8.2 × 1 + 1.7 × 3 + 74.8 × 2 + 2.7 × 2 + 4.5 × 2 + 3.8 × 3 + 1.5 × 2 + 2.8 × 2)} × 100 = 4.1%

電解精製中は、第一電解液中のAg濃度をICP発光分光法にて測定し、モニタリングした。電解精製中の電解液の温度は第一電解槽2、第二電解槽3共に20〜25℃であった。   During electrolytic purification, the Ag concentration in the first electrolytic solution was measured by ICP emission spectroscopy and monitored. The temperature of the electrolytic solution during electrolytic purification was 20 to 25 ° C. for both the first electrolytic cell 2 and the second electrolytic cell 3.

第一陰極5にAgを析出させる前に、第一電解槽2の電解液中のAg濃度が30g/Lに達するまでは第二電解槽3側に設けた電源8bをオンにして陽極6と第二陰極7間に電流(0.77A)を流した。Ag濃度が所定の濃度に達するまで電源8aをオフにして第一電極5と陽極6間には電流を流さなかったため、第一陰極5にはAgが析出しなかった(開始から20時間程度)。   Before depositing Ag on the first cathode 5, the power source 8b provided on the second electrolytic cell 3 side is turned on until the Ag concentration in the electrolytic solution of the first electrolytic cell 2 reaches 30 g / L. A current (0.77 A) was passed between the second cathode 7. Since the power supply 8a was turned off until the Ag concentration reached a predetermined concentration and no current was passed between the first electrode 5 and the anode 6, Ag was not deposited on the first cathode 5 (about 20 hours from the start). .

第一電解液のAg濃度が30g/Lに達した時点で、電源8aから第一陰極5と陽極6間に電流(0.03A)を流して第一電解槽2でAgの電気分解を開始した。また第一陰極5と陽極6間、陽極6と第二陰極7に流す電流値の比率(第一電極:第二電極)は0.4:9.6を維持するように電源8a、8bで電流を制御しながら電解を継続した(開始から46時間程度)。   When the Ag concentration of the first electrolytic solution reaches 30 g / L, an electric current (0.03 A) is passed from the power source 8 a between the first cathode 5 and the anode 6 to start electrolysis of Ag in the first electrolytic cell 2. did. Further, the ratio of the current value flowing between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 (first electrode: second electrode) is maintained by the power supplies 8a and 8b so as to maintain 0.4: 9.6. Electrolysis was continued while controlling the current (about 46 hours from the start).

第一電解液中のAg濃度の経時変化を測定した。図4に示すように、電解液中のAg濃度が30g/Lに達してから電流を適切に制御して電解精製を行った場合、電解液中のAg濃度は25g/L以上を維持することができた。   The change with time of the Ag concentration in the first electrolyte solution was measured. As shown in FIG. 4, when electrolytic purification is performed by appropriately controlling the current after the Ag concentration in the electrolytic solution reaches 30 g / L, the Ag concentration in the electrolytic solution should be maintained at 25 g / L or more. I was able to.

電解精製終了後、第一陰極5に電着したAg中に含まれる不純物含有率をICP発光分光装置を使って調べた。その結果、表2に示すように、電着したAgの純度は99.98%であった。また電着したAgの結晶状態は、デンドライト状であった。   After the completion of electrolytic purification, the impurity content contained in the Ag electrodeposited on the first cathode 5 was examined using an ICP emission spectroscopic device. As a result, as shown in Table 2, the purity of the electrodeposited Ag was 99.98%. The crystal state of electrodeposited Ag was dendritic.

また電解精製終了後の第二陰極7にはAgが析出しており、第二電解槽3の電解液中のAg濃度は0.1g/L未満であった。本実施例では第二電解液からもAgを回収できるため、全体として高いAg回収率を達成できた。   Further, Ag was deposited on the second cathode 7 after completion of the electrolytic purification, and the Ag concentration in the electrolytic solution in the second electrolytic cell 3 was less than 0.1 g / L. In this example, Ag can also be recovered from the second electrolytic solution, so that a high Ag recovery rate was achieved as a whole.

実施例2
実施例1と同様に図1に示す構成を有する電解精製装置を用いて以下の実験を行った。陽極6に板状(電極面積14cm2)に鋳造した表1に示す組成のAg合金板120gを用いた以外は、上記実施例1と同じ隔膜4、第一陰極5を用いた。陽極6はアノードバッグ10(PET製布袋)内に挿入した状態で設置した。第一陰極5と陽極6間に流す電流(電流A)の割合の上限は上記式(1)に基づき計算した。
D1={41.9/(41.9×1+2.1×3+37.3×2+3.3×2+5.5×2+4.7×3+1.8×2+3.5×2)}×100=25.4%
Example 2
Similar to Example 1, the following experiment was conducted using an electrolytic purification apparatus having the configuration shown in FIG. The same diaphragm 4 and first cathode 5 as those in Example 1 were used except that 120 g of an Ag alloy plate having the composition shown in Table 1 cast into a plate shape (electrode area 14 cm 2 ) was used as the anode 6. The anode 6 was installed in the state inserted in the anode bag 10 (PET cloth bag). The upper limit of the ratio of the current (current A) flowing between the first cathode 5 and the anode 6 was calculated based on the above formula (1).
D1 = {41.9 / (41.9 × 1 + 2.1 × 3 + 37.3 × 2 + 3.3 × 2 ++ 5.5 × 2 + 4.7 × 3 + 1.8 × 2 + 3.5 × 2)} × 100 = 25.4%

第一電解槽2には第一電解液として0.3mol/L硝酸水溶液(400mL)を充填した。第二電解槽3には第二電解液として実施例1で発生した使用済み電解液(Ag10g/L、Cu50g/L、Pd3g/L)400mLを充填してから電解精製を行った。第一陰極5と陽極6間、陽極6と第二陰極7間に流す電流は電流制御機構8で制御した。   The first electrolytic cell 2 was filled with a 0.3 mol / L nitric acid aqueous solution (400 mL) as a first electrolytic solution. The second electrolytic cell 3 was filled with 400 mL of the used electrolytic solution (Ag 10 g / L, Cu 50 g / L, Pd 3 g / L) generated in Example 1 as the second electrolytic solution, and then electrolytic purification was performed. The current flowing between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 was controlled by the current control mechanism 8.

電解精製中は、実施例1と同様に第一電解液中のAg濃度をモニタリングした。電解精製中の電解液の温度は第一電解槽2、第二電解槽3共に20〜25℃であった。   During the electrolytic purification, the Ag concentration in the first electrolytic solution was monitored in the same manner as in Example 1. The temperature of the electrolytic solution during electrolytic purification was 20 to 25 ° C. for both the first electrolytic cell 2 and the second electrolytic cell 3.

第一陰極5にAgを析出させる前に、第一電解槽2の第一電解液中のAg濃度が30g/Lに達するまでは第二電解槽3側に設けた電源8bをオンにして陽極6と第二陰極7間に電流(0.64A)を流した。Ag濃度が所定の濃度に達するまで電源8aをオフにして第一電極5と陽極6間には電流を流さなかったため、第一陰極5にはAgが析出しなかった(開始から20時間程度)。   Before depositing Ag on the first cathode 5, the power source 8 b provided on the second electrolytic cell 3 side is turned on until the Ag concentration in the first electrolytic solution of the first electrolytic cell 2 reaches 30 g / L. A current (0.64 A) was passed between 6 and the second cathode 7. Since the power supply 8a was turned off until the Ag concentration reached a predetermined concentration and no current was passed between the first electrode 5 and the anode 6, Ag was not deposited on the first cathode 5 (about 20 hours from the start). .

第一電解液のAg濃度が30g/Lに達した時点で、電源8aから第一陰極5と陽極6間に電流(0.16A)を流して第一電解槽2でAgの電気分解を開始した。また第一陰極5と陽極6間、陽極6と第二陰極7に流す電流値の比率(第一電極:第二電極)は2:8を維持するように電源8a、8bで電流を制御しながら電解を継続した(開始から46時間程度)。   When the Ag concentration of the first electrolytic solution reaches 30 g / L, an electric current (0.16 A) is passed from the power source 8 a between the first cathode 5 and the anode 6 to start electrolysis of Ag in the first electrolytic cell 2. did. Further, the currents are controlled by the power supplies 8a and 8b so that the ratio of the current values flowing between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 (first electrode: second electrode) is maintained at 2: 8. The electrolysis was continued (about 46 hours from the start).

第一電解液中のAg濃度の経時変化を測定した。図5に示すように、電解液中のAg濃度が30g/Lに達してから電流を適切に制御して電解を行った場合、電解液中のAg濃度は20g/L以上を維持することができた。   The change with time of the Ag concentration in the first electrolyte solution was measured. As shown in FIG. 5, when electrolysis is performed by appropriately controlling the current after the Ag concentration in the electrolytic solution reaches 30 g / L, the Ag concentration in the electrolytic solution may be maintained at 20 g / L or more. did it.

電解精製終了後、第一陰極5に電着したAg中に含まれる不純物含有率をICP発光分光装置を使って調べた。その結果、表2に示すように、電着したAgの純度は99.97%であった。また電着したAgの結晶状態は、デンドライト状であった。   After the completion of electrolytic purification, the impurity content contained in the Ag electrodeposited on the first cathode 5 was examined using an ICP emission spectroscopic device. As a result, as shown in Table 2, the purity of the electrodeposited Ag was 99.97%. The crystal state of electrodeposited Ag was dendritic.

電解精製終了後の第二陰極7にはAgが析出しており、また第二電解槽3の電解液中のAg濃度は0.1g/L未満であった。本実施例では第二電解液からもAgを回収できるため、全体として高いAg回収率を達成できた。   Ag was deposited on the second cathode 7 after completion of the electrolytic purification, and the Ag concentration in the electrolytic solution of the second electrolytic cell 3 was less than 0.1 g / L. In this example, Ag can also be recovered from the second electrolytic solution, so that a high Ag recovery rate was achieved as a whole.

実施例3
実施例1と同様に図1に示す構成を有する電解精製装置を用いて以下の実験を行った。陽極6に板状(電極面積14cm2)に鋳造した表1に示す組成のAg合金板120gを用いた以外は、上記実施例1と同じ隔膜4、第一陰極5を用いた。なお、実施例3では陽極6はアノードバッグ10を使用しなかった。第一陰極5と陽極6間に流す電流(電流A)の割合の上限は実施例1と同様に計算した。
D1={84.1/(84.1×1+15.9×2)}×100=72.6%
Example 3
Similar to Example 1, the following experiment was conducted using an electrolytic purification apparatus having the configuration shown in FIG. The same diaphragm 4 and first cathode 5 as those in Example 1 were used except that 120 g of an Ag alloy plate having the composition shown in Table 1 cast into a plate shape (electrode area 14 cm 2 ) was used as the anode 6. In Example 3, the anode bag 10 was not used for the anode 6. The upper limit of the ratio of current (current A) flowing between the first cathode 5 and the anode 6 was calculated in the same manner as in Example 1.
D1 = {84.1 / (84.1 × 1 + 15.9 × 2)} × 100 = 72.6%

第一電解槽2には第一電解液として0.3mol/L硝酸水溶液(400mL)を充填した。第二電解槽3には第二電解液として実施例1で発生した使用済み電解液(Ag10g/L、Cu50g/L、Pd3g/L)400mLを充填してから電解精製を行った。第一陰極5と陽極6間、陽極6と第二陰極7間の電流は電流制御機構8で制御した。   The first electrolytic cell 2 was filled with a 0.3 mol / L nitric acid aqueous solution (400 mL) as a first electrolytic solution. The second electrolytic cell 3 was filled with 400 mL of the used electrolytic solution (Ag 10 g / L, Cu 50 g / L, Pd 3 g / L) generated in Example 1 as the second electrolytic solution, and then electrolytic purification was performed. The current between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 was controlled by the current control mechanism 8.

電解精製中は、実施例1と同様に第一電解液中のAg濃度をモニタリングした。電解精製中の電解液の温度は第一電解槽2、第二電解槽3共に20〜25℃であった。   During the electrolytic purification, the Ag concentration in the first electrolytic solution was monitored in the same manner as in Example 1. The temperature of the electrolytic solution during electrolytic purification was 20 to 25 ° C. for both the first electrolytic cell 2 and the second electrolytic cell 3.

第一陰極5にAgを析出させる前に、第一電解槽2の第一電解液中のAg濃度が30g/Lに達するまでは第二電解槽3側に設けた電源8bをオンにして陽極6と第二陰極7間に電流(0.24A)を流した。Ag濃度が所定の濃度に達するまで電源8aをオフにして第一電極5と陽極6間には電流を流さなかったため、第一陰極5にはAgが析出しなかった(開始から12時間程度)。   Before depositing Ag on the first cathode 5, the power source 8 b provided on the second electrolytic cell 3 side is turned on until the Ag concentration in the first electrolytic solution of the first electrolytic cell 2 reaches 30 g / L. A current (0.24 A) was passed between 6 and the second cathode 7. The power source 8a was turned off until no Ag concentration reached a predetermined concentration, and no current was passed between the first electrode 5 and the anode 6, so that no Ag was deposited on the first cathode 5 (about 12 hours from the start). .

第一電解液のAg濃度が30g/Lに達した時点で、電源8aから第一陰極5と陽極6間に電流(0.56A)を流して第一電解槽2でAgの電気分解を開始した。また第一陰極5と陽極6間、陽極6と第二陰極7に流す電流値の比率(第一電極:第二電極)は7:3を維持するように電源8a、8bで電流を制御しながら電解を継続した(開始から46時間程度)。   When the Ag concentration of the first electrolytic solution reaches 30 g / L, an electric current (0.56 A) is passed from the power source 8 a between the first cathode 5 and the anode 6 to start electrolysis of Ag in the first electrolytic cell 2. did. In addition, the current is controlled by the power supplies 8a and 8b so that the ratio of the current value flowing between the first cathode 5 and the anode 6 and between the anode 6 and the second cathode 7 (first electrode: second electrode) is maintained at 7: 3. The electrolysis was continued (about 46 hours from the start).

第一電解液中のAg濃度の経時変化を測定した。図6に示すように、第一電解液中のAg濃度が30g/Lに達してから電流を適切に制御して電解を行った場合、電解液中のAg濃度は25g/L以上を維持することができた。   The change with time of the Ag concentration in the first electrolyte solution was measured. As shown in FIG. 6, when electrolysis is performed by appropriately controlling the current after the Ag concentration in the first electrolytic solution reaches 30 g / L, the Ag concentration in the electrolytic solution is maintained at 25 g / L or more. I was able to.

電解精製終了後、第一陰極5に電着したAg中に含まれる不純物含有率を調べた。その結果、表2に示すように、電着したAgの純度は99.98%であった。また電着したAgの結晶状態は、デンドライト状であった。   After the completion of electrolytic purification, the impurity content contained in Ag electrodeposited on the first cathode 5 was examined. As a result, as shown in Table 2, the purity of the electrodeposited Ag was 99.98%. The crystal state of electrodeposited Ag was dendritic.

電解精製終了後の第二陰極7にはAgが析出しており、また第二電解槽3の電解液中のAg濃度は0.1g/L未満であった。本実施例では第二電解液からもAgを回収できるため、全体として高いAg回収率を達成できた。   Ag was deposited on the second cathode 7 after completion of the electrolytic purification, and the Ag concentration in the electrolytic solution of the second electrolytic cell 3 was less than 0.1 g / L. In this example, Ag can also be recovered from the second electrolytic solution, so that a high Ag recovery rate was achieved as a whole.

比較例
従来の装置、および方法に基づいて、Ag含有原料を陽極に用いたAgの電解精製を行った。具体的には図3に示す構成を有する電解精製装置を用いて以下の実験を行った。陽極16には板状(縦横サイズ2cm×3.5cm、電極面積7cm2)に鋳造したAg含有合金板120gを用いた。陽極16の組成は実施例2と同じである。また陰極15にはステンレス(縦横サイズ2cm×3.5cm、電極面積7cm2)を用いた。なお、陽極16はアノードバッグ10(PET製布袋)内に挿入した状態で設置した。
Comparative Example Based on a conventional apparatus and method, electrolytic purification of Ag using an Ag-containing raw material as an anode was performed. Specifically, the following experiment was conducted using an electrolytic purification apparatus having the configuration shown in FIG. As the anode 16, 120 g of an Ag-containing alloy plate cast into a plate shape (length and width size 2 cm × 3.5 cm, electrode area 7 cm 2 ) was used. The composition of the anode 16 is the same as in Example 2. The cathode 15 was made of stainless steel (length and width size 2 cm × 3.5 cm, electrode area 7 cm 2 ). In addition, the anode 16 was installed in the state inserted in the anode bag 10 (PET cloth bag).

電解槽12には電解液として0.3mol/L硝酸水溶液(400mL)を充填した。陰極15と陽極16間の電流は電流制御機構8で制御した。具体的に流す電流値は、陽極16を構成するAg含有合金板の組成に基づいて計算した。電解精製中は、電解液中のAg濃度をICP発光分光法にて測定し、モニタリングした。電解精製中の電解液の温度は20〜25℃であった。   The electrolytic bath 12 was filled with 0.3 mol / L nitric acid aqueous solution (400 mL) as an electrolytic solution. The current between the cathode 15 and the anode 16 was controlled by the current control mechanism 8. Specifically, the value of the current passed was calculated based on the composition of the Ag-containing alloy plate constituting the anode 16. During electrolytic purification, the Ag concentration in the electrolytic solution was measured by ICP emission spectroscopy and monitored. The temperature of the electrolytic solution during electrolytic purification was 20 to 25 ° C.

電解槽12に設けた電源18をオンにして陽極16と陰極15間に電流(0.35A)を流しながら電解精製を継続した(開始から46時間程度)。   The power source 18 provided in the electrolytic cell 12 was turned on, and the electrolytic purification was continued while supplying a current (0.35 A) between the anode 16 and the cathode 15 (about 46 hours from the start).

電解液中のAg濃度の経時変化を測定した。図7に示すように、電解精製中の電解液中のAg濃度は5g/L以下であった。   The time-dependent change of Ag concentration in electrolyte solution was measured. As shown in FIG. 7, the Ag concentration in the electrolytic solution during electrolytic purification was 5 g / L or less.

電解精製終了後、陰極15に電着したAg中に含まれる不純物含有率を調べた結果、表2に示すように、電着したAgの純度は97.5%であった。また電着したAgの結晶状態は、粉状であった。   After the completion of electrolytic purification, the impurity content contained in the Ag electrodeposited on the cathode 15 was examined. As a result, as shown in Table 2, the purity of the electrodeposited Ag was 97.5%. The crystal state of the electrodeposited Ag was powdery.

実施例1〜3では純度99.9%以上の高純度Agを精製できたのに対して、比較例では97.5%程度のAg純度であった。また実施例1〜3は比較例と比べてAgの回収率も高かった。   In Examples 1 to 3, high-purity Ag having a purity of 99.9% or more could be purified, whereas in Comparative Examples, the Ag purity was about 97.5%. Examples 1 to 3 also had higher Ag recovery rates than the comparative examples.

Figure 0006386625
Figure 0006386625

Figure 0006386625
Figure 0006386625

1 電解槽
2 第一電解槽
3 第二電解槽
4 隔膜
5 第一陰極
6、16 陽極
7 第二陰極
8 電流制御機構
8a、8b、8c、18 電源
9 可変抵抗器
10 アノードバッグ
12 電解槽
15 陰極
DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 1st electrolysis tank 3 2nd electrolysis tank 4 Diaphragm 5 1st cathode 6, 16 Anode 7 Second cathode 8 Current control mechanism 8a, 8b, 8c, 18 Power supply 9 Variable resistor 10 Anode bag 12 Electrolysis tank 15 cathode

Claims (4)

Ag含有原料のみを陽極に用いたAgの電解精製装置であって、
前記電解精製装置の電解槽は、隔膜により仕切られた第一電解槽と第二電解槽で構成されており、
前記第一電解槽は前記陽極、および第一陰極を備え、
前記第二電解槽は第二陰極を備えていることを特徴とするAgの電解精製装置。
An electrolysis apparatus for Ag using only an Ag-containing raw material for the anode,
The electrolytic cell of the electrolytic purification apparatus is composed of a first electrolytic cell and a second electrolytic cell partitioned by a diaphragm,
The first electrolytic cell includes the anode and a first cathode,
The electrolysis apparatus for Ag, wherein the second electrolytic cell includes a second cathode.
前記第一陰極と前記第二陰極は隔膜を挟んで電気的に並列に配置されている、請求項1に記載の電解精製装置。   The electrolytic purification apparatus according to claim 1, wherein the first cathode and the second cathode are electrically arranged in parallel with a diaphragm interposed therebetween. 前記電解精製装置は、少なくとも前記陽極と前記第一陰極間、および前記陽極と前記第二陰極間のうち、任意の電極間の電流値を制御する電流制御機構を備えている、請求項1または2に記載の電解精製装置。   The said electrolytic purification apparatus is equipped with the electric current control mechanism which controls the electric current value between arbitrary electrodes among the said anode and said 1st cathode, and between the said anode and said 2nd cathode. 2. The electrolytic purification apparatus according to 2. 前記陽極は、Agよりもイオン化傾向の小さい金属を含む陽極泥を透過しないアノードバッグを備えている請求項1から3のいずれかに記載の電解精製装置。   The electrolytic purification apparatus according to any one of claims 1 to 3, wherein the anode includes an anode bag that does not transmit anode mud containing a metal that has a smaller ionization tendency than Ag.
JP2017117309A 2017-06-15 2017-06-15 Ag electrorefining equipment Active JP6386625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017117309A JP6386625B2 (en) 2017-06-15 2017-06-15 Ag electrorefining equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017117309A JP6386625B2 (en) 2017-06-15 2017-06-15 Ag electrorefining equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013188218A Division JP6162554B2 (en) 2013-09-11 2013-09-11 Electrolytic purification apparatus for Ag and method for electrolytic purification of Ag using the apparatus

Publications (2)

Publication Number Publication Date
JP2017155343A JP2017155343A (en) 2017-09-07
JP6386625B2 true JP6386625B2 (en) 2018-09-05

Family

ID=59809338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017117309A Active JP6386625B2 (en) 2017-06-15 2017-06-15 Ag electrorefining equipment

Country Status (1)

Country Link
JP (1) JP6386625B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085610A1 (en) 2020-10-21 2022-04-28 アサヒプリテック株式会社 Condition monitoring system for metal recovery device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206490A (en) * 1986-10-07 1988-08-25 Tanaka Electron Ind Co Ltd Production of high-purity copper
JPS63293191A (en) * 1987-05-27 1988-11-30 Nippon Mining Co Ltd Anode bag structure
JPH1121689A (en) * 1997-07-07 1999-01-26 Ishifuku Metal Ind Co Ltd Production of high-purity silver
JP2001049480A (en) * 1999-08-10 2001-02-20 Agency Of Ind Science & Technol Electrolytic cell
US6896788B2 (en) * 2000-05-22 2005-05-24 Nikko Materials Company, Limited Method of producing a higher-purity metal
JP3878402B2 (en) * 2000-05-22 2007-02-07 日鉱金属株式会社 Metal purification method
JP2003328199A (en) * 2002-05-10 2003-11-19 Mitsubishi Materials Corp Copper plating method and apparatus therefor, method of producing copper and apparatus therefor, metal plating method and apparatus therefor, and method of producing metal and apparatus therefor
JP4787951B2 (en) * 2004-03-30 2011-10-05 Dowaメタルマイン株式会社 Method for electrolytic purification of silver

Also Published As

Publication number Publication date
JP2017155343A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
CN101534948B (en) Method of extracting platinum group metals from waste catalysts through electrochemical process
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
JP2004502036A (en) Method and apparatus for processing metal, and metal manufactured by processing
KR20140098056A (en) Method for regenerating plating liquid, plating method, and plating apparatus
CN102725086A (en) Method and arrangement for producing metal powder
US3650925A (en) Recovery of metals from solution
JP6162554B2 (en) Electrolytic purification apparatus for Ag and method for electrolytic purification of Ag using the apparatus
JP6386625B2 (en) Ag electrorefining equipment
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
WO1986007046A1 (en) Method and apparatus for purification of gold
JP2018525220A (en) System and method for recovering catalytic noble metals from aqueous galvanic processing solutions
KR100991229B1 (en) Separation and recycling method of gold and silver from gold and silver alloy
US7794582B1 (en) Method of recovering metal ions recyclable as soluble anode from waste plating solutions
JPH11229172A (en) Method and apparatus for producing high-purity copper
JP5561201B2 (en) Method for producing electric cobalt or electric nickel
JP5852916B2 (en) Precious metal recovery method
WO2002008492A1 (en) Process and method for recovery of halogens
WO2013054341A4 (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
JP2003328199A (en) Copper plating method and apparatus therefor, method of producing copper and apparatus therefor, metal plating method and apparatus therefor, and method of producing metal and apparatus therefor
JP2007532772A (en) Precious metal recovery
JP2020055728A (en) Method of producing sulfuric acid solution
KR102391443B1 (en) Method for collecting platinum group noble metal from metallic object
JP2594802B2 (en) Electrolytic reduction method
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
KR101514997B1 (en) Noble metal electrolysis collecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250