[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6384458B2 - 燃焼システム制御装置 - Google Patents

燃焼システム制御装置 Download PDF

Info

Publication number
JP6384458B2
JP6384458B2 JP2015228271A JP2015228271A JP6384458B2 JP 6384458 B2 JP6384458 B2 JP 6384458B2 JP 2015228271 A JP2015228271 A JP 2015228271A JP 2015228271 A JP2015228271 A JP 2015228271A JP 6384458 B2 JP6384458 B2 JP 6384458B2
Authority
JP
Japan
Prior art keywords
combustion
accuracy
estimation
fuel
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015228271A
Other languages
English (en)
Other versions
JP2017096148A (ja
Inventor
真弥 星
真弥 星
篤紀 岡林
篤紀 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015228271A priority Critical patent/JP6384458B2/ja
Priority to US15/774,404 priority patent/US10280849B2/en
Priority to PCT/JP2016/082746 priority patent/WO2017090404A1/ja
Publication of JP2017096148A publication Critical patent/JP2017096148A/ja
Application granted granted Critical
Publication of JP6384458B2 publication Critical patent/JP6384458B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/029Determining density, viscosity, concentration or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、燃焼システムの作動を制御する燃焼システム制御装置に関する。
内燃機関を備える燃焼システムの作動を制御する従来の制御装置は、例えば、排気エミッションや燃料消費率を適正範囲に保ちつつ所望の動力を出力させるように、燃料の噴射量や噴射時期、EGR量、過給圧等を制御する。
さて、燃焼システムに給油される燃料の性状、例えば燃料の動粘度や密度、揮発性、着火性等は、その燃料の採掘場所や精製場所等によって様々である。そして、燃料の性状が異なれば、最適な制御内容も異なってくる。そこで従来では、燃料の動粘度を動粘度センサで検出し、その検出結果に応じて上記制御内容を補正する技術が知られている。
特開2013−24138号公報
しかしながら、燃料に含まれる成分が燃料毎に異なることは勿論のこと、その各種成分の混合割合も燃料毎に異なる。例えば、アロマ類の成分が多い燃料やパラフィン類の成分が多い燃料等、その燃料の採掘場所や精製場所等によって、燃料に含まれる成分やその混合割合は様々である。そのため、動粘度センサによる検出値が同じ燃料であっても、実際には燃料に含まれている成分が異なっていたり、その混合割合が異なっていたりする。よって、動粘度センサの検出結果に応じて制御内容を変更する従来手法では、燃料に応じた最適な制御を実施することに限界がある。
本発明は、上記問題を鑑みてなされたもので、その目的は、燃料に応じた最適な内容で燃焼システムの作動を制御することの向上を図った燃焼システム制御装置を提供することにある。
ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
開示される発明のひとつは、
内燃機関(10)と、内燃機関の燃焼状態を表わす燃焼パラメータを検出する燃焼センサ(21)と、内燃機関の燃焼に用いる燃料の性状を表わす性状パラメータを検出する性状センサ(27、28)と、を備える燃焼システムに適用され、燃焼システムの作動を制御する燃焼システム制御装置において、
燃焼センサにより検出された燃焼パラメータのうち、異なる燃焼条件で燃焼した場合の各々の燃焼パラメータに基づき、燃料に含まれている分子構造種毎の混合割合および燃料の性状を表した性状値の少なくとも一方を第1推定値として推定する第1推定部(81a)と、
性状センサにより検出された複数の性状パラメータに基づき、混合割合および性状値の少なくとも一方を第2推定値として推定する第2推定部(82a)と、
第1推定値および第2推定値を比較して、推定精度が高い方の推定値を選択する比較選択部(83)と、
比較選択部により選択された推定値を用いて燃焼システムの作動を制御する制御部(85a、85b、85c、85d、85e)と、
を備える燃焼システム制御装置である。
ここで、燃焼センサで検出される着火遅れ時間や熱発生量等の燃焼パラメータの値は、筒内圧力や筒内温度等の燃焼条件に応じて異なってくる。そして、燃焼条件の違いに対する燃焼パラメータの違いは、燃料に含まれている分子構造種毎の混合割合の違いに起因して異なってくる。例えば、燃料に含まれている直鎖パラフィン類、側鎖パラフィン類、ナフテン類および芳香族類の各々についての混合割合の違いに起因して、筒内圧力と着火遅れ時間との関係を表わす特性マップは異なってくる。このことは、燃焼条件の違いに応じた燃焼パラメータの違いを検出すれば、分子構造種毎の混合割合を推定できることを意味する。要するに、本発明者らは、「異なる燃焼条件による各々の燃焼パラメータから、燃料に含まれている分子構造種毎の混合割合を推定できる」との知見を得ている。なお、上述の如く混合割合を推定できるということは、それらの推定された混合割合から、燃料の蒸留性状T50や動粘度、密度等の一般性状値、および平均炭素数やHC比等の中間パラメータを高精度で推定できることを意味する。
これらの知見に鑑み、上記発明によれば、燃焼センサにより検出された燃焼パラメータのうち、異なる燃焼条件で燃焼した場合の各々の燃焼パラメータに基づき、上述した混合割合および性状値の少なくとも一方を第1推定値として推定する。なお、上記性状値の具体例としては、先述した一般性状値や中間パラメータが挙げられる。そして、第1推定値を用いて燃焼システムの作動を制御するので、動粘度センサで検出された動粘度に基づき制御する従来装置に比べて、燃料に応じた最適な内容で制御できる。
また、性状センサで検出される動粘度や密度等の複数種類の性状パラメータの組み合わせは、上記混合割合との相関がある。性状パラメータの種類が1つであっても、その性状パラメータが検出される時の条件、例えば燃料の温度や圧力が異なれば、条件毎に異なる複数の性状パラメータを取得することができる。そして、これら複数の性状パラメータの組み合わせは、上記混合割合との相関がある。要するに、「複数の性状パラメータから、燃料に含まれている分子構造種毎の混合割合を推定できる」との知見を本発明者らは得ている。なお、このように混合割合を推定できるということは、それらの推定された混合割合から上記一般性状および中間パラメータを高精度で推定できることを意味する。
これらの知見に鑑み、上記発明によれば、性状センサにより検出された複数の性状パラメータに基づき上記混合割合および性状値の少なくとも一方を第2推定値として推定する。そして、第2推定値を用いて燃焼システムの作動を制御するので、動粘度センサで検出された動粘度に基づき制御する従来装置に比べて、燃料に応じた最適な内容で制御できる。
さらに上記発明では、比較選択部を備え、第1推定値および第2推定値のうち推定精度が高い方の推定値が選択され、その選択された推定値を用いて燃焼システムの作動を制御するので、燃料に応じた最適な内容で制御することを、より一層向上できる。
本発明の第1実施形態に係る燃焼システム制御装置と、その装置が適用される内燃機関の燃焼システムを説明する図。 着火遅れ時間の説明図。 複数の着火遅れ時間、燃えやすさを表わす燃焼環境値の組み合わせである燃焼条件、および各種成分の混合量の関係を説明する図。 筒内酸素濃度に起因して生じる着火遅れ時間の変化を表す特性線と、燃料の分子構造種との関係を示す図。 筒内温度に起因して生じる着火遅れ時間の変化を表す特性線と、燃料の分子構造種との関係を示す図。 着火遅れ時間に基づき特定される特性線と、分子構造種の混合割合との関係を示す図。 図1に示すマイコンの処理フローであって、着火遅れ時間を記憶する手順を示すフローチャート。 図1に示すマイコンの処理フローであって、分子構造種毎の混合割合を推定する手順を示すフローチャート。 複数の性状パラメータ、分子構造種の混合量、および感度係数の関係を説明する図。 分子構造種の混合量、複数の性状パラメータ、および換算値の関係を説明する図。 図1に示すマイコンの処理フローであって、燃焼システムを制御する手順を示すフローチャート。 図11の処理で算出される推定精度が、時間経過とともに変化していく一態様を示す図。 本発明の第2実施形態において、燃焼条件および燃温条件を変更する手順を示すフローチャート。 本発明の第3実施形態において、燃焼パラメータを再取得する手順を示すフローチャート。 本発明の第6実施形態において、燃焼センサの故障有無を診断する手順を示すフローチャート。 本発明の第6実施形態において、性状センサの故障有無を診断する手順を示すフローチャート。
以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。
(第1実施形態)
本実施形態に係る燃焼システム制御装置は、図1に示す電子制御装置(つまりECU80)により提供される。ECU80は、マイクロコンピュータ(つまりマイコン80a)や、図示しない入力処理回路および出力処理回路等を備える。マイコン80aは、図示しない中央処理装置(つまりCPU)およびメモリ80bを備える。メモリ80bに記憶された所定のプログラムをCPUが実行することで、マイコン80aは、燃焼システムが備える燃料噴射弁15、燃料ポンプ15p、EGRバルブ17a、調温バルブ17d、および過給調圧機器26等の作動を制御する。これらの制御により、燃焼システムが備える内燃機関10での燃焼状態は、所望の状態に制御される。燃焼システムおよびECU80は車両に搭載されたものであり、当該車両は、内燃機関10の出力を駆動源として走行する。
内燃機関10は、シリンダブロック11、シリンダヘッド12およびピストン13等を備える。シリンダヘッド12には、吸気バルブ14in、排気バルブ14ex、燃料噴射弁15、および燃焼センサをなす筒内圧センサ21が取り付けられている。コモンレール15c等の燃料通路を形成する部分または燃料タンクには、燃料の密度を検出する密度センサ27、および燃料の動粘度を検出する動粘度センサ28が取り付けられている。密度センサ27により検出される燃料密度および動粘度センサ28により検出される動粘度は、燃料の性状を表わす性状パラメータに相当し、これらのセンサは性状パラメータを検出する性状センサに相当する。
燃料ポンプ15pは、燃料タンク内の燃料をコモンレール15cへ圧送する。ECU80が燃料ポンプ15pの作動を制御することで、コモンレール15c内の燃料は、目標圧力Ptrgに維持された状態でコモンレール15cに蓄えられる。コモンレール15cは、蓄圧された燃料を各気筒の燃料噴射弁15へ分配する。燃料噴射弁15から噴射された燃料は、燃焼室11aで吸気と混合して混合気を形成し、混合気はピストン13により圧縮されて自着火する。要するに、内燃機関10は圧縮自着火式のディーゼルエンジンであり、燃料には軽油が用いられている。
燃料噴射弁15は、電磁アクチュエータおよび弁体をボデー内部に収容して構成されている。電磁アクチュエータへの通電をECU80がオンさせると、電磁アクチュエータの電磁吸引力により図示しない背圧室のリーク通路が開弁し、背圧低下に伴い弁体が開弁作動し、ボデーに形成されている噴孔が開弁されて噴孔から燃料が噴射される。上記通電をオフさせると、弁体が閉弁作動して燃料噴射が停止される。
燃料ポンプ15pは、ピストン15p1およびシリンダ15p2を有する構造であり、ピストン15p1が燃料を圧送する構造の場合において、ピストン15p1の外周部S1が、シリンダ15p2の内周面と摺動する摺動部に該当する。燃料噴射弁15は、噴孔を開閉する弁体をボデー内部に収容した構造であり、弁体の外周部S2が、ボデーの内周面と摺動する摺動部に該当する。このような摺動部においては、燃料が潤滑剤として機能している。
