JP6372227B2 - 流路デバイス及びその製造方法 - Google Patents
流路デバイス及びその製造方法 Download PDFInfo
- Publication number
- JP6372227B2 JP6372227B2 JP2014157706A JP2014157706A JP6372227B2 JP 6372227 B2 JP6372227 B2 JP 6372227B2 JP 2014157706 A JP2014157706 A JP 2014157706A JP 2014157706 A JP2014157706 A JP 2014157706A JP 6372227 B2 JP6372227 B2 JP 6372227B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- flow path
- electrode
- flow
- flow channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Micromachines (AREA)
Description
本発明は、基板に微小な流路を備えた流路デバイスに関する。特に、流路に面して電極を配置した流路デバイスに関する。
近年、半導体基板への素子形成技術(半導体プロセス)を流路(液体や気体が流れる経路)の形成に応用したμ−TAS(Micro Total Analysis System)、Lab-on-a-chip、MEMS(Micro Electro Mechanical System)と呼ばれる流路デバイスが研究され、実用化されている。これらの流路デバイスは、数cm角の大きさの基板(チップ)の内部にマイクロメートルオーダーの幅を持つ流路を有し、そのような流路を合流させたり、分岐させたりする構造を有する。
例えば、化学反応を行うためのマイクロ流路デバイスは、マイクロリアクタとも呼ばれ、加熱・冷却速度が速い、物質の拡散長が短いので反応が迅速に進行するといったマイクロ流路特有の利点を備えるデバイスとして様々な分野への活用が期待されている。例えば流路近傍に電極を配置し、該電極を用いて得た信号を利用する圧力計や差圧流量計への応用例が報告されている(特許文献1)。
流路デバイスは、半導体プロセスを応用して作製した構造体の内部に液体、気体等の流体を通すという構成になるため、流路から流体が漏れるとデバイス全体の信頼性を損なう結果となるおそれがある。
そこで、本発明では、流路からの流体の漏れを防ぎ、信頼性の高い流路デバイスを提供することを課題とする。
本発明の一実施形態に係る流路デバイスは、第1基板と、該第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に形成された流路と、を備え、前記第1基板の内部には、前記流路に対向する面を有する電極が設けられ、前記電極の前記流路に対向する面は、前記流路に露出する領域を有し、前記流路に対向する面の周縁は、前記電極と異なる物質で構成される被覆部によって覆われている。
本明細書中において、流路に対向する面の周縁(流路に対向する面を画定する、電極と第1基板との境界)を覆う部位を「被覆部」と呼ぶ。被覆部は、電極が設けられる第1基板の一部を利用して設けることもできるし、第1基板とは別の絶縁層を設けることもできる。いずれにしても、被覆部は、電極と異なる物質で構成される材料(例えば、半導体材料もしくは絶縁材料)で構成されるものである。
本発明の一実施形態に係る流路デバイスの製造方法は、第1基板と、該第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に形成された流路と、を備えた流路デバイスの製造方法であって、前記第1基板の裏面に電極形成用溝部を形成する工程と、
前記電極形成用溝部を導電材料で充填して電極を形成する工程と、前記第1基板の表面をエッチングして、前記電極のうち前記流路に対向する面の一部を露出させる工程と、前記第1基板の表面に対向させて前記第2基板を配置する工程と、を備える。
前記電極形成用溝部を導電材料で充填して電極を形成する工程と、前記第1基板の表面をエッチングして、前記電極のうち前記流路に対向する面の一部を露出させる工程と、前記第1基板の表面に対向させて前記第2基板を配置する工程と、を備える。
本発明の一実施形態に係る流路デバイスの製造方法は、第1基板と、該第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に形成された流路と、を備えた流路デバイスの製造方法であって、前記第1基板の表面に電極形成用溝部を形成する工程と、前記電極形成用溝部を導電材料で充填して電極を形成する工程と、前記第1基板の表面に、少なくとも前記電極の周縁を被覆する絶縁層を形成する工程と、前記第1基板の表面に対向させて前記第2基板を配置する工程と、を備える。
本発明によれば、流路からの流体の漏れを防ぎ、信頼性の高い流路デバイスを実現することができる。
以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。以下に示す実施形態は本発明の実施形態の一例であって、本発明はこれらの実施形態に限定されるものではない。
なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、Bなどを付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。
<本発明に至る経緯>
本発明者は、流路デバイスの開発を進める中で、電気浸透流を利用するという着想に至り、図11に示す構造の流路デバイスを検討した。
本発明者は、流路デバイスの開発を進める中で、電気浸透流を利用するという着想に至り、図11に示す構造の流路デバイスを検討した。
図11(A)は、参考例として示す流路デバイス1の上面図であり、図11(B)は、図11(A)の流路デバイスをA−A’で切断した断面図である。また、図11(C)は、図11(B)の点線Cで囲んだ部分の拡大図である。
図11(A)、図11(B)に示す流路デバイス1において、第1基板2aと第2基板2bとの間には、流路3が形成され、流路3には所定の間隔を置いて電極4が配置されている。なお、流路3は、第2基板2bに予め流路となる部分をエッチングして流路形成用溝部を形成しておき、第1基板2aと第2基板2bとを互いに対向配置させた際に、流路形成用溝部によって生じる間隙を利用して形成される。
さらに第2基板2bには、流路形成用溝部の内側に、複数の開口部5a〜5cが設けられ、これらが流路デバイスの試料投入口もしくは試料取出し口として機能する。流路デバイス1では、開口部5a及び5bからそれぞれ異なる試料(例えば、試料溶液)を投入し、流路3を用いてそれらを混合させ、開口部5cから取り出す構成となっている。
このとき、開口部5a、5bから投入した溶液は、電極4を用いて形成した電気浸透流を利用して流路3を流れて開口部5cに到達する。電気浸透とは、液体と固体が接している所に電圧をかけた場合に、液体が移動する現象であり、これにより生じる液体の流れを電気浸透流という。図11(A)に示す流路デバイス1では、複数の電極4を用いて流路と溶液とが接する部分に電圧を与え、これにより生じる電気浸透流を利用する。
このような構造の流路デバイス1において、本発明者は、電極4と第1基板2aとの間の僅かな隙間を介して試料となる溶液が漏れる可能性を問題視した。すなわち、図11(C)に示すように、電極4と第1基板2aとの間には、電極4の形成時等に隙間6が生じる場合があり、流路3を流れる試料溶液等の流体が、隙間6を介して流路3の外部へと漏れる可能性があると考えたのである。
また、流路内に電極を配置する方法としては、上記のように貫通電極を用いる方法と、貫通電極ではなく、配線を流路外の面方向に引き出す方法がある。後者の場合、流路を形成する上下基板の接合面に配線を通すことになり、流路内に孤立電極を形成することができない。すなわち、流路側壁部には、必ず配線が存在して壁の影響を受ける。たとえば、配線の厚さ分だけその部分が厚くなり、接合がしっかりとできず、液漏れの要因になる場合がある。仮にうまく接合できたとしても、その部分では上下基板がそり、光学顕微鏡等により流路を観察する際、画像がひずむおそれが発生する。また、流路の流れに悪影響も与える不具合が発生する。
本発明は、上記問題に鑑みてなされたものであり、流路からの流体の漏れを防ぎ、信頼性の高い流路デバイスとして、以下に示す流路デバイスを提供する。
(第1実施形態)
<流路デバイスの構造>
図1(A)は、本発明の第1実施形態に係る流路デバイス11を示す上面図であり、図1(B)は、図1(A)の流路デバイス11をA−A’で切断した断面図である。また、図1(C)は、図1(B)の点線Cで囲んだ部分の拡大図であり、図1(D)は、図1(A)の点線Dで囲んだ部分の拡大図である。
<流路デバイスの構造>
図1(A)は、本発明の第1実施形態に係る流路デバイス11を示す上面図であり、図1(B)は、図1(A)の流路デバイス11をA−A’で切断した断面図である。また、図1(C)は、図1(B)の点線Cで囲んだ部分の拡大図であり、図1(D)は、図1(A)の点線Dで囲んだ部分の拡大図である。
本実施形態に係る流路デバイス11は、第1基板12aと、第1基板12aに対向する第2基板12bとの間に流路13が設けられ、第1基板12aの内部には、流路13に対向する面(流路13への露出面を含む面)を有する電極14が所定の間隔を置いて配置された構成となっている。電極14のうち流路13に対向する面の一部は、流路13に対して露出しており、これらの電極14を用いて流路13内に電気浸透流を生じさせる構成となっている。なお、流路デバイス11は、他の基板をさらに備えていてもよいし、第1基板12a、第2基板12b、他の基板の少なくとも一つが積層体により構成されていてもよい。
第1基板12a、第2基板12bとしては、シリコン、窒化ガリウム、炭化シリコン等の半導体材料で構成された半導体基板を用いてもよいし、ガラス基板(青板ガラス、低膨張ガラス、無アルカリガラスなどで構成される基板)や樹脂基板を用いてもよい。本実施形態の流路デバイス11では、第1基板12a、第2基板12bともに、例えば厚さ100μm〜1mmの範囲のガラス基板を用いることとする。
本実施形態に係る流路デバイス11では、2つの流路を途中で合流させることにより、流路内でそれぞれ異なる溶液を混合し、最終的に混合溶液を生成する構造となっている。そのため、流路13には、2つの開口部15a及び開口部15b(投入口)が設けられ、両者からそれぞれ異なる溶液が投入される。そして、流路13内で生成された混合溶液が、開口部15c(取出し口)から取り出される。なお、流路の形態は図示のものに限るものではない。
ここで、本実施形態に係る流路デバイス11と、図11に示した参考例に係る流路デバイス1との間で大きく異なる点は、図1(C)に示すように、電極14と第1基板12aとの間に隙間16が存在したとしても、第1基板12aの一部が電極14と第1基板12aとの間の境界を覆うため、隙間16を介した溶液の漏れが生じない点である。
具体的には、図1(C)に示す断面図における電極14と第1基板12aとの境界、すなわち、図1(D)に示す拡大図において、流路13に対向する電極面の周縁(電極面を画定する、電極14と基板12aとの境界)が、第1基板12aの一部(第1基板12aと同一の物質で構成される部位)で構成される被覆部17で被覆されている。つまり、図1(C)及び図1(D)の拡大図に示されるように、電極14のうち流路13に対向する面の周縁が、被覆部17で被覆されている点に特徴がある。
これにより、電極14と第1基板12aとの境界は、被覆部17で被覆された状態となって流路13を流れる流体に接することがないため、境界に生じた隙間16を介して流体が流路13の外部に漏れるといった問題を防ぐことができる。
<流路デバイスの製造方法>
次に、本実施形態に係る流路デバイス11の製造方法について図2、3を用いて説明する。
次に、本実施形態に係る流路デバイス11の製造方法について図2、3を用いて説明する。
まず、第1基板12aとして、例えば厚さ100μm〜1mmの範囲のガラス基板を準備し、図2(A)に示すように、第1基板12aの裏面に、レーザー加工、反応性イオンエッチング(RIE)等の公知の方法により、電極形成用溝部(トレンチとも呼ばれる)21を形成する。ここで、第1基板12aの裏面とは、後述する第1基板12aの表面とは反対側の面を指し、第1基板12aにおいて実効的に利用される2つの平面のうち流路を形成しない側の面を指す。
電極形成用溝部21の外形(縁の形状)は、任意であり、円形でもよいし、多角形でもよく、サイズは、例えば10μm〜100μmの範囲で適宜選択すればよい。また、電極形成用溝部21の深さは、第1基板12aとして用いるガラス基板の厚さにも依存するが、例えば100μm〜500μmの範囲で適宜選択すればよい。
次に、図2(B)に示すように、電極形成用溝部21を銅、タングステンなどの金属材料のような導電材料で充填して電極14を形成する。電極14の形成方法は、公知の方法を用いることができるが、シード層を利用した電解めっき法、溶融した導電材料を圧力差を利用して吸引する方法、もしくは、導電性ペースト材料を充填する方法等を用いればよい。また、電極14を形成した後、露出した電極面に対してCMP(Chemical Mechanical Polishing)を施してもよい。
次に、図2(C)に示すように、第1基板12aの表面にマスク22を形成する。ここで、第1基板12aの表面とは、第1基板12aにおいて実効的に利用される2つの平面のうち流路13を形成する面(すなわち、第2基板12bに対向する面)を指す。また、マスク22としては、第1基板12aをエッチングする際の選択比を確保できる材料を用いて形成すればよい。
なお、マスク22は、前述した「被覆部17」が後に形成される位置に設けられる。具体的には、図1(D)に示す電極14の周縁(電極14と第1基板12aとの境界)を被覆するように、電極14の流路13に対向する面の周縁に沿って形成されている。
次に、図3(A)に示すように、ガラスで構成される第1基板12aに対し、フッ酸溶液を用いたウェットエッチングを行う。この場合、マスク22としては、例えばフッ酸に対して耐性のあるクロム膜のマスクを用いるとよい。ここでは、ウェットエッチングによりエッチングが等方的に進行するので、マスク22の下方にもエッチングが進行する。
なお、エッチングに際して、第1基板12aの裏面には、フッ酸に対して耐性のある保護層(図示せず)を形成しておいてもよい。保護層は絶縁膜でも導電膜でもよいが、後で除去することを考慮すると、少なくとも第1基板12a及び電極14に対してエッチング選択比を確保できる材料であることが必要である。
図3(A)の状態からそのままエッチングを続けると、図3(B)に示すように、マスク22がリフトオフされ、マスク除去工程を要することなしにマスク22が配置されていた部分に被覆部17として機能する凸部が簡便に形成される。これ以降のエッチングでは、第1基板12aの表面全体がほぼ同じ速度でエッチングされるため、ここで形成された凸部は、最終的に被覆部17として残り続けることとなる。
さらにエッチングを続けると、図3(C)に示すように、電極14の一部が露出し、最終的に、電極14と第1基板12aとの境界を被覆するように被覆部17が形成される。これにより、図1に示した本実施形態に係る流路デバイス11の第1基板12aが完成する。
この後は、最終的に流路13となる部分に形成された流路形成用溝部と、その内側に形成された開口部15a〜15cとを有する第2基板12bを準備し、第1基板12a及び第2基板12bを対向させて貼り合わせれば、図1に示した本実施形態に係る流路デバイス11の第1基板12aが完成する。
このとき、流路13の高さ(流路13を構成する、第1基板12aと第2基板12bとの間の距離)は、第2基板12bに形成された流路形成用溝部の深さで決まり、流路13の用途に応じて、10〜100μmの範囲で設定することができる。
なお、第1実施形態では、第2基板12bとして、第1基板12aと同様にガラス基板を用い、第1基板12aと第2基板12bとの貼り合わせには、樹脂で構成された接着材を用いている。その他、第1基板12a及び第2基板12bのいずれか一方として半導体基板を用いることも可能であり、その場合、第1基板12aと第2基板12bとを公知の陽極接合により貼り合わせればよい。
(第2実施形態)
<流路デバイスの構造>
本発明の第2実施形態に係る流路デバイス41について、図4を用いて説明する。図4(A)は、本実施形態に係る流路デバイス41を示す上面図であり、図4(B)は、図4(A)の流路デバイス41をA−A’で切断した断面図である。また、図4(C)は、図4(B)の点線Cで囲んだ部分の拡大図であり、図4(D)は、図4(A)の点線Dで囲んだ部分の拡大図である。
<流路デバイスの構造>
本発明の第2実施形態に係る流路デバイス41について、図4を用いて説明する。図4(A)は、本実施形態に係る流路デバイス41を示す上面図であり、図4(B)は、図4(A)の流路デバイス41をA−A’で切断した断面図である。また、図4(C)は、図4(B)の点線Cで囲んだ部分の拡大図であり、図4(D)は、図4(A)の点線Dで囲んだ部分の拡大図である。
本実施形態に係る流路デバイス41は、電極14と第1基板12aとの間の境界を被覆する被覆部の形成方法が、第1実施形態に係る流路デバイス11と異なる。その他の点は、第1実施形態に係る流路デバイス11と同じである。
具体的には、本実施形態では、第1基板12aの表面に開口部42を設け、その開口部42により、電極14の流路13に対向する面の一部を露出させる構成となっている。その際、図4(D)に示すように、電極14の露出面の周縁(すなわち、開口部42の周縁)は、電極14の流路13に対向する面の周縁の内側に形成される。これにより、電極14と第1基板12aとの境界は、第1基板12aの一部で構成される被覆部43で被覆される構造となり、境界に生じた隙間16を介して流体が流路13の外部に漏れるといった問題を防ぐことができる。
<流路デバイスの製造方法>
次に、本実施形態に係る流路デバイス41の製造方法について図5を用いて説明する。
次に、本実施形態に係る流路デバイス41の製造方法について図5を用いて説明する。
まず、第1基板12aの裏面側の内部に電極14を形成し、図5(A)の状態を得る。ここまでの工程は、第1実施形態において、図2(A)、図2(B)を用いて説明した工程と同じであるので、ここでの説明は省略する。
次に、図5(B)に示すように、第1基板12aの表面に対してエッチング工程を行う。エッチング工程は、ウェットエッチングでもよいし、ドライエッチングでもよい。また、CMP等を用いて機械的に研削してもよい。この工程は、電極14の上方に、第1基板12aを構成する材料(本実施形態の場合はガラス)を膜厚aで残存させることを目的としている。この膜厚aで残存させた部分が、最終的に本実施形態の流路デバイス41における被覆部43を構成する。
ここで、図5(B)に示す工程で残存させる膜厚aは、後に開口部42を形成する際のエッチング方法とエッチング精度とに応じて決定すればよい。例えば、ウェットエッチングのように、等方性エッチングを前提とするならば、横方向へのエッチング進行も加味して、最終的に所望の位置に被覆部43が形成されるように予め計算しておく必要がある。逆に、反応性イオンエッチングのように、異方性エッチングを前提とするならば、縦方向へのエッチング進行のみを考慮すればよい。
本実施形態では、第1基板12aに形成する電極形成用溝部のサイズ(すなわち、電極14の流路13に対向する面のサイズ)を10μm〜100μmの範囲で設定する際、膜厚aは、1μm≦a≦45μmの範囲とすることが好ましい。下限を1μmとしたのは、図5(B)に示すエッチング工程において、第1基板12aの表面に対して行うエッチングのばらつき(±1μm程度)を考慮したからである。また、上限を45μmとしたのは、電極形成用溝部のサイズを100μmとした場合に、ウェットエッチングを採用した場合に確実に被覆部43を形成することができるように、横方向へのエッチング進行(左右に45μmずつ)を考慮したからである。
次に、図5(C)に示すように、開口部44を有するマスク45を形成する。マスク45は、第1基板12aとのエッチング選択比を確保できる材料であればよく、本実施形態では、クロム膜をパターニングして形成する。このとき、開口部44の位置は、図4(D)を用いて説明した開口部42の位置と同じであり、電極14の流路13に対向する面の周縁の内側に位置するように形成される。また、開口部44のサイズは、例えば1μm〜10μmの範囲で適宜決定すればよい。
次に、マスク45を用いて第1基板12aに対してエッチングを行い、開口部42を形成する。本実施形態では、反応性イオンエッチング(RIE)を用いたドライエッチングによりエッチング工程を行うが、ウェットエッチングを行ってもよい。これにより、電極14と第1基板12aとの境界は、第1基板12aの一部で構成される被覆部43によって被覆される構造となる。
こうして電極14の形成された第1基板12aが完成したら、後は第1実施形態と同じ方法で第2基板12bと貼り合わせ、図4に示した本実施形態に係る流路デバイス41を完成すればよい。第2実施形態に係る流路デバイス41においても、電極14と第1基板12aとの境界は、第1基板12aの一部で構成される被覆部43によって被覆される構造となり、境界に生じた隙間16を介して流体が流路13の外部に漏れるといった問題を防ぐことができる。
(第3実施形態)
<流路デバイスの構造>
本発明の第3実施形態に係る流路デバイス61について、図6を用いて説明する。図6(A)は、本実施形態に係る流路デバイス61を示す上面図であり、図6(B)は、図6(A)の流路デバイス61をA−A’で切断した断面図である。また、図6(C)は、図6(B)の点線Cで囲んだ部分の拡大図であり、図6(D)は、図6(A)の点線Dで囲んだ部分の拡大図である。
<流路デバイスの構造>
本発明の第3実施形態に係る流路デバイス61について、図6を用いて説明する。図6(A)は、本実施形態に係る流路デバイス61を示す上面図であり、図6(B)は、図6(A)の流路デバイス61をA−A’で切断した断面図である。また、図6(C)は、図6(B)の点線Cで囲んだ部分の拡大図であり、図6(D)は、図6(A)の点線Dで囲んだ部分の拡大図である。
本実施形態に係る流路デバイス61は、電極14と第1基板12aとの間の境界を被覆する被覆部の形成方法が、第1実施形態に係る流路デバイス11と異なる。その他の点は、第1実施形態に係る流路デバイス11と同じである。
具体的には、本実施形態では、第1基板12aの表面に、開口部62を有する絶縁層63を設け、この絶縁層63を電極14と第1基板12aとの境界を被覆する被覆部として機能させる構造となっている。
このとき、絶縁層63は、第1基板12aとは異なる材料で構成されていてもよく、酸化シリコン、窒化シリコンといった絶縁膜を用いてもよいし、樹脂膜を用いてもよい。ただし、流路13に接することになるため、流路13に流れる流体との反応性が低い材料を用いることが望ましい。
開口部62は、電極14の流路13に対向する面の一部を露出させるために絶縁層63に設けられた貫通孔であり、図6(D)に示すように、電極14の露出面の周縁(すなわち、開口部62の周縁)は、電極14の流路13に対向する面の周縁の内側に形成される。これにより、電極14と第1基板12aとの境界は、被覆部43として機能する絶縁層63で被覆される構造となり、境界に生じた隙間16を介して流体が流路13の外部に漏れるといった問題を防ぐことができる。
<流路デバイスの製造方法>
次に、本実施形態に係る流路デバイス61の製造方法について図7を用いて説明する。
次に、本実施形態に係る流路デバイス61の製造方法について図7を用いて説明する。
まず、第1基板12aの表面側の内部に電極14を形成し、図7(A)の状態を得る。第1基板12aの内部に電極14を形成する工程は、第1実施形態において、図2(A)、図2(B)を用いて説明した工程と同じであるので、ここでの説明は省略する。ただし、本実施形態では、第1基板12aの表面に電極形成用溝部を形成する点が異なる。
次に、図7(B)に示すように、第1基板12aの表面に絶縁層63を形成する。絶縁層64は酸化シリコン、窒化シリコンといった絶縁膜や樹脂膜であり、その膜厚aは、好的には1μm≦a≦45μmの範囲で適宜設定すればよい。この膜厚aの数値設定については、第2実施形態と同じである。
次に、図7(C)に示すように、図示しないマスク(例えばレジストマスク)を用いて絶縁層63に対してエッチングを行い、開口部62を形成する。こうして、開口部62を有する絶縁層63が形成される。なお、開口部62の位置やサイズ、並びに開口部62の形成方法については、第2実施形態で説明した開口部42の形成と同じであるため、ここでの説明は省略する。図7(C)の工程を経て、電極14と第1基板12aとの境界は、被覆部として機能する絶縁層63で被覆される。
こうして電極14が形成された第1基板12aが完成したら、後は第1実施形態と同じ方法で第2基板12bと貼り合わせ、図6に示した本実施形態に係る流路デバイス61を完成すればよい。第3実施形態に係る流路デバイス61においても、電極14と第1基板12aとの境界は、被覆部として機能する絶縁層63で被覆される構造となり、境界に生じた隙間16を介して流体が流路13の外部に漏れるといった問題を防ぐことができる。
(第4実施形態)
本発明の第4実施形態に係る流路デバイス81について、図8を用いて説明する。図8は、第4実施形態に係る流路デバイス81の流路13に沿って切断した断面図である。
本発明の第4実施形態に係る流路デバイス81について、図8を用いて説明する。図8は、第4実施形態に係る流路デバイス81の流路13に沿って切断した断面図である。
本実施形態に係る流路デバイス81は、基本的な構造は、第2実施形態に係る流路デバイス41と同様であるが、流路13の一部に流路拡張部82を設けた点で第2実施形態に係る流路デバイス41と異なる。その他の点は、第2実施形態に係る流路デバイス41と同じである。
図8において、流路拡張部82は、流路13を流れる流体が流路13から受ける抵抗(いわゆる配管抵抗のように流路13の壁面から受ける抵抗)を低減するために設けられる。具体的には、第2基板12bにおける流路13を形成する流路形成用溝部の内側に、さらに第2基板12bの厚みを減じた領域を形成し、当該領域に対応する流路13の高さを増やすことで抵抗を低減する構造となっている。
流路拡張部82は、第2基板12bの一部をエッチングすることにより形成可能であり、エッチングは、レーザー加工でもよいし、別途マスクを用いたウェットエッチングもしくはドライエッチングでもよい。しかし、抵抗を効果的に低減するためには、第2基板12bの厚みを減じた領域の形状が滑らかな傾斜を持つことが望ましいため、等方エッチングにより形成することが好ましい。等方エッチングを用いて流路拡張部82を形成する場合、基板12bの表面に対して水平方向と垂直方向のエッチング量が同じになるため、隣接する電極14間の距離の半分程度が流路拡張部82における垂直方向のエッチング量(第2基板12bの表面からの深さ)となる。したがって、典型的には、流路拡張部82における流路の高さが、電極14の位置における流路の高さの2〜3倍となるようにエッチング加工を行えば良い。
このように、本実施形態に係る流路デバイス81は、流路13の一部に流路拡張部82を設けたことにより、第2実施形態に係る流路デバイス41が奏する効果に加えて、流路13を流れる流体が流路13から受ける抵抗を低減できるという効果を奏する。
(第5実施形態)
本発明の第5実施形態に係る流路デバイス91について、図9を用いて説明する。図9(A)は、本実施形態に係る流路デバイス91を示す上面図であり、図9(B)は、図9(A)の流路デバイス91をA−A’で切断した断面図である。また、図9(C)は、図9(B)の流路デバイス91をB−B’で切断した断面図である。
本発明の第5実施形態に係る流路デバイス91について、図9を用いて説明する。図9(A)は、本実施形態に係る流路デバイス91を示す上面図であり、図9(B)は、図9(A)の流路デバイス91をA−A’で切断した断面図である。また、図9(C)は、図9(B)の流路デバイス91をB−B’で切断した断面図である。
本実施形態に係る流路デバイス91は、第1基板92aと、第1基板92aに対向する第2基板92bとの間に設けられた絶縁層により流路の高さを確保する点で第2実施形態に係る流路デバイス41と異なる。その他の点は、第2実施形態に係る流路デバイス41と同じである。
図9(A)、図9(B)において、第1基板92aと第2基板92bとの間には、流路93が形成され、流路93内には、一定の間隔を置いて電極94が配置されている。電極94と第1基板92aとの境界は、被覆部として機能する第1絶縁層95によって被覆され、電極94と第1基板92aとの境界を介して流路93内を流れる流体が漏れる現象を防止する構造となっている。
また、本実施形態の流路デバイス91では、第1基板92aと第2基板92bとの間に第2絶縁層96が設けられ、この第2絶縁層96を介して第1基板92aと第2基板92bとが接着されている。その結果、流路93の高さ(電極94の流路93への露出面と第2基板92bとの間の距離)は、第1絶縁層95と第2絶縁層96の合計膜厚で決まることとなる。第1絶縁層95と第2絶縁層96の合計膜厚は、流路デバイスの用途によって異なるが、10〜100μmの範囲となるように設定すればよい。
本実施形態の流路デバイス91の構造を採用した場合、第2基板92bに対しては開口部97a、97bを形成するだけで済み、例えば第1実施形態にて説明したように、流路を形成するための流路形成用溝部をわざわざ形成する必要がない。また、第2絶縁層96を介して第1基板92aと第2基板92bとを接着するため、例えば第2絶縁層96として樹脂を用いれば、別途接着材を設けずに基板同士を接着することが可能である。
(第6実施形態)
本実施形態では、本発明の流路デバイスを半導体装置の冷却用流路として用いた例を示す。具体的には、第1実施形態に係る流路デバイス11の基本構造を、半導体装置に適用した例について図10を用いて説明する。
本実施形態では、本発明の流路デバイスを半導体装置の冷却用流路として用いた例を示す。具体的には、第1実施形態に係る流路デバイス11の基本構造を、半導体装置に適用した例について図10を用いて説明する。
図10(A)は、本実施形態に係る半導体装置101の上面図であり、図10(B)は、図10(A)に示す半導体装置101をA−A’で切断した断面図であり、図10(C)は、図10(A)に示す半導体装置101をB−B’で切断した断面図である。
本実施形態に係る半導体装置101は、第1実施形態に係る流路デバイス11について説明した流路全体が冷却水を循環させる目的で使用され、第1基板102aもしくは第2基板102bに形成された半導体素子の放熱を促進する構造となっている。
図10(A)、図10(B)において、第1基板102aは、ガラス基板であり、第2基板102bは、シリコン基板である。本実施形態では、第1基板102aと第2基板102bとが公知の陽極接合により接着されている。また、第2基板102bの裏面(流路103に対向しない側の面)には、公知の半導体プロセスにより、トランジスタ等の半導体素子で構成される半導体集積回路(図示せず)が形成されている。
なお、本実施形態では、第2基板102bをシリコン基板とし、その裏面に半導体集積回路が形成された例を示したが、第1基板102aをシリコン基板とし、その裏面に半導体集積回路を形成してもよい。
第1基板102aの内部には、流路103に対向する面(流路103への露出面を含む面)を有する電極104が所定の間隔を置いて配置された構成となっている。電極104のうち流路103に対向する面の一部は、流路103に対して露出しており、これらの電極104を用いて流路103内に電気浸透流を生じさせる構成となっている。なお、本実施形態に係る半導体装置101には、第1基板102aと第2基板102bとを貼り合わせた際に流路103の入り口105及び出口106が形成されるように、予め第2基板102bに対してエッチング加工が施されている。
また、本実施形態に係る半導体装置101では、第1基板102aを貫通するように電極104を設けているが、第3実施形態に係る流路デバイス61のように、第1基板102aに電極形成用溝部を設け、その中に埋め込み電極として電極104を形成してもよい。
以上の構造を採用する本実施形態に係る半導体装置101は、第1基板102aもしくは第2基板102bに形成された半導体集積回路に近接して冷却水を循環させるための流路103を確保することができ、信頼性が高く、放熱特性に優れた半導体装置を実現することができる。
なお、本実施形態では、第1実施形態に係る流路デバイス11の基本構造(電極と第1基板との境界を被覆部で覆う構造)を半導体装置に適用した例を示したが、第1実施形態に限らず、第2〜第5実施形態に係る流路デバイスの基本構造を適用してもよい。
11:流路デバイス
12a:第1基板
12b:第2基板
13:流路
14:電極
15a〜15c:開口部
16:隙間
17:被覆部
12a:第1基板
12b:第2基板
13:流路
14:電極
15a〜15c:開口部
16:隙間
17:被覆部
Claims (12)
- 第1基板と、該第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に形成された流路と、を備えた流路デバイスであって、
前記第1基板の内部には、前記流路に対向する面を有する電極が設けられ、
前記電極の前記流路に対向する面は、前記流路に露出する領域を有し、
前記流路に対向する面の周縁は、前記電極と異なる物質で構成される被覆部によって覆われている、流路デバイス。 - 前記被覆部は、前記第1基板の一部である、請求項1に記載の流路デバイス。
- 前記被覆部は、前記第1基板の表面に設けられた絶縁層である、請求項1に記載の流路デバイス。
- 前記電極は、前記第1基板を貫通して設けられている、請求項1〜3のいずれか1項に記載の流路デバイス。
- 前記電極は、複数設けられており、
前記複数設けられた電極のうち、隣接する2つの電極間に電界を形成可能に構成された、請求項1〜4のいずれか1項に記載の流路デバイス。 - 前記第2基板の表面には、流路形成用溝部が設けられ、該流路形成用溝部と前記第1基板の表面とによって前記流路が形成されている、請求項1〜5のいずれか1項に記載の流路デバイス。
- 前記第1基板、前記第2基板、及び、前記第1基板と前記第2基板との間に設けられた絶縁層によって、前記流路が形成されている、請求項1〜5のいずれか1項に記載の流路デバイス。
- 第1基板と、該第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に形成された流路と、を備えた流路デバイスの製造方法であって、
前記第1基板の裏面に電極形成用溝部を形成する工程と、
前記電極形成用溝部を導電材料で充填して電極を形成する工程と、
前記第1基板の表面をエッチングして、前記電極のうち前記流路に対向する面の一部を露出させる工程と、
前記第1基板の表面に対向させて前記第2基板を配置する工程と、
を備える、流路デバイスの製造方法。 - 前記電極のうち前記流路に対向する面の一部を露出させる工程は、前記電極形成用溝部の底面の周縁の内側に、前記電極に達する開口孔を形成する工程を含む、請求項8に記載の流路デバイスの製造方法。
- 第1基板と、該第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に形成された流路と、を備えた流路デバイスの製造方法であって、
前記第1基板の表面に電極形成用溝部を形成する工程と、
前記電極形成用溝部を導電材料で充填して電極を形成する工程と、
前記第1基板の表面に、少なくとも前記電極の周縁を被覆する絶縁層を形成する工程と、
前記第1基板の表面に対向させて前記第2基板を配置する工程と、
を備える、流路デバイスの製造方法。 - 前記第2基板の表面に、流路形成用溝部を形成する工程をさらに含む、請求項8〜10のいずれか1項に記載の流路デバイスの製造方法。
- 膜厚が10〜100μmの絶縁層を介して前記第1基板と前記第2基板とを貼り合わせる工程をさらに含む、請求項8〜10のいずれか1項に記載の流路デバイスの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014157706A JP6372227B2 (ja) | 2014-08-01 | 2014-08-01 | 流路デバイス及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014157706A JP6372227B2 (ja) | 2014-08-01 | 2014-08-01 | 流路デバイス及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016034674A JP2016034674A (ja) | 2016-03-17 |
JP6372227B2 true JP6372227B2 (ja) | 2018-08-15 |
Family
ID=55522899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014157706A Expired - Fee Related JP6372227B2 (ja) | 2014-08-01 | 2014-08-01 | 流路デバイス及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6372227B2 (ja) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996039260A1 (en) * | 1995-06-06 | 1996-12-12 | David Sarnoff Research Center, Inc. | Method of producing micro-electrical conduits |
JP4419639B2 (ja) * | 2004-03-26 | 2010-02-24 | ソニー株式会社 | 静電memsアクチュエータ、マイクロポンプを含む微小流体駆動装置、インクジェットプリンタヘッドを含む微量流体吐出装置及びインクジェットプリンタを含む印刷装置 |
JP4593373B2 (ja) * | 2004-06-07 | 2010-12-08 | ナノフュージョン株式会社 | 電気浸透流ポンプシステム及び電気浸透流ポンプ |
JP4806548B2 (ja) * | 2005-03-10 | 2011-11-02 | 長野計器株式会社 | マイクロ流路の流体制御構造、マイクロ流路の流体制御構造の製造方法、および閉塞部材操作装置 |
FR2905690B1 (fr) * | 2006-09-12 | 2008-10-17 | Saint Gobain | Procede de fabrication d'un dispositif microfluidique. |
CN103890397B (zh) * | 2011-10-25 | 2016-05-04 | 国际商业机器公司 | 具有互连的微流体器件 |
-
2014
- 2014-08-01 JP JP2014157706A patent/JP6372227B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016034674A (ja) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4977198B2 (ja) | 電子マイクロ流体素子のシステム・イン・パッケージプラットフォーム | |
US10675620B2 (en) | Fabrication of microfluidic chips having electrodes level with microchannel walls | |
JP5196304B2 (ja) | エマルジョン形成用マイクロチップおよびその製造方法 | |
US9901926B2 (en) | Microfluidic chip with dielectrophoretic electrodes extending in hydrophilic flow path | |
JP2003175499A (ja) | マイクロ流体デバイス | |
US10500586B2 (en) | Microfluidic device with anti-wetting, venting areas | |
TW200406357A (en) | Single wafer fabrication of integrated micro-fluidic system | |
JP6372227B2 (ja) | 流路デバイス及びその製造方法 | |
TWI530449B (zh) | 複合微機電系統晶片及其製作方法 | |
US20090267167A1 (en) | Dual-face fluid components | |
CN105097574B (zh) | 半导体装置的制造方法以及半导体装置 | |
CN101617387A (zh) | 局部结合的方法和设备 | |
JP2006142242A (ja) | マイクロ液体制御デバイス | |
CN109081302B (zh) | 一种微通道加工方法、微通道 | |
JP6455256B2 (ja) | 試料収容セル | |
EP3358612A1 (en) | Method for selective etching using dry film photoresist | |
JP7242220B2 (ja) | 接合ウェハ及びその製造方法、並びにスルーホール形成方法 | |
JP6575131B2 (ja) | 試料収容セル及び試料収容セルの製造方法 | |
JP2016218023A (ja) | 流路デバイスとその製造方法 | |
CN115497896A (zh) | 一种带微流道封装基板及其制备方法 | |
JP2017177240A (ja) | Memsデバイス、電子機器及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180619 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6372227 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |