[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6380269B2 - Method for producing lithium ion secondary battery - Google Patents

Method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP6380269B2
JP6380269B2 JP2015141410A JP2015141410A JP6380269B2 JP 6380269 B2 JP6380269 B2 JP 6380269B2 JP 2015141410 A JP2015141410 A JP 2015141410A JP 2015141410 A JP2015141410 A JP 2015141410A JP 6380269 B2 JP6380269 B2 JP 6380269B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
electrode active
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015141410A
Other languages
Japanese (ja)
Other versions
JP2017027656A (en
Inventor
崇資 三浦
崇資 三浦
北吉 雅則
雅則 北吉
直久 秋山
直久 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015141410A priority Critical patent/JP6380269B2/en
Publication of JP2017027656A publication Critical patent/JP2017027656A/en
Application granted granted Critical
Publication of JP6380269B2 publication Critical patent/JP6380269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質粒子を含む正極活物質層を有する正極板と、負極板と、フッ素を含む化合物を有する非水電解液とを備えるリチウムイオン二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a lithium ion secondary battery including a positive electrode plate having a positive electrode active material layer containing positive electrode active material particles, a negative electrode plate, and a non-aqueous electrolyte solution containing a compound containing fluorine.

従来より、リチウムイオン二次電池(以下、単に電池ともいう)では、正極電位が高電位となるため、正極活物質粒子の粒子表面で非水電解液の非水溶媒が酸化分解され易いことが知られている。非水溶媒が酸化分解されて水素イオンが発生すると、非水電解液がフッ素を含む化合物を有する場合には、水素イオンがフッ素と反応してフッ酸(HF)を生成する場合がある。すると、このフッ酸の作用により、正極活物質粒子中の遷移金属が溶出して、電池容量が少なくなる。このため、このような電池では、充放電サイクル試験を行ったときに、電池容量が大きく低下するという問題がある。   Conventionally, in a lithium ion secondary battery (hereinafter also simply referred to as a battery), the positive electrode potential is high, so that the nonaqueous solvent of the nonaqueous electrolyte solution is likely to be oxidatively decomposed on the surface of the positive electrode active material particles. Are known. When hydrogen ions are generated by oxidative decomposition of the non-aqueous solvent, hydrogen ions may react with fluorine to generate hydrofluoric acid (HF) when the non-aqueous electrolyte has a compound containing fluorine. Then, by the action of this hydrofluoric acid, the transition metal in the positive electrode active material particles is eluted, and the battery capacity is reduced. For this reason, in such a battery, there is a problem that the battery capacity is greatly reduced when a charge / discharge cycle test is performed.

この問題に対し、正極活物質層にリン酸リチウムなどの金属リン酸塩粒子(粉末)を含ませておく技術が知られている。正極活物質層に金属リン酸塩粒子を含ませておくと、電池を初充電する際に、上述のフッ酸が金属リン酸塩と反応して、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成される。この被膜は、非水電解液が正極活物質に直接接触するのを抑制するので、正極電位が非水溶媒の酸化分解電位を越えても、非水溶媒が酸化分解されるのを抑制できる。従って、電池に充放電サイクル試験を行った後に、電池容量が低下するのを抑制できる。
例えば、特許文献1には、正極合剤層(正極活物質層)に、リン酸リチウムやリン酸ナトリウムなどの金属リン酸塩粒子を含有させる技術が開示されている。
In order to solve this problem, a technique in which metal phosphate particles (powder) such as lithium phosphate are included in the positive electrode active material layer is known. When the metal phosphate particles are included in the positive electrode active material layer, when the battery is charged for the first time, the above-described hydrofluoric acid reacts with the metal phosphate, so that fluorine and phosphorus are present on the surface of the positive electrode active material particles. Is formed. Since this coating prevents the non-aqueous electrolyte from coming into direct contact with the positive electrode active material, the non-aqueous solvent can be prevented from being oxidatively decomposed even when the positive electrode potential exceeds the oxidative decomposition potential of the non-aqueous solvent. Therefore, it is possible to suppress a decrease in battery capacity after performing a charge / discharge cycle test on the battery.
For example, Patent Document 1 discloses a technique in which a positive electrode mixture layer (positive electrode active material layer) contains metal phosphate particles such as lithium phosphate and sodium phosphate.

特開2014−103098号公報JP 2014-103098 A

しかしながら、フッ素及びリンを含む被膜は、それ自体が抵抗体であるため、この被膜が厚いと電池抵抗が高くなりがちである。これに対し、正極活物質層内における金属リン酸塩粒子の分散性を向上させると、被膜の存在によって電池抵抗が高くなるのを抑制できることが判ってきた。その理由は、金属リン酸塩粒子の分散性が良いほど、フッ酸との反応頻度が高くなり、短時間で被膜形成の反応が完了するので、被膜は薄く形成される。このため、被膜の抵抗が低くなり、電池抵抗が低くなると考えられる。
しかし、金属リン酸塩粒子の分散性を良くするべく、金属リン酸塩の粒子を小径化(ナノ粒子化)するには、(1)金属リン酸塩を小径化するための工程を別途追加する必要がある、(2)小径化された金属リン酸塩粒子は、正極活物質層用のペースト製造時の計量や投入における取り扱いが難しいなどの理由から、電池の製造コストが高くなる。
However, since the film containing fluorine and phosphorus is itself a resistor, the battery resistance tends to increase when the film is thick. On the other hand, it has been found that when the dispersibility of the metal phosphate particles in the positive electrode active material layer is improved, the battery resistance can be prevented from increasing due to the presence of the coating. The reason is that the better the dispersibility of the metal phosphate particles, the higher the frequency of reaction with hydrofluoric acid, and the reaction for forming the film is completed in a short time, so that the film is formed thinner. For this reason, it is thought that the resistance of the film is lowered and the battery resistance is lowered.
However, in order to reduce the size of metal phosphate particles (nanoparticles) in order to improve the dispersibility of metal phosphate particles, (1) a separate process for reducing the diameter of metal phosphate is added. (2) The metal phosphate particles having a reduced diameter increase the production cost of the battery because of the difficulty in weighing and charging during the production of the paste for the positive electrode active material layer.

本発明は、かかる現状に鑑みてなされたものであって、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜を有しながらも、安価なリチウムイオン二次電池を製造できるリチウムイオン二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of the current situation, and has a lithium ion secondary battery that can produce an inexpensive lithium ion secondary battery while having a coating film containing fluorine and phosphorus on the surface of the positive electrode active material particles. It aims at providing the manufacturing method of a battery .

上記課題を解決するための本発明の一態様は、正極活物質粒子を含む正極活物質層を有する正極板と、負極板と、フッ素を含む化合物を有する非水電解液と、を備えるリチウムイオン二次電池であって、上記正極活物質粒子は、その粒子表面に、フッ素及びリンを含む被膜を有し、上記非水電解液は、リン酸イオン及びピロリン酸イオンの少なくともいずれかを含むリチウムイオン二次電池である。   One embodiment of the present invention for solving the above problems is a lithium ion including a positive electrode plate having a positive electrode active material layer containing positive electrode active material particles, a negative electrode plate, and a non-aqueous electrolyte solution containing a compound containing fluorine. In the secondary battery, the positive electrode active material particles have a coating film containing fluorine and phosphorus on the particle surface, and the non-aqueous electrolyte is lithium containing at least one of phosphate ions and pyrophosphate ions. It is an ion secondary battery.

このリチウムイオン二次電池によれば、非水電解液は、リン酸イオン(PO4 3-)及びピロリン酸イオン(P27 4-)の少なくともいずれかを有する。非水電解液中にリン酸イオンまたはピロリン酸イオンが存在しているので、電池の製造過程で電池を初充電した際には、発生したフッ酸が非水電解液中のリン酸イオンまたはピロリン酸イオンと反応して、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成される。この被膜は、前述のように、非水電解液が正極活物質に直接接触するのを抑制するので、正極電位が非水溶媒の酸化分解電位よりも高くなった場合でも、非水溶媒が酸化分解されるのを抑制できる。従って、電池に充放電サイクル試験を行ったときに、電池容量が低下するのを抑制できる。
しかも、リン酸イオンやピロリン酸イオンを有する非水電解液は、非水電解液に金属リン酸塩や金属ピロリン酸塩の粒子を溶解させることで容易かつ均一に作製でき、安価な電池とすることができる。
According to this lithium ion secondary battery, the nonaqueous electrolytic solution has at least one of phosphate ions (PO 4 3− ) and pyrophosphate ions (P 2 O 7 4− ). Since phosphate ions or pyrophosphate ions are present in the non-aqueous electrolyte, when the battery is charged for the first time during the battery manufacturing process, the generated hydrofluoric acid is converted to phosphate ions or pyrophosphate in the non-aqueous electrolyte. By reacting with acid ions, a film containing fluorine and phosphorus is formed on the surface of the positive electrode active material particles. As described above, this coating prevents the nonaqueous electrolyte from coming into direct contact with the positive electrode active material, so that the nonaqueous solvent is oxidized even when the positive electrode potential is higher than the oxidative decomposition potential of the nonaqueous solvent. It can suppress being decomposed. Therefore, it is possible to suppress a decrease in battery capacity when a charge / discharge cycle test is performed on the battery.
Moreover, a non-aqueous electrolyte having phosphate ions or pyrophosphate ions can be easily and uniformly produced by dissolving metal phosphate or metal pyrophosphate particles in the non-aqueous electrolyte, and an inexpensive battery is obtained. be able to.

なお、リン酸イオンまたはピロリン酸イオンを有する非水電解液は、前述のように、金属リン酸塩または金属ピロリン酸塩の粒子を非水電解液に溶解させることにより作製できる。
金属リン酸塩としては、例えば、M3PO4(M:アルカリ金属)で表されるアルカリ金属のリン酸塩や、M3(PO42(M:第2族元素)で表される第2族元素のリン酸塩、或いは、アルカリ金属及び第2族金属の両方の金属を含むリン酸塩が挙げられる。
更に、アルカリ金属のリン酸塩としては、例えば、リン酸リチウム(Li3PO4)、リン酸ナトリウム(Na3PO4)、リン酸カリウム(K3PO4)、リン酸ジリチウムナトリウム(Li2NaPO4)などが挙げられる。
Note that the nonaqueous electrolytic solution having phosphate ions or pyrophosphate ions can be prepared by dissolving metal phosphate or metal pyrophosphate particles in the nonaqueous electrolytic solution as described above.
Examples of the metal phosphate include an alkali metal phosphate represented by M 3 PO 4 (M: alkali metal) and M 3 (PO 4 ) 2 (M: Group 2 element). Examples include phosphates of Group 2 elements, or phosphates containing both alkali metals and Group 2 metals.
Furthermore, as the alkali metal phosphate, for example, lithium phosphate (Li 3 PO 4 ), sodium phosphate (Na 3 PO 4 ), potassium phosphate (K 3 PO 4 ), sodium dilithium phosphate (Li 2 NaPO 4 ).

また、第2族元素のリン酸塩としては、例えば、リン酸マグネシウム(Mg3(PO42)、リン酸カルシウム(Ca3(PO42)などが挙げられる。
また、アルカリ金属及び第2族金属の両方の金属を含むリン酸塩としては、例えば、リン酸ナトリウムマグネシウム(MgNaPO4)が挙げられる。
またその他に、金属リン酸塩として、例えば、リチウムアルミニウムゲルマニウムリン酸塩(LAGP:Li1.5Al0.5Ge1.5(PO43)のように、アルカリ金属及び第2族元素以外の元素を含む金属リン酸塩も挙げられる。
Examples of Group 2 element phosphates include magnesium phosphate (Mg 3 (PO 4 ) 2 ) and calcium phosphate (Ca 3 (PO 4 ) 2 ).
Examples of the phosphate containing both alkali metal and Group 2 metal include sodium magnesium phosphate (MgNaPO 4 ).
In addition, as a metal phosphate, for example, a metal containing an element other than an alkali metal and a Group 2 element such as lithium aluminum germanium phosphate (LAGP: Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ) Also included are phosphates.

金属ピロリン酸塩としては、例えば、M427(M:アルカリ金属)で表されるアルカリ金属のピロリン酸塩や、M227(M:第2族元素)で表される第2族元素のピロリン酸塩が挙げられる。
更に、アルカリ金属のピロリン酸塩として、例えば、ピロリン酸リチウム(Li427)、ピロリン酸ナトリウム(Na427)、ピロリン酸カリウム(K427)が挙げられる。
また、第2族元素のピロリン酸塩としては、例えば、ピロリン酸マグネシウム(Mg227)、ピロリン酸カルシウム(Ca227)が挙げられる。
Examples of the metal pyrophosphate include an alkali metal pyrophosphate represented by M 4 P 2 O 7 (M: alkali metal) and M 2 P 2 O 7 (M: group 2 element). Group 2 element pyrophosphates.
Further, examples of the alkali metal pyrophosphate include lithium pyrophosphate (Li 4 P 2 O 7 ), sodium pyrophosphate (Na 4 P 2 O 7 ), and potassium pyrophosphate (K 4 P 2 O 7 ). .
Examples of Group 2 element pyrophosphates include magnesium pyrophosphate (Mg 2 P 2 O 7 ) and calcium pyrophosphate (Ca 2 P 2 O 7 ).

「正極活物質粒子」をなす正極活物質としては、例えば、リチウム遷移金属複合酸化物が挙げられる。リチウム遷移金属複合酸化物としては、例えば、遷移金属としてニッケル(Ni)とコバルト(Co)とマンガン(Mn)とを含むリチウムニッケルコバルトマンガン系複合酸化物や、遷移金属としてニッケルとマンガンとを含むリチウムニッケルマンガン系複合酸化物、ニッケル酸リチウム(LiNiO2)、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)が挙げられる。 Examples of the positive electrode active material forming the “positive electrode active material particles” include lithium transition metal composite oxides. Examples of the lithium transition metal composite oxide include lithium nickel cobalt manganese based composite oxide containing nickel (Ni), cobalt (Co) and manganese (Mn) as transition metals, and nickel and manganese as transition metals. Examples thereof include lithium nickel manganese composite oxide, lithium nickelate (LiNiO 2 ), lithium cobaltate (LiCoO 2 ), and lithium manganate (LiMn 2 O 4 ).

更に具体的には、正極活物質として、以下の一般式(1)で表される、スピネル型の結晶構造を有するリチウムニッケルマンガン系複合酸化物を用いることができる。
Li(NixyMn2-x-y)O4 ・・・(1)
但し、xは、x>0、好ましくは、0.2≦x≦1.0である。
また、yは、y≧0、好ましくは、0≦y<1.0である。
また、x+y<2.0である。
また、「M」は、Ni,Mn以外の任意の遷移金属元素(例えば、Fe、Co、Cu、Crから選択される1種または2種以上)、または典型金属元素(例えば、Zn、Alから選択される1種または2種以上)である。
なお、正極活物質の結晶構造がスピネル構造を有しているか否かについては、例えばX線構造解析(好ましくは単結晶X線構造解析)によって判別できる。具体的には、CuKα線を使用したX線回折測定によって判別できる。
More specifically, a lithium nickel manganese composite oxide having a spinel crystal structure represented by the following general formula (1) can be used as the positive electrode active material.
Li (Ni x M y Mn 2 -xy) O 4 ··· (1)
However, x is x> 0, preferably 0.2 ≦ x ≦ 1.0.
Further, y is y ≧ 0, preferably 0 ≦ y <1.0.
Further, x + y <2.0.
“M” is any transition metal element other than Ni and Mn (eg, one or more selected from Fe, Co, Cu, Cr), or a typical metal element (eg, Zn, Al). 1 type or 2 types or more selected).
Note that whether or not the crystal structure of the positive electrode active material has a spinel structure can be determined by, for example, X-ray structure analysis (preferably single crystal X-ray structure analysis). Specifically, it can be determined by X-ray diffraction measurement using CuKα rays.

「フッ素及びリンを含む被膜」には、フッ素及びリンのほか、非水電解液の成分(電解質や非水溶媒、添加剤など)の分解物などが含まれていてもよい。
「正極活物質層」には、正極活物質粒子のほか、例えば、黒鉛、カーボンブラック、アセチレンブラックなどの導電材や、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)などの結着剤を含めることができる。
「負極板」には、負極活物質粒子を含む負極活物質層を負極集電箔上に設けた形態のものが挙げられる。負極活物質粒子としては、例えば、黒鉛などリチウムを挿入・脱離可能な炭素材料からなる粒子が挙げられる。
The “coating containing fluorine and phosphorus” may contain decomposition products of non-aqueous electrolyte components (electrolytes, non-aqueous solvents, additives, etc.) in addition to fluorine and phosphorus.
In the “positive electrode active material layer”, in addition to the positive electrode active material particles, for example, conductive materials such as graphite, carbon black, and acetylene black, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber ( A binder such as SBR) can be included.
Examples of the “negative electrode plate” include a negative electrode active material layer including negative electrode active material particles provided on a negative electrode current collector foil. Examples of the negative electrode active material particles include particles made of a carbon material capable of inserting and removing lithium such as graphite.

「非水電解液」の非水溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの有機溶媒が挙げられ、これらを単独で或いは2種以上を混合して用いることができる。
また、「非水電解液」の電解質としては、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3 などが挙げられ、これらを単独で或いは2種以上を組み合わせて用いることができる。
Examples of the non-aqueous solvent for the “non-aqueous electrolyte solution” include organic solvents such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and the like. It can be used alone or in admixture of two or more.
As the electrolyte of the "non-aqueous electrolyte", LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 such SO 3 and the like, may be used in combination either singly or in combination.

また、「非水電解液」には、上記の電解質以外の添加物を含ませることもできる。添加物としては、例えば、フッ化物やリチウムビスオキサレートボレート(LiBOB)が挙げられる。フッ化物としては、例えば、AgF、CoF2、CoF3、CuF、CuF2、FeF2、FeF3、LiF、MnF2、MnF3、SnF2、SnF4、TiF3、TiF4、ZrF4などが挙げられ、これらを単独で或いは2種以上を組み合わせて用いることができる。
なお、非水電解液に含まれる「フッ素を含む化合物」は、LiPF6 などのフッ素を含む電解質でもよいし、LiFなどのフッ素を含む添加物でもよい。また、フッ素を含む化合物は、1種のみでもよいし、2種以上含まれていてもよい。
In addition, the “nonaqueous electrolytic solution” may contain an additive other than the above electrolyte. Examples of the additive include fluoride and lithium bisoxalate borate (LiBOB). The fluoride, for example, AgF, CoF 2, CoF 3 , CuF, CuF 2, FeF 2, FeF 3, LiF, etc. MnF 2, MnF 3, SnF 2 , SnF 4, TiF 3, TiF 4, ZrF 4 is These may be used alone or in combination of two or more.
The “compound containing fluorine” contained in the nonaqueous electrolytic solution may be an electrolyte containing fluorine such as LiPF 6 or an additive containing fluorine such as LiF. Moreover, the compound containing a fluorine may be only 1 type, and 2 or more types may be contained.

更に、上記のリチウムイオン二次電池であって、前記正極活物質層は、金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子を含むリチウムイオン二次電池とするのが好ましい。   Furthermore, in the above lithium ion secondary battery, the positive electrode active material layer is preferably a lithium ion secondary battery including particles of at least one of metal phosphate and metal pyrophosphate.

このリチウムイオン二次電池では、非水電解液にリン酸イオン及びピロリン酸イオンの少なくともいずれかを含むだけでなく、正極活物質層に金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子を含む。これにより、製造後の電池の使用時において、非水溶媒の酸化分解に伴ってフッ酸が発生したとしても、このフッ酸を、非水電解液中のリン酸イオン及びピロリン酸イオンのほか、正極活物質層中の金属リン酸塩及び金属ピロリン酸塩の粒子とも反応させて消費することができる。このため、フッ酸の作用により正極活物質粒子中の遷移金属が溶出して、電池容量が少なくなるのを抑制できる。従って、充放電サイクル試験を行ったときに、電池容量が低下するのを、より効果的に抑制できる。   In this lithium ion secondary battery, not only the phosphate ion and pyrophosphate ion are included in the non-aqueous electrolyte solution, but also the positive electrode active material layer has particles of at least one of metal phosphate and metal pyrophosphate. including. As a result, even when hydrofluoric acid is generated along with the oxidative decomposition of the nonaqueous solvent during use of the battery after production, this hydrofluoric acid is used in addition to phosphate ions and pyrophosphate ions in the nonaqueous electrolyte solution. It can also be consumed by reacting with metal phosphate and metal pyrophosphate particles in the positive electrode active material layer. For this reason, it can suppress that the transition metal in a positive electrode active material particle elutes by the effect | action of a hydrofluoric acid, and battery capacity decreases. Therefore, it is possible to more effectively suppress the battery capacity from decreasing when the charge / discharge cycle test is performed.

なお、正極活物質層に含める金属リン酸塩及び金属ピロリン酸塩の粒子としては、非水電解液に溶解させる金属リン酸塩及び金属ピロリン酸塩の粒子と同組成(例えば、共にリン酸リチウム粒子)でもよいし、或いは、異なる組成(例えば、非水電解液にリン酸リチウム粒子を溶解させ、正極活物質層にリン酸ナトリウム粒子を含める)としてもよい。   The metal phosphate and metal pyrophosphate particles included in the positive electrode active material layer have the same composition as the metal phosphate and metal pyrophosphate particles dissolved in the non-aqueous electrolyte (for example, both lithium phosphate Particles) or a different composition (for example, lithium phosphate particles are dissolved in a non-aqueous electrolyte and sodium phosphate particles are included in the positive electrode active material layer).

更に、上記のいずれかに記載のリチウムイオン二次電池であって、上記リチウムイオン二次電池の作動範囲(SOC0%〜100%)内のいずれにおいても、前記正極活物質粒子の酸化還元電位(作動電位)が4.3V(vs.Li/Li+)以上であるリチウムイオン二次電池とするのが好ましい。 Furthermore, in any of the above lithium ion secondary batteries, the redox potential of the positive electrode active material particles (SOC 0% to 100%) in any of the operating ranges (SOC 0% to 100%) of the lithium ion secondary battery. It is preferable to use a lithium ion secondary battery having an operating potential) of 4.3 V (vs. Li / Li + ) or higher.

このリチウムイオン二次電池では、SOC0%〜100%内のいずれのSOCにおいても、正極活物質粒子の酸化還元電位が4.3V(vs.Li/Li+)以上の高電位であるため、正極活物質粒子の粒子表面で非水電解液の非水溶媒が酸化分解され易く、フッ酸が生じ易い。しかるに、前述のように、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜を形成してあるので、非水溶媒の酸化分解を防止し、また、フッ酸の作用による正極活物質粒子中の遷移金属の溶出を防止して、電池容量が減少するのを、より効果的に抑制できる。 In this lithium ion secondary battery, since the redox potential of the positive electrode active material particles is a high potential of 4.3 V (vs. Li / Li + ) or higher in any SOC within SOC 0% to 100%, The nonaqueous solvent of the nonaqueous electrolytic solution is easily oxidized and decomposed on the surface of the active material particles, and hydrofluoric acid is easily generated. However, as described above, since the coating film containing fluorine and phosphorus is formed on the surface of the positive electrode active material particles, the oxidative decomposition of the non-aqueous solvent is prevented, and the positive electrode active material particles in the positive electrode active material particles are activated by the action of hydrofluoric acid. It is possible to more effectively suppress the decrease of the battery capacity by preventing elution of the transition metal.

また、他の態様としては、正極活物質粒子を含む正極活物質層を有する正極板と、負極板と、フッ素を含む化合物を有する非水電解液と、を備え、上記正極活物質粒子は、その粒子表面に、フッ素及びリンを含む被膜を有し、上記非水電解液は、リン酸イオン及びピロリン酸イオンの少なくともいずれかを含み、上記正極活物質層は、金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子を含むリチウムイオン二次電池の製造方法であって、上記正極板、上記負極板及び上記非水電解液を用いて、電池を組み立てる組立工程と、上記組立工程の後、上記電池を初充電し、生成されたフッ酸を上記非水電解液中のリン酸イオン及びピロリン酸イオンと反応させると共に、上記正極活物質層中の上記金属リン酸塩粒子及び金属ピロリン酸塩粒子と反応させて、上記正極活物質粒子の上記粒子表面に上記被膜を形成する被膜形成工程と、を備え、上記組立工程で用いる上記非水電解液は、予めリン酸イオン及びピロリン酸イオンの少なくともいずれかを含む電解液であるリチウムイオン二次電池の製造方法とするのが好ましい。 Moreover, as another aspect, the positive electrode plate having a positive electrode active material layer containing positive electrode active material particles, a negative electrode plate, and a non-aqueous electrolyte solution containing a compound containing fluorine, the positive electrode active material particles include: on the particle surface has a coating containing fluorine and phosphorus, the non-aqueous electrolyte, saw including at least one of phosphate ion and pyrophosphate ions, the positive electrode active material layer, metal phosphates and metal A method for manufacturing a lithium ion secondary battery including at least one particle of pyrophosphate, an assembling process for assembling a battery using the positive electrode plate, the negative electrode plate, and the non-aqueous electrolyte, and the assembling process after, and initial charge of the battery, Rutotomoni the generated hydrogen fluoride is reacted with phosphoric acid ions and pyrophosphate ions in the nonaqueous electrolyte solution, and the metal phosphate particles of the positive electrode active material layer Metal pyrroline Is reacted with a salt particles, the positive electrode active material film formation step of forming the coating on the particle surfaces of the particles, comprising a non-aqueous electrolyte solution used in the assembly process, pre phosphate ion and pyrophosphate ion It is preferable to use a method for producing a lithium ion secondary battery that is an electrolytic solution containing at least one of the above .

このリチウムイオン二次電池の製造方法では、電池を組み立てた後に、電池を初充電して、生成されたフッ酸を非水電解液中のリン酸イオン及びピロリン酸イオンと反応させると共に、正極活物質層中の金属リン酸塩粒子及び金属ピロリン酸塩粒子とも反応させることで、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜を形成する。このようにすることで、正極活物質粒子の粒子表面に、均一な被膜を容易に形成でき、また、安価に電池を製造できる。 In this method of manufacturing a lithium ion secondary battery, after the battery is assembled, the battery is initially charged, and the generated hydrofluoric acid is reacted with phosphate ions and pyrophosphate ions in the non-aqueous electrolyte solution. By reacting with metal phosphate particles and metal pyrophosphate particles in the material layer, a film containing fluorine and phosphorus is formed on the particle surface of the positive electrode active material particles. By doing in this way, a uniform film can be easily formed on the particle surface of positive electrode active material particles, and a battery can be manufactured at low cost.

実施形態に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to an embodiment. 実施形態に係るリチウムイオン二次電池を電池横方向及び電池縦方向に沿う平面で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the lithium ion secondary battery which concerns on embodiment by the plane in alignment with a battery horizontal direction and a battery vertical direction. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。It is an expanded view of an electrode body which concerns on embodiment and shows the state which mutually accumulated the positive electrode plate and the negative electrode plate through the separator. 実施形態に係り、正極活物質粒子の断面のうち粒子表面近傍の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of particle surface vicinity among the cross sections of positive electrode active material particle in connection with embodiment. 実施例及び比較例に係る各電池について、金属リン酸塩粒子の非水電解液への添加量と電池の容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount to the non-aqueous electrolyte of metal phosphate particle | grains, and the capacity | capacitance maintenance factor of a battery about each battery which concerns on an Example and a comparative example. 実施例及び比較例に係る各電池について、金属リン酸塩粒子の非水電解液への添加量と電池抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the addition amount to the non-aqueous electrolyte of a metal phosphate particle, and battery resistance ratio about each battery which concerns on an Example and a comparative example.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1を示す。また、図3に、この電池1を構成する電極体20の展開図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。
この電池1は、ハイブリッド自動車や電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20及び非水電解液40と、電池ケース10に支持された正極端子50及び負極端子51等から構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a lithium ion secondary battery (hereinafter also simply referred to as “battery”) 1 according to the present embodiment. FIG. 3 shows a development view of the electrode body 20 constituting the battery 1. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2.
The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle. The battery 1 includes a battery case 10, an electrode body 20 and a nonaqueous electrolyte solution 40 accommodated therein, a positive terminal 50 and a negative terminal 51 supported by the battery case 10, and the like.

このうち電池ケース10は、直方体状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した直方体箱状のケース本体部材11と、このケース本体部材11の開口11hを閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、電池ケース10の内圧が所定圧力に達した際に破断開弁する安全弁14が設けられている。また、このケース蓋部材13には、電池ケース10の内外を連通する注液孔13hが形成され、封止部材15で気密に封止されている。   Among these, the battery case 10 has a rectangular parallelepiped shape and is made of metal (in this embodiment, aluminum). This battery case 10 includes a rectangular parallelepiped box-shaped case main body member 11 whose upper side is opened, and a rectangular plate-shaped case lid member 13 welded in a form to close the opening 11h of the case main body member 11. . The case lid member 13 is provided with a safety valve 14 that opens when the internal pressure of the battery case 10 reaches a predetermined pressure. The case lid member 13 is formed with a liquid injection hole 13 h that communicates the inside and outside of the battery case 10 and is hermetically sealed with a sealing member 15.

また、ケース蓋部材13には、それぞれ内部端子部材53、外部端子部材54及びボルト55により構成される正極端子50及び負極端子51が、樹脂からなる内部絶縁部材57及び外部絶縁部材58を介して固設されている。なお、正極端子50はアルミニウムからなり、負極端子51は銅からなる。電池ケース10内において、正極端子50は、後述する電極体20のうち正極板21の正極集電部21mに接続し導通している。また、負極端子51は、電極体20のうち負極板31の負極集電部31mに接続し導通している。   Further, the case lid member 13 has a positive terminal 50 and a negative terminal 51 formed of an internal terminal member 53, an external terminal member 54, and a bolt 55, respectively, via an internal insulating member 57 and an external insulating member 58 made of resin. It is fixed. The positive terminal 50 is made of aluminum, and the negative terminal 51 is made of copper. In the battery case 10, the positive electrode terminal 50 is connected and connected to the positive electrode current collector 21 m of the positive electrode plate 21 in the electrode body 20 described later. Further, the negative electrode terminal 51 is connected to the negative electrode current collector 31 m of the negative electrode plate 31 in the electrode body 20 and is conductive.

次に、電極体20について説明する(図2及び図3参照)。この電極体20は、扁平状をなし、電池ケース10内に収容されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ39を介して互いに重ねて捲回し、扁平状に圧縮したものである。   Next, the electrode body 20 will be described (see FIGS. 2 and 3). The electrode body 20 has a flat shape and is accommodated in the battery case 10. The electrode body 20 is obtained by winding a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 on each other via a pair of belt-like separators 39 and compressing them in a flat shape.

正極板21は、帯状のアルミニウム箔からなる正極集電箔22の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、正極活物質層23を帯状に設けてなる。正極活物質層23には、後述する正極活物質粒子24、導電材(導電助剤)26、結着剤27及び金属リン酸塩粒子28が含まれる。本実施形態では、導電材26としてアセチレンブラック(AB)を、結着剤27としてポリフッ化ビニリデン(PVDF)を、金属リン酸塩粒子28としてリン酸リチウム(Li3PO4 )粒子(粉末)を用いている。 The positive electrode plate 21 is formed by providing a positive electrode active material layer 23 in a band shape on a region extending in a part of the width direction and extending in the longitudinal direction among both main surfaces of a positive electrode current collector foil 22 made of a band-shaped aluminum foil. The positive electrode active material layer 23 includes positive electrode active material particles 24, a conductive material (conductive aid) 26, a binder 27, and metal phosphate particles 28, which will be described later. In the present embodiment, acetylene black (AB) is used as the conductive material 26, polyvinylidene fluoride (PVDF) is used as the binder 27, and lithium phosphate (Li 3 PO 4 ) particles (powder) are used as the metal phosphate particles 28. Used.

なお、正極活物質粒子24と導電材26と結着剤27との配合比は、重量比で89:8:3である。また、金属リン酸塩(リン酸リチウム)粒子28の配合比は、正極活物質粒子24を基準(100重量部)として、重量比で2.95重量部である。
正極集電箔22のうち、幅方向の片方の端部は、自身の厚み方向に正極活物質層23が存在せず、正極集電箔22が露出した正極集電部21mとなっている。前述の正極端子50は、この正極集電部21mに溶接されている。
The mixing ratio of the positive electrode active material particles 24, the conductive material 26, and the binder 27 is 89: 8: 3 by weight. In addition, the compounding ratio of the metal phosphate (lithium phosphate) particles 28 is 2.95 parts by weight based on the positive electrode active material particles 24 (100 parts by weight).
One end of the positive electrode current collector foil 22 in the width direction is a positive electrode current collector part 21 m in which the positive electrode current collector foil 22 is exposed without the positive electrode active material layer 23 in the thickness direction of the positive electrode current collector foil 22. The positive electrode terminal 50 described above is welded to the positive electrode current collector 21m.

正極活物質粒子24は、本実施形態では、リチウム遷移金属複合酸化物、具体的には、スピネル型の結晶構造を有するリチウムニッケルマンガン系複合酸化物の1つであるLiNi0.5Mn1.54 からなる粒子である。また、この正極活物質粒子24の粒子表面24nには、フッ素及びリンを含む被膜25が形成されている(図4参照)。また、この被膜25には、フッ素及びリンのほか、非水電解液40の他の成分(電解質及び非水溶媒)の分解物も含まれている。 In the present embodiment, the positive electrode active material particles 24 are made of lithium transition metal composite oxide, specifically, LiNi 0.5 Mn 1.5 O 4 which is one of lithium nickel manganese composite oxide having a spinel crystal structure. Particles. A coating 25 containing fluorine and phosphorus is formed on the particle surface 24n of the positive electrode active material particles 24 (see FIG. 4). In addition to fluorine and phosphorus, the coating 25 includes decomposition products of other components (electrolyte and nonaqueous solvent) of the nonaqueous electrolytic solution 40.

次に、負極板31について説明する。この負極板31は、帯状の銅箔からなる負極集電箔32の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上に、負極活物質層33を帯状に設けてなる。この負極活物質層33には、負極活物質粒子、結着剤及び増粘剤が含まれる。本実施形態では、負極活物質粒子として黒鉛粒子を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボシキメチルセルロース(CMC)を用いている。また、負極集電箔32のうち、幅方向の片方の端部は、自身の厚み方向に負極活物質層33が存在せず、負極集電箔32が露出した負極集電部31mとなっている。前述の負極端子51は、この負極集電部31mに溶接されている。
また、セパレータ39は、樹脂からなる多孔質膜であり、帯状をなす。
Next, the negative electrode plate 31 will be described. This negative electrode plate 31 is provided with a negative electrode active material layer 33 in a band shape on a region extending in a part of the width direction and extending in the longitudinal direction out of both main surfaces of a negative electrode current collector foil 32 made of a strip-shaped copper foil. . The negative electrode active material layer 33 includes negative electrode active material particles, a binder, and a thickener. In the present embodiment, graphite particles are used as negative electrode active material particles, styrene butadiene rubber (SBR) is used as a binder, and carboxymethyl cellulose (CMC) is used as a thickener. Also, one end in the width direction of the negative electrode current collector foil 32 is the negative electrode current collector part 31m where the negative electrode active material layer 33 is not present in the thickness direction of the negative electrode current collector foil 32 and the negative electrode current collector foil 32 is exposed. Yes. The negative electrode terminal 51 described above is welded to the negative electrode current collector 31m.
The separator 39 is a porous film made of resin and has a strip shape.

次に、非水電解液40について説明する。この非水電解液40は、電池ケース10内に収容されており、非水電解液40の一部は電極体20内に含浸され、残りは余剰液として電池ケース10の底部に溜まっている。この非水電解液40の電解質は、ヘキサフルオロリン酸リチウム(LiPF6 )であり、その濃度は1.0Mである。また、非水電解液40の非水溶媒は、フルオロエチレンカーボネート(FEC)と2,2,2−トリフルオロエチルメチルカーボネートとを、1:1の体積比で混合した混合有機溶媒である。上述のように、この非水電解液40は、フッ素を含む化合物41として、LiPF6 を有している。
更に、この非水電解液40には、後述するように、金属リン酸塩粒子42、具体的にはリン酸リチウム(Li3PO4)粒子が溶解されているので、非水電解液40中には、リン酸イオン(PO4 3-)が存在する。
Next, the nonaqueous electrolytic solution 40 will be described. The non-aqueous electrolyte 40 is accommodated in the battery case 10, a part of the non-aqueous electrolyte 40 is impregnated in the electrode body 20, and the rest is accumulated at the bottom of the battery case 10 as an excess liquid. The electrolyte of this nonaqueous electrolytic solution 40 is lithium hexafluorophosphate (LiPF 6 ), and its concentration is 1.0M. The nonaqueous solvent of the nonaqueous electrolytic solution 40 is a mixed organic solvent in which fluoroethylene carbonate (FEC) and 2,2,2-trifluoroethyl methyl carbonate are mixed at a volume ratio of 1: 1. As described above, the nonaqueous electrolytic solution 40 has LiPF 6 as the compound 41 containing fluorine.
Further, as will be described later, the metal phosphate particles 42, specifically, lithium phosphate (Li 3 PO 4 ) particles are dissolved in the non-aqueous electrolyte 40. Contains phosphate ions (PO 4 3− ).

次いで、上記電池1の製造方法について説明する。まず、正極板21を形成する。具体的には、スピネル構造を有するリチウムニッケルマンガン系複合酸化物であるLiNi0.5Mn1.54 からなる正極活物質粒子24を用意する。そして、この正極活物質粒子24と、導電材26(アセチレンブラック)と、結着剤27(ポリフッ化ビニリデン)と、金属リン酸塩粒子28(リン酸リチウム粒子,中心粒径1.5μm)とを、溶媒(本実施形態では、NMP)と共に混練して、正極ペーストを作製する。 Next, a method for manufacturing the battery 1 will be described. First, the positive electrode plate 21 is formed. Specifically, positive electrode active material particles 24 made of LiNi 0.5 Mn 1.5 O 4 which is a lithium nickel manganese composite oxide having a spinel structure are prepared. The positive electrode active material particles 24, the conductive material 26 (acetylene black), the binder 27 (polyvinylidene fluoride), the metal phosphate particles 28 (lithium phosphate particles, center particle size 1.5 μm), Is kneaded with a solvent (NMP in this embodiment) to produce a positive electrode paste.

なお、正極活物質粒子24と導電材26と結着剤27との配合比は、重量比で89:8:3である。また、金属リン酸塩(リン酸リチウム)粒子28の配合比は、正極活物質粒子24を基準(100重量部)として、重量比で2.95重量部である。
その後、この正極ペーストを、帯状のアルミニウム箔からなる正極集電箔22の一方の主面に塗布し、乾燥させて、正極活物質層23を形成する。更に、正極集電箔22の他方の主面にも正極ペーストを塗布し、乾燥させて、正極活物質層23を形成する。その後、これをプレスして、正極板21を得る。
また別途、公知の手法によって負極板31を形成しておく。
The mixing ratio of the positive electrode active material particles 24, the conductive material 26, and the binder 27 is 89: 8: 3 by weight. In addition, the compounding ratio of the metal phosphate (lithium phosphate) particles 28 is 2.95 parts by weight based on the positive electrode active material particles 24 (100 parts by weight).
Thereafter, this positive electrode paste is applied to one main surface of the positive electrode current collector foil 22 made of a strip-shaped aluminum foil and dried to form the positive electrode active material layer 23. Further, a positive electrode paste is applied to the other main surface of the positive electrode current collector foil 22 and dried to form the positive electrode active material layer 23. Then, this is pressed and the positive electrode plate 21 is obtained.
Separately, the negative electrode plate 31 is formed by a known method.

次に、正極板21及び負極板31を一対のセパレータ39を介して互いに重ね、巻き芯を用いて捲回する。更に、これを扁平状に圧縮して電極体20を形成する。
また別途、ケース蓋部材13、内部端子部材53、外部端子部材54、ボルト55、内部絶縁部材57及び外部絶縁部材58を用意する。そして、ケース蓋部材13に、内部絶縁部材57及び外部絶縁部材58を介して、それぞれ内部端子部材53、外部端子部材54及びボルト55からなる正極端子50及び負極端子51を固設する。その後、電極体20の正極集電部21m及び負極集電部31mに、ケース蓋部材13と一体化された正極端子50及び負極端子51をそれぞれ溶接する。
次に、ケース本体部材11を用意し、このケース本体部材11内に、電極体20を収容した後、ケース本体部材11にケース蓋部材13を溶接して電池ケース10を形成する。
Next, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 39 and wound using a winding core. Further, the electrode body 20 is formed by compressing it into a flat shape.
Separately, a case lid member 13, an internal terminal member 53, an external terminal member 54, a bolt 55, an internal insulating member 57 and an external insulating member 58 are prepared. Then, the positive terminal 50 and the negative terminal 51 including the internal terminal member 53, the external terminal member 54, and the bolt 55 are fixed to the case lid member 13 via the internal insulating member 57 and the external insulating member 58, respectively. Thereafter, the positive electrode terminal 50 and the negative electrode terminal 51 integrated with the case lid member 13 are welded to the positive electrode current collector 21m and the negative electrode current collector 31m of the electrode body 20, respectively.
Next, the case body member 11 is prepared, and after the electrode body 20 is accommodated in the case body member 11, the case lid member 13 is welded to the case body member 11 to form the battery case 10.

また別途、非水電解液40を用意しておく。具体的には、フルオロエチレンカーボネートと2,2,2−トリフルオロエチルメチルカーボネートとを1:1の体積比で混合した混合有機溶媒に、LiPF6(フッ素を含む化合物41)を濃度1.0Mとなるように溶解させる。更に、これに金属リン酸塩(リン酸リチウム)粒子42を溶解させる。具体的には、電池1内に収容された正極活物質層23に含まれる正極活物質粒子24の重量を基準(100重量部)としたとき、電池1内に注液された非水電解液40に溶解した金属リン酸塩粒子42が0.05重量部となるように、上述の電解液に金属リン酸塩粒子42を溶解させる。これにより、リン酸イオンを含む非水電解液40が得られる。
そして、この非水電解液40を、注液孔13hから電池ケース10内に注液し、非水電解液40を電極体20内に含浸させる。その後、注液孔13hを仮封止する。
Separately, a non-aqueous electrolyte 40 is prepared. Specifically, LiPF 6 (compound 41 containing fluorine) is added at a concentration of 1.0M to a mixed organic solvent in which fluoroethylene carbonate and 2,2,2-trifluoroethyl methyl carbonate are mixed at a volume ratio of 1: 1. Dissolve so that Further, metal phosphate (lithium phosphate) particles 42 are dissolved in this. Specifically, when the weight of the positive electrode active material particles 24 contained in the positive electrode active material layer 23 accommodated in the battery 1 is used as a reference (100 parts by weight), the nonaqueous electrolytic solution injected into the battery 1 The metal phosphate particles 42 are dissolved in the above-described electrolytic solution so that the metal phosphate particles 42 dissolved in 40 are 0.05 parts by weight. Thereby, the nonaqueous electrolyte solution 40 containing a phosphate ion is obtained.
Then, the nonaqueous electrolytic solution 40 is injected into the battery case 10 through the injection hole 13h, and the electrode body 20 is impregnated with the nonaqueous electrolytic solution 40. Thereafter, the liquid injection hole 13h is temporarily sealed.

次に、この電池に初充電を行って、正極活物質粒子24の粒子表面24nに、フッ素及びリンを含む被膜25を形成する。具体的には、この電池に5Cの定電流で電池電圧4.9Vまで充電する(CC−CV充電)。
この初充電の際、正極活物質粒子24の粒子表面24nでは、非水電解液40の非水溶媒が酸化分解されて水素イオンが発生する。この水素イオンは、非水電解液40中のフッ素を含む化合物41(本実施形態ではLiPF6 )と反応して、フッ酸(HF)を生成する。このフッ酸は、まず、非水電解液40中のリン酸イオンと優先的に反応して、正極活物質粒子24の粒子表面24nにフッ素及びリンを含む被膜25が形成される。その後、正極活物質粒子24の近傍に存在する非水電解液40中のリン酸イオンが減少すると、正極活物質層23に含まれる金属リン酸塩(リン酸リチウム)粒子28が、発生したフッ酸と反応して、フッ素及びリンを含む被膜25が更に形成される。
その後は、この電池について、各種検査を行う。かくして、電池1が完成する。
Next, the battery is initially charged to form a coating 25 containing fluorine and phosphorus on the particle surface 24 n of the positive electrode active material particles 24. Specifically, this battery is charged to a battery voltage of 4.9 V with a constant current of 5 C (CC-CV charging).
At the time of this initial charge, on the particle surface 24n of the positive electrode active material particles 24, the nonaqueous solvent of the nonaqueous electrolytic solution 40 is oxidized and decomposed to generate hydrogen ions. This hydrogen ion reacts with the fluorine-containing compound 41 (LiPF 6 in the present embodiment) in the nonaqueous electrolytic solution 40 to generate hydrofluoric acid (HF). First, the hydrofluoric acid preferentially reacts with phosphate ions in the non-aqueous electrolyte solution 40 to form a coating film 25 containing fluorine and phosphorus on the particle surface 24 n of the positive electrode active material particles 24. Thereafter, when phosphate ions in the non-aqueous electrolyte solution 40 present in the vicinity of the positive electrode active material particles 24 are reduced, metal phosphate (lithium phosphate) particles 28 contained in the positive electrode active material layer 23 are generated. By reacting with an acid, a film 25 containing fluorine and phosphorus is further formed.
Thereafter, various inspections are performed on the battery. Thus, the battery 1 is completed.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。下記の表1に示すように、実施例1〜3及び比較例1,2の5種類の電池をそれぞれ用意した。具体的には、実施例1〜3及び比較例2の各電池では、条件を統一するため、各電池内に収容された正極活物質層に含まれる正極活物質粒子の重量を基準(100重量部)としたとき、各電池内に含まれる金属リン酸塩(リン酸リチウム)粒子の合計添加量を、いずれの電池でも3.00重量部とした。
(Examples and Comparative Examples)
Subsequently, the result of the test conducted in order to verify the effect of this invention is demonstrated. As shown in Table 1 below, five types of batteries of Examples 1 to 3 and Comparative Examples 1 and 2 were prepared. Specifically, in each of the batteries of Examples 1 to 3 and Comparative Example 2, in order to unify the conditions, the weight of the positive electrode active material particles contained in the positive electrode active material layer accommodated in each battery was determined based on the weight (100 wt. Part), the total amount of metal phosphate (lithium phosphate) particles contained in each battery was 3.00 parts by weight in any battery.

そして、比較例2の電池では、正極活物質層にのみ金属リン酸塩粒子を3.00重量部添加した。従って、比較例2の電池は、非水電解液にリン酸イオンを有しない。一方、実施例1の電池では、正極活物質層に2.98重量部の金属リン酸塩粒子を添加し、残りの0.02重量部の金属リン酸塩粒子を非水電解液に添加した(溶解させた)。また、実施例2の電池では、正極活物質層に2.95重量部の金属リン酸塩粒子を添加し、残りの0.05重量部の金属リン酸塩粒子を非水電解液に添加した(溶解させた)。また、実施例3の電池では、正極活物質層に2.90重量部の金属リン酸塩粒子を添加し、残りの0.10重量部の金属リン酸塩粒子を非水電解液に添加した(溶解させた)。なお、比較例1の電池は、電池内に金属リン酸塩が含まれない。即ち、比較例1の電池は、正極活物質層に金属リン酸塩粒子を含まず、かつ、非水電解液にリン酸イオンを有しない。なお、実施例2の電池は、前述の実施形態の電池1と同じである。また、実施例1,3及び比較例1,2の各電池について、上記以外の部分は、実施形態の電池1と同様とした。   In the battery of Comparative Example 2, 3.00 parts by weight of metal phosphate particles were added only to the positive electrode active material layer. Therefore, the battery of Comparative Example 2 does not have phosphate ions in the nonaqueous electrolytic solution. On the other hand, in the battery of Example 1, 2.98 parts by weight of metal phosphate particles were added to the positive electrode active material layer, and the remaining 0.02 parts by weight of metal phosphate particles were added to the non-aqueous electrolyte. (Dissolved). In the battery of Example 2, 2.95 parts by weight of metal phosphate particles were added to the positive electrode active material layer, and the remaining 0.05 parts by weight of metal phosphate particles were added to the non-aqueous electrolyte. (Dissolved). In the battery of Example 3, 2.90 parts by weight of metal phosphate particles were added to the positive electrode active material layer, and the remaining 0.10 parts by weight of metal phosphate particles were added to the non-aqueous electrolyte. (Dissolved). In addition, the battery of the comparative example 1 does not contain a metal phosphate in the battery. That is, the battery of Comparative Example 1 does not include metal phosphate particles in the positive electrode active material layer, and does not have phosphate ions in the nonaqueous electrolytic solution. The battery of Example 2 is the same as the battery 1 of the above-described embodiment. Moreover, about each battery of Examples 1 and 3 and Comparative Examples 1 and 2, parts other than the above were the same as those of the battery 1 of the embodiment.

Figure 0006380269
Figure 0006380269

次に、実施例1〜3及び比較例1,2の各電池について、「充放電サイクル試験」を行って、試験前後での容量維持率(%)をそれぞれ求めた。具体的には、60℃の温度環境下において、各電池を、2Cの定電流で3.5Vから4.9Vまで充電した後、10分間休止する。その後、2Cの定電流で3.5Vまで放電した後、10分間休止する。このような充放電を1サイクルとして、充放電を100サイクル行った。この充放電サイクル試験の前後でそれぞれ電池容量を測定し、試験前の電池容量に対する試験後の電池容量から容量維持率(%)をそれぞれ算出した。その結果を表1及び図5に示す。   Next, for each of the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, a “charge / discharge cycle test” was performed, and the capacity retention ratio (%) before and after the test was obtained. Specifically, in a temperature environment of 60 ° C., each battery is charged from 3.5 V to 4.9 V with a constant current of 2 C, and then paused for 10 minutes. Thereafter, the battery is discharged to 3.5 V with a constant current of 2 C, and then rests for 10 minutes. Such charging / discharging was made into 1 cycle, and charging / discharging was performed 100 cycles. The battery capacity was measured before and after the charge / discharge cycle test, and the capacity retention rate (%) was calculated from the battery capacity after the test with respect to the battery capacity before the test. The results are shown in Table 1 and FIG.

表1及び図5から判るように、正極活物質層に金属リン酸塩粒子を含まず、かつ、非水電解液にリン酸イオンを有しない比較例1の電池に比べると、正極活物質層に金属リン酸塩粒子を含み、かつ、非水電解液にリン酸イオンを有する実施例1〜3の各電池、及び、正極活物質層に金属リン酸塩粒子を含むが、非水電解液にリン酸イオンを有しない比較例2の電池では、いずれも容量維持率が高いことが判る(84.0%以上)。
その理由は、以下であると考えられる。即ち、比較例1の電池は、正極活物質層に金属リン酸塩粒子を含まず、かつ、非水電解液にリン酸イオンを有しないため、電池の製造過程で電池を初充電した際に、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成されない。このため、正極電位が非水溶媒の酸化分解電位よりも高くなると、非水溶媒が酸化分解され、水素イオンひいてはフッ酸が生成されて、正極活物質粒子から遷移金属が溶出する。このため、充放電サイクル試験で電池容量が大きく低下したと考えられる。
As can be seen from Table 1 and FIG. 5, the positive electrode active material layer does not contain metal phosphate particles, and the non-aqueous electrolyte does not have phosphate ions. Each of the batteries of Examples 1 to 3 including metal phosphate particles in the nonaqueous electrolyte solution and phosphate ions in the nonaqueous electrolyte solution, and the positive electrode active material layer includes the metal phosphate particles. It can be seen that all of the batteries of Comparative Example 2 having no phosphate ion have a high capacity retention rate (84.0% or more).
The reason is considered as follows. That is, the battery of Comparative Example 1 does not contain metal phosphate particles in the positive electrode active material layer and does not have phosphate ions in the non-aqueous electrolyte, so when the battery is first charged in the battery manufacturing process. The film containing fluorine and phosphorus is not formed on the surface of the positive electrode active material particles. For this reason, when the positive electrode potential becomes higher than the oxidative decomposition potential of the non-aqueous solvent, the non-aqueous solvent is oxidatively decomposed, hydrogen ions and thus hydrofluoric acid are generated, and the transition metal is eluted from the positive electrode active material particles. For this reason, it is thought that the battery capacity was greatly reduced in the charge / discharge cycle test.

一方、実施例1〜3の各電池では、電池を初充電した際、発生したフッ酸は、まず、非水電解液中のリン酸イオンと優先的に反応して、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成される。その後、正極活物質粒子の近傍に存在する非水電解液のリン酸イオンが減少すると、正極活物質層に含まれる金属リン酸塩粒子が、発生したフッ酸と反応して、フッ素及びリンを含む被膜が更に形成される。
また、比較例2の電池では、非水電解液中にリン酸イオンを有しないため、電池を初充電した際、発生したフッ酸は、正極活物質層に含まれる金属リン酸塩粒子と反応して、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成される。
On the other hand, in each of the batteries of Examples 1 to 3, when the battery was charged for the first time, the generated hydrofluoric acid first reacted preferentially with phosphate ions in the non-aqueous electrolyte, and particles of positive electrode active material particles A film containing fluorine and phosphorus is formed on the surface. After that, when the phosphate ions in the non-aqueous electrolyte present in the vicinity of the positive electrode active material particles are reduced, the metal phosphate particles contained in the positive electrode active material layer react with the generated hydrofluoric acid, and fluorine and phosphorus are removed. A coating film is further formed.
In the battery of Comparative Example 2, since the non-aqueous electrolyte does not have phosphate ions, the hydrofluoric acid generated when the battery is charged for the first time reacts with the metal phosphate particles contained in the positive electrode active material layer. Thus, a film containing fluorine and phosphorus is formed on the surface of the positive electrode active material particles.

これら実施例1〜3及び比較例2の各電池では、初充電で正極活物質粒子の粒子表面に十分な厚みの被膜が形成される。このため、被膜の存在により非水電解液が正極活物質に直接接触するのを抑制するので、正極電位が非水溶媒の酸化分解電位よりも高くなった場合でも、非水溶媒が酸化分解され、水素イオンひいてはフッ酸が生成され、正極活物質粒子から遷移金属が溶出するのを抑制できる。このため、電池に充放電サイクル試験を行った場合でも、電池容量の低下を抑制できたと考えられる。   In each of the batteries of Examples 1 to 3 and Comparative Example 2, a film having a sufficient thickness is formed on the particle surface of the positive electrode active material particles by the initial charge. For this reason, the non-aqueous electrolyte is prevented from coming into direct contact with the positive electrode active material due to the presence of the coating. Therefore, even when the positive electrode potential is higher than the oxidative decomposition potential of the non-aqueous solvent, the non-aqueous solvent is oxidized and decomposed. In addition, hydrogen ions and, in turn, hydrofluoric acid are generated, and the elution of transition metals from the positive electrode active material particles can be suppressed. For this reason, even when a charge / discharge cycle test is performed on the battery, it is considered that the decrease in battery capacity could be suppressed.

次に、実施例1〜3及び比較例1,2の各電池について、電池抵抗(IV抵抗)をそれぞれ測定した。具体的には、25℃の温度環境下において、各電池を電池電圧3.5V(SOC60%)に調整し、0.3Cの定電流で10秒間放電を行い、放電前後で電池電圧値の変化を測定した。更に、放電電流値のみを1C、3C、5Cと異ならせて、それ以外は上記と同様の条件で放電を行って、10秒間の放電前後で電池電圧値の変化をそれぞれ測定した。その後、これらのデータを、横軸を放電電流値、縦軸を放電前後の電池電圧値の変化とした座標平面にプロットし、最小二乗法により近似直線(一次式)を算出して、その傾きをIV抵抗値として得た。そして、比較例2の電池の電池抵抗(IV抵抗)を基準(=1.00)として、その他の電池の「電池抵抗比」をそれぞれ算出した。その結果を表1及び図6に示す。   Next, about each battery of Examples 1-3 and Comparative Examples 1 and 2, battery resistance (IV resistance) was measured, respectively. Specifically, in a temperature environment of 25 ° C., each battery is adjusted to a battery voltage of 3.5 V (SOC 60%), discharged at a constant current of 0.3 C for 10 seconds, and a change in the battery voltage value before and after the discharge. Was measured. Further, only the discharge current value was different from 1C, 3C, and 5C, and discharge was performed under the same conditions as above, and the change in the battery voltage value was measured before and after the discharge for 10 seconds. After that, these data are plotted on a coordinate plane with the horizontal axis representing the discharge current value and the vertical axis representing the change in the battery voltage value before and after the discharge, and an approximate straight line (primary expression) is calculated by the least square method, and the slope Was obtained as an IV resistance value. Then, the “battery resistance ratio” of other batteries was calculated using the battery resistance (IV resistance) of the battery of Comparative Example 2 as a reference (= 1.00). The results are shown in Table 1 and FIG.

表1及び図6から判るように、非水電解液中にリン酸イオンが存在すると(実施例1〜3)、非水電解液中にリン酸イオンが存在しない場合(比較例2)に比べて、電池抵抗が低くなることが判る。また、少なくとも金属リン酸塩粒子の非水電解液への添加量(溶解量)が0.10wt以下の範囲(実施例1〜3)では、添加量を増やすほど電池抵抗が低下することが判る。   As can be seen from Table 1 and FIG. 6, when phosphate ions are present in the non-aqueous electrolyte (Examples 1 to 3), compared to the case where phosphate ions are not present in the non-aqueous electrolyte (Comparative Example 2). Thus, it can be seen that the battery resistance is lowered. It can also be seen that the battery resistance decreases as the addition amount is increased at least in the range (Examples 1 to 3) where the addition amount (dissolution amount) of the metal phosphate particles to the nonaqueous electrolytic solution is 0.10 wt. .

その理由は、以下であると考えられる。即ち、実施例1〜3及び比較例2で用いた金属リン酸塩粒子は、粒径が1.5μmであり粒径が大きいため、正極活物質層内における金属リン酸塩粒子の分散性が良くない。比較例2の電池は、非水電解液中にリン酸イオンを有しないので、被膜は、前述のように、正極活物質層内の金属リン酸塩粒子のみによって形成される。この被膜は、非水電解液中のリン酸イオンとフッ酸が反応してできる被膜に比べて均一性が低く厚いため、電池抵抗が高くなったと考えられる。   The reason is considered as follows. That is, since the metal phosphate particles used in Examples 1 to 3 and Comparative Example 2 have a particle size of 1.5 μm and a large particle size, the dispersibility of the metal phosphate particles in the positive electrode active material layer is high. Not good. Since the battery of Comparative Example 2 does not have phosphate ions in the nonaqueous electrolytic solution, the coating is formed only by the metal phosphate particles in the positive electrode active material layer as described above. This film is considered to have increased battery resistance because it is less uniform and thicker than the film formed by the reaction of phosphate ions and hydrofluoric acid in the non-aqueous electrolyte.

一方、実施例1〜3の各電池では、非水電解液中にリン酸イオンを有するため、初充電の際には、前述のように、発生したフッ酸は、まず、非水電解液中のリン酸イオンと優先的に反応して、正極活物質粒子の粒子表面に均一で薄い被膜を形成する。そして、正極活物質粒子の近傍に存在する非水電解液中のリン酸イオンが減少すると、正極活物質層に含まれる金属リン酸塩粒子が、発生したフッ酸と反応して、更に被膜を形成する。前述のように、非水電解液中のリン酸イオンと反応してできる被膜は、正極活物質層中の金属リン酸塩粒子と反応してできる被膜に比して均一に薄く形成されるため、電池抵抗が低くなる。このため、実施例1〜3の各電池では、比較例2の電池に比して、電池抵抗が低くなったと考えられる。   On the other hand, in each of the batteries of Examples 1 to 3, since the non-aqueous electrolyte has phosphate ions, as described above, the generated hydrofluoric acid is first in the non-aqueous electrolyte as described above. It reacts preferentially with the phosphate ions to form a uniform thin film on the surface of the positive electrode active material particles. When the phosphate ions in the non-aqueous electrolyte present in the vicinity of the positive electrode active material particles are reduced, the metal phosphate particles contained in the positive electrode active material layer react with the generated hydrofluoric acid to further coat the film. Form. As described above, the film formed by reacting with the phosphate ions in the non-aqueous electrolyte is formed uniformly and thinner than the film formed by reacting with the metal phosphate particles in the positive electrode active material layer. Battery resistance is lowered. For this reason, in each battery of Examples 1-3, it is thought that battery resistance became low compared with the battery of the comparative example 2.

また、実施例1〜3の電池同士を比較すると、非水電解液中に含まれるリン酸イオンの量が、実施例3の電池で最も多く、実施例1の電池で最も少ない。このため、初充電時に形成される被膜のうち、非水電解液中のリン酸イオンと反応してできる被膜の割合は、実施例3の電池で最も多く、実施例1の電池で最も少ない(逆に言うと、初充電時に形成される被膜のうち、正極活物質層に含まれる金属リン酸塩粒子と反応してできる被膜の割合は、実施例3の電池で最も少なく、実施例1の電池で最も多い)。従って、実施例1の電池よりも実施例2の電池の方が、更に実施例2の電池よりも実施例3の電池の方が、被膜が均一に薄くされる。このため、実施例1の電池よりも実施例2の電池の方が、更に実施例2の電池よりも実施例3の電池の方が、電池抵抗が低くなったと考えられる。   Moreover, when the batteries of Examples 1 to 3 are compared, the amount of phosphate ions contained in the non-aqueous electrolyte is the largest in the battery of Example 3 and the smallest in the battery of Example 1. For this reason, the ratio of the film formed by reacting with phosphate ions in the non-aqueous electrolyte among the films formed at the time of initial charge is the largest in the battery of Example 3 and the smallest in the battery of Example 1 ( In other words, the ratio of the film formed by reacting with the metal phosphate particles contained in the positive electrode active material layer in the film formed at the time of initial charge is the smallest in the battery of Example 3, and Most common with batteries). Accordingly, the battery of Example 2 is made thinner than the battery of Example 1, and the battery of Example 3 is made thinner than the battery of Example 2 more uniformly. For this reason, it is considered that the battery resistance of the battery of Example 2 is lower than that of the battery of Example 1, and the battery of Example 3 is lower than that of the battery of Example 2.

なお、比較例1の電池で電池抵抗が最も低いのは、比較例1の電池では、前述のように、初充電の際に、正極活物質粒子の粒子表面にフッ素及びリンを含む被膜が形成されない。この被膜は抵抗体であるため、被膜が形成されない比較例1の電池では、電池抵抗が低くなったと考えられる。但し、正極活物質粒子に被膜が形成されないと、前述のように、充放電サイクル試験後の容量維持率が大きく低下するので好ましくない。   Incidentally, the battery of Comparative Example 1 has the lowest battery resistance because, in the battery of Comparative Example 1, as described above, a film containing fluorine and phosphorus is formed on the surface of the positive electrode active material particles during the initial charge. Not. Since this film is a resistor, it is considered that the battery of Comparative Example 1 in which the film was not formed has a low battery resistance. However, if a film is not formed on the positive electrode active material particles, the capacity retention rate after the charge / discharge cycle test is greatly reduced as described above, such being undesirable.

以上で説明したように、電池1では、非水電解液40中にリン酸イオン(PO4 3-)が存在するので、電池1の製造過程で電池を初充電した際には、発生したフッ酸が非水電解液40中のリン酸イオンと反応して、正極活物質粒子24の粒子表面24nにフッ素及びリンを含む被膜25が形成される。この被膜25は、非水電解液40が正極活物質に直接接触するのを抑制するので、正極電位が非水溶媒の酸化分解電位よりも高くなった場合でも、非水溶媒が酸化分解されるのを抑制できる。従って、電池1に充放電サイクル試験を行ったときに、電池容量が低下するのを抑制できる。
しかも、リン酸イオンを有する非水電解液40は、非水電解液40に金属リン酸塩(リン酸リチウム)粒子42を溶解させることで容易に作製でき、安価な電池1とすることができる。
As described above, in the battery 1, phosphate ions (PO 4 3− ) are present in the non-aqueous electrolyte 40. Therefore, when the battery is initially charged in the manufacturing process of the battery 1, The acid reacts with phosphate ions in the nonaqueous electrolytic solution 40, and a coating 25 containing fluorine and phosphorus is formed on the particle surface 24 n of the positive electrode active material particles 24. The coating 25 suppresses the non-aqueous electrolyte 40 from coming into direct contact with the positive electrode active material, so that the non-aqueous solvent is oxidatively decomposed even when the positive electrode potential is higher than the oxidative decomposition potential of the non-aqueous solvent. Can be suppressed. Therefore, when the battery 1 is subjected to a charge / discharge cycle test, it is possible to suppress a decrease in battery capacity.
Moreover, the non-aqueous electrolyte solution 40 having phosphate ions can be easily manufactured by dissolving the metal phosphate (lithium phosphate) particles 42 in the non-aqueous electrolyte solution 40, and the battery 1 can be made inexpensive. .

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、リン酸リチウム粒子を非水電解液に溶解させて、リン酸イオンを含む非水電解液40を作製したが、これに限られない。例えば、リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウム等の他の金属リン酸塩粒子を非水電解液に溶解させて、リン酸イオンを含む非水電解液を作製してもよい。
また、非水電解液は、ピロリン酸イオンを含む電解液としてもよい。具体的には、ピロリン酸リチウム、ピロリン酸ナトリウム、ピロリン酸マグネシウム、ピロリン酸カルシウム等のピロリン酸塩粒子を非水電解液に溶解させて、ピロリン酸イオンを含む非水電解液を作製してもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the lithium phosphate particles are dissolved in the non-aqueous electrolyte to produce the non-aqueous electrolyte 40 containing phosphate ions, but the present invention is not limited to this. For example, other metal phosphate particles such as sodium phosphate, potassium phosphate, magnesium phosphate, and calcium phosphate may be dissolved in the non-aqueous electrolyte to produce a non-aqueous electrolyte containing phosphate ions.
The non-aqueous electrolyte may be an electrolyte containing pyrophosphate ions. Specifically, pyrophosphate particles such as lithium pyrophosphate, sodium pyrophosphate, magnesium pyrophosphate, and calcium pyrophosphate may be dissolved in a non-aqueous electrolyte to produce a non-aqueous electrolyte containing pyrophosphate ions. .

1 リチウムイオン二次電池(電池)
20 電極体
21 正極板
22 正極集電箔
23 正極活物質層
24 正極活物質粒子
24n 粒子表面
25 被膜
28 金属リン酸塩粒子
31 負極板
40 非水電解液
41 フッ素を含む化合物
42 金属リン酸塩粒子
1 Lithium ion secondary battery (battery)
DESCRIPTION OF SYMBOLS 20 Electrode body 21 Positive electrode plate 22 Positive electrode current collection foil 23 Positive electrode active material layer 24 Positive electrode active material particle 24n Particle | grain surface 25 Coating 28 Metal phosphate particle 31 Negative electrode plate 40 Non-aqueous electrolyte 41 Fluorine containing compound 42 Metal phosphate particle

Claims (1)

正極活物質粒子を含む正極活物質層を有する正極板と、負極板と、フッ素を含む化合物を有する非水電解液と、を備え、A positive electrode plate having a positive electrode active material layer containing positive electrode active material particles, a negative electrode plate, and a non-aqueous electrolyte solution containing a compound containing fluorine,
上記正極活物質粒子は、その粒子表面に、フッ素及びリンを含む被膜を有し、The positive electrode active material particles have a film containing fluorine and phosphorus on the particle surface,
上記非水電解液は、リン酸イオン及びピロリン酸イオンの少なくともいずれかを含み、The non-aqueous electrolyte contains at least one of phosphate ions and pyrophosphate ions,
上記正極活物質層は、金属リン酸塩及び金属ピロリン酸塩の少なくともいずれかの粒子を含むThe positive electrode active material layer includes particles of at least one of metal phosphate and metal pyrophosphate.
リチウムイオン二次電池の製造方法であって、A method for producing a lithium ion secondary battery, comprising:
上記正極板、上記負極板及び上記非水電解液を用いて、電池を組み立てる組立工程と、An assembly step of assembling a battery using the positive electrode plate, the negative electrode plate and the non-aqueous electrolyte;
上記組立工程の後、上記電池を初充電し、生成されたフッ酸を上記非水電解液中のリン酸イオン及びピロリン酸イオンと反応させると共に、上記正極活物質層中の上記金属リン酸塩粒子及び金属ピロリン酸塩粒子と反応させて、上記正極活物質粒子の上記粒子表面に上記被膜を形成する被膜形成工程と、を備え、After the assembly step, the battery is initially charged, the generated hydrofluoric acid is reacted with phosphate ions and pyrophosphate ions in the non-aqueous electrolyte, and the metal phosphate in the positive electrode active material layer A film forming step of reacting the particles and metal pyrophosphate particles to form the film on the particle surfaces of the positive electrode active material particles,
上記組立工程で用いる上記非水電解液は、予めリン酸イオン及びピロリン酸イオンの少なくともいずれかを含む電解液であるThe non-aqueous electrolyte used in the assembly process is an electrolyte containing at least one of phosphate ions and pyrophosphate ions in advance.
リチウムイオン二次電池の製造方法。A method for producing a lithium ion secondary battery.
JP2015141410A 2015-07-15 2015-07-15 Method for producing lithium ion secondary battery Active JP6380269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141410A JP6380269B2 (en) 2015-07-15 2015-07-15 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141410A JP6380269B2 (en) 2015-07-15 2015-07-15 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017027656A JP2017027656A (en) 2017-02-02
JP6380269B2 true JP6380269B2 (en) 2018-08-29

Family

ID=57946657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141410A Active JP6380269B2 (en) 2015-07-15 2015-07-15 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6380269B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699267B2 (en) * 2016-03-17 2020-05-27 株式会社Gsユアサ Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2019016483A (en) * 2017-07-05 2019-01-31 三洋電機株式会社 Nonaqueous electrolyte secondary battery
EP3940818B1 (en) 2019-03-12 2023-12-06 Mitsubishi Gas Chemical Company, Inc. Method for producing all-solid-state battery
JP7320020B2 (en) * 2021-04-13 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP7320019B2 (en) * 2021-04-13 2023-08-02 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN114784246B (en) * 2022-04-25 2023-07-28 北京卫蓝新能源科技有限公司 Positive electrode material, preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020571B2 (en) * 1999-06-25 2007-12-12 三洋電機株式会社 Lithium secondary battery
JP2005071641A (en) * 2003-08-27 2005-03-17 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP4679064B2 (en) * 2004-03-18 2011-04-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN103229338B (en) * 2010-11-26 2016-04-27 丰田自动车株式会社 For the negative electrode active material of lithium rechargeable battery
JP6015591B2 (en) * 2012-10-26 2016-10-26 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2017027656A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
KR101917265B1 (en) Nonaqueous electrolyte secondary battery
KR101514586B1 (en) 2 negative electrode acte material for lithium ion secondary battery
JP6365573B2 (en) Method for producing lithium ion secondary battery
JP6382641B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP6380269B2 (en) Method for producing lithium ion secondary battery
KR20160072220A (en) Non-aqueous electrolyte secondary battery
WO2009110490A1 (en) Non-aqueous electrolyte battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
WO2017183696A1 (en) Lithium secondary cell and method for manufacturing lithium secondary cell
KR101786890B1 (en) Lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
JP7151714B2 (en) Nonaqueous electrolyte storage element and method for manufacturing nonaqueous electrolyte storage element
WO2016056181A1 (en) Nonaqueous electrolyte secondary battery
US10770759B2 (en) Method of manufacturing lithium ion secondary battery
JP7155719B2 (en) Nonaqueous electrolyte storage element and method for manufacturing nonaqueous electrolyte storage element
JP7137757B2 (en) Non-aqueous electrolyte storage element
JP6120065B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5975291B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20160076981A (en) Method of manufacturing lithium ion secondary battery
US10355269B2 (en) Lithium ion secondary battery having positive electrode active material particle with fluorine and phosphorous containing film, and method of manufacturing the same
JP5985272B2 (en) Nonaqueous electrolyte secondary battery
EP3849007A1 (en) Nonaqueous electrolyte electricity storage element and method for producing nonaqueous electrolyte electricity storage element
JP5311123B2 (en) Non-aqueous electrolyte battery
JP6881141B2 (en) Non-aqueous electrolyte secondary battery
JP6110287B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2023024396A (en) Non-aqueous electrolyte, and non-aqueous electrolyte battery using that non-aqueous electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6380269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151