シリンダヘッド12に形成されている吸気ポート12inおよび排気ポート12exには、吸気管16inおよび排気管16exが接続されている。吸気管16inおよび排気管16exにはEGR管17が接続されており、排気の一部であるEGRガスが、EGR管17を通じて吸気管16inへ流入(つまり還流)する。EGR管17にはEGRバルブ17aが取り付けられている。ECU80がEGRバルブ17aの作動を制御することで、EGR管17の開度が制御され、EGRガスの流量が制御される。
さらに、EGR管17のうちEGRバルブ17aの上流部分には、EGRガスを冷却するEGRクーラ17b、バイパス管17cおよび調温バルブ17dが取り付けられている。バイパス管17cは、EGRガスがEGRクーラ17bをバイパスするバイパス流路を形成する。調温バルブ17dは、バイパス流路の開度を調整することで、EGRクーラ17bを流れるEGRガスと、バイパス流路を流れるEGRガスとの割合を調整し、ひいては、吸気管16inへ流入するEGRガスの温度を調整する。ここで、吸気ポート12inへ流入する吸気には、吸気管16inから流入する外部空気(つまり新気)およびEGRガスが含まれる。したがって、調温バルブ17dによりEGRガスの温度を調整することは、吸気ポート12inへ流入する吸気の温度であるインマニ温度を調整することに相当する。
燃焼システムは図示しない過給機を備える。過給機は、排気管16exに取り付けられるタービン、および吸気管16inに取り付けられるコンプレッサを有する。排気の流速エネルギによりタービンが回転すると、タービンの回転力によりコンプレッサが回転し、コンプレッサにより新気が圧縮つまり過給される。先述した過給調圧機器26は、タービンの容量を変化させる機器であり、ECU80が過給調圧機器26の作動を制御することで、タービン容量が調整され、これにより、コンプレッサによる過給圧が制御される。
ECU80には、筒内圧センサ21、酸素濃度センサ22、レール圧センサ23、クランク角センサ24およびアクセルペダルセンサ25等、各種センサによる検出信号が入力される。
筒内圧センサ21は、燃焼室11aの圧力(つまり筒内圧)に応じた検出信号を出力する。筒内圧センサ21は、圧力検出素子に加えて温度検出素子21aを有しており、燃焼室11aの温度(つまり筒内温度)に応じた検出信号も出力する。酸素濃度センサ22は、吸気管16inに取り付けられ、吸気中の酸素濃度に応じた検出信号を出力する。検出対象となる吸気は、新気とEGRガスが混合したものである。レール圧センサ23はコモンレール15cに取り付けられており、蓄圧されている燃料の圧力(つまりレール圧)に応じた検出信号を出力する。クランク角センサ24は、ピストン13により回転駆動するクランク軸の回転速度であって、単位時間あたりのクランク軸の回転数(つまりエンジン回転数)に応じた検出信号を出力する。アクセルペダルセンサ25は、車両運転者により踏み込み操作されるアクセルペダルの踏込量(つまりエンジン負荷)に応じた検出信号を出力する。
ECU80は、これらの検出信号に基づき、燃料噴射弁15、燃料ポンプ15p、EGRバルブ17a、調温バルブ17dおよび過給調圧機器26の作動を制御する。これにより、燃料の噴射開始時期、噴射量、噴射圧、EGRガス流量、インマニ温度および過給圧が制御される。
燃料噴射弁15の作動を制御している時のマイコン80aは、燃料の噴射開始時期、噴射量、および多段噴射に係る噴射段数を制御する噴射制御部85aとして機能する。燃料ポンプ15pの作動を制御している時のマイコン80aは、噴射圧を制御する燃圧制御部85bとして機能する。EGRバルブ17aの作動を制御している時のマイコン80aは、EGRガス流量を制御するEGR制御部85cとして機能する。過給調圧機器26の作動を制御している時のマイコン80aは、過給圧を制御する過給圧制御部85dとして機能する。調温バルブ17dの作動を制御している時のマイコン80aは、インマニ温度を制御するインマニ温度制御部85eとして機能する。これらの制御部は、燃焼システムの作動を制御する制御部を提供する。
マイコン80aは、燃焼に関する物理量の検出値(つまり燃焼パラメータ)を取得する燃焼パラメータ取得部81としても機能する。本実施形態に係る燃焼パラメータとは、図2に示す着火遅れ時間TDのことである。図2の上段は、マイコン80aから出力されるパルス信号を示す。パルス信号にしたがって燃料噴射弁15への通電が制御される。具体的には、パルスオンのt1時点で通電が開始され、パルスオン期間Tqに通電オンが継続される。要するに、パルスオンのタイミングにより噴射開始時期が制御される。また、パルスオン期間Tqにより噴射期間が制御され、ひいては噴射量が制御される。
図2の中段は、パルス信号にしたがって弁体が開弁作動および閉弁作動した結果生じる、噴孔からの燃料の噴射状態の変化を示す。具体的には、単位時間あたりに噴射される燃料の噴射量(つまり噴射率)の変化を示す。図示されるように、通電開始のt1時点から、実際に噴射が開始されるt2時点までにはタイムラグが存在する。また、通電終了時点から実際に噴射が停止されるまでにもタイムラグが存在する。実際に噴射が為されている期間Tq1は、パルスオン期間Tqで制御される。
図2の下段は、噴射された燃料の、燃焼室11aでの燃焼状態の変化を示す。具体的には、噴射された燃料と吸気の混合気が自着火燃焼することに伴い生じる、単位時間あたりの熱量(つまり熱発生率)の変化を示す。図示されるように、噴射開始のt2時点から、実際に燃焼が開始されるt3時点までにはタイムラグが存在する。本実施形態では、通電開始のt1時点から燃焼開始のt3時点までの時間を着火遅れ時間TDと定義する。
燃焼パラメータ取得部81は、筒内圧センサ21で検出される筒内圧の変化に基づき、燃焼開始のt3時点を推定する。具体的には、ピストン13が上死点に達してからクランク角が所定量だけ回転する期間において、筒内圧が急上昇した時期を燃焼開始時期(つまりt3時点)と推定する。この推定結果に基づき、着火遅れ時間TDは燃焼パラメータ取得部81により算出される。さらに燃焼パラメータ取得部81は、燃焼時の各種状態(つまり燃焼条件)を、燃焼毎に取得する。具体的には、筒内圧、筒内温度、吸気酸素濃度、噴射圧力および混合気流速の少なくとも1つを、燃焼環境値として取得する。
これらの燃焼環境値は、燃料の燃えやすさを表わすパラメータであり、燃焼直前での筒内圧が高いほど、燃焼直前での筒内温度が高いほど、吸気酸素濃度が高いほど、噴射圧力が高いほど、混合気流速が速いほど、混合気が自着火しやすく燃えやすいと言える。燃焼直前での筒内圧および筒内温度として、例えば、燃料噴射弁15への通電を開始するt1時点で検出された値を用いればよい。筒内圧は筒内圧センサ21により検出され、筒内温度は温度検出素子21aにより検出され、吸気酸素濃度は酸素濃度センサ22により検出され、噴射圧力はレール圧センサ23により検出される。混合気流速は、燃焼直前における燃焼室11a内での混合気の流速である。この流速は、上記エンジン回転数が速いほど速くなるので、エンジン回転数に基づき算出される。燃焼パラメータ取得部81は、取得した着火遅れ時間TDを、その燃焼に係る上記燃焼環境値の組み合わせ(つまり燃焼条件)と関連付けてメモリ80bに記憶させる。
マイコン80aは、異なる燃焼条件で検出された複数の燃焼パラメータに基づき、燃料に含まれている複数種類の分子構造種について、分子構造種毎の混合割合を推定する。この推定を実行している時のマイコン80aは、筒内圧センサ21で検出された燃焼パラメータにもとづき混合割合を推定する第1推定部81aに相当する。
例えば、異なる燃焼条件毎の着火遅れ時間TDを図3に示す行列式に代入することで、各種成分の混合量を算出する。なお、算出された各々の混合量を総量で除算することで、各種成分の混合割合が算出される。
図3の左辺にある行列は、x行1列であり、この行列が有する数値は、各種成分の混合量を表わす。各種成分とは、分子構造の種類の違いにより分類される成分である。分子構造の種類には、直鎖パラフィン類、側鎖パラフィン類、ナフテン類およびアロマ類が含まれている。
右辺の左側にある行列は、x行y列であり、この行列が有する数値は、予め実施した試験に基づき定められた定数である。右辺の右側にある行列は、y行1列であり、この行列が有する数値は、燃焼パラメータ取得部81により取得された着火遅れ時間TDである。例えば、1行1列目の数値は、燃焼環境値の所定の組み合わせからなる燃焼条件iの時に取得された着火遅れ時間TD(条件i)であり、2行1列目の数値は、燃焼条件jの時に取得された着火遅れ時間TD(条件j)である。燃焼条件iと燃焼条件jとでは、全ての燃焼環境値が異なる値に設定されている。以下の説明では、燃焼条件iに係る筒内圧、筒内温度、吸気酸素濃度および噴射圧力を、P(条件i)、T(条件i)、O2(条件i)、Pc(条件i)とする。燃焼条件jに係る筒内圧、筒内温度、吸気酸素濃度および噴射圧力を、P(条件j)、T(条件j)、O2(条件j)、Pc(条件j)とする。
次に、図4、図5および図6を用いて、図3の行列式に燃焼条件毎の着火遅れ時間TDを代入することで各分子構造種の混合割合が算出できる理屈を説明する。
図4に示すように、燃焼に係る混合気に含まれる酸素の濃度(つまり筒内酸素濃度)が高いほど自着火しやすくなるので、着火遅れ時間TDが短くなる。図中の3本の実線(1)(2)(3)は、筒内酸素濃度と着火遅れ時間TDとの関係を示す特性線である。但し、この特性線は燃料に応じて異なる。厳密には、燃料に含まれている各々の分子構造種の混合割合に応じて特性線は異なる。したがって、筒内酸素濃度がO(条件i)の場合の着火遅れ時間TDを検出すれば、いずれの分子構造種であるかを推測できる。特に、筒内酸素濃度がO(条件i)の場合とO(条件j)の場合とで着火遅れ時間TDを比較すれば、より高精度で混合割合を推定できる。
同様にして、図5に示すように、筒内温度が高いほど自着火しやすくなるので、着火遅れ時間TDが短くなる。図中の3本の実線(1)(2)(3)は、筒内温度と着火遅れ時間TDとの関係を示す特性線である。但し、この特性線は燃料に応じて異なり、厳密には、燃料に含まれている各々の分子構造種の混合割合に応じて異なる。したがって、筒内温度がB1の場合の着火遅れ時間TDを検出すれば、いずれの分子構造種であるかを推測できる。特に、筒内温度がT(条件i)の場合とT(条件j)の場合とで着火遅れ時間TDを比較すれば、より高精度で混合割合を推定できる。
同様に噴射圧が高ければ、酸素を取り込みやすく自着火しやすくなるので、着火遅れ時間TDが短くなる。厳密には、燃料に含まれている各々の分子構造種の混合割合に応じて感度が異なる。したがって、噴射圧が異なる場合の着火遅れ時間TDを検出すれば、より高精度で混合割合を推定できる。
また、筒内酸素濃度に係る特性線(図4参照)に対する影響度の高い分子構造種と、筒内温度に係る特性線(図5参照)に対する影響度の高い分子構造種とは異なる。このように、複数の燃焼条件の各々に係る特性線に対して影響度の高い分子構造種は異なる。したがって、複数の燃焼環境値の組み合わせ(つまり燃焼条件)を異なる値にして取得された着火遅れ時間TDの組み合わせに基づけば、例えば図6の如くいずれの分子構造種の混合割合が多いのかを高精度で推定できる。なお、以下の説明では筒内酸素濃度を第1燃焼環境値、筒内温度を第2燃焼環境値と呼び、第1燃焼環境値に係る特性線を第1特性線、第2燃焼環境値に係る特性線を第2特性線と呼ぶ。
図6に例示する分子構造種Aは、第1燃焼環境値としての筒内酸素濃度に係る特性線(以下、第1特性線と呼ぶ)に対する影響度が高い分子構造種である。また、分子構造種Bは、第2燃焼環境値としての筒内温度に係る特性線(以下、第2特性線と呼ぶ)に対する影響度が高い分子構造種であり、分子構造種Cは、第3燃焼環境値に係る第3特性線に対する影響度が高い分子構造種である。第1燃焼環境値の変化に対して着火遅れ時間TDの変化が大きく現れるほど、分子構造種Aが多く混合していると言える。同様にして、第2燃焼環境値の変化に対して着火遅れ時間TDの変化が大きく現れるほど分子構造種Bが多く混合しており、第3燃焼環境値の変化に対して着火遅れ時間TDの変化が大きく現れるほど分子構造種Cが多く混合していると言える。したがって、異なる燃料(1)(2)(3)の各々に対し、分子構造種A、B、Cの混合割合を推定できる。
図7は、燃焼パラメータ取得部81が実行するプログラムの処理手順を示すフローチャートである。この処理は、以下に説明するパイロット噴射が指令される毎に実行される。1燃焼サイクル中に同一の燃料噴射弁15から複数回噴射(多段噴射)させるように噴射制御する場合がある。これら複数回の噴射のうち、最も噴射量が多く設定された噴射をメイン噴射と呼び、その直前の噴射をパイロット噴射と呼ぶ。
先ず、図7のステップS10において、上述した通り複数の燃焼環境値を取得する。次に、ステップS11において、上述した通り筒内圧センサ21の検出値に基づき燃焼開始のt3時点を推定して、パイロット噴射に係る着火遅れ時間TDを算出する。次に、ステップS12において、ステップS10で取得した複数の燃焼環境値(つまり燃焼条件)と関連付けて、ステップS11で算出した着火遅れ時間TDをメモリ80bに記憶させる。
具体的には、各燃焼環境値が取り得る数値範囲を複数の領域に区分けしておき、複数の燃焼環境値の領域の組み合わせ予め設定しておく。例えば図3に示す着火遅れ時間TD(i)は、P(i)、T(i)、O(i)、Pc(i)の領域の組み合わせ時に取得された着火遅れ時間TDを表わす。同様に、着火遅れ時間TD(j)は、P(j)、T(j)、O(j)、Pc(j)の領域の組み合わせ時に取得された着火遅れ時間TDを表わす。ステップS12では、ステップS10で取得した複数の燃焼環境値の組み合わせが、予め設定した組み合わせ(つまり燃焼条件)のいずれに該当するかを判別する。そして、該当する燃焼条件に対応する着火遅れ時間TDとして、ステップS11で算出した着火遅れ時間TDを記憶させる。つまり、該当する燃焼条件と関連付けて着火遅れ時間TDを記憶させる。
なお、予め設定した複数の燃焼条件の中に、ステップS10で取得した燃焼条件に該当するものが存在しない場合がある。この場合には、着火遅れ時間TDをメモリ80bに記憶させることなく図7の処理を終了する。
図8は、第1推定部81aが実行するプログラムの処理手順を示すフローチャートである。この処理は、内燃機関10の運転期間中、マイコン80aにより所定周期で繰返し実行される。先ず、図8のステップS20において、ユーザが給油することに起因して、燃料タンクに貯留されている燃料に別の燃料が混合した可能性が高い場合に、分子構造種の混合割合が変化したとみなし、リセット条件が成立したと判定する。例えば、内燃機関10の運転停止時に、燃料タンクの燃料残量を検出するセンサにより燃料残量の増大が検出された場合に、リセット条件が成立したと判定する。
リセット条件が成立したと判定された場合、続くステップS21において、推定されていた混合割合の値をリセットする。このリセットでは、後述するステップS23で推定された最新の混合割合の値をリセットするとともに、図7の処理にて記憶させた着火遅れ時間TDの値もリセットする。したがって、前回リセット条件が成立してから次のリセット条件が成立するまでの期間、メモリ80bに記憶される着火遅れ時間TDが蓄積されていくこととなる。
続くステップS22では、メモリ80bに記憶されている着火遅れ時間TDの数(つまりサンプリング数)が、分子構造種の混合割合を推定するのに十分な数だけ蓄積されているか否かを判定する。具体的には、メモリ80bに蓄積されているサンプリング数が、予め設定された数以上である場合に、サンプリング数が十分であると判定する。或いは、記憶対象となる領域の組み合わせ(つまり燃焼条件)のうち、予め設定しておいた複数の燃焼条件に対して着火遅れ時間TDが記憶されている場合に、サンプリング数が十分であると判定する。
サンプリング数が十分であると判定された場合、続くステップS23において、サンプリングされた着火遅れ時間TDを図3の行列式に代入して、分子構造種毎の混合量を算出する。そして、このように算出された分子構造種毎の混合量に基づき、分子構造種毎の混合割合を算出する。
先述した通り、マイコン80aは、噴射制御部85a、燃圧制御部85bおよびEGR制御部85cとしても機能する。噴射制御部85aは、噴射開始時期、噴射量および噴射段数が目標値となるように図2のパルス信号を設定することで、噴射開始時期、噴射量および噴射段数を制御(つまり噴射制御)する。上記噴射段数とは、先述した多段噴射に係る噴射回数のことである。
燃圧制御部85bは、燃料ポンプ15pに吸入される燃料の流量を制御する調量弁の作動を制御する。具体的には、レール圧センサ23で検出された実レール圧と目標圧力Ptrg(つまり目標値)との偏差に基づき、調量弁の作動をフィードバック制御する。その結果、燃料ポンプ15pによる単位時間当りの吐出量が制御され、実レール圧が目標値となるように制御(つまり燃圧制御)される。また、EGR制御部85cは、EGR量が目標値となるようにEGRバルブ17aのバルブ開度を制御(つまりEGR制御)する。
図1の説明に戻り、マイコン80aは、燃料の性状を表わす物理量(つまり性状パラメータ)を取得する性状パラメータ取得部82としても機能する。性状パラメータの具体例としては、燃料の動粘度、密度、HC比および低位発熱量等が挙げられる。HC比とは、燃料に含まれている水素量と炭素量との比のことである。低位発熱量とは、ピストン13の運動エネルギに変換可能な発熱量のことである。なお、燃焼により水蒸気が生成するが、これを水の状態で存在すると考えた場合、蒸発熱も発熱量に加わることになり、この蒸発熱を低位発熱量に加算した熱量は高位発熱量と呼ばれる。
性状パラメータ取得部82は、密度センサ27から燃料の密度を性状パラメータとして取得するとともに、動粘度センサ28から動粘度を性状パラメータとして取得する。密度センサ27は、例えば固有振動周期測定法に基づいて燃料の密度を検出する。動粘度センサ28は、例えば細管粘度計や、細線加熱法に基づく動粘度計である。密度センサ27および動粘度センサ28が検出対象とする燃料は、コモンレール15c等の燃料通路内の燃料または燃料タンク内の燃料である。密度センサ27および動粘度センサ28は、図1に示すヒータ28aを備えており、ヒータ28aにより所定温度に燃料を加熱した状態で燃料の密度及び動粘度をそれぞれ検出する。
ここで、本発明者らは、燃料の特定の性状パラメータが、燃料に含まれる分子構造種毎の混合量と相関があり、かつ、性状パラメータの種別ごとに分子構造種毎の混合量に対する感度が異なることに着目した。つまり、燃料において分子構造が異なると分子間の結合力、構造による立体障害や相互作用などが相違する。また、燃料には複数種の分子構造が含まれ、その混合量は燃料毎に異なる。この場合、分子構造種毎に性状パラメータに寄与する感度が異なると考えられるため、分子構造量に依存して性状パラメータの値が変化する。
そこで本発明者らは、性状パラメータと分子構造とについて、図9に示す相関式を構築した。この相関式は、複数の性状パラメータに対する複数の分子構造量の依存度を示す感度係数を用い、複数の分子構造量に感度係数を反映することで複数の性状パラメータを導出する性状算出モデルの演算式である。図9の相関式において、「c」は、各性状パラメータを推定する上での分子構造毎の感度(つまり関与度合)を示す感度係数であり、性状パラメータと分子構造との相関関係に応じて実数として定められている。ただし、複数の感度係数のうちの一部は0であってもよい。
また、図9の相関式に基づいて分子構造種毎の混合量について逆行列で表すと、図10に示す相関式となる。この相関式において、複数の性状パラメータの値を入力することで、燃料に含まれる分子構造種毎の混合量の算出が可能となる。このとき、複数種類の分子構造のうち算出対象となる分子構造を特定しておき、その分子構造の混合量の算出に必要な性状パラメータの換算値bのみを有効にすることも可能である。例えば、混合量の算出に不要な性状パラメータについては、それに相応する換算値bを0にしておくとよい。換算値bは、性状パラメータごとの重み付け量でもある。図10の相関式は、図9の相関式の性状算出モデルを逆モデルで表したパラメータ演算式である。
燃料の動粘度、密度は、密度センサ27および動粘度センサ28により計測可能な情報であり、自動車等の車両の使用に際して必要に応じて動粘度及び密度を取得することが可能となっている。また、低位発熱量は、燃料の動粘度及び密度と相関があることから、その相関を示すマップや演算式を用いることで、動粘度及び密度に基づいて算出することが可能である。HC比は、低位発熱量と相関があることから、その相関を示すマップや演算式を用いることで、低位発熱量に基づいてHC比を算出することが可能である。その他、性状パラメータとして、セタン価や、蒸留性状に関するパラメータを用いることも可能である。
これらの性状パラメータの値を図10の演算式に代入することで、分子構造種毎の混合量が算出される。なお、算出された各々の混合量を総量で除算することで、各種成分の混合割合が算出される。このように、マイコン80aは、複数の性状パラメータに基づき、燃料に含まれている複数種類の分子構造種について、分子構造種毎の混合割合を推定する。この推定を実行している時のマイコン80aは、密度センサ27および動粘度センサ28で検出された性状パラメータにもとづき混合割合を推定する第2推定部82aに相当する。
さて、密度センサ27や動粘度センサ28といった性状センサで検出される動粘度や密度等の性状パラメータは、検出対象となる燃料の温度や圧力に応じて異なってくる。そして、燃料の温度や圧力の違いに対する性状パラメータの違いは、燃料に含まれている分子構造種毎の混合割合の違いに起因して異なってくる。例えば、燃料に含まれている直鎖パラフィン類、側鎖パラフィン類、ナフテン類および芳香族類の各々についての混合割合の違いに起因して、燃料の温度または圧力と動粘度との関係を表わす特性マップは異なってくる。このことは、燃料の温度や圧力の違いに応じた性状パラメータの違いを検出すれば、分子構造種毎の混合割合を推定できることを意味する。要するに、本発明者らは、「異なる温度または圧力による各々の性状パラメータから、燃料に含まれている分子構造種毎の混合割合を推定できる」との知見を得ている。
この知見を鑑みて、第2推定部82aが複数の性状パラメータに基づき混合割合を推定するにあたり、異なる温度または圧力の時に検出された性状パラメータを、図9および図10に示す性状パラメータの行列に代入している。つまり、検出条件の異なる複数の性状パラメータに基づき混合割合を推定している。
具体的には、密度センサ27および動粘度センサ28には、通電により発熱するヒータ28aが設けられている。ヒータ28aの加熱条件を変えることで燃料の温度条件を変更し、各温度条件において燃料の密度及び動粘度をそれぞれ検出する。この場合、温度条件の異なる燃料の密度および動粘度をそれぞれ性状パラメータとして図9および図10に示す演算式を構築しておき、そのモデル演算式を用いて上記混合割合を算出する。
図8の説明に戻り、ステップS23で混合割合を推定した後、ステップS24において、ステップS23で推定された混合割合を図9の相関式に代入することで、複数種類の性状パラメータを算出する。このステップS24の処理を実行している時のマイコン80aは、異なる燃焼条件での各燃焼パラメータに基づき性状パラメータを推定する推定部に相当する。
図11は、噴射制御部85a、燃圧制御部85bおよびEGR制御部85cが実行するプログラムの処理手順を示すフローチャートである。この処理は、内燃機関10の運転期間中、マイコン80aにより所定周期で繰返し実行される。先ず、図11のステップS30において、エンジン回転数、エンジン負荷およびエンジン冷却水温度等を取得する。続くステップS31では、噴射制御部85aによる噴射制御、燃圧制御部85bによる燃圧制御、およびEGR制御部85cによるEGR制御に係る先述した各種目標値を、ステップS30で取得した各種値に基づき設定する。
続くステップS32では、図8のステップS23(つまり第1推定部81a)で推定された混合割合に対し、その推定精度(以下、第1推定精度E1と記載)を算出する。この算出を実行している時のマイコン80aは第1精度算出部に相当する。
先述した通り、燃焼センサである筒内圧センサ21により検出された燃焼パラメータのうち、異なる燃焼条件で燃焼した場合の各々の燃焼パラメータに基づき混合割合は推定される。したがって、第1推定部81aの推定に用いられる燃焼パラメータのサンプリング数が多いほど、推定精度は高い筈である。これを鑑みて、ステップS32による第1精度算出部は、サンプリング数が多いほど推定精度E1を高い値に算出する。
具体的には、燃焼条件が筒内圧、筒内温度、吸気酸素濃度および噴射圧力である場合において、各々の燃焼条件の値(つまり燃焼環境値)の組み合わせにより複数の燃焼条件を予め決めておく。例えば、以下の3つの燃焼条件が予め決められている場合について、以下に説明する。第1の燃焼条件は、筒内温度750K、吸気酸素濃度15%、噴射圧力40MPaに予め決められている。第2の燃焼条件は、筒内温度850K、吸気酸素濃度17%、噴射圧力50MPaに予め決められている。第3の燃焼条件は、筒内温度850K、吸気酸素濃度17%、噴射圧力60MPaに予め決められている。
実際に燃焼した時の燃焼環境値が、燃焼条件にて予め決めておいた燃焼環境値を含む範囲にある場合、その燃焼で得られた燃焼パラメータつまり着火遅れ時間TDを、第1推定値X1の算出に用いるサンプリングとする。このサンプリングの数が多いほど、第1推定値X1の算出精度は高い。例えばサンプリング数に所定の係数を乗算して第1推定精度E1を算出する。一方、上記範囲にない場合には、サンプリングとしては不適格であるため、その時の着火遅れ時間TDは第1推定値X1の算出に用いられない。
続くステップS33では、第2推定部82aで推定された混合割合に対し、その推定精度(以下、第2推定精度E2と記載)を算出する。この算出を実行している時のマイコン80aは第2精度算出部に相当する。
先述した通り、性状センサである密度センサ27および動粘度センサ28により検出された性状パラメータのうち、異なる温度条件で検出された各々の性状パラメータに基づき混合割合は推定される。したがって、第2推定部82aの推定に用いられる性状パラメータのサンプリング数が多いほど、推定精度は高い筈である。これを鑑みて、ステップS33による第2精度算出部は、サンプリング数が多いほど推定精度E2を高い値に算出する。
具体的には、動粘度、密度、HC比および低位発熱量等の各々の性状パラメータを、予め決めておいた燃料温度毎に取得する。例えば、燃料温度が10℃、20℃、30℃の各々の場合において、上記各々の性状パラメータを取得する。
実際の燃料温度が、決められている燃料温度を含む範囲にある場合、その燃料温度で得られた性状パラメータを、第2推定値X2の算出に用いるサンプリングとする。このサンプリングの数が多いほど、第2推定値X2の算出精度は高い。例えばサンプリング数に所定の係数を乗算して第2推定精度E2を算出する。一方、上記範囲にない場合には、サンプリングとしては不適格であるため、その時の性状パラメータは第2推定値X2の算出に用いられない。
続くステップS34では、第1推定精度E1と第2推定精度E2とを大小比較する。第1推定精度E1が第2推定精度E2以上であると判定された場合には、第1推定部81aによる推定値(以下、第1推定値X1と記載)が第2推定部82aによる推定値(以下、第2推定値X2と記載)に対して同等以上の精度であるとみなす。この場合には、続くステップS35において、第1推定精度E1が所定の精度Ethを満たしているか否かを判定する。所定の精度Ethを満たしていると判定された場合、続くステップS36において、第1推定部81aにより推定された各混合割合の推定値(以下、第1推定値X1と記載)に応じて、ステップS31で設定した各種目標値を補正する。例えば、図6に示す燃料(1)(2)(3)のいずれであるかに応じて、噴射制御、燃圧制御およびEGR制御に係る各種目標値の少なくとも1つを補正する。続くステップS37では、ステップS36、S36a、S38による補正後の目標値にしたがって、噴射制御、燃圧制御およびEGR制御を実行するための指令信号を出力する。
ステップS34で、第1推定精度E1が第2推定精度E2未満であると判定された場合には、第1推定値X1が第2推定値X2よりも低い精度であるとみなす。この場合には、続くステップS35aにおいて、第2推定精度E2が所定の精度Ethを満たしているか否かを判定する。所定の精度Ethを満たしていると判定された場合、続くステップS36aにおいて、第2推定値X2に応じて、ステップS36と同様に各種目標値を補正する。
第1推定精度E1および第2推定精度E2のいずれもが所定の精度Ethを満たしていないと判定された場合、つまり、ステップS35またはステップS35aにおいて、所定の精度Ethを満たしていないと判定された場合には、ステップS38に進む。このステップS38では、過去直近に用いられていた第1推定値X1または第2推定値X2、つまり前回の補正に用いた推定値を用いて、上記目標値を補正する。
図12の横軸は、ユーザが燃料タンクに給油した以降の内燃機関10の累積運転時間を示す。図12の縦軸は混合割合の推定精度の値を示しており、ステップS32で算出された第1推定精度E1は図中の実線LE1、ステップS33で算出された第2推定精度E2の実線LE2は図中の実線LE2で示される。また、図中の一点鎖線に示す縦軸上の値は、ステップS35、S35aの判定で用いた所定の精度Ethを示す。
累積運転時間の経過とともに、予め決めておいた燃焼条件に合致した燃焼が為される機会が増えていく。また、累積運転時間の経過とともに、ヒータ28aによる温度上昇が為され、予め決めたおいた燃料温度の条件に合致した性状パラメータを取得できる機会が増えていく。したがって、累積運転時間の経過とともに、燃焼パラメータおよび性状パラメータのサンプリング数は増加していく。そのため、実線LE1、LE2に示すように、第1推定精度E1および第2推定精度E2は累積運転時間の経過とともに上昇する。但し、検出するべき燃焼条件つまり予め決めておいた燃焼環境値と、実検出時の燃焼条件とのずれが大きい場合や、サンプリング数の増加速度が遅い場合には、点線に示すように、第1推定精度E1の上昇速度が遅くなる。また、性状パラメータの検出条件として予め決められている燃料温度と、実検出時の燃料温度とのずれが大きい場合や、サンプリング数の増加速度が遅い場合には、点線に示すように、第2推定精度E2の上昇速度が遅くなる。
累積運転時間の経過に伴う第1推定精度E1の上昇のしかた(以下、上昇波形と記載)は、第2推定精度E2の上昇波形と異なる。具体的には、図12に示すように、累積運転時間が経過していく初期期間においては、第2推定精度E2の方が第1推定精度E1よりも速く上昇し、第2推定精度E2の方が第1推定精度E1よりも高くなる蓋然性が高い。但し、ある時点以降の期間においては、第1推定精度E1の方が第2推定精度E2よりも高くなる蓋然性が高い。
この場合、図11の処理を実行すると、図12に示すt10時点までの期間Maでは、ステップS38の処理が実行され、前回値を用いて目標値が補正されることとなる。その後、t20時点までの期間Mbでは、ステップS36aの処理が実行され、性状センサによる第2推定値X2を用いて目標値が補正されることとなる。その後、t20時点以降の期間Mcでは、ステップS36の処理が実行され、燃焼センサによる第1推定値X1を用いて目標値が補正されることとなる。
そして、先述した点線に示すように第2推定精度E2の上昇速度が遅くなると、第2推定値X2を用いた制御から第1推定値X1を用いた制御に切り替わるタイミングが、符号t20aに示すように早くなる。さらに、前回値を用いた制御から第1推定値X1を用いた制御に切り替わるタイミングが、符号t10aに示すように遅くなる。また、先述した点線に示すように第1推定精度E1の上昇速度が遅くなると、第2推定値X2を用いた制御から第1推定値X1を用いた制御に切り替わるタイミングが、符号t20bに示すように遅くなる。
要するに、先述したステップS34では、燃焼パラメータのサンプリング数が増加していくことに伴い推定精度が向上していく第1推定値X1と、性状パラメータのサンプリング数が増加していくことに伴い推定精度が向上していく第2推定値X2とを比較する。そして、ステップS36、S36aにおいて、推定精度が高い方の推定値を燃焼システムの制御に用いる。このように第1推定値X1と第2推定値X2とを比較して、推定精度が高い方の推定値を選択する処理を実行している時のマイコン80aは、図1に示す比較選択部83を提供する。
以上に説明した通り、本実施形態に係る燃焼システム制御装置はECU80により提供され、このECU80は、第1推定部81a、第2推定部82a、比較選択部83および噴射制御部85a等の各種制御部を備える。
第1推定部81aは、異なる燃焼条件で燃焼した場合の各々の燃焼パラメータに基づき、燃料に含まれている分子構造種毎の混合割合を推定する。「異なる燃焼条件による各々の燃焼パラメータから、燃料に含まれている分子構造種毎の混合割合を推定できる」との先述した知見からすれば、第1推定部81aにより上記混合割合(つまり第1推定値X1)を推定することができる。第2推定部82aは、性状センサにより検出された複数の性状パラメータに基づき上記混合割合を推定する。「複数の性状パラメータから、燃料に含まれている分子構造種毎の混合割合を推定できる」との先述した知見からすれば、第2推定部82aにより上記混合割合(つまり第2推定値X2)を推定することができる。
そして、このように推定された混合割合つまり第1推定値X1または第2推定値X2に基づき、各種制御部は燃焼システムの作動を制御するので、動粘度センサで検出された動粘度に基づき制御する従来制御に比べて、燃料に応じた最適な内容で制御できる。
さらに、比較選択部83は、第1推定値X1および第2推定値X2を比較して推定精度が高い方の推定値を選択する。そのため、高精度の推定値を用いて燃焼システムが制御されるので、燃料に応じた最適な内容で制御することを、より一層向上できる。
さらに本実施形態では、燃焼パラメータおよび性状パラメータのサンプリング数が増加していくことに伴い推定精度が向上していくことに着目し、ステップS32による第1精度算出部と、ステップS33による第2精度算出部とを備える。第1精度算出部は、第1推定部81aの推定に用いられる燃焼パラメータのサンプリング数が多いほど、高い推定精度であると算出する。つまり第1推定精度E1の値を高くする。第2精度算出部は、第2推定部82aの推定に用いられる性状パラメータのサンプリング数が多いほど高い推定精度であると算出する。つまり第2推定精度E2の値を高くする。図12にて例示したように、燃焼パラメータおよび性状パラメータのサンプリング数が増加していくことに伴い第1推定精度E1および第2推定精度E2の推定精度は向上する。よって、これらのサンプリング数が多いほど高い推定精度であると算出する本実施形態によれば、比較選択部83による比較選択を高精度で実現できる。
ここで、図12の符号Maに例示されるように、燃焼パラメータおよび性状パラメータのサンプリング数が少ない場合等に起因して、推定精度が低くなっている場合がある。このような場合には、現時点で推定されている混合割合よりも、過去直近に用いられていた混合割合の方が、実際の混合割合に近い可能性が高い。換言すれば、現在用いている燃料が前回給油した燃料に近い可能性は少なからずある。
この点を鑑みた本実施形態では、噴射制御部85a等の制御部は、第1推定精度E1および第2推定精度E2のいずれもが所定の精度Ethよりも低い場合に、過去直近に用いられていた推定値を用いて燃焼システムの作動を制御する。そのため、実際の燃料に近い混合割合で燃焼システムが制御される可能性を高くできる。
さらに本実施形態では、分子構造の種類に、直鎖パラフィン類、側鎖パラフィン類、ナフテン類および芳香族類の少なくとも1つが含まれている。これらの分子構造種は、燃焼パラメータに与える影響が大きいので、これらで分類される分子構造種の混合割合を推定することは、燃焼に関する各種制御に混合割合を反映させる上で、所望の燃焼状態にすることを精度良く実現できる。
さらに本実施形態では、性状パラメータには、燃料の動粘度、燃料の密度、燃料に含まれる水素と炭素の比率、および燃料の低位発熱量の少なくとも1つが含まれている。これらの性状パラメータは、分子構造種の混合割合の影響を大きく受けるので、複数の性状パラメータから上記混合割合を推定するにあたり、その推定精度を向上できる。
さらに本実施形態では、燃焼条件は、複数種類の燃焼条件値の組み合わせにより特定される条件である。つまり、複数種類の燃焼条件値の各々について、値が異なる燃焼時の燃焼パラメータを取得する。これによれば、同一種類の燃焼条件値についてその値が異なる燃焼時の燃焼パラメータを取得し、それらの燃焼条件および燃焼パラメータに基づき混合割合を推定する場合に比べて、混合割合を高精度で推定できる。
さらに本実施形態では、燃焼条件値には、筒内圧、筒内温度、吸気酸素濃度および燃料噴射圧力の少なくとも1つが含まれている。これらの燃焼条件値は、燃焼状態に与える影響が大きいので、これらの条件が異なる燃焼時の燃焼パラメータを用いて混合割合を推定する本実施形態によれば、混合割合を精度良く推定できる。
さらに本実施形態では、燃焼特性値は、燃料噴射を指令してから自着火するまでの着火遅れ時間TDである。着火遅れ時間TDは、分子構造種毎の混合割合の影響を大きく受けるので、着火遅れ時間TDに基づき混合割合を推定する本実施形態によれば、混合割合を精度良く推定できる。
さらに本実施形態では、燃焼パラメータ取得部81は、メイン噴射の前に噴射(つまりパイロット噴射)された燃料の燃焼に関する燃焼パラメータを取得する。メイン噴射の燃料が燃焼すると、筒内温度が高くなるので、メイン噴射後の燃料が燃焼しやすくなる。そのため、燃料の混合割合の違いに起因した燃焼パラメータの変化が現れにくくなる。これに対し、メイン噴射の前に噴射された燃料は、メイン燃焼の影響を受けないので、混合割合の違いに起因した燃焼パラメータの変化が現れやすくなる。よって、燃焼パラメータに基づき混合割合を推定するにあたり、その推定精度を向上できる。
(第2実施形態)
本実施形態では、マイコン80aは、図13に示す処理を内燃機関10の運転中に繰り返し実行している。すなわち、図13のステップS40では、ユーザが燃料タンクに給油した以降の内燃機関10の累積運転時間が、所定時間を経過したか否かを判定する。所定時間が経過していると判定され、かつ、続くステップS41で第1推定精度E1が所定の精度Ethを満たしていないと判定された場合、続くステップS42において、以下に説明する燃焼条件変更制御を実行する。燃焼条件変更制御では、検出するべき条件を強制的に作り出す制御を開始する。例えば、筒内温度、筒内酸素濃度、噴射圧等の、着火時期を検出するべき燃焼環境条件を予め設定しておく。そして、その燃焼環境条件となるように噴射制御や燃圧制御、EGR制御等の目標値を強制的に変更する。 例えば、燃焼条件の1つである噴射圧力であり、その噴射圧力が100MPa〜150MPaの範囲で燃焼した時の燃焼パラメータしか取得できていない場合、燃圧制御部85bは、噴射圧力が200MPaとなるように燃料ポンプ15pの作動を制御する。これによれば、噴射圧力が200MPaの時の燃焼パラメータを取得でき、その取得した燃焼パラメータを第1推定値X1の推定に反映できる。よって、第1推定精度E1を所定の精度Eth以上にすることを速やかに実現できる。より具体的には、市街地で低速走行するユーザの場合、噴射圧力を200MPaにする機会が無く、200MPa時の燃焼パラメータを取得できていない状態で累積運転時間が所定時間を経過する場合がある。この場合には、強制的に200MPaに噴射圧力を上昇させて燃料噴射させ、その時の燃焼パラメータを取得する。
次に、ステップS43で第2推定精度E2が所定の精度Ethを満たしていないと判定された場合、続くステップS44において、以下に説明する燃温条件変更制御を実行する。燃温条件変更制御では、予め決めておいた燃料性状を検出するべき燃温条件となるようにヒータ28aの作動を制御する。
例えば、燃料温度が10℃〜70℃の範囲で推移している時の性状パラメータしか取得できていない場合、燃料温度が80℃となるようにヒータ28aを作動させて燃料温度を上昇させる。これによれば、燃料温度が80℃の時の性状パラメータを取得でき、その取得した性状パラメータを第2推定値X2の推定に反映できる。よって、第2推定精度E2を所定の精度Eth以上にすることを速やかに実現できる。
なお、ステップS42による燃焼条件変更制御を実行している時のマイコン80aは燃焼条件制御部に相当し、ステップS44による燃温条件変更制御を実行している時のマイコン80aは燃温条件制御部に相当する。
以上により、本実施形態に係るECU80は、ステップS42による燃焼条件制御部を備える。燃焼条件制御部は、内燃機関10の累積運転時間が所定時間を経過しているにも拘らず第1推定精度E1が所定の精度Ethより低い場合に、予め決めておいた検出するべき燃焼条件となるように燃焼システムの作動を制御する。そのため、第1推定精度E1を所定の精度Eth以上にすることを速やかに実現でき、累積運転時間が所定時間を経過した後、燃料に応じた最適な内容で制御する状態に速やかに移行できる。例えば、図12に例示する場合において、性状センサによる第2推定値X2を用いて目標値が補正される期間Mbから、燃焼センサによる第1推定値X1を用いて目標値が補正される期間Mcへ、速やかに移行できる。
さらに本実施形態では、第2推定部82aが推定に用いる複数の性状パラメータの各々は、燃料温度が異なる状況で性状センサにより検出されたものであり、ECU80は、ステップS44による燃温条件制御部を備える。燃温条件制御部は、内燃機関10の累積運転時間が所定時間を経過しているにも拘らず第2推定精度E2が所定の精度Ethより低い場合に、第2推定部82aの推定に用いられていない燃料温度となるように燃料を加熱制御する。そのため、第2推定精度E2を所定の精度Eth以上にすることを速やかに実現でき、累積運転時間が所定時間を経過した後、燃料に応じた最適な内容で制御する状態に速やかに移行できる。例えば、図12に例示する場合において、前回値を用いて目標値が補正される期間Maから、性状センサによる第2推定値X2を用いて目標値が補正される期間Mbへ、速やかに移行できる。
(第3実施形態)
本実施形態では、マイコン80aは、上記第1実施形態で実行している処理に加えて、図14に示す処理を内燃機関10の運転中に繰り返し実行している。すなわち、図14のステップS50では、第2推定値X2の推定精度、つまり第2推定精度E2が、所定の精度Ethを満たしているか否かを判定する。この判定で用いる所定の精度Ethは、図11のステップS35aの判定で用いる値と同じである。なお、第2推定精度E2は、図11のステップS33による第2精度算出部により算出された値である。
第2推定精度E2が所定の精度Ethを満たしていると判定された場合、続くステップS51では、第1推定値X1および第2推定値X2のズレ量(つまり偏差)を算出する。具体的には、分子構造種毎に上記ズレ量を算出する。このステップS51の処理を実行している時のマイコン80aは、第1推定値X1および第2推定値X2の偏差を算出する偏差算出部を提供する。
続くステップS52では、ステップS51で算出したズレ量が所定量以上であるか否かを、分子構造種毎に算出する。ズレ量が所定量以上であると判定された分子構造種が1つでも存在する場合には、続くステップS53において、第1推定精度E1が第2推定精度E2より高い場合であっても、比較選択部83により選択される推定値を強制的に第2推定値X2にする。
続くステップS54では、燃焼パラメータ取得部81による燃焼パラメータの取得を再度実行する。つまり、筒内圧センサ21は燃焼パラメータを検出し直し、その検出し直された燃焼パラメータを用いて、第1推定部81aは第1推定値X1を推定し直す。例えば、ステップS52でズレ量が大きいと判定された分子構造種が1つの場合、その分子構造種の混合割合に最も大きく寄与する燃焼条件を推定する。そして、その燃焼条件で検出された燃焼パラメータを再取得して更新する。或いは、その燃焼条件になるように、図13のステップS42と同様にして強制的に燃焼条件を変更させる。また、強制的な燃焼条件の変更の有無に拘らず、全ての燃焼条件に対する燃焼パラメータを再取得して更新する。
さて、燃焼パラメータおよび性状パラメータのサンプリング数が十分に確保できている状態であれば、第1推定値X1の方が第2推定値X2よりも高精度であることは先述した通りである。しかし、基本的には第1推定値X1の方が高精度であるものの、第1推定値X1の推定に用いた燃焼パラメータの燃焼条件の値の誤差が大きくなっている場合等、例外的に第1推定値X1の方が低精度になっている場合もある。つまり、第1推定値X1は、サンプリング数が十分であっても低精度になっている可能性がある。これに対し、第2推定値X2については、サンプリング数が十分であれば低精度になっている可能性は第1推定値X1に比べて低い。したがって、サンプリング数が十分であるにも拘らず第1推定値X1が低精度になっている場合には、第2推定精度E2が所定の精度Ethより高くなっていれば、上記偏差が大きくなる筈である。 この点を鑑み、本実施形態では、第1推定値X1および第2推定値X2の偏差を算出するステップS51による偏差算出部を備える。そして、第1精度算出部により算出されている第1推定精度E1が、第2精度算出部により算出されている第2推定精度E2より高い場合であっても、以下の条件を満たしていれば、比較選択部83は第2推定値X2を選択する。すなわち、第2推定精度E2が所定の精度Ethより高い場合、かつ上記偏差が所定量以上である場合には、比較選択部83は第2推定値X2を選択する。
そのため、上述の如く例外的に第1推定値X1の方が低精度になっている場合に、第2推定値X2が選択されることになるので、実際の燃料に近い混合割合で燃焼システムが制御される可能性を高くできる。
さらに本実施形態では、上記偏差が所定量以上である場合に、筒内圧センサ21は燃焼パラメータを検出し直し、第1推定部81aは第1推定値X1を推定し直す。
そのため、上述の如く例外的に第1推定値X1の方が低精度になっている場合に、燃焼パラメータを検出し直して第1推定値X1を推定し直すので、第2推定値X2よりも高精度の第1推定値X1が得られることになる。そして、上記偏差が所定量未満に収まることとなり、高精度の第1推定値X1が選択されて制御に用いられるようになる。よって、実際の燃料に近い混合割合で燃焼システムが制御される可能性を高くできる。
(第4実施形態)
上記第1実施形態に係る第1精度算出部は、複数種類の第1推定値X1を纏めて、第1推定精度E1を算出している。つまり、複数の第1推定値X1の中にも推定精度にばらつきが存在するが、そのばらつきを平均化して第1推定精度E1として算出していると言える。これに対し、本実施形態に係る第1精度算出部は、複数種類の第1推定値X1の各々に対して第1推定精度を算出する。例えば、第1推定部81aにより推定された直鎖パラフィン類の混合割合の推定値と、側鎖パラフィン類の混合割合の推定値と、ナフテン類の混合割合の推定値と、アロマ類の混合割合の推定値との各々に対して、推定精度を算出する。同様にして、本実施形態に係る第2精度算出部は、複数種類の第2推定値X2の各々に対して第2推定精度を算出する。
本実施形態に係る比較選択部は、複数種類の第1推定値X1および第2推定値X2の各々に対して比較して選択する。例えば、直鎖パラフィン類の混合割合、側鎖パラフィン類の混合割合、ナフテン類の混合割合、アロマ類の混合割合の各々に対して、第1推定値X1および第2推定値X2のうち推定精度が高い方の推定値を選択する。本実施形態に係る制御部は、各々の選択された推定値を燃焼システムの制御に用いる。
さて、図12を用いて先述した通り、累積運転時間の経過に伴う第1推定精度E1の上昇波形と、第2推定精度E2の上昇波形とが異なる。そして厳密には、分子構造種に応じて上昇波形は異なる。そのため、第2推定値X2を用いた制御から第1推定値X1を用いた制御に切り替わるタイミング(t10参照)や、前回値を用いた制御から第1推定値X1を用いた制御に切り替わるタイミング(t20参照)は、分子構造種に応じて異なる。
この点を鑑み、本実施形態では、第1精度算出部は、複数種類の第1推定値X1の各々に対して第1推定精度E1を算出し、第2精度算出部は、複数種類の第2推定値X2の各々に対して第2推定精度E2を算出する。そして、比較選択部83は、複数種類の第1推定値X1および第2推定値X2の各々に対して比較して、推定精度が高い方の推定値を選択する。制御部は、各々の選択された推定値を燃焼システムの制御に用いる。そのため、燃焼システムの制御に用いる混合割合の推定値を、より一層高精度にできる。
(第5実施形態)
本実施形態では、上記第4実施形態と同様にして、複数種類の第1推定値X1および第2推定値X2の各々に対して第1推定精度および第2推定精度を算出する。その上で、さらに本実施形態では、複数種類の第1推定値X1および第2推定値X2には、以下に説明する潤滑指標および燃焼指標が含まれている。
潤滑指標とは、燃焼システムが有する摺動部のうち、燃料に晒されながら摺動する摺動部の、燃料による潤滑性を表した指標である。上記摺動部の具体例としては、図1に示す燃料ポンプ15pが有するピストン15p1の外周部S1、および燃料噴射弁15が有する弁体の外周部S2が挙げられる。燃焼指数とは、燃焼のしやすさを表した指標であり、例えば自着火しやすさや熱発生量の大きさを表した指標である。
潤滑指数および燃焼指数は、分子構造種毎の混合割合と相関がある。このことは、異なる燃焼条件で燃焼した場合の各々の燃焼パラメータに基づき、潤滑指数および燃焼指数を推定できることを意味するとともに、複数の性状パラメータに基づき、潤滑指数および燃焼指数を推定できることを意味する。このように推定可能な潤滑指数および燃焼指数は、燃料の性状を表した性状値に相当し、第1推定部81aおよび第2推定部82aの推定対象となり得る。性状値の別例としては、燃料の蒸留性状T50や動粘度、密度等の一般性状値、および平均炭素数やHC比等の先述した中間パラメータが挙げられる。
さらに本実施形態では、図11のステップS35およびステップS35aや、図13のステップS41およびステップS43で用いる所定の精度Ethを、複数種類の第1推定値X1および第2推定値X2の各々に対して異なる値に設定している。具体的には、潤滑指標に対して設定されている所定の精度Ethを、燃焼指標に対して設定されている所定の精度Ethよりも低い値にしている。
以上により、本実施形態によれば、所定の精度Ethは、複数種類の第1推定値X1および第2推定値X2の各々に対して異なる値に設定されている。そのため、第2推定値X2を用いた制御から第1推定値X1を用いた制御に切り替わるタイミング(t10参照)を、潤滑指数や燃焼指数等の性状値毎に適したタイミングに設定できる。また、前回値を用いた制御から第1推定値X1を用いた制御に切り替わるタイミング(t20参照)を、潤滑指数や燃焼指数等の性状値毎に適したタイミングに設定できる。
(第6実施形態)
ここで、密度センサ27および動粘度センサ28(つまり性状センサ)や、筒内圧センサ21(つまり燃焼センサ)に、断線または短絡による故障が生じた場合には、センサの検出値が異常値で固定されることになる。そこで、本実施形態に係るマイコン80aは、検出値が異常値で固定されているか否かに基づき、性状センサおよび燃焼センサについて、断線短絡の故障有無を診断する。
一方、例えばこれらのセンサの経年劣化に起因して、正常値に対してオフセットした値を出力している場合や、誤ったゲインによる値を出力している場合、つまり異常値で固定されない態様での故障(つまり中間値故障)に陥る場合がある。このような中間値故障に対しては、図15および図16に示す故障診断処理を、内燃機関10の運転期間中、マイコン80aが所定周期で繰返し実行する。
図15のステップS60では、燃料噴射弁15からの燃料噴射を停止させている無噴射期間に、筒内圧センサ21の検出値を複数取得し、それら複数の検出値から形成される波形(つまり検出波形)を取得する。例えば、無噴射期間であれば、少なくとも圧縮行程を含む所定期間における筒内圧の変化を表した波形は、予め想定される波形(つまり基準波形)となる筈である。そこで、続くステップS61では、上記所定期間に筒内圧センサ21で検出された検出波形と基準波形とのズレ量を算出する。
続くステップS62では、ステップS61で算出したズレ量が許容範囲内であるか否かを判定する。許容範囲内であると判定されれば、続くステップS63において、筒内圧センサ21が正常であると診断する。許容範囲外であると判定されれば、続くステップS64において、筒内圧センサ21が故障していると診断する。
図15の処理を実行している時のマイコン80aは燃焼センサ診断部として機能する。燃焼センサ診断部により燃焼センサが故障していると診断された場合、ステップS36による処理を禁止して、第1推定値X1に基づき燃焼システムの作動を制御することを禁止する。
図16のステップS70では、性状センサの検出値が正常範囲であるか否かを判定する。例えば、市場に流通している適正な燃料の動粘度から、想定し得る正常範囲を予め設定して記憶させておき、その正常範囲と検出値とを比較して判定する。正常範囲でないと判定された場合、続くステップS71において燃焼センサが正常であるか否かを判定する。つまり、図15のステップS62の判定結果を取得する。燃焼センサが正常であると判定された場合、続くステップS72において、所定の精度Ethを満たした第1推定値X1および第2推定値X2が有るか否かを判定する。ステップS72にて第1推定値X1および第2推定値X2が有ると判定された場合、続くステップS73において両推定値X1、X2のズレ量を算出する。例えば、複数種類の混合割合の各々について、両推定値X1、X2の差分を算出する。
続くステップS74では、ステップS73で算出したズレ量が許容範囲内であるか否かを判定する。例えば、複数種類の混合割合の全てが許容範囲内である場合に、ステップS74で肯定判定され、続くステップS75において、性状センサが正常であると診断する。そして、続くステップS76において、想定されていた適正な燃料が使用されておらず、不正燃料が使用されていると診断する。一方、ステップS74にて許容範囲外であると判定されれば、続くステップS77において、性状センサが故障していると診断する。
図16の処理を実行している時のマイコン80aは性状センサ診断部として機能する。性状センサ診断部により性状センサが故障していると診断された場合、ステップS36aによる処理を禁止して、第2推定値X2に基づき燃焼システムの作動を制御することを禁止する。
以上により、本実施形態に係るECU80は、第1推定部81aおよび第2推定部82aに加え、燃焼センサ診断部および性状センサ診断部を備える。これによれば、燃焼センサ診断部により、燃焼が為されていない時の燃焼センサの検出値に基づき燃焼センサの故障有無を診断するので、高精度で燃焼センサを診断できる。したがって、燃焼センサから推定された混合割合(つまり第1推定値X1)と性状センサから推定された混合割合(つまり第2推定値X2)とが大きく乖離しており、かつ、燃焼センサが正常と診断されている場合には、性状センサが故障している蓋然性が高い。この点を鑑み、性状センサ診断部は、燃焼センサが正常であると診断されている場合に、両推定値X1、X2を比較することで性状センサの故障有無を診断するので、性状センサの中間値故障の有無について診断可能となる。
そして、燃焼センサが故障していると診断された場合には第1推定値X1を制御に用いることを禁止し、性状センサが故障していると診断された場合には第2推定値X2を制御に用いることを禁止する。よって、誤った混合割合に基づき燃焼システムを制御することを回避できる。
(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
上記第1実施形態では、第1推定部81aによる第1推定値X1を燃焼パラメータとしている。これに対し、第1推定値X1を、先述した中間パラメータ等の性状値としてもよい。また、複数種類の第1推定値X1を推定するにあたり、燃焼パラメータおよび性状値の両方を第1推定値X1の推定対象に含ませてもよい。第2推定部82aによる第2推定値X2についても同様であり、中間パラメータ等の性状値としてもよいし、燃焼パラメータおよび性状値の両方を第2推定値X2の推定対象に含ませてもよい。
図2に示す上記実施形態では、通電開始のt1時点から燃焼開始のt3時点までの時間を着火遅れ時間TDと定義している。これに対し、噴射開始のt2時点から燃焼開始のt3時点までの時間を着火遅れ時間TDと定義してもよい。噴射開始のt2時点は、噴射開始に伴いレール圧等の燃圧に変化が生じた時期を検出し、その検出時期に基づき推定すればよい。
図1に示す燃焼パラメータ取得部81は、燃焼に関する物理量の検出値(つまり燃焼パラメータ)として、着火遅れ時間TDを取得している。これに対し、熱発生率の変化を表わす波形や、該当する燃料の燃焼で発生した熱量(つまり熱発生量)等を燃焼パラメータとして取得してもよい。また、着火遅れ時間TD、熱発生率の波形、および熱発生量等、複数種類の燃焼パラメータに基づき、各種成分の混合割合を推定してもよい。例えば、図3の右辺左側の行列に示す定数を、複数種類の燃焼パラメータに対応した値に設定しておき、図3の右辺右側の行列に、複数種類の燃焼パラメータを代入して混合割合を推定する。
図3の例では、複数の着火遅れ時間TDの各々について、全ての燃焼環境値が異なるように燃焼条件が設定されている。つまり、燃焼環境値の所定の組み合わせからなる燃焼条件i、j、k、l(図3参照)の各々について、筒内圧は全て異なる値P(条件i)、P(条件j)、P(条件k)、P(条件l)に設定されている。同様に、筒内温度T、吸気酸素濃度O2および噴射圧力Pcも全て異なる値に設定されている。これに対し、異なる燃焼条件の各々において、少なくとも1つの燃焼環境値の値が異なっていればよい。例えば燃焼条件i、jの各々において、筒内温度T、吸気酸素濃度O2および噴射圧力Pcを同じ値に設定し、筒内圧だけを異なる値P(条件i)、P(条件j)に設定してもよい。
上述した実施形態では、メイン噴射の直前に噴射(パイロット噴射)された燃料の燃焼に関する燃焼パラメータを取得している。これに対し、メイン噴射の後に噴射された燃料の燃焼に関する燃焼パラメータを取得してもよい。メイン噴射後の噴射の具体的例として、メイン燃焼中に噴射されるアフター噴射や、メイン燃焼後に噴射されるポスト噴射が挙げられる。また、メイン噴射の前に複数回噴射する多段噴射を実施する場合には、初回に噴射された燃料の燃焼に関する燃焼パラメータを取得すれば、メイン燃焼の影響を大きく受けずに済むので望ましい。
上述した実施形態では、筒内圧センサ21の検出値に基づき燃焼パラメータを取得している。これに対し、筒内圧センサ21を備えていない構成において、回転角センサの回転変動(つまり微分値)に基づき燃焼パラメータを推定してもよい。例えば、パイロット燃焼に起因して微分値が既定の閾値を超えた時期をパイロット着火時期として推定できる。また、微分値の大きさからパイロット燃焼量を推定できる。
図1に示す実施形態では、筒内温度は温度検出素子21aにより検出されているが、筒内圧センサ21により検出された筒内圧に基づき推定してもよい。具体的には、筒内温度を、筒内圧力、シリンダ容積、シリンダ内のガス重量、ガス定数から演算して推定する。
上記第1実施形態では、燃焼パラメータ取得部81は、着火遅れ時間TDを図3の行列式に代入して分子構造種毎の混合割合を算出するにあたり、着火遅れ時間TDのサンプリング数が全て揃うまで、混合割合の算出を待機させている。具体的には、図3の行列式の右辺右側の行列に代入すべき全ての値が揃うまで、混合割合の算出を待機させている。これに対し、全て揃っていない状態であっても、サンプリング数に応じて定数を表わす行列の列数を変更させて、複数の混合割合のうちの一部を算出してもよい。或いは、取得されていない着火遅れ時間TDについては、予め設定しておいたノミナル値を着火遅れ時間TDの行列に代入して、複数の混合割合を算出してもよい。
上記第1実施形態では、密度センサ27および動粘度センサ28にヒータ28aが設けられている。これに対し、性状センサを、燃料温度や燃料圧力が相違する複数箇所に設けることで、温度条件や圧力条件の異なる複数の性状パラメータを取得する構成としてもよい。この場合、性状センサを燃料タンク以外の異なる場所にそれぞれ設けるとよい。例えば、性状センサを、燃料フィードポンプから高圧ポンプに圧送される通路上、コモンレール内部、減圧弁から燃料タンクに燃料がリターンされる通路にそれぞれ設ける。これにより、異なる温度条件及び圧力条件で密度や動粘度を取得でき、その取得された密度や動粘度を用いて上記混合割合を算出することが可能となる。
また、圧力条件および温度条件の両方を相違させた複数の性状パラメータに基づき上記混合割合を算出してもよいし、いずれか一方を相違させた複数の性状パラメータに基づき上記混合割合を算出してもよい。
また、上記第1実施形態では、第2推定部82aが、密度センサ27により検出された性状パラメータ(つまり燃料密度)、および動粘度センサ28により検出された性状パラメータ(つまり動粘度)の両方に基づき混合割合を推定する。つまり、複数種類の性状パラメータに基づき混合割合を推定する。これに対し、密度センサ27および動粘度センサ28の一方による性状パラメータに基づき混合割合を推定してもよい。但しこの場合には、異なる温度または圧力の時に検出された性状パラメータに基づき推定することを要する。つまり、燃料の性状パラメータとして、燃料の温度条件や圧力条件といった検出条件を相違させることで複数の性状パラメータを取得する構成としてもよい。
動粘度の算出は、動粘度センサ28による検出値に基づくものに限らない。例えば、コモンレール15cから燃料噴射弁15の噴射孔までの燃料通路内の燃料圧力を圧力センサで検出して、検出した燃料圧力の時間変化を示す圧力波形を取得する。そして、取得した圧力波形を形成する圧力波の速度を算出し、圧力波の速度に基づいて燃料の密度や動粘度を算出してもよい。
上記第6実施形態では、第1推定部81aが燃焼パラメータに基づき推定した混合割合(つまり推定値X1)と、第2推定部82aが性状パラメータに基づき推定された混合割合(つまり推定値X2)とを比較して、性状センサの故障を診断する。つまり、混合割合同士を比較して診断する。これに対し、燃焼センサにより検出された燃焼パラメータに基づき性状パラメータを推定し、その推定値と、性状センサにより検出された性状パラメータとを比較して、性状センサの故障を診断してもよい。つまり、性状パラメータ同士を比較して診断する。
上記第3実施形態では、図14のステップS51にてズレ量の算出に用いる第1推定値X1および第2推定値X2は、分子混合種毎の混合割合である。つまり、混合割合同士を比較してそれらのズレ量を算出する。これに対し、燃焼センサにより検出された燃焼パラメータに基づき性状パラメータを推定し、その推定値と、性状センサにより検出された性状パラメータとのズレ量を、図14のステップS51で算出してもよい。つまり、性状パラメータ同士を比較してそれらのズレ量を算出し、そのズレ量をステップS52での判定に用いてもよい。混合割合同士を比較する場合には、燃焼センサによる推定値と性状センサによる推定値との比較であり、互いの推定値を比較することになる。これに対し、性状パラメータ同士を比較する場合には、性状センサによる検出値から推定された混合割合を比較対象とするのではなく、性状センサによる検出値を比較対象にする。よって、第1推定値X1の推定に用いた燃焼パラメータの燃焼条件の値の誤差が大きくなっている場合等、例外的に第1推定値X1の方が低精度になっているか否かを、精度良く判定できる。
上記第3実施形態の図14では、第2推定精度E2が所定の精度Ethを満たしていること、つまりステップS50で肯定判定されていることを条件として、ステップS51〜ステップS54の処理を実行している。これに対し、第1推定精度E1が所定の精度Ethを満たしていることを、ステップS51〜ステップS54の実行条件に加えてもよい。なお、第1推定精度E1は、図11のステップS32による第1精度算出部により算出された値である。
上記第1実施形態では、図11のステップS32において、サンプリング数が多いほど、第1推定精度E1を高い値に算出している。これに対し、サンプリングに係る燃焼環境値が、決められた燃焼環境値に近い値であるほど、第1推定精度E1を高い値に算出してもよい。また、サンプリングに係る燃焼環境値と決められた燃焼環境値との乖離度合い、およびサンプリング数の両方に基づき第1推定精度E1を算出してもよい。
上記第1実施形態では、図11のステップS33において、サンプリング数が多いほど、第2推定精度E2を高い値に算出している。これに対し、サンプリングに係る燃料温度が、決められた燃料温度に近い値であるほど、第2推定精度E2を高い値に算出してもよい。また、サンプリングに係る燃料温度と決められた燃料温度との乖離度合い、およびサンプリング数の両方に基づき第2推定精度E2を算出してもよい。
燃焼システム制御装置であるECU80が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、燃焼システム制御装置がハードウェアである回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。
10…内燃機関、21…筒内圧センサ(燃焼センサ)、27…密度センサ(性状センサ)、28…動粘度センサ(性状センサ)、80…ECU(燃焼システム制御装置)、81a…第1推定部、82a…第2推定部、83…比較選択部、85a…噴射制御部(制御部)、85b…燃圧制御部(制御部)、85c…EGR制御部(制御部)、85d…過給圧制御部(制御部)、85e…インマニ温度制御部(制御部)。

Claims (9)

  1. 内燃機関(10)と、前記内燃機関の燃焼状態を表わす燃焼パラメータを検出する燃焼センサ(21)と、前記内燃機関の燃焼に用いる燃料の性状を表わす性状パラメータを検出する性状センサ(27、28)と、を備える燃焼システムに適用され、前記燃焼システムの作動を制御する燃焼システム制御装置において、
    前記燃焼センサにより検出された前記燃焼パラメータのうち、異なる燃焼条件で燃焼した場合の各々の前記燃焼パラメータに基づき、燃料に含まれている分子構造種毎の混合割合および燃料の性状を表した性状値の少なくとも一方を第1推定値として推定する第1推定部(81a)と、
    前記性状センサにより検出された複数の前記性状パラメータに基づき、前記混合割合および前記性状値の少なくとも一方を第2推定値として推定する第2推定部(82a)と、
    前記第1推定値および前記第2推定値を比較して、推定精度が高い方の推定値を選択する比較選択部(83)と、
    前記比較選択部により選択された推定値を用いて前記燃焼システムの作動を制御する制御部(85a、85b、85c、85d、85e)と、
    を備える燃焼システム制御装置。
  2. 前記第1推定部による前記第1推定値の推定精度を算出する精度算出部であって、前記第1推定部に用いられる前記燃焼パラメータのサンプリング数が多いほど高い推定精度であると算出する第1精度算出部(S32)と、
    前記第2推定部による前記第2推定値の推定精度を算出する精度算出部であって、前記第2推定部に用いられる前記性状パラメータのサンプリング数が多いほど高い推定精度であると算出する第2精度算出部(S33)と、
    を備え、
    前記比較選択部は、前記第1精度算出部により算出された推定精度である第1推定精度と、前記第2精度算出部により算出された推定精度である第2推定精度とを比較する請求項1に記載の燃焼システム制御装置。
  3. 前記第1推定値および前記第2推定値の偏差を算出する偏差算出部(S51)を備え、
    前記第1推定精度が前記第2推定精度より高い場合であっても、前記偏差が所定量以上である場合、かつ前記第2推定精度が所定の精度より高い場合には、前記比較選択部は前記第2推定値を選択する請求項2に記載の燃焼システム制御装置。
  4. 前記偏差が所定量以上である場合に、前記燃焼センサは前記燃焼パラメータを検出し直し、前記第1推定部は前記第1推定値を推定し直す請求項3に記載の燃焼システム制御装置。
  5. 前記第1推定部は、複数種類の前記第1推定値を推定し、
    前記第2推定部は、複数種類の前記第2推定値を推定し、
    前記第1精度算出部は、複数種類の前記第1推定値の各々に対して推定精度を算出し、
    前記第2精度算出部は、複数種類の前記第2推定値の各々に対して推定精度を算出し、
    前記比較選択部は、複数種類の前記第1推定値および前記第2推定値の各々に対して比較して選択し、
    前記制御部は、各々の選択された推定値を前記燃焼システムの制御に用いる請求項2〜4のいずれか1つに記載の燃焼システム制御装置。
  6. 前記制御部は、前記第1精度算出部により算出される推定精度および前記第2精度算出部により算出される推定精度のいずれもが所定の精度よりも低い場合に、過去直近に用いられていた前記第1推定値または前記第2推定値を用いて前記燃焼システムの作動を制御し、
    前記所定の精度は、複数種類の前記第1推定値および前記第2推定値の各々に対して、異なる値に設定されている請求項5に記載の燃焼システム制御装置。
  7. 前記制御部は、前記第1精度算出部により算出される推定精度および前記第2精度算出部により算出される推定精度のいずれもが所定の精度よりも低い場合に、過去直近に用いられていた前記第1推定値または前記第2推定値を用いて前記燃焼システムの作動を制御する請求項2〜5のいずれか1つに記載の燃焼システム制御装置。
  8. 燃料を給油した以降の前記内燃機関の累積運転時間が所定時間を経過しているにも拘らず、前記第1精度算出部により算出される推定精度が所定の精度より低い場合に、前記第1推定部の推定に用いられていない前記燃焼条件となるように前記燃焼システムの作動を制御する燃焼条件制御部(S42)を備える請求項2〜7のいずれか1つに記載の燃焼システム制御装置。
  9. 前記燃焼システムは、前記性状センサの検出対象となる燃料を加熱するヒータ(28a)を備えたものであり、
    前記第2推定部が推定に用いる複数の前記性状パラメータの各々は、燃料温度が異なる状況で前記性状センサにより検出されたものであり、
    燃料を給油した以降の前記内燃機関の累積運転時間が所定時間を経過しているにも拘らず、前記第2精度算出部により算出される推定精度が所定の精度より低い場合に、前記第2推定部の推定に用いられていない燃料温度となるように燃料を加熱制御する燃温条件制御部(S44)を備える請求項2〜8のいずれか1つに記載の燃焼システム制御装置。
JP2015228271A 2015-11-23 2015-11-23 燃焼システム制御装置 Expired - Fee Related JP6384458B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015228271A JP6384458B2 (ja) 2015-11-23 2015-11-23 燃焼システム制御装置
US15/774,404 US10280849B2 (en) 2015-11-23 2016-11-04 Combustion system control device
PCT/JP2016/082746 WO2017090404A1 (ja) 2015-11-23 2016-11-04 燃焼システム制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228271A JP6384458B2 (ja) 2015-11-23 2015-11-23 燃焼システム制御装置

Publications (2)

Publication Number Publication Date
JP2017096148A JP2017096148A (ja) 2017-06-01
JP6384458B2 true JP6384458B2 (ja) 2018-09-05

Family

ID=58764037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228271A Expired - Fee Related JP6384458B2 (ja) 2015-11-23 2015-11-23 燃焼システム制御装置

Country Status (3)

Country Link
US (1) US10280849B2 (ja)
JP (1) JP6384458B2 (ja)
WO (1) WO2017090404A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536369B2 (ja) 2015-11-12 2019-07-03 株式会社デンソー 潤滑性推定装置および燃料供給制御装置
JP6436064B2 (ja) * 2015-11-12 2018-12-12 株式会社デンソー デポジット推定装置および燃焼システム制御装置
JP6365515B2 (ja) 2015-11-23 2018-08-01 株式会社デンソー センサ故障診断装置
JP7079182B2 (ja) * 2018-10-26 2022-06-01 株式会社クボタ 電子燃料噴射式ディーゼルエンジン

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276441A (ja) * 2001-03-23 2002-09-25 Toyota Motor Corp 燃料噴射制御装置
JP4552898B2 (ja) * 2006-05-30 2010-09-29 株式会社デンソー 筒内圧センサの異常判定装置
JP2009127460A (ja) * 2007-11-21 2009-06-11 Toyota Motor Corp 内燃機関の制御装置、及び内燃機関の燃料噴射制御装置
JP2009185654A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 内燃機関制御装置
GB2474512B (en) * 2009-10-19 2013-08-28 Gm Global Tech Operations Inc Method for biodiesel blending detection based on internal mean effective pressure evaluation
JP5781855B2 (ja) * 2011-07-21 2015-09-24 株式会社日本自動車部品総合研究所 噴霧特性推定装置
JP5691910B2 (ja) * 2011-07-25 2015-04-01 三菱自動車工業株式会社 エンジン制御装置
JP5874686B2 (ja) * 2013-05-31 2016-03-02 トヨタ自動車株式会社 内燃機関の制御装置
JP6317219B2 (ja) * 2013-11-29 2018-04-25 トヨタ自動車株式会社 燃料性状推定装置
JP6424747B2 (ja) * 2015-06-11 2018-11-21 株式会社デンソー ディーゼル機関の制御装置
JP2017002845A (ja) * 2015-06-11 2017-01-05 株式会社デンソー 燃料推定装置
JP6536369B2 (ja) * 2015-11-12 2019-07-03 株式会社デンソー 潤滑性推定装置および燃料供給制御装置
JP6436064B2 (ja) * 2015-11-12 2018-12-12 株式会社デンソー デポジット推定装置および燃焼システム制御装置
JP6365515B2 (ja) * 2015-11-23 2018-08-01 株式会社デンソー センサ故障診断装置

Also Published As

Publication number Publication date
US10280849B2 (en) 2019-05-07
WO2017090404A1 (ja) 2017-06-01
US20180328293A1 (en) 2018-11-15
JP2017096148A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6365515B2 (ja) センサ故障診断装置
JP5001785B2 (ja) 内燃機関の制御のためのシステムおよび方法
JP6384458B2 (ja) 燃焼システム制御装置
US10794321B2 (en) Estimation device and control device for combustion system
JP2017002845A (ja) 燃料推定装置
JP6477434B2 (ja) 燃焼システムの推定装置
JP6436064B2 (ja) デポジット推定装置および燃焼システム制御装置
JP6421702B2 (ja) 燃焼システム制御装置
WO2017081994A1 (ja) スモーク量推定装置および燃焼システム制御装置
US10669958B2 (en) Estimation device and control device for combustion system
US10907561B2 (en) Estimation device and control device for combustion system
JP6439660B2 (ja) 燃焼システムの推定装置及び制御装置
WO2017081992A1 (ja) 潤滑性推定装置および燃料供給制御装置
JP6406081B2 (ja) 燃料性状判別装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R151 Written notification of patent or utility model registration

Ref document number: 6384458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees