[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6378315B2 - Aluminum nitride powder with excellent water resistance - Google Patents

Aluminum nitride powder with excellent water resistance Download PDF

Info

Publication number
JP6378315B2
JP6378315B2 JP2016507502A JP2016507502A JP6378315B2 JP 6378315 B2 JP6378315 B2 JP 6378315B2 JP 2016507502 A JP2016507502 A JP 2016507502A JP 2016507502 A JP2016507502 A JP 2016507502A JP 6378315 B2 JP6378315 B2 JP 6378315B2
Authority
JP
Japan
Prior art keywords
aln powder
acid
surface treatment
powder
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016507502A
Other languages
Japanese (ja)
Other versions
JPWO2015137263A1 (en
Inventor
大野 秀樹
秀樹 大野
雄一郎 川端
雄一郎 川端
昭子 岩▲崎▼
昭子 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of JPWO2015137263A1 publication Critical patent/JPWO2015137263A1/en
Application granted granted Critical
Publication of JP6378315B2 publication Critical patent/JP6378315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、耐水性に優れた窒化アルミニウム粉末に関するものであり、より詳細には、このような窒化アルミニウムを得るために使用される表面処理剤及び該窒化アルミニウム粉末を含む放熱用複合材料にも関する。   The present invention relates to an aluminum nitride powder excellent in water resistance, and more specifically, to a surface treatment agent used for obtaining such an aluminum nitride and a heat dissipation composite material including the aluminum nitride powder. Related.

近年、半導体デバイスのパワー密度上昇に伴い、放熱材料にはより高度な放熱特性が求められている。デバイスの放熱を実現する材料としては、サーマルインターフェースマテリアルと呼ばれる材料があり、その使用量は急速に拡大している。
サーマルインターフェースマテリアルとは、半導体素子の発生する熱をヒートシンクまたは筐体等に逃がす経路の熱抵抗を緩和するための材料であり、シート、ゲル、グリース、放熱基板、半導体封止材など多様な形態が用いられている。一般に、このサーマルインターフェースマテリアルは熱伝導性のフィラーを、エポキシ、シリコーンの様な樹脂に分散した複合材料で、フィラーとしてはシリカやアルミナが多く用いられている。しかし、シリカ、アルミナの熱伝導率は各々1W/mK、30W/mK程度であり、アルミナを用いた複合材料でも、その熱伝導率は1〜3W/mK程度に留まっている。
In recent years, with the increase in power density of semiconductor devices, more advanced heat dissipation characteristics are required for heat dissipation materials. As a material that realizes heat dissipation of the device, there is a material called a thermal interface material, and the amount of use is rapidly expanding.
The thermal interface material is a material for relaxing the thermal resistance of the path through which the heat generated by the semiconductor element is released to the heat sink or housing, etc., in various forms such as sheets, gels, grease, heat dissipation boards, and semiconductor encapsulants. Is used. Generally, this thermal interface material is a composite material in which a thermally conductive filler is dispersed in a resin such as epoxy or silicone, and silica or alumina is often used as the filler. However, the thermal conductivities of silica and alumina are about 1 W / mK and 30 W / mK, respectively, and even in a composite material using alumina, the thermal conductivity remains at about 1 to 3 W / mK.

しかし、上述のように近年の半導体デバイスのパワー密度上昇により、サーマルインターフェースマテリアルには、より高い熱伝導率が求められるようになって来た。   However, as described above, due to the recent increase in power density of semiconductor devices, higher thermal conductivity has been required for thermal interface materials.

このため近年では、熱伝導率の高い窒化アルミニウムをフィラーとするサーマルインターフェースマテリアルが開発されつつある。しかし、窒化アルミニウムには、その表面が水と反応して加水分解するという問題がある
このような問題を解決するための手段として、特許文献1には、酸化アルミニウム被膜もしくはリン酸系被膜を有する窒化アルミニウム粉末を、有機珪素系カップリング剤、有機燐酸系カップリング剤またはホスフェート基含有の有機チタン系カップリング剤で処理する方法が提案されている。
また、特許文献2には、リン酸、リン酸の金属塩又は炭素数が12以下の有機基を有する有機リン酸で窒化アルミニウム粉末を処理する方法が提案されている。
Therefore, in recent years, thermal interface materials using aluminum nitride having a high thermal conductivity as a filler are being developed. However, aluminum nitride has a problem that its surface reacts with water and hydrolyzes. As a means for solving such a problem, Patent Document 1 has an aluminum oxide film or a phosphate-based film. A method of treating aluminum nitride powder with an organosilicon coupling agent, an organophosphate coupling agent, or a phosphate group-containing organotitanium coupling agent has been proposed.
Patent Document 2 proposes a method of treating aluminum nitride powder with phosphoric acid, a metal salt of phosphoric acid, or organic phosphoric acid having an organic group having 12 or less carbon atoms.

しかし、これらの処理では、窒化アルミニウムの耐水性を十分に向上させることができず、特に回路と樹脂が直接接する放熱基板、半導体封止材等の用途で要求されている高い耐水性を満足することができない。例えば、処理剤を多量に使用すれば、耐水性を大きく向上させることはできても、この場合には、熱伝導率など、窒化アルミニウムに本質的に要求されている特性が低下してしまう。
また、処理剤として、リン酸などのリン系化合物により処理された窒化アルミニウム粉末を用いた場合には、回路に対する腐食性が懸念されるため、その溶出量は可及的に低い事が要求されている。
更に、窒化アルミニウムは樹脂との親和性に問題があり、樹脂との混合時に粘度が高くなりすぎるため、多量の窒化アルミニウムを樹脂に配合することができず、また、樹脂との間にボイドが発生してしまい、熱伝導率が高くならない等の問題点を有している。
However, these treatments cannot sufficiently improve the water resistance of aluminum nitride, and particularly satisfy the high water resistance required for applications such as a heat dissipation substrate and a semiconductor encapsulant in which a circuit and a resin are in direct contact. I can't. For example, if the treatment agent is used in a large amount, the water resistance can be greatly improved, but in this case, the characteristics essentially required for aluminum nitride such as thermal conductivity are deteriorated.
In addition, when aluminum nitride powder treated with a phosphorus-based compound such as phosphoric acid is used as the treating agent, there is a concern about corrosiveness to the circuit, so that the elution amount is required to be as low as possible. ing.
Furthermore, aluminum nitride has a problem with the affinity with the resin, and since the viscosity becomes too high when mixed with the resin, a large amount of aluminum nitride cannot be blended with the resin, and there are voids between the resin and the resin. It occurs, and there is a problem that the thermal conductivity does not increase.

特開平7−33415号公報JP-A-7-33415 WO2012/147999WO2012 / 147999

従って、本発明の目的は、リン系化合物によっての表面処理によって優れた耐水性を示すばかりか、リンの溶出も抑制され、表面処理による熱伝導率の低下も有効に回避されている窒化アルミニウム粉末を提供することにある。
本発明の他の目的は、樹脂に配合したときの増粘も有効に抑制されている窒化アルミニウム粉末を提供することにある。
本発明のさらに他の目的は、上記の窒化アルミニウム粉末を得るために使用される表面処理剤、及び上記窒化アルミニウム粉末が配合されており、高い熱伝導率を有する放熱用複合材料を提供することにある。
Accordingly, an object of the present invention is to provide an aluminum nitride powder that not only exhibits excellent water resistance by surface treatment with a phosphorus compound, but also suppresses elution of phosphorus and effectively avoids a decrease in thermal conductivity due to the surface treatment. Is to provide.
Another object of the present invention is to provide an aluminum nitride powder in which thickening is effectively suppressed when blended with a resin.
Still another object of the present invention is to provide a surface treatment agent used for obtaining the above aluminum nitride powder and a composite material for heat dissipation which contains the above aluminum nitride powder and has high thermal conductivity. It is in.

本発明者等は、上記目的を達成すべく鋭意検討を重ねた結果、窒化アルミニウム粉末を、炭素含量が一定の範囲となるように、アルキルホスホン酸を用いて表面処理することにより、耐水性を大きく向上させると同時に、リンの溶出量を抑制し、しかも、表面処理による熱伝導率の低下も有効に抑制することができ、特に、用いるアルキルホスホン酸が有するアルキル基が長いほど、耐水性をより向上させ且つリンの溶出量をより少なく抑制できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have surface-treated aluminum nitride powder with alkylphosphonic acid so that the carbon content is within a certain range, thereby improving water resistance. At the same time, the elution amount of phosphorus can be suppressed and the decrease in thermal conductivity due to the surface treatment can be effectively suppressed. In particular, the longer the alkyl group of the alkylphosphonic acid used, the higher the water resistance. It has been found that the amount of phosphorus elution can be further reduced and the amount of phosphorus eluted can be suppressed, and the present invention has been completed.

本発明によれば、アルキルホスホン酸により表面処理され、炭素を0.4〜2.0質量%の量で含んでいる窒化アルミニウム粉末が提供される。   According to the present invention, there is provided an aluminum nitride powder surface-treated with an alkylphosphonic acid and containing carbon in an amount of 0.4 to 2.0% by mass.

本発明の窒化アルミニウム粉末は、
(1)前記窒化アルミニウム粉末1gを50gのイオン交換水に浸漬し、密封容器中で120℃、24時間保持した時のリンの溶出量が5ppm以下に抑制されていること、
(2)前記窒化アルミニウム粉末2gを100gのイオン交換水に浸漬し、密封容器中で120℃に保持したとき、pHが10に到達する時間で示される耐水時間が6時間以上であること、
という特性を有しており、特に、用いるアルキルホスホン酸のアルキル基の炭素数の調整により、耐水性がより高められていることが好ましく、例えば、
(3)前記耐水時間が2日以上であること、
さらには、
(4)前記耐水時間が5日以上であること、
が好ましい。
The aluminum nitride powder of the present invention is
(1) 1 g of the aluminum nitride powder is immersed in 50 g of ion exchange water, and the amount of phosphorus eluted when kept in a sealed container at 120 ° C. for 24 hours is suppressed to 5 ppm or less,
(2) When 2 g of the aluminum nitride powder is immersed in 100 g of ion-exchanged water and kept at 120 ° C. in a sealed container, the water resistance time indicated by the time when the pH reaches 10 is 6 hours or more,
In particular, it is preferable that the water resistance is further improved by adjusting the carbon number of the alkyl group of the alkylphosphonic acid used, for example,
(3) The water resistant time is 2 days or more,
Moreover,
(4) The water resistant time is 5 days or more,
Is preferred.

本発明によれば、また、アルキルホスホン酸からなる窒化アルミニウム粉末用表面処理剤が提供される。
かかる表面処理剤においては、
(5)前記アルキルホスホン酸が有するアルキル基の炭素数が10〜30、特に14〜30の範囲にあること、
が好ましい。
本発明によれば、さらに、前述した窒化アルミニウム粉末と樹脂とを含む放熱用複合材料が提供される。
According to the present invention, there is also provided a surface treating agent for aluminum nitride powder comprising alkylphosphonic acid.
In such a surface treatment agent,
(5) The alkyl group of the alkylphosphonic acid has 10 to 30 carbon atoms, particularly 14 to 30 carbon atoms,
Is preferred.
According to the present invention, there is further provided a heat-dissipating composite material comprising the aforementioned aluminum nitride powder and a resin.

アルキルホスホン酸により表面処理されている本発明の窒化アルミニウム(AlN)粉末は、優れた耐水性を示し、後述する実施例にも示されているように、このAlN粉末2gを100gのイオン交換水に浸漬し、密封容器中で120℃に保持したとき、pHが10に到達する時間で示される耐水時間が6時間以上であり、アルキルホスホン酸のアルキル基の炭素数を多くしていくことにより、この耐水時間を2日以上、さらには5日以上とすることができる。   The aluminum nitride (AlN) powder of the present invention surface-treated with an alkylphosphonic acid exhibits excellent water resistance, and as shown in Examples described later, 2 g of this AlN powder is converted into 100 g of ion-exchanged water. When the water resistance time indicated by the time to reach pH 10 is 6 hours or more when the temperature is kept at 120 ° C. in a sealed container, the carbon number of the alkyl group of the alkylphosphonic acid is increased. The water resistant time can be 2 days or more, and further 5 days or more.

また、本発明のAlN粉末は、アルキルホスホン酸により表面処理されているにもかかわらず、リンの溶出が有効に抑制されている。例えば、このAlN粉末1gを50gのイオン交換水に浸漬し、密封容器中で120℃、24時間保持した時のリンの溶出量は5ppm以下に抑制されており、アルキルホスホン酸のアルキル基の炭素数を多くしていくことにより、このリン溶出量を、4ppm以下、さらには3ppm以下に抑制することができる。   Moreover, although the AlN powder of the present invention is surface-treated with alkylphosphonic acid, phosphorus elution is effectively suppressed. For example, when 1 g of this AlN powder is immersed in 50 g of ion exchange water and kept in a sealed container at 120 ° C. for 24 hours, the elution amount of phosphorus is suppressed to 5 ppm or less, and the carbon of the alkyl group of the alkylphosphonic acid By increasing the number, the phosphorus elution amount can be suppressed to 4 ppm or less, and further to 3 ppm or less.

さらに、本発明では、アルキルホスホン酸の処理量が少ないため(AlN粉末の炭素含量が0.4〜2.0質量%)、表面処理による熱伝導率の低下や樹脂に配合したときの増粘も有効に抑制することができる。   Furthermore, in the present invention, since the treatment amount of alkylphosphonic acid is small (the carbon content of the AlN powder is 0.4 to 2.0% by mass), the thermal conductivity decreases due to the surface treatment or the viscosity increases when blended in a resin. Can also be effectively suppressed.

従って、本発明のAlN粉末は、樹脂と混合して放熱用複合材料として高い熱伝導性を付与することができ、湿分による加水分解も有効に抑制され、長期にわたって安定して高い熱伝導性を示すばかりか、リンの溶出による回路の腐食なども有効に防止される。   Therefore, the AlN powder of the present invention can be mixed with a resin to impart high thermal conductivity as a heat dissipation composite material, hydrolysis due to moisture is effectively suppressed, and high thermal conductivity is stable over a long period of time. In addition, the circuit corrosion due to phosphorus elution is effectively prevented.

<原料窒化アルミニウム粉末>
本発明のAlN粉末は、アルキルホスホン酸を用いての表面処理により得られるものであるが、この表面処理に供されるAlN粉末(即ち、原料AlN粉末)は、特に限定されず公知の窒化アルミニウム粉末が用いられる。
原料として用いるAlNの製造方法としては、直接窒化法、還元窒化法、気相合成法などがあるが、本発明において、原料AlN粉末としては、いずれの方法により製造されたものを用いることができる。
また、このような原料AlN粉末は、その粒子表面に酸化アルミニウム層が形成されているものであってもよく、酸化アルミニウム層の形成は、良好な耐水性を得るために好適である。
<Raw material aluminum nitride powder>
The AlN powder of the present invention is obtained by surface treatment using an alkylphosphonic acid, but the AlN powder used for this surface treatment (that is, the raw material AlN powder) is not particularly limited and is known aluminum nitride. Powder is used.
As a method for producing AlN used as a raw material, there are a direct nitriding method, a reductive nitriding method, a gas phase synthesis method, and the like. In the present invention, the raw material AlN powder can be produced by any method. .
Further, such raw material AlN powder may have an aluminum oxide layer formed on the particle surface, and the formation of the aluminum oxide layer is suitable for obtaining good water resistance.

例えば、還元窒化法では、窒化工程に続く酸化工程にて残留カーボンを除去することが必須であり、この工程中に酸化アルミニウム層を形成することができる。が形成される。を形成させることが可能である。
また、直接窒化法および気相合成法では、窒化工程後に粉砕工程があり、粉砕時に新たに生成する表面が雰囲気中の酸素と反応して酸化アルミニウム層が形成される。但し、このようにして形成される酸化アルミニウム層は高い耐水性を得るためには不十分な場合があり、その様な時には、粉砕後の窒化アルミニウム粉末を大気中に放置することにより酸化アルミニウム層を形成することも可能である。さらに、酸化アルミニウム層を形成する好ましい方法としては、粉砕後の窒化アルミニウム粉末を酸素含有雰囲気中で400℃〜1000℃、好ましくは500℃〜900℃で加熱することにより、所望の酸化アルミニウム層を形成することが可能である。
For example, in the reduction nitriding method, it is essential to remove residual carbon in an oxidation step subsequent to the nitriding step, and an aluminum oxide layer can be formed during this step. Is formed. Can be formed.
In the direct nitridation method and the gas phase synthesis method, there is a pulverization step after the nitridation step, and the newly generated surface reacts with oxygen in the atmosphere to form an aluminum oxide layer. However, the aluminum oxide layer thus formed may not be sufficient to obtain high water resistance. In such a case, the aluminum oxide layer may be left by leaving the ground aluminum nitride powder in the atmosphere. It is also possible to form Furthermore, as a preferable method of forming the aluminum oxide layer, the desired aluminum oxide layer is formed by heating the pulverized aluminum nitride powder in an oxygen-containing atmosphere at 400 ° C. to 1000 ° C., preferably 500 ° C. to 900 ° C. It is possible to form.

<アルキルホスホン酸>
本発明では、アルキルホスホン酸を表面処理剤として使用する。
このアルキルホスホン酸は、下記式(1);
R−P(=O)(OH) (1)
式中、
Rはアルキル基である、
で表される有機リン系化合物であり、上記のアルキル基Rは、直鎖状であっても分岐鎖状であってもよい。
<Alkylphosphonic acid>
In the present invention, alkylphosphonic acid is used as a surface treatment agent.
This alkylphosphonic acid has the following formula (1);
R—P (═O) (OH) 2 (1)
Where
R is an alkyl group,
And the alkyl group R may be linear or branched.

このようなアルキルホスホン酸の例としては、プロピルホスホン酸、ブチルホスホン酸、ペンチルホスホン酸、ヘキシルホスホン酸、ヘプチルホスホン酸、オクチルホスホン酸、ノニルホスホン酸、デシルホスホン酸、ウンデシルホスホン酸、ドデシルホスホン酸、トリデシルホスホン酸、テトラデシルホスホン酸、ペンタデシルホスホン酸、ヘキサデシルホスホン酸、ヘプタデシルホスホン酸、オクタデシルホスホン酸、ノナデシルホスホン酸、イコシルホスホン酸、ヘンイコシルホスホン酸、ドコシルホスホン酸、トリコシルホスホン酸、テトラコシルホスホン酸、ペンタコシルホスホン酸、ヘキサコシルホスホン酸、ヘプタコシルホスホン酸、オクタコシルホスホン酸などが挙げられる。   Examples of such alkylphosphonic acids include propylphosphonic acid, butylphosphonic acid, pentylphosphonic acid, hexylphosphonic acid, heptylphosphonic acid, octylphosphonic acid, nonylphosphonic acid, decylphosphonic acid, undecylphosphonic acid, dodecylphosphonic acid. Acid, tridecylphosphonic acid, tetradecylphosphonic acid, pentadecylphosphonic acid, hexadecylphosphonic acid, heptadecylphosphonic acid, octadecylphosphonic acid, nonadecylphosphonic acid, icosylphosphonic acid, heicosylphosphonic acid, docosylphosphonic acid, Examples include tricosylphosphonic acid, tetracosylphosphonic acid, pentacosylphosphonic acid, hexacosylphosphonic acid, heptacosylphosphonic acid, octacosylphosphonic acid, and the like.

本発明においては、上記のアルキルスルホン酸の中でも、アルキル基Rが、直鎖状であるか分岐状であるかにかかわらず、その炭素数が10〜30、特に14〜30、最適には14〜20の範囲にあることが好ましい。   In the present invention, among the above alkylsulfonic acids, regardless of whether the alkyl group R is linear or branched, the carbon number thereof is 10 to 30, particularly 14 to 30, and optimally 14 It is preferable to be in the range of -20.

即ち、このアルキル基Rの炭素数が長くなるほど、耐水性を向上させ且つリンの溶出量を少なくすることができる。例えば、アルキルの炭素数が4〜8程度のアルキルホスホン酸を用いて表面処理した場合には、前述した方法で測定した耐水時間が6時間以上、特に6時間〜1日程度であり、前述した方法で測定したリン溶出量を5ppm以下に抑制することができる。しかるに、アルキル基の炭素数が10以上のアルキルホスホン酸を用いて表面処理した場合には、耐水時間を2日以上に向上させ、リン溶出量は4ppm以下により低減され、さらに、アルキル基の炭素数が14以上のアルキルホスホン酸を用いて表面処理した場合には、耐水時間は5日以上にさらに向上し、リン溶出量は3ppm以下にさらに大きく低減されることとなる。実際、後述する実施例の実験結果によれば(表1参照)、アルキル基の炭素数が16以上で耐水時間は6日以上となり、炭素数が18以上では耐水時間は、11日以上に大きく延びており、リンの溶出量も2ppm以下と極めて大きく低減されていることが判る。   That is, the longer the carbon number of the alkyl group R, the more the water resistance can be improved and the phosphorus elution amount can be reduced. For example, when the surface treatment is performed using alkylphosphonic acid having an alkyl carbon number of about 4 to 8, the water resistance measured by the above-described method is 6 hours or more, particularly about 6 hours to 1 day. The phosphorus elution amount measured by the method can be suppressed to 5 ppm or less. However, when surface treatment is performed using an alkylphosphonic acid having an alkyl group with 10 or more carbon atoms, the water resistance time is improved to 2 days or more, the phosphorus elution amount is reduced to 4 ppm or less, and the carbon of the alkyl group is further reduced. When surface treatment is performed using an alkylphosphonic acid having a number of 14 or more, the water resistance time is further improved to 5 days or more, and the phosphorus elution amount is further greatly reduced to 3 ppm or less. Actually, according to the experimental results of Examples described later (see Table 1), the alkyl group has 16 or more carbon atoms and the water resistance time is 6 days or more, and when the carbon number is 18 or more, the water resistance time is 11 days or more. It can be seen that the elution amount of phosphorus is extremely reduced to 2 ppm or less.

このような現象は、アルキル鎖が短すぎると、AlNとアルキルホスホン酸との界面に水が侵入しやすくなり、高い耐水性が得にくくなるために生じるものではないかと本発明者等は推定している。
即ち、水の侵入により、耐水性の低下ばかりか、アルキルホスホン酸がAlN表面から脱離し易くなり、この結果、リンの溶出量も多くなってしまう。しかるに、炭素数が多くなり、アルキル鎖が長くなると、AlNとアルキルホスホン酸との界面に水が浸入しにくくなり、この結果、耐水性が向上するばかりか、リンの溶出性も低く抑えることが可能になるものと思われる。
The present inventors presume that such a phenomenon may be caused by the fact that if the alkyl chain is too short, water easily enters the interface between AlN and alkylphosphonic acid, making it difficult to obtain high water resistance. ing.
That is, the penetration of water not only lowers the water resistance, but also facilitates the elimination of alkylphosphonic acid from the AlN surface, resulting in an increase in the amount of phosphorus eluted. However, when the number of carbon atoms increases and the alkyl chain becomes longer, it becomes difficult for water to enter the interface between AlN and alkylphosphonic acid. As a result, water resistance is improved and phosphorus elution is kept low. It seems to be possible.

また、アルキルホスホン酸のアルキル基Rの炭素数が必要以上に長くなると、熱伝導率が低下してしまい、例えば、樹脂と混合して高い熱伝導性を発現させることが困難となってしまう傾向がある。
即ち、一般の有機物の熱伝導率は、AlNよりはるかに低いことから理解されるように、アルキル鎖が長くなると、AlN表面での有機物(アルキル基)の被覆厚さが大きくなり、この結果、このAlN粒子と樹脂との界面での熱抵抗も大きくなってしまうためと本発明者等は推察している。
In addition, if the carbon number of the alkyl group R of the alkylphosphonic acid is longer than necessary, the thermal conductivity is lowered, and for example, it tends to be difficult to develop high thermal conductivity by mixing with a resin. There is.
That is, as understood from the fact that the thermal conductivity of a general organic substance is much lower than that of AlN, the longer the alkyl chain, the larger the coating thickness of the organic substance (alkyl group) on the AlN surface. The present inventors infer that the thermal resistance at the interface between the AlN particles and the resin also increases.

従って、本発明では、アルキルホスホン酸のアルキル基Rの炭素数が上記範囲にあることが、耐水性を向上させ、リンの溶出を抑制し、さらに高い熱伝導率を確保するという点で好ましいこととなる。   Therefore, in the present invention, it is preferable that the number of carbon atoms of the alkyl group R of the alkylphosphonic acid is in the above range in terms of improving water resistance, suppressing phosphorus elution, and ensuring higher thermal conductivity. It becomes.

尚、表面処理剤として用いるアルキルホスホン酸のアルキル基の炭素数が耐水性やリンの溶出性に及ぼす現象は、リン酸エステル等のリン酸系化合物には全く当てはまらない。例えば、リン酸エステルを用いて表面処理を行った場合、1日程度の耐水時間しか得られず、さらに、リンの溶出量を5ppm以下に抑制することはできない。これは、リン酸系化合物が有するアルキル基の炭素数を長くしても同じであることを確認している(後述する比較例7〜9参照)。
このようなリン酸系化合物とアルキルホスホン酸と相違は、明確に解明されているわけではないが、おそらく、AlN表面に存在する塩基性点の触媒作用により、AlN表面に担持されたリン酸系化合物が、僅かな水分の存在によって加水分解してしまうが、アルキルホスホン酸では、このような加水分解が生じ難いため、このような相違が生じるものと思われる。
The phenomenon that the carbon number of the alkyl group of the alkylphosphonic acid used as the surface treatment agent has an effect on water resistance and phosphorus elution does not apply to phosphate compounds such as phosphate esters. For example, when surface treatment is performed using a phosphate ester, only a water resistance time of about one day can be obtained, and further, the phosphorus elution amount cannot be suppressed to 5 ppm or less. This has confirmed that it is the same, even if it lengthens carbon number of the alkyl group which a phosphoric acid type compound has (refer the comparative examples 7-9 mentioned later).
The difference between such phosphoric acid compounds and alkylphosphonic acids is not clearly elucidated, but the phosphoric acid system supported on the AlN surface is probably due to the catalytic action of the basic point present on the AlN surface. Although the compound is hydrolyzed by the presence of a slight amount of water, such a difference is considered to occur because alkylphosphonic acid hardly causes such hydrolysis.

<アルキルホスホン酸による表面処理>
上述したアルキルホスホン酸を用いての原料AlN粉末の表面処理は、この粉末に、乾式法或いは湿式法でアルキルホスホン酸を接触させることにより行うことができる。
<Surface treatment with alkylphosphonic acid>
The surface treatment of the raw material AlN powder using the alkylphosphonic acid described above can be carried out by bringing this powder into contact with alkylphosphonic acid by a dry method or a wet method.

表面処理に用いるアルキルホスホン酸の量は、最終的に得られる表面処理窒化アルミニウム粉末における炭素含量が、0.4〜2.0質量%、特に、0.5〜1.8質量%の範囲となるように、採用する接触方法(乾式法及び湿式法)及び接触条件などに応じて適宜設定される。
即ち、得られる表面処理AlN粉末における炭素含量が上記範囲よりも少ないと、良好な耐水性を得ることができず、上記範囲よりも多いと、この表面処理AlN粉末を樹脂に分散させたときの複合材料の熱伝導率が低下する恐れがある。
The amount of the alkylphosphonic acid used for the surface treatment is such that the carbon content in the finally obtained surface-treated aluminum nitride powder is in the range of 0.4 to 2.0 mass%, particularly 0.5 to 1.8 mass%. Thus, it is appropriately set according to the contact method (dry method and wet method) to be employed, contact conditions, and the like.
That is, when the carbon content in the obtained surface-treated AlN powder is less than the above range, good water resistance cannot be obtained, and when it is more than the above range, when the surface-treated AlN powder is dispersed in the resin. The thermal conductivity of the composite material may be reduced.

尚、上記の炭素含量は、表面処理前の粉末と表面処理後の粉末について、酸素気流中で焼成し、発生したCO,CO2ガス量から炭素分析装置を用いて炭素含有量を定量することにより(詳細な条件は実施例参照)、算出することができる。The above carbon content is determined by calcining the powder before the surface treatment and the powder after the surface treatment in an oxygen stream, and quantifying the carbon content using the carbon analyzer from the amount of generated CO and CO 2 gas. (See the examples for detailed conditions).

尚、この表面処理に2種以上のアルキルホスホン酸を混合して使用することも可能であるが、上記で説明したように、このアルキルホスホン酸のアルキル鎖が長いほど高い耐水性が得られる。従って、複数のアルキルホスホン酸を使用する場合は、アルキル鎖が短いものの使用量を少なくすることが望ましく、例えば、炭素数8以下のアルキル基を有するアルキルホスホン酸の使用量は、全アルキルホスホン酸の量を100質量部としたとき、30重量部以下、特に20重量部以下であることが望ましい。   It is possible to use a mixture of two or more types of alkylphosphonic acids for this surface treatment, but as described above, the longer the alkyl chain of the alkylphosphonic acid, the higher the water resistance. Therefore, when using a plurality of alkylphosphonic acids, it is desirable to reduce the amount of the alkyl chain having a short alkyl chain. For example, the amount of the alkylphosphonic acid having an alkyl group having 8 or less carbon atoms can be When the amount is 100 parts by mass, it is preferably 30 parts by weight or less, particularly 20 parts by weight or less.

ところで、乾式法では、無溶媒下で、原料AlN粉末とアルキルホスホン酸とを混合することにより、表面処理が行われる。また、湿式法では、所定の溶媒中で、原料粉末とアルキルホスホン酸とを混合し、得られた分散液を乾燥することにより行われる。
一般的には、湿式法により表面処理が行われる。少量のアルキルホスホン酸の使用により、均一に表面処理を行うことができるため、工業的に有利だからである。
By the way, in the dry method, the surface treatment is performed by mixing the raw material AlN powder and the alkylphosphonic acid in the absence of a solvent. In the wet method, the raw material powder and the alkylphosphonic acid are mixed in a predetermined solvent, and the obtained dispersion is dried.
Generally, surface treatment is performed by a wet method. This is because the surface treatment can be performed uniformly by using a small amount of alkylphosphonic acid, which is industrially advantageous.

湿式法により表面処理を行う場合、用いる溶媒としては、表面処理に悪影響を与えない限り特に制限されないが、一般的には、以下のものが、単独で或いは2種以上を混合した混合溶媒の形で好適に使用される。
水;
メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブタノール等のアルコール類;
ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;
アセトン、メチルエチルケトンなどのケトン類;
ジオキサン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類;
メチレンクロライド、クロロホルムなどの含ハロゲン類;
When performing surface treatment by a wet method, the solvent to be used is not particularly limited as long as it does not adversely affect the surface treatment. In general, the following are used alone or in the form of a mixed solvent in which two or more kinds are mixed. Are preferably used.
water;
Alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol;
Esters such as methyl formate, ethyl formate, propyl formate, butyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate;
Ketones such as acetone and methyl ethyl ketone;
Dioxane, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl Ethers such as ethers;
Halogen-containing compounds such as methylene chloride and chloroform;

上記溶媒の使用量は、特に制限されないが、一般的には、原料AlN粉末100質量部当り、70〜300質量部、特に80〜200質量部である。   Although the usage-amount of the said solvent is not restrict | limited in particular, Generally, it is 70-300 mass parts per 100 mass parts of raw material AlN powder, Especially 80-200 mass parts.

上記溶媒下での原料AlN粉末とアルキルホスホン酸との接触は、例えば、原料AlN粉末を溶媒中に添加し、撹拌してスラリー状とし、これにアルキルホスホン酸を添加して混合撹拌することにより行うこともできるし、溶媒中に、AlN粉末とアルキルホスホン酸とを添加して混合撹拌することによっても行うことができ、さらには、アルキルホスホン酸の溶媒溶液に原料AlN粉末を添加して混合することもできる。   The contact between the raw material AlN powder and the alkylphosphonic acid under the above-mentioned solvent is, for example, by adding the raw material AlN powder into the solvent and stirring to form a slurry, adding the alkylphosphonic acid to this, and mixing and stirring. It can also be performed by adding AlN powder and alkylphosphonic acid to the solvent and mixing and stirring. Furthermore, the raw material AlN powder is added to the solvent solution of alkylphosphonic acid and mixed. You can also

また、上記のようにして、溶媒中で原料アルミニウム粉末とアルキルスルホン酸とを混合分散して両者を接触させる場合、AlN粉末のメジアン径/一次粒子径の比が、5.0以下、特に4.0以下、最も好適には3.0以下となるように、強撹拌条件下で混合分散せしめることが好適である。   When the raw material aluminum powder and the alkylsulfonic acid are mixed and dispersed in a solvent and brought into contact with each other as described above, the ratio of the median diameter / primary particle diameter of the AlN powder is 5.0 or less, particularly 4 It is preferable to mix and disperse under strong stirring conditions so as to be 0.0 or less, and most preferably 3.0 or less.

上記メジアン径は、粉末の粒径分布曲線における中央値に相当する粒径であり、例えば市販のレーザー回折散乱式粒度分布計(例えば日機装(株)、型式「MT3300」など)による粒度分布測定によって求めることができる。また、一次粒径は、粉末を構成する最小単位の粒子の個数平均値を意味し、例えば走査型電子顕微鏡による画像から知ることができる。具体的には、市販の走査型電子顕微鏡(例えば日本電子(株)製、型式「JSM−5300」など)を用いて倍率2千倍または1万倍において粉体の撮影を行い、視野内の任意の100個の粒子の大きさを測定してその平均値をとる方法によることが簡単である。また、比表面積から算出することもできる。
即ち、上記のメジアン径/一次粒子径比は、二次粒子(凝集体)を形成する一次粒子の数を意味し、この比を上記範囲とすることでアルキルホスホン酸に表面処理が均一に効果的に行われる。
The median diameter is a particle size corresponding to the median value in the particle size distribution curve of the powder. For example, by measuring the particle size distribution with a commercially available laser diffraction scattering type particle size distribution meter (for example, Nikkiso Co., Ltd., model “MT3300”, etc.) Can be sought. The primary particle diameter means the number average value of the smallest unit particles constituting the powder, and can be known from, for example, an image obtained by a scanning electron microscope. Specifically, using a commercially available scanning electron microscope (for example, model “JSM-5300” manufactured by JEOL Ltd.), the powder was photographed at a magnification of 2,000 or 10,000 times, and within the field of view. It is easy to measure the size of an arbitrary 100 particles and take the average value. It can also be calculated from the specific surface area.
That is, the median diameter / primary particle diameter ratio means the number of primary particles that form secondary particles (aggregates). By making this ratio within the above range, the surface treatment is uniformly effective on the alkylphosphonic acid. Done.

従って、上記のような強撹拌を行うために、混合撹拌装置として、ディスパーザー、ホモジナイザー、超音波分散機、湿式ボールミル、湿式振動ボールミル、湿式ビーズミル、ナノマイザー、及び衝突分散機(例えば高圧分散機)などが好適に使用される。
混合撹拌時間は、得られる表面処理窒化アルミニウム粉末における炭素含量前述した範囲となる程度に設定される。
Therefore, in order to perform the strong stirring as described above, a disperser, a homogenizer, an ultrasonic disperser, a wet ball mill, a wet vibration ball mill, a wet bead mill, a nanomizer, and a collision disperser (for example, a high pressure disperser) Etc. are preferably used.
The mixing and stirring time is set to such an extent that the carbon content in the obtained surface-treated aluminum nitride powder is in the above-described range.

上記のようにして溶媒下で原料AlN粉末とアルキルホスホン酸との混合撹拌が行われた後、得られたスラリーを、用いた溶媒の種類に応じて、80℃〜300℃の温度範囲に加熱して乾燥することにより、目的とする表面処理が行われ、耐水性が向上した窒化アルミニウム粉末を得ることができる。
このような乾燥は、これに限定されるものではないが、一般に、常圧オーブン、減圧オーブン、スプレードライヤー、媒体流動乾燥機、乾燥機構を備えた揺動ミキサー、プロシェアミキサーなどにより行われる。
After mixing and stirring the raw material AlN powder and the alkylphosphonic acid under the solvent as described above, the obtained slurry is heated to a temperature range of 80 ° C. to 300 ° C. depending on the type of the solvent used. Then, the target surface treatment is performed by drying, and an aluminum nitride powder with improved water resistance can be obtained.
Such drying is not limited to this, but is generally performed by an atmospheric pressure oven, a reduced pressure oven, a spray dryer, a medium fluidized dryer, a rocking mixer equipped with a drying mechanism, a pro-shear mixer, or the like.

尚、上記のようにして湿式法により表面処理を行う場合、含水溶媒を用いるときには、原料AlN粉末が徐々に加水分解するおそれがあるため、72時間以内、特に48時間以内に処理を完了させることが望ましい。   In addition, when the surface treatment is performed by the wet method as described above, when using a water-containing solvent, the raw material AlN powder may be gradually hydrolyzed, so that the treatment should be completed within 72 hours, particularly within 48 hours. Is desirable.

<表面処理窒化アルミニウム粉末>
このようにアルキルホスホン酸を処理剤として用いての表面処理により得られる本発明のAlN粉末(以下、耐水性窒化アルミニウム粉末と呼ぶことがある)は、炭素含量が0.4〜2.0質量%、特に0.5〜1.8質量%の範囲にあり、良好な耐水性を有する。
例えば、その耐水時間は、6時間以上であり、用いるアルキルスルホン酸のアルキル基の炭素数によっては、1日以上、さらには2日以上と長く、5日以上のものもある。
<Surface treated aluminum nitride powder>
Thus, the AlN powder of the present invention obtained by surface treatment using an alkylphosphonic acid as a treating agent (hereinafter sometimes referred to as water-resistant aluminum nitride powder) has a carbon content of 0.4 to 2.0 mass. %, Particularly in the range of 0.5 to 1.8% by mass, and has good water resistance.
For example, the water resistance time is 6 hours or more, and depending on the number of carbon atoms of the alkyl group of the alkylsulfonic acid used, it may be as long as 1 day or even 2 days or longer, and may be 5 days or longer.

また、この耐水性AlN粉末は、リンの溶出量も5ppm以下に抑制されており、さらに、この溶出量も用いるアルキルスルホン酸のアルキル基の炭素数によって、4ppm以下、特に3ppm以下、さらには2ppm以下にも低減されており、リンの溶出による金属腐食を有効に防止することができる。例えば、樹脂に配合して放熱用複合材料として用いたとき、これが直接接触する回路の腐食を有効に回避することができる。   In addition, the water-resistant AlN powder has an elution amount of phosphorus suppressed to 5 ppm or less, and further, this elution amount is 4 ppm or less, particularly 3 ppm or less, more preferably 2 ppm, depending on the number of carbons of the alkyl group of the alkylsulfonic acid used. The following is also reduced, and metal corrosion due to phosphorus elution can be effectively prevented. For example, when it is blended with a resin and used as a heat dissipation composite material, it is possible to effectively avoid corrosion of a circuit that directly contacts the resin.

さらに、本発明の耐水性AlN粉末は、少ない表面処理量で耐水性が向上していることに関連して、表面処理による熱伝導率の低下が有効に回避されており、従って、樹脂に配合して高い熱伝導性を付与することができる。   Furthermore, the water-resistant AlN powder of the present invention effectively avoids a decrease in thermal conductivity due to the surface treatment in connection with the improvement in water resistance with a small amount of surface treatment. Thus, high thermal conductivity can be imparted.

<放熱用複合材料>
本発明の耐水性AlN粉末は、その高い熱伝導率を利用して、樹脂と混合して放熱用複合材料として好適に使用される。
このような目的に使用される樹脂としては、特に制限されるものではないが、以下の熱可塑性樹脂が代表的である。
ポリエチレン、ポリプロピレン、
エチレン−プロピレン共重合体、ポリメチルペンテン、
ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、
エチレン−酢酸ビニル共重合体、ポリビニルアルコール、
ポリアセタール、フッ素樹脂(ポリフッ化ビニリデン、
ポリテトラフルオロエチレン等)、
ポリエチレンテレフタレート、ポリブチレンテレフタレート、
ポリエチレン2,6ナフタレート、ポリスチレン、
ポリアクリロニトリル、スチレン−アクリロニトリル共重合体、
ABS樹脂、ポリフェニレンエーテル(PPE)樹脂、
変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、
ポリイミド、ポリアミドイミド、
ポリメタクリル酸類(ポリメタクリル酸メチル等のポリメタクリル酸エステル)、
ポリアクリル酸類、ポリカーボネート、
ポリフェニレンスルフィド、ポリサルホン、
ポリエーテルサルホン、ポリエーテルニトリル、
ポリエーテルケトン、ポリエーテルエーテルケトン、
ポリケトン、液晶ポリマー、アイオノマーなど。
勿論、熱可塑性樹脂以外にも、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類などの熱硬化性樹脂を使用することもできる。
<Heat dissipation composite material>
The water-resistant AlN powder of the present invention is suitably used as a heat-dissipating composite material by mixing with a resin by utilizing its high thermal conductivity.
The resin used for such purposes is not particularly limited, but the following thermoplastic resins are typical.
Polyethylene, polypropylene,
Ethylene-propylene copolymer, polymethylpentene,
Polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate,
Ethylene-vinyl acetate copolymer, polyvinyl alcohol,
Polyacetal, fluororesin (polyvinylidene fluoride,
Polytetrafluoroethylene, etc.),
Polyethylene terephthalate, polybutylene terephthalate,
Polyethylene 2,6 naphthalate, polystyrene,
Polyacrylonitrile, styrene-acrylonitrile copolymer,
ABS resin, polyphenylene ether (PPE) resin,
Modified PPE resin, aliphatic polyamides, aromatic polyamides,
Polyimide, polyamideimide,
Polymethacrylic acid (polymethacrylate such as polymethylmethacrylate),
Polyacrylic acid, polycarbonate,
Polyphenylene sulfide, polysulfone,
Polyethersulfone, polyethernitrile,
Polyetherketone, polyetheretherketone,
Polyketone, liquid crystal polymer, ionomer, etc.
Of course, in addition to thermoplastic resins, use thermosetting resins such as epoxies, acrylics, urethanes, silicones, phenols, imides, thermosetting modified PPEs, and thermosetting PPEs. You can also.

上記の様な樹脂に本発明の耐水性AlN粉末を混合して用いる場合、アルミナ、窒化ホウ素、酸化マグネシウム等の他の熱伝導率の比較的高いフィラーを併用することも勿論可能であるが、本発明の耐水性AlN粉末は最も高い熱伝導率を有するため、良好な放熱性を有する複合材料を得るためには、複合材料中の耐水性AlN粉末の含有量は20質量%以上、特に40質量%以上とすることが好ましい。また、複合材料の成型性の観点から、この耐水性AlN粉末の含有量は95質量%以下、特に90質量%以下が好適である。   When the water-resistant AlN powder of the present invention is used by mixing with the resin as described above, it is of course possible to use other fillers with relatively high thermal conductivity such as alumina, boron nitride, magnesium oxide, Since the water resistant AlN powder of the present invention has the highest thermal conductivity, in order to obtain a composite material having good heat dissipation, the content of the water resistant AlN powder in the composite material is 20% by mass or more, particularly 40%. It is preferable to set it as mass% or more. Further, from the viewpoint of the moldability of the composite material, the content of the water-resistant AlN powder is preferably 95% by mass or less, particularly preferably 90% by mass or less.

上記のような複合材料は、家電製品、自動車、ノート型パーソナルコンピュータなどに搭載される半導体部品からの発熱を効率よく放熱するための放熱部材として好適に使用され、用途に応じて、放熱グリース、放熱ゲル、放熱シート、フェイズチェンジシート、接着剤などの形態で使用される。またメタルベース基板、プリント基板、フレキシブル基板などの各種基板に用いられる絶縁層や、半導体封止剤、アンダーフィル、筐体、放熱フィンなどとしても使用することができる。   The composite material as described above is suitably used as a heat radiating member for efficiently radiating heat generated from semiconductor components mounted on home appliances, automobiles, notebook personal computers, and the like. Used in the form of heat dissipation gel, heat dissipation sheet, phase change sheet, adhesive and the like. It can also be used as an insulating layer used for various substrates such as a metal base substrate, a printed circuit board, and a flexible substrate, a semiconductor sealant, an underfill, a housing, and a heat radiation fin.

本発明の耐水性AlN粉末を用いた複合材料の硬化体の熱伝導率は特に限定されないが、半導体部品等からの発熱を効率よく放熱するためにはなるべく高い方が望ましく、1.0W/mK以上であることが好ましい。   The thermal conductivity of the cured body of the composite material using the water-resistant AlN powder of the present invention is not particularly limited, but is preferably as high as possible in order to efficiently dissipate the heat generated from the semiconductor component, etc., and is 1.0 W / mK. The above is preferable.

以下、実施例および用途例によって本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
以下の実験で用いた試験方法を以下に示す。
EXAMPLES Hereinafter, although an Example and an application example demonstrate this invention concretely, this invention is not limited to these examples.
The test methods used in the following experiments are shown below.

AlN粉末の耐水性(耐水時間);
AlN粉末2gとイオン交換水100gを容量120mlのポリテトラフルオロエチレン製密封容器(PFA耐圧ジャー:フロン工業社製)に入れ、120℃で静置し、6時間後、12時間後、24時間後およびそれ以降の水のpHをpH試験紙にて測定した。
pH10以上となるまでの時間を耐水時間とし、6時間未満、6時間以上12時間未満、12時間以上24時間未満、1日およびそれ以上の日数として記録した。
Water resistance of AlN powder (water resistance time);
2 g of AlN powder and 100 g of ion-exchanged water are placed in a 120-ml polytetrafluoroethylene sealed container (PFA pressure-resistant jar: manufactured by Freon Industries Co., Ltd.) and allowed to stand at 120 ° C. After 6 hours, 12 hours, and 24 hours And the pH of water after that was measured with a pH test paper.
The time until the pH reached 10 or more was recorded as water resistant time, and was recorded as less than 6 hours, 6 hours or more and less than 12 hours, 12 hours or more and less than 24 hours, 1 day or more.

複合材料の粘度;
AlN粉末2.0gとエポキシ樹脂(ZX−1059:新日鉄化学社製)0.91gを乳鉢で混合した後、レオメーター(AR2000ex:TA Instruments社製)を用い、25.5℃にて複合材料の粘度を測定した。
The viscosity of the composite material;
After mixing 2.0 g of AlN powder and 0.91 g of epoxy resin (ZX-1059: manufactured by Nippon Steel Chemical Co., Ltd.) in a mortar, using a rheometer (AR2000ex: manufactured by TA Instruments), the composite material at 25.5 ° C. The viscosity was measured.

複合材料の熱伝導率;
AlN粉末2.00gと、エポキシ樹脂(JER807:三菱化学社製)0.37gおよびエポキシ樹脂硬化剤(JERキュア113:三菱化学社製)0.12gとを乳鉢で混合した後、直径15mmの穴のあいた厚さ15mmのポリテトラフルオロエチレン製モールドに充填した。
このポリテトラフルオロエチレン板の両面からPETフィルムと厚さ1mmのポリテトラフルオロエチレン板で挟み、熱プレス器(アズワン社製)を用い80℃、20MPaにて3時間加熱した。
モールドから硬化したサンプルを取出し、回転研磨機を用いてサンプルの厚さが1.0〜1.1mmの間となるように研磨した。
このサンプルの熱伝導率を熱伝導率計(PS−7:理学電気株式会社製)にて測定した。
Thermal conductivity of the composite material;
After mixing 2.00 g of AlN powder, 0.37 g of epoxy resin (JER807: manufactured by Mitsubishi Chemical) and 0.12 g of epoxy resin curing agent (JER Cure 113: manufactured by Mitsubishi Chemical) in a mortar, a hole having a diameter of 15 mm A 15 mm thick polytetrafluoroethylene mold was filled.
The polytetrafluoroethylene plate was sandwiched from both sides with a PET film and a 1 mm thick polytetrafluoroethylene plate, and heated at 80 ° C. and 20 MPa for 3 hours using a heat press (manufactured by ASONE).
The cured sample was taken out from the mold and polished using a rotary polishing machine so that the thickness of the sample was between 1.0 and 1.1 mm.
The thermal conductivity of this sample was measured with a thermal conductivity meter (PS-7: manufactured by Rigaku Corporation).

耐水性AlN粉末の炭素含量;
表面処理前のAlN粉末と表面処理後のAlN粉末(耐水性AlN粉末)について、酸素気流中、1350℃にて、CO2ガスが発生しなくなるまで焼成し、発生したCO2ガス量から炭素分析装置(例えば、EMIA−110:堀場製作所社製)を用いて炭素含有量を定量し、下記式により、耐水性AlN粉末の炭素含量を算出した。
炭素含有量=(A−B)/C
A:表面処理後の炭素量
B:表面処理前の炭素量
C:表面処理後のAlN粉末の質量
即ち、この炭素量は、アルキルホスホン酸による表面処理によって増加した炭素量の割合を示し、表面処理量に対応する。
Carbon content of water resistant AlN powder;
A pre-surface treatment AlN powder and a surface treatment AlN powder (water-resistant AlN powder) were fired in an oxygen stream at 1350 ° C until no CO 2 gas was generated, and carbon analysis was performed from the amount of CO 2 gas generated. The carbon content was quantified using an apparatus (for example, EMIA-110: manufactured by Horiba, Ltd.), and the carbon content of the water-resistant AlN powder was calculated by the following formula.
Carbon content = (A−B) / C
A: Carbon amount after surface treatment B: Carbon amount before surface treatment C: Mass of AlN powder after surface treatment That is, this carbon amount indicates the ratio of the amount of carbon increased by surface treatment with alkylphosphonic acid. Corresponds to throughput.

リンの溶出量;
AlN粉末1gおよび水50gを密封容器に投入後、120℃にて24時間静置した。遠心分離器(SN−1050:アズワン社製)を用いて固液分離を行い、この後、フィルターを用いて更に固体成分を除去し、得られた溶出液を適宜希釈し、1%の硝酸溶液とした。
この硝酸溶液をICP発光分析装置(iCAP 6500:Thermo Scientific社製)にて発光分析し、リンの溶出量を定量し、上記溶出液における濃度(ppm)として表示した。
Elution amount of phosphorus;
After putting 1 g of AlN powder and 50 g of water into a sealed container, it was allowed to stand at 120 ° C. for 24 hours. Solid-liquid separation is performed using a centrifuge (SN-1050: manufactured by AS ONE), and then solid components are further removed using a filter, and the obtained eluate is diluted as appropriate to obtain a 1% nitric acid solution. It was.
The nitric acid solution was subjected to luminescence analysis with an ICP emission analyzer (iCAP 6500: manufactured by Thermo Scientific), and the elution amount of phosphorus was quantified and displayed as the concentration (ppm) in the eluate.

以下の実験において、以下の物性のAlN粉末を用意した。
AlN粉末H:
BET比表面積2.6m/g,トクヤマ社製グレードH
AlN粉末UM:
BET比表面積1.1m/g,東洋アルミニウム社製UM
AlN粉末JD:
BET比表面積2.2m/g,東洋アルミニウム社製JD
また、実験に用いたアルキルホスホン酸としては、全て和光純薬者製のものを使用し、超音波洗浄機としては、アズワン社製USD−2Rを用いた。
In the following experiment, an AlN powder having the following physical properties was prepared.
AlN powder H:
BET specific surface area 2.6 m 2 / g, Tokuyama grade H
AlN powder UM:
BET specific surface area 1.1m 2 / g, Toyo Aluminum UM
AlN powder JD:
BET specific surface area 2.2m 2 / g, JD made by Toyo Aluminum
Moreover, as alkyl phosphonic acid used for experiment, the thing made from a Wako Purechemical person was used, and as the ultrasonic cleaning machine, USD-2R made from ASONE was used.

<実施例1>
デシルホスホン酸0.6g、イソプロパノール(トクヤマ社製IPA−SE)30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gを、上記のサンプル瓶に加えて密栓後、1分間振って混合した。次いで、40℃に加熱した超音波洗浄機にて、この混合液に10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて200℃にて3時間真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 1>
0.6 g of decylphosphonic acid and 30 g of isopropanol (IPA-SE manufactured by Tokuyama) were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C.
Next, 30 g of AlN powder H was added to the above sample bottle, sealed, and shaken for 1 minute to mix. Next, the mixture was subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C., and then the slurry in the sample bottle was transferred to a petri dish and vacuum-dried at 200 ° C. for 3 hours in an oven. .
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例2>
ドデシルホスホン酸0.75g、水20gおよびエタノール(試薬特級:和光純薬社製)15gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 2>
0.75 g of dodecylphosphonic acid, 20 g of water and 15 g of ethanol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) are put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. went.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken and mixed for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. And vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例3>
ドデシルホスホン酸0.60g、水21gおよびイソプロパノール9g(IPA−SE:トクヤマ社製)をサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末UM30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 3>
0.60 g of dodecylphosphonic acid, 21 g of water and 9 g of isopropanol (IPA-SE: manufactured by Tokuyama Co., Ltd.) are placed in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. It was.
Next, 30 g of AlN powder UM was added to the sample bottle, sealed, mixed by shaking for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例4>
ドデシルホスホン酸0.45g、イソプロパノール30g(IPA−SE:トクヤマ社製)をサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末JD30gをサンプル瓶に加えて密栓後、1分間振って混合した。40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 4>
0.45 g of dodecylphosphonic acid and 30 g of isopropanol (IPA-SE: manufactured by Tokuyama) were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C.
Next, 30 g of AlN powder JD was added to the sample bottle, sealed, and shaken for 1 minute to mix. Ultrasonic irradiation was performed for 10 minutes with an ultrasonic cleaner heated to 40 ° C., followed by vacuum drying in the same manner as in Example 1.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例5>
テトラデシルホスホン酸0.54g、水30gをサンプル瓶に入れて密栓し混合後、50℃に加熱した超音波洗浄機を用いて10分間超音波照射を行った。
次いで、AlN粉末H15gおよびAlN粉末UM15gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥を行った。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 5>
Tetradecylphosphonic acid 0.54 g and water 30 g were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes using an ultrasonic cleaner heated to 50 ° C.
Next, 15 g of AlN powder H and 15 g of AlN powder UM were added to the sample bottle, sealed, mixed by shaking for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. In the same manner as in No. 1, vacuum drying was performed.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例6>
ヘキサデシルホスホン酸0.30g、水24gおよびイソプロパノール6g(IPA−SE:トクヤマ社製)をサンプル瓶に入れて密栓し混合後、70℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H15gおよびAlN粉末UM15gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥を行った。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 6>
Put 0.30 g of hexadecylphosphonic acid, 24 g of water and 6 g of isopropanol (IPA-SE: manufactured by Tokuyama Co., Ltd.) in a sample bottle, seal and mix, and then apply ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 70 ° C. went.
Next, 15 g of AlN powder H and 15 g of AlN powder UM were added to the sample bottle, sealed, mixed by shaking for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. In the same manner as in No. 1, vacuum drying was performed.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例7>
ヘキサデシルホスホン酸0.60g、水24gおよびメタノール(試薬特級:和光純薬社製)16gをサンプル瓶に入れて密栓し混合後、70℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 7>
Put 0.60 g of hexadecylphosphonic acid, 24 g of water and 16 g of methanol (special grade reagent: Wako Pure Chemical Industries, Ltd.) into a sample bottle, seal and mix, and then ultrasonically irradiate with an ultrasonic cleaner heated to 70 ° C. for 10 minutes. Went.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken and mixed for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例8>
ヘキサデシルホスホン酸0.75g、水40gをサンプル瓶に入れて密栓し混合後、70℃に加熱した超音波洗浄機を用いて10分間超音波照射を行った。
ついで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 8>
0.75 g of hexadecylphosphonic acid and 40 g of water were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes using an ultrasonic cleaner heated to 70 ° C.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken for 1 minute, mixed, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例9>
オクタデシルホスホン酸(和光純薬社製)0.27g、水40gをサンプル瓶に入れて密栓し混合後、80℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 9>
Octadecylphosphonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 0.27 g and water 40 g were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 80 ° C.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken and mixed for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例10>
オクタデシルホスホン酸0.36g、水30gおよびエタノール(試薬特級:和光純薬社製)10gをサンプル瓶に入れて密栓し混合後、80℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに50℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 10>
Put 0.36 g of octadecylphosphonic acid, 30 g of water and 10 g of ethanol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) into a sample bottle, tightly plug and mix, then apply ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 80 ° C. went.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken and mixed for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例11>
オクタデシルホスホン酸0.45g、水30gおよびイソプロパノール(IPA−SE:トクヤマ社製)10gをサンプル瓶に入れて密栓し混合後、50℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末JD30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、50℃に加熱した超音波洗浄機(USD−2R:アズワン社製)にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 11>
0.45 g of octadecylphosphonic acid, 30 g of water and 10 g of isopropanol (IPA-SE: manufactured by Tokuyama) were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 50 ° C. It was.
Next, 30 g of AlN powder JD was added to the sample bottle, sealed, mixed by shaking for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner (USD-2R: manufactured by ASONE) heated to 50 ° C. After that, it was vacuum dried in the same manner as in Example 1.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例12>
ブチルホスホン酸0.60g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 12>
0.60 g of butylphosphonic acid and 30 g of water were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken for 1 minute, mixed, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例13>
オクチルホスホン酸0.30g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 13>
0.30 g of octylphosphonic acid and 30 g of water were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken for 1 minute, mixed, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. Vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<実施例14>
オクチルホスホン酸0.45g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、さらに、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Example 14>
0.45 g of octylphosphonic acid and 30 g of water were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken and mixed for 1 minute, and further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C. And vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例1>
表面処理のために用意したAlN粉末Hについて、測定した耐水性及びこのAlN粉末Hを用いて作製した複合材料の粘度と熱伝導率を表1に示す。
<Comparative Example 1>
Table 1 shows the measured water resistance of the AlN powder H prepared for the surface treatment and the viscosity and thermal conductivity of the composite material prepared using the AlN powder H.

<比較例2>
表面処理のために用意したAlN粉末JDについて、その物性及び量を表1に示し、測定した耐水性及びこのAlN粉末JDを用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative example 2>
The physical properties and amounts of the AlN powder JD prepared for the surface treatment are shown in Table 1, and the measured water resistance and the viscosity and thermal conductivity of the composite material produced using the AlN powder JD are shown in Table 2.

<比較例3>
ドデシルホスホン酸0.12g、水30gをサンプル瓶に入れて密栓し混合後、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに、40℃に加熱した超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 3>
0.12 g of dodecylphosphonic acid and 30 g of water were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner heated to 40 ° C.
Next, 30 g of AlN powder H was added to the above sample bottle, sealed, mixed by shaking for 1 minute, and further subjected to ultrasonic irradiation with an ultrasonic cleaner heated to 40 ° C. for 10 minutes, as in Example 1. And vacuum dried.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例4>
ドデシルホスホン酸1.50g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに、超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 4>
1.50 g of dodecylphosphonic acid and 30 g of ethanol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation with an ultrasonic cleaner for 10 minutes.
Next, 30 g of AlN powder H was added to the above sample bottle, sealed, mixed by shaking for 1 minute, further subjected to ultrasonic irradiation with an ultrasonic cleaner for 10 minutes, and then vacuum dried in the same manner as in Example 1. .
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例5>
オクタデシルホスホン酸0.09g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 5>
0.09 g of octadecylphosphonic acid and 30 g of ethanol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation with an ultrasonic cleaner for 10 minutes.
Next, 30 g of AlN powder H was added to the above sample bottle, sealed, mixed by shaking for 1 minute, further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and then dried in the same manner as in Example 1.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例6>
オクタデシルホスホン酸1.20g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
次いで、窒化アルミニウム粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに超音波洗浄機にて10分間超音波照射を行った後、実施例1と同様にして真空乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 6>
Octadecylphosphonic acid 1.20 g and ethanol (special reagent grade: Wako Pure Chemical Industries, Ltd.) 30 g were placed in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner.
Next, 30 g of aluminum nitride powder H was added to the above sample bottle, sealed, shaken and mixed for 1 minute, further subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, and then vacuum dried as in Example 1. .
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例7>
2−エチルヘキシルリン酸として、SC有機化学社製のPhoslexA−8を用意した。
上記の2−エチルヘキシルリン酸0.60g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
次いで、窒化アルミニウム粉末H30gを上記サンプル瓶に加えて密栓後、1分間振って混合し、さらに超音波洗浄機にて10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて80℃にて13時間乾燥した。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 7>
As 2-ethylhexyl phosphoric acid, Phoslex A-8 manufactured by SC Organic Chemical Co., Ltd. was prepared.
0.60 g of the above-mentioned 2-ethylhexyl phosphoric acid and 30 g of ethanol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) were put in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation with an ultrasonic cleaner for 10 minutes.
Next, after adding 30 g of aluminum nitride powder H to the above sample bottle and sealing it, shaking and mixing for 1 minute, and further performing ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, the slurry in the sample bottle is transferred to a petri dish, It dried for 13 hours at 80 degreeC in oven.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例8>
ドデシルリン酸として、東邦化学社製ML−200を用意した。
上記のドデシルリン酸0.45g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、超音波洗浄機にて10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて200℃にて3時間真空乾燥を行った。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 8>
ML-200 manufactured by Toho Chemical Co., Ltd. was prepared as dodecyl phosphate.
0.45 g of the above dodecyl phosphoric acid and 30 g of ethanol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation with an ultrasonic cleaner for 10 minutes.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, then the slurry in the sample bottle was transferred to a petri dish and oven Vacuum drying was performed at 200 ° C. for 3 hours.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

<比較例9>
オクタデシルリン酸として、SC有機化学社製PhoslexA−18を用意した。
上記のオクタデシルリン酸0.60g、エタノール(試薬特級:和光純薬社製)30gをサンプル瓶に入れて密栓し混合後、超音波洗浄機にて10分間超音波照射を行った。
次いで、AlN粉末H30gをサンプル瓶に加えて密栓後、1分間振って混合し、超音波洗浄機にて10分間超音波照射を行った後、サンプル瓶内のスラリーをシャーレに移し、オーブンにて200℃にて3時間真空乾燥を行った。
上記の表面処理に用いたAlN粉末及び表面処理剤の種類、その物性及び量を表1に示し、得られた表面処理AlN粉末の耐水性、リンの溶出量、並びにこの表面処理AlN粉末を用いて作製した複合材料の粘度と熱伝導率を表2に示す。
<Comparative Example 9>
As the octadecyl phosphate, Phoslex A-18 manufactured by SC Organic Chemical Co., Ltd. was prepared.
0.60 g of the above octadecyl phosphate and 30 g of ethanol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a sample bottle, sealed and mixed, and then subjected to ultrasonic irradiation with an ultrasonic cleaner for 10 minutes.
Next, 30 g of AlN powder H was added to the sample bottle, sealed, shaken for 1 minute, mixed, and subjected to ultrasonic irradiation for 10 minutes with an ultrasonic cleaner, then the slurry in the sample bottle was transferred to a petri dish and oven Vacuum drying was performed at 200 ° C. for 3 hours.
Table 1 shows the types, physical properties, and amounts of the AlN powder and surface treatment agent used in the above surface treatment, and the water resistance of the obtained surface treated AlN powder, the elution amount of phosphorus, and the surface treated AlN powder. Table 2 shows the viscosity and thermal conductivity of the composite material prepared in this manner.

尚、表1,2において使用されている略語の意味は、次のとおりである。
Ex:実施例
Com:比較例
Dav:平均粒径
BET:BET比表面積
The meanings of the abbreviations used in Tables 1 and 2 are as follows.
Ex: Examples Com: Comparative example Dav: Average particle diameter BET: BET specific surface area

Claims (4)

アルキル基の炭素数が14〜30の範囲にあるアルキルホスホン酸により表面処理され、炭素を0.4〜2.0質量%の量で含んでいる窒化アルミニウム粉末。   An aluminum nitride powder that is surface-treated with an alkylphosphonic acid having an alkyl group having 14 to 30 carbon atoms and contains carbon in an amount of 0.4 to 2.0% by mass. 前記窒化アルミニウム粉末1gを50gのイオン交換水に浸漬し、密封容器中で120℃、24時間保持した時のリンの溶出量が5ppm以下に抑制されている請求項1に記載の窒化アルミニウム粉末。   2. The aluminum nitride powder according to claim 1, wherein when 1 g of the aluminum nitride powder is immersed in 50 g of ion exchange water and kept in a sealed container at 120 ° C. for 24 hours, the amount of phosphorus eluted is suppressed to 5 ppm or less. 前記窒化アルミニウム粉末2gを100gのイオン交換水に浸漬し、密封容器中で120℃に保持したとき、pHが10に到達する時間で示される耐水時間が5日以上である請求項2に記載の窒化アルミニウム粉末。   The water resistance time indicated by the time for the pH to reach 10 is 5 days or more when 2 g of the aluminum nitride powder is immersed in 100 g of ion exchange water and kept at 120 ° C. in a sealed container. Aluminum nitride powder. 請求項1に記載の窒化アルミニウム粉末と樹脂とを含む放熱用複合材料。   A heat-dissipating composite material comprising the aluminum nitride powder according to claim 1 and a resin.
JP2016507502A 2014-03-13 2015-03-09 Aluminum nitride powder with excellent water resistance Active JP6378315B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014049977 2014-03-13
JP2014049977 2014-03-13
PCT/JP2015/056770 WO2015137263A1 (en) 2014-03-13 2015-03-09 Aluminum nitride powder having exceptional water resistance

Publications (2)

Publication Number Publication Date
JPWO2015137263A1 JPWO2015137263A1 (en) 2017-04-06
JP6378315B2 true JP6378315B2 (en) 2018-08-22

Family

ID=54071708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016507502A Active JP6378315B2 (en) 2014-03-13 2015-03-09 Aluminum nitride powder with excellent water resistance

Country Status (2)

Country Link
JP (1) JP6378315B2 (en)
WO (1) WO2015137263A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516656B2 (en) * 2015-11-13 2019-05-22 株式会社トクヤマ Water resistant aluminum nitride powder
DE102016226262A1 (en) * 2016-12-28 2018-06-28 Robert Bosch Gmbh Electronic module, method
US11427470B2 (en) * 2017-03-07 2022-08-30 Tokuyama Corporation Aluminum nitride powder containing no coarse particles
CN113120872B (en) * 2021-04-19 2022-11-29 哈尔滨科友半导体产业装备与技术研究院有限公司 Pretreatment method of aluminum nitride powder used in PVT method
CN116477585B (en) * 2023-03-10 2024-02-23 四川大学 Method for improving water resistance of aluminum nitride powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164710A (en) * 1987-12-21 1989-06-28 Inax Corp Method for stabilizing aluminum nitride powder
US20140061530A1 (en) * 2011-04-28 2014-03-06 Tokuyama Corporation Method of manufacturing water resistant aluminium nitride

Also Published As

Publication number Publication date
JPWO2015137263A1 (en) 2017-04-06
WO2015137263A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6378315B2 (en) Aluminum nitride powder with excellent water resistance
JP5965899B2 (en) Method for producing water-resistant aluminum nitride
EP3166999B1 (en) Thermal interface material with ion scavenger
JP7419938B2 (en) Silicon-containing oxide coated aluminum nitride particles
US9340661B2 (en) Coated magnesium oxide particles, method for the production thereof, heat-releasing filler, and resin composition
TWI745158B (en) Method for producing silicon-containing oxide-coated aluminum nitride particles and method for producing exothermic resin composition
JP6169466B2 (en) Surface modified particles
KR101784148B1 (en) Thermal conductive epoxy composites, preparation method thereof and thermal conductive adhesives
KR20180127325A (en) Thermally Conductive Silicone Composition and Semiconductor Device
JP6516656B2 (en) Water resistant aluminum nitride powder
WO2019004150A1 (en) Heat-conductive sheet
KR20230118810A (en) Hydrophobic aluminum nitride powder and manufacturing method thereof
TW202210572A (en) Thermally conductive silicone heat dissipation material
KR102400549B1 (en) Thermally conductive composition for thermal pads and thermal pads comprising the same
CN105062358B (en) A kind of high heat conductive insulating aluminium base
JP6988023B1 (en) Thermally conductive silicone heat dissipation material
KR101524728B1 (en) High heat -dissipating ceramic composite, manufacturing method therefor, and uses thereof
JP2013056996A (en) High-heat conductive resin composition
JP2014189791A (en) Electronic device encapsulation resin sheet and method for manufacturing electronic device package
JP2022183821A (en) Method for producing surface-coated hexagonal boron nitride particle and surface-coated hexagonal boron particle
JP2011068757A (en) Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition
Qi et al. Surface treatments of hexagonal boron nitride for thermal conductive epoxy composites
JP2020073625A (en) Method for producing silica-coated aluminum nitride particle dispersion resin composition, and method for producing sheet having cured product thereof, and method for producing power device having sheet
JP2020073621A (en) Method for producing silica-coated aluminum nitride particle dispersion resin composition, and method for producing sheet having cured product thereof, and method for producing power device having sheet
JP6721219B2 (en) Boron nitride filler, resin composition, film, method for producing boron nitride filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180726

R150 Certificate of patent or registration of utility model

Ref document number: 6378315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150