JP6369044B2 - Cultivation apparatus and manufacturing method thereof - Google Patents
Cultivation apparatus and manufacturing method thereof Download PDFInfo
- Publication number
- JP6369044B2 JP6369044B2 JP2014029944A JP2014029944A JP6369044B2 JP 6369044 B2 JP6369044 B2 JP 6369044B2 JP 2014029944 A JP2014029944 A JP 2014029944A JP 2014029944 A JP2014029944 A JP 2014029944A JP 6369044 B2 JP6369044 B2 JP 6369044B2
- Authority
- JP
- Japan
- Prior art keywords
- culture apparatus
- csnf
- cellulose
- radiation
- cellulose fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 37
- 229920002678 cellulose Polymers 0.000 claims description 34
- 239000001913 cellulose Substances 0.000 claims description 34
- 239000011247 coating layer Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 28
- 239000012620 biological material Substances 0.000 claims description 26
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 26
- 150000001875 compounds Chemical class 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 19
- 230000005855 radiation Effects 0.000 claims description 18
- 229920003043 Cellulose fiber Polymers 0.000 claims description 17
- 239000012736 aqueous medium Substances 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 238000001179 sorption measurement Methods 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000010894 electron beam technology Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 3
- 239000007888 film coating Substances 0.000 claims 1
- 238000009501 film coating Methods 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000006185 dispersion Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 30
- 230000003647 oxidation Effects 0.000 description 21
- 239000007864 aqueous solution Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000002023 wood Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000835 fiber Substances 0.000 description 13
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 11
- 239000004033 plastic Substances 0.000 description 11
- 229920002201 Oxidized cellulose Polymers 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 229940107304 oxidized cellulose Drugs 0.000 description 10
- -1 polypropylene Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000007800 oxidant agent Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 206010061592 cardiac fibrillation Diseases 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000008199 coating composition Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 230000002600 fibrillogenic effect Effects 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000002121 nanofiber Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000011122 softwood Substances 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920002749 Bacterial cellulose Polymers 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 231100000987 absorbed dose Toxicity 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000005016 bacterial cellulose Substances 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 210000001724 microfibril Anatomy 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ODUCDPQEXGNKDN-UHFFFAOYSA-N nitroxyl Chemical class O=N ODUCDPQEXGNKDN-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical group CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 description 1
- SFXHWRCRQNGVLJ-UHFFFAOYSA-N 4-methoxy-TEMPO Chemical group COC1CC(C)(C)N([O])C(C)(C)C1 SFXHWRCRQNGVLJ-UHFFFAOYSA-N 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical group OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 241001478802 Valonia Species 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 210000003618 cortical neuron Anatomy 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- FDRCDNZGSXJAFP-UHFFFAOYSA-M sodium chloroacetate Chemical compound [Na+].[O-]C(=O)CCl FDRCDNZGSXJAFP-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
本発明は、培養装置、およびその製造方法に関する。 The present invention relates to a culture apparatus and a method for producing the same.
アミノ酸、ペプチド、タンパク質、核酸、および細胞(IPS細胞やES細胞など)といった生体材料およびその懸濁液を保存、秤量、調製、分画するために多種多様なプラスチック容器が用いられている。しかしながら、前述の生体材料をプラスチック容器に接触させてしまうと、生体材料の疎水性部位とプラスチック表面との間に疎水性相互作用が生じ、生体材料が容器に移行あるいは吸着してしまうことがある。これは高感度測定のために試料が微量である場合などには大きな問題となる。さらには生体材料の疎水性部位がプラスチック表面で界面安定化してしまうと、疎水部位の高次構造が変形して生体材料が本来有していていた機能を発現できなくなる恐れがある。 A wide variety of plastic containers are used to store, weigh, prepare, and fractionate biomaterials such as amino acids, peptides, proteins, nucleic acids, and cells (such as IPS cells and ES cells) and suspensions thereof. However, if the aforementioned biomaterial is brought into contact with a plastic container, a hydrophobic interaction may occur between the hydrophobic portion of the biomaterial and the plastic surface, and the biomaterial may migrate or be adsorbed to the container. . This becomes a big problem when the sample is very small for high sensitivity measurement. Furthermore, if the hydrophobic part of the biomaterial is stabilized at the interface on the plastic surface, the higher-order structure of the hydrophobic part may be deformed and the function originally possessed by the biomaterial may not be expressed.
そのため、前述の用途に用いられるプラスチック容器の基材としては疎水性の高いポリスチレン(PS)よりも、比較的疎水性の低いポリプロピレン(PP)が使用されていることが多い。しかしながら、このような生体材料の非特異的な吸着問題を解決するにはPP基材でも疎水性が十分低いとはいえないため、PP系の容器内表面さらにポリビニルアルコール(PVA)といった親水性ポリマーや界面活性剤などをコーティングすることで、生体材料の吸着を低減させるといった方法が開示されている。(例えば特許文献1、特許文献2)しかしながら、これらの方法では、コーディング層中の親水性化合物が生体材料を含む培地に含まれる溶媒中に溶出することにより試料が汚染される恐れがあった。また、PVAなどの水溶性ポリマーは、化石資源由来の材料をもとに製造されており、環境への負荷が避けられないという問題もあった。 For this reason, polypropylene (PP) having relatively low hydrophobicity is often used as the base material of the plastic container used for the above-described applications, rather than polystyrene (PS) having high hydrophobicity. However, since the hydrophobicity is not sufficiently low even with a PP base material to solve such a non-specific adsorption problem of the biomaterial, a hydrophilic polymer such as a polyvinyl alcohol (PVA) is further obtained. And a method of reducing the adsorption of biomaterials by coating with a surfactant or the like. (For example, Patent Document 1 and Patent Document 2) However, in these methods, the sample may be contaminated by the elution of the hydrophilic compound in the coding layer into the solvent contained in the medium containing the biomaterial. In addition, water-soluble polymers such as PVA are manufactured based on materials derived from fossil resources, and there is also a problem that an environmental load cannot be avoided.
一方、近年、化石資源の枯渇問題の解決を目指して、持続的に利用可能な環境調和型材料であるバイオマスを用いた機能性材料の開発が盛んに行われている。その中でも木材の主成分であるセルロースは、地球上に最も大量に蓄積された天然高分子材料であることから、資源循環型社会への移行に向けたキーマテリアルとして期待が寄せられている。木材中では、数十本以上のセルロース分子が束になって高結晶性でナノメートルオーダーの繊維径をもつ微細繊維(ミクロフィブリル)を形成しており、さらに多数の微細繊維が互いに水素結合してセルロース繊維を形成し、植物の支持体となっている。このように安定な構造を有することから、木材に含まれる天然のセルロース繊維は、特殊な溶媒以外には不溶であり、成形性にも乏しく、機能性材料としては扱いにくい面があった。そこで、木材中のセルロース繊維を、繊維径がナノメートルオーダーになるまで微細化(ナノファイバー化)して利用しようとする試みが活発に行われている。 On the other hand, in recent years, with the aim of solving the problem of fossil resource depletion, development of functional materials using biomass, which is an environmentally friendly material that can be used continuously, has been actively conducted. Among them, cellulose, which is the main component of wood, is a natural polymer material accumulated in large quantities on the earth, and is expected as a key material for shifting to a resource recycling society. In wood, dozens or more of cellulose molecules are bundled to form fine fibers (microfibrils) having a high crystallinity and a nanometer order fiber diameter, and many fine fibers are hydrogen-bonded to each other. Cellulosic fibers are formed to become a plant support. Since it has such a stable structure, natural cellulose fibers contained in wood are insoluble except for special solvents, have poor moldability, and are difficult to handle as functional materials. Therefore, attempts have been actively made to use cellulose fibers in wood by making them fine (nanofibers) until the fiber diameter reaches the nanometer order.
木材中のセルロース繊維をナノファイバー化する手法の1つとして、セルロース繊維を、比較的安定なN−オキシル化合物である2,2,6,6−テトラメチルピペリジニル−1−オキシラジカル(TEMPO)を触媒として用いて酸化(TEMPO酸化)する手法が報告されている(例えば特許文献3)。TEMPO酸化反応は、水系、常温、常圧で進行する環境調和型の化学改質が可能で、セルロースI型結晶構造を有する木材パルプなどに適用した場合、結晶構造内部には反応が進行せず、結晶表面のセルロース分子鎖が持つ1級水酸基(−CH2OH)のみを選択的に酸化しカルボキシ基へと変換することができる。結晶表面に導入されたカルボキシ基間には静電的な反発力が働くため、TEMPO酸化後の木材パルプを水中に分散させた状態で軽微な機械処理を施すと、セルロース繊維が微細繊維単位まで微細化されたセルロースシングルナノファイバー(以下CSNFと称する)の水分散液を得ることができる。このようにして得られるCSNFは、短軸径が3nm前後と微細で、長軸径500nm〜数μmに及ぶ高アスペクト比を有している。このCSNFの水分散液を基材に塗布乾燥することによってCSNFが積層した膜(CSNF積層膜)を形成できる。該CSNF積層膜は透明性が高く、例えば透明基材上にCSNF積層膜を設けて積層体とした場合でも透明性を維持することができる。また、該CSNF積層膜は、高結晶性の剛直なCSNFが緻密に集積した構造で、その表面には親水性のカルボキシル基が高密度に配列しているため、極めて高い親水性(撥油性)を示すことが知られている。 As one of the techniques for converting cellulose fibers in wood into nanofibers, cellulose fibers are converted to 2,2,6,6-tetramethylpiperidinyl-1-oxy radical (TEMPO), which is a relatively stable N-oxyl compound. ) Has been reported as a catalyst (TEMPO oxidation) (for example, Patent Document 3). The TEMPO oxidation reaction can be chemically modified in an environmentally friendly manner that proceeds in water, normal temperature, and normal pressure. When applied to wood pulp having a cellulose I-type crystal structure, the reaction does not proceed inside the crystal structure. Only the primary hydroxyl group (—CH 2 OH) of the cellulose molecular chain on the crystal surface can be selectively oxidized and converted to a carboxy group. Since electrostatic repulsion works between the carboxy groups introduced on the crystal surface, when a slight mechanical treatment is performed with the wood pulp after TEMPO oxidation dispersed in water, the cellulose fibers can reach the fine fiber unit. An aqueous dispersion of refined cellulose single nanofibers (hereinafter referred to as CSNF) can be obtained. The CSNF thus obtained has a short axis diameter as small as about 3 nm and a high aspect ratio ranging from a major axis diameter of 500 nm to several μm. A CSNF laminated film (CSNF laminated film) can be formed by applying and drying this CSNF aqueous dispersion on a substrate. The CSNF laminated film has high transparency. For example, even when a CSNF laminated film is provided on a transparent substrate to form a laminated body, the transparency can be maintained. Further, the CSNF laminated film has a structure in which highly crystalline rigid CSNF is densely accumulated, and hydrophilic carboxyl groups are densely arranged on the surface thereof, so that it has extremely high hydrophilicity (oil repellency). It is known to show.
前述のように、PVAなどの水溶性ポリマーを用いて表面親水化処理を施された生体材料保存容器は試料汚染や環境への負荷といった様々な問題を有しているのが現状である。 As described above, the biomaterial storage container that has been subjected to a surface hydrophilization treatment using a water-soluble polymer such as PVA has various problems such as sample contamination and environmental load.
従って、本発明の課題は、生体材料の非吸着性に優れ、天然高分子由来の材料からなる被覆層によりコーティングされた培養装置を提供することである。 Accordingly, an object of the present invention is to provide a culture device that is excellent in non-adsorbability of biomaterials and is coated with a coating layer made of a material derived from a natural polymer.
上記課題を解決する本発明は以下の態様を有する。
本発明は、基材と、少なくとも放射線照射で架橋された微細化セルロース繊維を含む被覆層と、を含み、前記基材の少なくとも一部が、前記被覆層により被覆されていることを特徴とする。
The present invention for solving the above problems has the following aspects.
The present invention includes a base material and a coating layer containing finely divided cellulose fibers cross-linked by radiation irradiation, and at least a part of the base material is covered with the coating layer. .
本発明によれば、生体材料の非吸着性に優れ、試料汚染の恐れが少ない、環境配慮型の新規生体材料保存用プラスチック容器およびその製造方法を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the environmentally friendly new plastic container for preservation | save of biomaterial, and its manufacturing method which is excellent in the non-adsorption property of a biomaterial, and there is little fear of sample contamination.
本発明は、上記事情に鑑みてなされたものであり、PPを初めとした各種基材あるいは容器の表面にCSNFを含有する層を設けたことを特徴とする培養装置、例えば生体材料保存容器、であって、CSNFの高い親水性や撥油性によって、生体材料の非吸着性に優れ、試料汚染の恐れが少ない、培養装置としての環境配慮型の新規生体材料保存用容器、およびその製造方法を提供する。 The present invention has been made in view of the above circumstances, and is a culture apparatus characterized by providing a layer containing CSNF on the surface of various substrates or containers such as PP, for example, a biomaterial storage container, An environment-friendly new biomaterial storage container as a culture apparatus, which is excellent in non-adsorption of biomaterials due to the high hydrophilicity and oil repellency of CSNF, and has a low risk of sample contamination, and a method for producing the same provide.
≪微細化セルロースについて≫
本発明の培養装置は各種プラスチック基材あるいは容器の表面にミクロフィブリル単位まで微細化されたセルロース繊維、好ましくはCSNFを含有する層を設けたことを最大の特徴とする。
≪About refined cellulose≫
The culturing apparatus of the present invention is characterized by providing a layer containing cellulose fibers, preferably CSNF, refined to the microfibril unit on the surface of various plastic substrates or containers.
本発明において、CSNFの数平均短軸径は、1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましく、1nm以上20nm以下が特に好ましい。数平均短軸径が1nm以上であると、高結晶性の微細化セルロース繊維構造をとることが出来、形成されるコーティング被膜の膜強度が良好である。数平均短軸径が100nm以下であると、高い透明性を有するコーティング被膜を形成できるため、例えば内部を観察しながら行う作業などに用いる容器として好適に使用可能である。 In the present invention, the number average minor axis diameter of CSNF is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm, and particularly preferably 1 nm to 20 nm. When the number average minor axis diameter is 1 nm or more, a highly crystalline finely divided cellulose fiber structure can be obtained, and the film strength of the formed coating film is good. When the number average minor axis diameter is 100 nm or less, a coating film having high transparency can be formed. Therefore, it can be suitably used as a container used for, for example, an operation performed while observing the inside.
前記CSNFの数平均長軸径(平均繊維長)は、100nm以上であり且つ前記数平均短軸径の10倍以上であることが好ましい。これにより、コーティング被膜を形成する際に、繊維同士が充分に絡み合い、充分な膜凝集力が得られる。
CSNFの数平均長軸径は、200nm以上であり且つ前記数平均短軸径の100倍以上であることがより好ましい。
CSNFの数平均長軸径の上限は、膜凝集力の点では特に限定されないが、製造し易さ等の点では、10μm以下が好ましく、5μm以下がより好ましい。
The number average major axis diameter (average fiber length) of the CSNF is preferably 100 nm or more and 10 times or more the number average minor axis diameter. Thereby, when forming a coating film, fibers are sufficiently entangled with each other, and a sufficient film cohesive force is obtained.
The number average major axis diameter of CSNF is more preferably 200 nm or more and 100 times or more of the number average minor axis diameter.
The upper limit of the number average major axis diameter of CSNF is not particularly limited in terms of membrane cohesion, but is preferably 10 μm or less and more preferably 5 μm or less in terms of ease of production.
前記CSNFの数平均短軸径は、透過型電子顕微鏡観察および原子間力顕微鏡観察により100本の繊維の短軸径(最小径)を測定し、その平均値として求められる。CSNFの数平均長軸径は、透過型電子顕微鏡観察および原子間力顕微鏡観察により100本の繊維の長軸径(最大径)を測定し、その平均値として求められる。 The number average minor axis diameter of CSNF is obtained as an average value obtained by measuring the minor axis diameter (minimum diameter) of 100 fibers by observation with a transmission electron microscope and observation with an atomic force microscope. The number average major axis diameter of CSNF is obtained as an average value obtained by measuring the major axis diameter (maximum diameter) of 100 fibers by observation with a transmission electron microscope and observation with an atomic force microscope.
前記CSNFの表面には、カルボキシ基が導入されていることが好ましい。カルボキシ基を導入する方法としては特に限定されない。例えば高濃度アルカリ水溶液中でセルロースをモノクロロ酢酸又はモノクロロ酢酸ナトリウムと反応させることによりカルボキシメチル化を行っても良い。また、オートクレーブ中でガス化したマレイン酸やフタル酸等の無水カルボン酸系化合物とセルロースを直接反応させてカルボキシ基を導入しても良い。さらには、水系の比較的温和な条件で、可能な限り構造を保ちながら、アルコール性一級炭素の酸化に対する選択性が高い、TEMPOをはじめとするN−オキシル化合物の存在下、共酸化剤を用いた手法を用いてもよい。カルボキシ基導入部位の選択性および環境負荷の問題から、N−オキシル化合物を用いた酸化反応が好ましい。該酸化反応により、繊維表面に高密度にカルボキシ基が導入され、例えば基材表面に塗布した際に極めて親水性の高い被覆層を形成できる。CSNF中のカルボキシ基の含有量は、次亜塩素酸を用いた電導度滴定法により測定できる。
TEMPOをはじめとするN−オキシル化合物を用いた酸化反応では、結晶表面のセルロース分子鎖が持つグルコピラノース単位の第6位の−CH2OHが高い選択性で酸化され、アルデヒド基を経てカルボキシ基に変換される。
このように結晶表面に導入されたカルボキシ基を有するCSNF間には静電的な反発力が働くため、水性媒体中で再凝集しにくく、分散安定性が良好である。
N−オキシル化合物を用いた酸化反応については後で詳しく説明する。
It is preferable that a carboxy group is introduced on the surface of the CSNF. The method for introducing a carboxy group is not particularly limited. For example, carboxymethylation may be carried out by reacting cellulose with monochloroacetic acid or sodium monochloroacetate in a high concentration alkaline aqueous solution. Further, a carboxy group may be introduced by directly reacting a carboxylic anhydride compound such as maleic acid or phthalic acid gasified in an autoclave with cellulose. Furthermore, a co-oxidant is used in the presence of N-oxyl compounds such as TEMPO, which has high selectivity to the oxidation of alcoholic primary carbon while maintaining the structure as much as possible under relatively mild conditions in water. The method used may be used. Oxidation reaction using an N-oxyl compound is preferable from the viewpoint of selectivity of a carboxy group introduction site and environmental load. By the oxidation reaction, carboxy groups are introduced at a high density on the fiber surface, and for example, a coating layer having extremely high hydrophilicity can be formed when applied to the substrate surface. The content of the carboxy group in CSNF can be measured by a conductivity titration method using hypochlorous acid.
In an oxidation reaction using an N-oxyl compound such as TEMPO, -CH 2 OH at the 6th position of the glucopyranose unit of the cellulose molecular chain on the crystal surface is oxidized with high selectivity, and a carboxy group via an aldehyde group. Is converted to
Since electrostatic repulsion acts between CSNFs having a carboxy group introduced on the crystal surface in this way, reaggregation is difficult in an aqueous medium, and dispersion stability is good.
The oxidation reaction using the N-oxyl compound will be described in detail later.
前記CSNF中の前記カルボキシ基の含有量は、前記CSNF1g当たり0.1mmol以上5.0mmol以下の範囲内であることが好ましく、0.5mmol以上2.0mmol以下であることがより好ましい。カルボキシ基量が0.1mmol/g以上であると、分散安定性が良好である。5.0mmol/g以下であると、CSNFの結晶構造が充分に保持され、成形性および膜凝集力が良好である。 The content of the carboxy group in the CSNF is preferably in the range of 0.1 mmol or more and 5.0 mmol or less, and more preferably 0.5 mmol or more and 2.0 mmol or less per 1 g of the CSNF. When the carboxy group amount is 0.1 mmol / g or more, the dispersion stability is good. When it is 5.0 mmol / g or less, the crystal structure of CSNF is sufficiently retained, and the moldability and film cohesion are good.
本発明においてCSNFは、通常、水性媒体をさらに含み、該水性媒体中に前記CSNFが分散した水性分散液の状態で用いられる。
水性媒体としては、水、または水と有機溶剤との混合液が好ましい。該有機溶剤としては、水に溶解あるいは均一に混合し、かつ変性CSNFの分散性を損なわないものであれば特に限定されず、例えば、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール、テトラヒドロフラン、ジオキサン等の環状エーテル、アセトン、メチルエチルケトン等のケトン類、等が挙げられる。これらの中でもアルコールが好ましい。水性媒体としては、水が特に好ましい。
水性分散液中のCSNFの含有量は特に限定されないが、通常、水性分散液の総質量に対し、0.01質量%以上5質量%以下が好ましい。0.01質量%未満であると、成形体形成用組成物としては溶媒過多となってしまい、均一な被覆層をある程度の厚みまで厚くするのに手間がかかる。5質量%を超えると、CSNF同士の絡み合いで粘度が上昇し、均一な被覆層を形成するのが難しくなる。
In the present invention, CSNF usually contains an aqueous medium, and is used in the state of an aqueous dispersion in which the CSNF is dispersed in the aqueous medium.
As the aqueous medium, water or a mixed solution of water and an organic solvent is preferable. The organic solvent is not particularly limited as long as it is dissolved in water or mixed uniformly and does not impair the dispersibility of the modified CSNF. For example, alcohol such as methanol, ethanol, propanol, isopropanol, tetrahydrofuran, dioxane, etc. And cyclic ethers, ketones such as acetone and methyl ethyl ketone, and the like. Among these, alcohol is preferable. As the aqueous medium, water is particularly preferable.
The content of CSNF in the aqueous dispersion is not particularly limited, but is usually preferably 0.01% by mass or more and 5% by mass or less with respect to the total mass of the aqueous dispersion. If it is less than 0.01% by mass, the composition for forming a molded body becomes excessive in solvent, and it takes time to thicken the uniform coating layer to a certain thickness. If it exceeds 5% by mass, the viscosity increases due to the entanglement between CSNFs, and it becomes difficult to form a uniform coating layer.
本発明においてプラスチック基材表面に設けられるCSNFを含む被覆層は、必要に応じて、本発明の効果を損なわない範囲で、前記CSNF以外の他の成分をさらに含有してもよい。
該他の成分としては、例えばCSNFの水性分散液の調製時にpH調整に用いられた成分を含有してもよい。CSNFの水性分散液の調製方法は後で詳しく説明する。
また、該他の成分として、各種添加剤を含有してもよい。添加剤としては、当該被膜層形成材料の用途等に応じて、公知の添加剤のなかから適宜選択できる。具体的には、アルコキシシラン等の有機金属化合物またはその加水分解物、無機層状化合物、無機針状鉱物、レベリング剤、消泡剤、水溶性高分子、合成高分子、無機系粒子、有機系粒子、潤滑剤、帯電防止剤、紫外線吸収剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、架橋剤等が挙げられる。
In the present invention, the coating layer containing CSNF provided on the surface of the plastic substrate may further contain other components other than the CSNF as needed, as long as the effects of the present invention are not impaired.
As this other component, you may contain the component used for pH adjustment at the time of preparation of the aqueous dispersion of CSNF, for example. A method for preparing an aqueous dispersion of CSNF will be described in detail later.
Moreover, you may contain various additives as this other component. As an additive, it can select suitably from well-known additives according to the use etc. of the said film layer forming material. Specifically, organometallic compounds such as alkoxysilanes or hydrolysates thereof, inorganic layered compounds, inorganic needle minerals, leveling agents, antifoaming agents, water-soluble polymers, synthetic polymers, inorganic particles, organic particles , Lubricants, antistatic agents, ultraviolet absorbers, dyes, pigments, stabilizers, magnetic powders, orientation promoters, plasticizers, crosslinking agents and the like.
CSNFの分散液は、公知の製造方法を利用して製造したものを用いることができる。
以下、木材系天然セルロースから、N−オキシル化合物を用いた酸化反応により導入されたカルボキシ基を有するCSNFの分散液を調製する方法の一例を説明する。
この例の調製方法は、木材系天然セルロースを、N−オキシル化合物を用いて酸化して酸化セルロースを得る工程(酸化工程)と、該酸化セルロースを水性媒体中で微細化してCSNF分散液を調製する工程(微細化工程)とを含む。
As the dispersion of CSNF, a dispersion produced using a known production method can be used.
Hereinafter, an example of a method for preparing a dispersion of CSNF having a carboxy group introduced from wood-based natural cellulose by an oxidation reaction using an N-oxyl compound will be described.
In this example, a wood-based natural cellulose is oxidized with an N-oxyl compound to obtain oxidized cellulose (oxidation process), and the oxidized cellulose is refined in an aqueous medium to prepare a CSNF dispersion. Including a process (miniaturization process).
(酸化工程)
木材系天然セルロースとしては、特に限定されず、針葉樹パルプや広葉樹パルプ、古紙パルプ、など、一般的にセルロースナノファイバーの製造に用いられるものを用いることができる。精製および微細化のしやすさから、針葉樹パルプが好ましい。
N−オキシル化合物としては、TEMPO(2,2,6,6−テトラメチルピペリジニル−1−オキシラジカル)、2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、4−メトキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−エトキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル、4−アセトアミド−2,2,6,6−テトラメチルピペリジン−N−オキシル、等が挙げられる。その中でも、TEMPOが好ましい。
N−オキシル化合物の使用量は、触媒としての量でよく、特に限定されない。通常、酸化処理する木材系天然セルロースの固形分に対して0.01〜5.0質量%程度である。
(Oxidation process)
The wood-based natural cellulose is not particularly limited, and those generally used for producing cellulose nanofibers such as softwood pulp, hardwood pulp, and waste paper pulp can be used. Softwood pulp is preferred because it is easily refined and refined.
Examples of N-oxyl compounds include TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy radical), 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, 4 -Methoxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-ethoxy-2,2,6,6-tetramethylpiperidine-N-oxyl, 4-acetamido-2,2,6,6 -Tetramethylpiperidine-N-oxyl, etc. Among these, TEMPO is preferable.
The amount of the N-oxyl compound used is not particularly limited, and may be an amount as a catalyst. Usually, it is about 0.01-5.0 mass% with respect to solid content of the wood type natural cellulose to oxidize.
N−オキシル化合物を用いた酸化方法としては、木材系天然セルロースを水中に分散させ、N−オキシル化合物の共存下で酸化処理する方法が挙げられる。
このとき、N−オキシル化合物とともに、共酸化剤を併用することが好ましい。この場合、反応系内において、N−オキシル化合物が順次共酸化剤により酸化されてオキソアンモニウム塩が生成し、該オキソアンモニウム塩によりセルロースが酸化される。かかる酸化処理によれば、温和な条件でも酸化反応が円滑に進行し、カルボキシ基の導入効率が向上する。酸化処理を温和な条件で行うと、セルロースの結晶構造を維持しやすい。
前記共酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸や過ハロゲン酸、またはそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、酸化反応を推進することが可能であれば、いずれの酸化剤も用いることができる。入手の容易さや反応性から、次亜塩素酸ナトリウムが好ましい。
前記共酸化剤の使用量は、酸化反応を促進することができる量でよく、特に限定されない。通常、酸化処理する木材系天然セルロースの固形分に対して1〜200質量%程度である。
Examples of the oxidation method using an N-oxyl compound include a method in which wood-based natural cellulose is dispersed in water and oxidized in the presence of the N-oxyl compound.
At this time, it is preferable to use a co-oxidant together with the N-oxyl compound. In this case, in the reaction system, the N-oxyl compound is sequentially oxidized by a co-oxidant to produce an oxoammonium salt, and cellulose is oxidized by the oxoammonium salt. According to such oxidation treatment, the oxidation reaction proceeds smoothly even under mild conditions, and the introduction efficiency of the carboxy group is improved. When the oxidation treatment is performed under mild conditions, it is easy to maintain the crystal structure of cellulose.
As the co-oxidant, it is possible to promote an oxidation reaction such as halogen, hypohalous acid, halous acid or perhalogen acid, or a salt thereof, halogen oxide, nitrogen oxide, or peroxide. Any oxidizing agent can be used. Sodium hypochlorite is preferred because of its availability and reactivity.
The amount of the co-oxidant used is not particularly limited, and may be an amount that can promote the oxidation reaction. Usually, it is about 1-200 mass% with respect to solid content of the wood type natural cellulose to oxidize.
前記N−オキシル化合物および共酸化剤とともに、臭化物およびヨウ化物からなる群から選ばれる少なくとも1種の化合物をさらに併用してもよい。これにより、酸化反応を円滑に進行させることができ、カルボキシル基の導入効率を改善することができる。
該化合物としては、臭化ナトリウムまたは臭化リチウムが好ましく、コストや安定性から、臭化ナトリウムがより好ましい。
該化合物の使用量は、酸化反応を促進することができる量でよく、特に限定されない。通常、酸化処理する木材系天然セルロースの固形分に対して1〜50質量%程度である。
Along with the N-oxyl compound and the co-oxidant, at least one compound selected from the group consisting of bromide and iodide may be further used in combination. Thereby, an oxidation reaction can be advanced smoothly and the introduction efficiency of a carboxyl group can be improved.
As the compound, sodium bromide or lithium bromide is preferable, and sodium bromide is more preferable from the viewpoint of cost and stability.
The amount of the compound used is not particularly limited, and may be an amount that can promote the oxidation reaction. Usually, it is about 1-50 mass% with respect to solid content of the wood type natural cellulose to oxidize.
前記酸化反応の反応温度は、4〜50℃が好ましく、10〜40℃がより好ましい。
4℃以下であると、試薬の反応性が低下し反応時間が長くなってしまう。50℃以上であると副反応が促進して試料が低分子化し、被覆層を形成した際の層内の膜凝集力を損なってしまう。
前記酸化処理の反応時間は、反応温度、所望のカルボキシ基量等を考慮して適宜設定でき、特に限定されないが、通常、10分〜5時間程度である。
4-50 degreeC is preferable and, as for the reaction temperature of the said oxidation reaction, 10-40 degreeC is more preferable.
If it is 4 ° C. or lower, the reactivity of the reagent is lowered and the reaction time is prolonged. When the temperature is 50 ° C. or higher, the side reaction is promoted to lower the molecular weight of the sample, and the film cohesion force in the layer when the coating layer is formed is impaired.
The reaction time of the oxidation treatment can be appropriately set in consideration of the reaction temperature, the desired amount of carboxy group, and the like, and is not particularly limited, but is usually about 10 minutes to 5 hours.
前記酸化反応時の反応系のpHは、9〜11が好ましい。該pHは、20℃におけるpHである。pHが9以上であると反応を効率よく進めることができる。pHが11を超えると副反応が進行し、試料の分解が促進されてしまうおそれがある。
前記酸化処理においては、酸化が進行するにつれて、カルボキシ基が生成することにより系内のpHが低下してしまう。酸化処理中、反応系のpHを9〜11に保つことが好ましい。反応系のpHを9〜11に保つ方法としては、pHの低下に応じてアルカリ水溶液を添加する方法が挙げられる。アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、アンモニア水溶液、水酸化テトラメチルアンモニウム水溶液、水酸化テトラエチルアンモニウム水溶液、水酸化テトラブチルアンモニウム水溶液、水酸化ベンジルトリメチルアンモニウム水溶液などの有機アルカリなどが挙げられる。コストなどの面から水酸化ナトリウム水溶液が好ましい。
The pH of the reaction system during the oxidation reaction is preferably 9-11. The pH is a pH at 20 ° C. When the pH is 9 or more, the reaction can be efficiently carried out. If the pH exceeds 11, side reactions may progress and the decomposition of the sample may be accelerated.
In the oxidation treatment, as the oxidation proceeds, the pH in the system decreases due to the formation of carboxy groups. It is preferable to maintain the pH of the reaction system at 9 to 11 during the oxidation treatment. Examples of a method for maintaining the pH of the reaction system at 9 to 11 include a method of adding an alkaline aqueous solution in accordance with a decrease in pH. Examples of alkaline aqueous solutions include sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, ammonia aqueous solution, tetramethylammonium hydroxide aqueous solution, tetraethylammonium hydroxide aqueous solution, tetrabutylammonium hydroxide aqueous solution, and benzyltrimethylammonium hydroxide aqueous solution. And organic alkalis. A sodium hydroxide aqueous solution is preferable from the viewpoint of cost.
前記N−オキシル化合物による酸化反応は、反応系にアルコールを添加することにより停止させることができる。このとき、反応系のpHは前記の範囲内に保つことが好ましい。
添加するアルコールとしては、反応をすばやく終了させるためメタノール、エタノール、プロパノールなどの低分子量のアルコールが好ましく、反応により生成される副産物の安全性などから、エタノールが特に好ましい。
The oxidation reaction with the N-oxyl compound can be stopped by adding alcohol to the reaction system. At this time, the pH of the reaction system is preferably maintained within the above range.
The alcohol to be added is preferably a low molecular weight alcohol such as methanol, ethanol or propanol in order to quickly terminate the reaction, and ethanol is particularly preferred from the viewpoint of safety of by-products generated by the reaction.
酸化処理後の反応液は、そのまま微細化工程に供してもよいが、N−オキシル化合物等の触媒、不純物等を除去するために、反応液に含まれる酸化セルロースを回収し、洗浄液で洗浄することが好ましい。
酸化セルロースの回収は、ガラスフィルターや20μm孔径のナイロンメッシュを用いたろ過等の公知の方法により実施できる。
酸化セルロースの洗浄に用いる洗浄液としては蒸留水が好ましい。
The reaction solution after the oxidation treatment may be directly subjected to a refinement process, but in order to remove a catalyst such as an N-oxyl compound, impurities, etc., the oxidized cellulose contained in the reaction solution is recovered and washed with a washing solution. It is preferable.
Oxidized cellulose can be collected by a known method such as filtration using a glass filter or a nylon mesh having a 20 μm pore size.
Distilled water is preferable as the cleaning liquid used for cleaning the oxidized cellulose.
(微細化工程)
酸化セルロースを微細化する方法としてはまず、酸化セルロースに水性媒体を加えて懸濁させる。
水性媒体としては、前記と同様のものが挙げられ、水が特に好ましい。
必要に応じて、酸化セルロースや生成するCSNFの分散性を上げるために、懸濁液のpH調整を行ってもよい。pH調整に用いられるアルカリ水溶液としては、前記酸化工程の説明で挙げたアルカリ水溶液と同様のものが挙げられる。
(Miniaturization process)
In order to refine the oxidized cellulose, first, an aqueous medium is added to the oxidized cellulose and suspended.
Examples of the aqueous medium include those described above, and water is particularly preferable.
If necessary, the pH of the suspension may be adjusted in order to increase the dispersibility of the oxidized cellulose and the produced CSNF. Examples of the alkaline aqueous solution used for pH adjustment include the same alkaline aqueous solution as mentioned in the description of the oxidation step.
続いて該懸濁液に物理的解繊処理を施して、酸化セルロースを微細化する。
物理的解繊処理としては、高圧ホモジナイザー、超高圧ホモジナイザー、ボールミル、ロールミル、カッターミル、遊星ミル、ジェットミル、アトライター、グラインダー、ジューサーミキサー、ホモミキサー、超音波ホモジナイザー、ナノジナイザー、水中対向衝突などの機械的処理が挙げられる。
このような物理的解繊処理を行うことで、懸濁液中の酸化セルロースが微細化され、繊維表面にカルボキシ基を有するCSNFの分散液を得ることができる。このときの物理的解繊処理の時間や回数により、得られるCSNF分散液に含まれるCSNFの数平均短軸径および数平均長軸径を調整できる。
Subsequently, the suspension is subjected to physical defibrating treatment to refine the oxidized cellulose.
For physical fibrillation treatment, high pressure homogenizer, ultra high pressure homogenizer, ball mill, roll mill, cutter mill, planetary mill, jet mill, attritor, grinder, juicer mixer, homomixer, ultrasonic homogenizer, nanogenizer, underwater facing collision, etc. Mechanical treatment is mentioned.
By performing such a physical fibrillation treatment, the oxidized cellulose in the suspension is refined, and a dispersion of CSNF having a carboxy group on the fiber surface can be obtained. The number average minor axis diameter and number average major axis diameter of CSNF contained in the obtained CSNF dispersion can be adjusted by the time and number of times of physical fibrillation treatment at this time.
上記のようにして、カルボキシ基が導入されたCSNFの分散液が得られる。
得られた分散液は、そのまま、または希釈、濃縮等を行って、基材へ塗布し被覆層を形成するためのコーティング組成物に用いることができる。また、該コーティング組成物中に含まれるCSNFを回収し、これを分散媒に分散させたものをコーティング組成物として用いてもよい。このコーティング組成物を使用して、基材にCSNFを含有する被覆層を設けることで、生体材料の非吸着性に優れ、試料汚染の恐れがない、環境配慮型の被覆層を形成することが出来る。
As described above, a dispersion of CSNF introduced with a carboxy group is obtained.
The obtained dispersion liquid can be used as a coating composition for forming a coating layer by coating on a substrate as it is, or after diluting, concentrating and the like. Moreover, you may use as a coating composition what collect | recovered CSNF contained in this coating composition, and disperse | distributed this to the dispersion medium. By using this coating composition and providing a coating layer containing CSNF on the substrate, it is possible to form an environmentally friendly coating layer that is excellent in non-adsorption of biomaterials and that does not cause sample contamination. I can do it.
なお、本発明において用いられるCSNFは、上記の方法により得られるものに限定されない。
たとえば上記方法で原料として用いるセルロースの種類は木材系天然セルロースに限定されず、例えばコットンリンター、竹、麻、バガス、ケナフ、バクテリアセルロース、ホヤセルロース、バロニアセルロースといった非木材系天然セルロースを用いてもよい。材料調達の容易さおよび安定供給の面から、木材系天然セルロースが好ましい。
CSNFは、前述のN−オキシル化合物による酸化処理および物理的解繊処理の組み合わせにより得られるものに限定されず、該酸化処理、希酸加水分解処理等による化学処理、物理的解繊処理、酵素処理等の公知の方法のいずれか1種を単独で用いて得られたものでも、2種以上を組合せて得られたものでもよい。また、バクテリアセルロースも、カルボキシ基が導入されるCSNFとして用いることが出来る。積層体を形成した時の透明性や親水性を考慮すると、各種セルロース系材料を、前述のN−オキシル化合物による酸化処理および物理的解繊処理の組み合わせにより微細化したCSNFを用いることが好ましい。
The CSNF used in the present invention is not limited to that obtained by the above method.
For example, the type of cellulose used as a raw material in the above method is not limited to wood-based natural cellulose, and for example, non-wood-based natural cellulose such as cotton linter, bamboo, hemp, bagasse, kenaf, bacterial cellulose, squirt cellulose, and valonia cellulose may be used. Good. From the viewpoint of easy material procurement and stable supply, wood-based natural cellulose is preferable.
CSNF is not limited to the one obtained by the combination of the above-mentioned oxidation treatment with N-oxyl compound and physical fibrillation treatment, but chemical treatment, physical fibrillation treatment, enzyme by the oxidation treatment, dilute acid hydrolysis treatment, etc. It may be obtained by using any one of known methods such as treatment alone, or may be obtained by combining two or more. Bacterial cellulose can also be used as CSNF into which a carboxy group is introduced. In consideration of transparency and hydrophilicity when the laminate is formed, it is preferable to use CSNF obtained by refining various cellulosic materials by a combination of the above-described oxidation treatment and physical fibrillation treatment with an N-oxyl compound.
≪培養装置≫
本発明の培養装置は、基材と、前記基材の少なくとも一部の面に生体材料の吸着性低減を目的とした被覆層と、を有し、前記被覆層が、前記CSNFを含有する層であることを特徴とする。
≪Culture equipment≫
The culture apparatus of the present invention has a base material and a coating layer for reducing the adsorptivity of a biomaterial on at least a part of the base material, and the coating layer contains the CSNF. It is characterized by being.
基材としては、特に制限は無く、公知の種々のシート状あるいは容器状の基材を用いることができ、例えばプラスチックフィルム、ガラス板、セルロース系基材、等が挙げられる。
プラスチックフィルムを構成するプラスチック材料としては、例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、セルロース系(トリアセチルセルロース、ジアセチルセルロース、セロファン等)、ポリアミド系(6−ナイロン、6,6−ナイロン等)、アクリル系(ポリメチルメタクリレート等)、ポリスチレン、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネート、エチレンビニルアルコール等の有機高分子化合物が挙げられる。また、前述の有機高分子化合物の中から、少なくとも1種以上の成分を持つ、或いは共重合成分に持つ、或いはそれらの化学修飾体を成分に有する有機高分子材料も可能である。また、ポリ乳酸、バイオポリオレフィンなど植物から化学合成されるバイオプラスチック、ヒドロキシアルカノエートなど微生物が生産するプラスチック等を用いることも可能である。
セルロース系基材は、セルロース系材料から構成される基材であり、セルロース系材料としては、紙、セロハン、アセチル化セルロース、セルロース誘導体、微細化セルロース繊維等が挙げられる。
環境等への配慮から基材にも環境負荷の少ないものが求められる場合、基材としては、上記のうち、植物から化学合成されるバイオプラスチックを含む基材、微生物が生産するプラスチックを含む基材、セルロース系基材等が好ましい。
基材は、可塑剤、酸化防止剤、難燃剤、充填剤、帯電防止剤、結晶化促進剤、発泡剤、光沢剤、濡れ性改良剤等の添加剤を含有してもよい。
基材は、コロナ放電、プラズマ処理、酸化処理等の表面処理が施されていてもよい。
基材の厚さは、当該培養装置の用途等に応じて適宜設定でき特に限定されないが、通常、1μm〜1cm程度である。
There is no restriction | limiting in particular as a base material, A well-known various sheet-like or container-like base material can be used, For example, a plastic film, a glass plate, a cellulose base material, etc. are mentioned.
Examples of the plastic material constituting the plastic film include polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), cellulose (triacetylcellulose, diacetylcellulose, cellophane, etc.), polyamide ( 6-nylon, 6,6-nylon, etc.), acrylic (polymethyl methacrylate, etc.), polystyrene, polyvinyl chloride, polyimide, polyvinyl alcohol, polycarbonate, ethylene vinyl alcohol, and other organic polymer compounds. Also, an organic polymer material having at least one or more components from among the above-mentioned organic polymer compounds, having a copolymer component, or having a chemical modification thereof as a component is also possible. It is also possible to use bioplastics chemically synthesized from plants such as polylactic acid and biopolyolefins, plastics produced by microorganisms such as hydroxyalkanoates, and the like.
The cellulosic substrate is a substrate composed of a cellulosic material, and examples of the cellulosic material include paper, cellophane, acetylated cellulose, cellulose derivatives, and finely divided cellulose fibers.
When environmentally friendly substrates are also required due to environmental considerations, among the above, the substrates include those containing bioplastics chemically synthesized from plants and those containing plastics produced by microorganisms. A material, a cellulose base material, etc. are preferable.
The base material may contain additives such as a plasticizer, an antioxidant, a flame retardant, a filler, an antistatic agent, a crystallization accelerator, a foaming agent, a brightener, and a wettability improver.
The substrate may be subjected to surface treatment such as corona discharge, plasma treatment, oxidation treatment and the like.
Although the thickness of a base material can be suitably set according to the use etc. of the said culture apparatus, it is not specifically limited, Usually, it is about 1 micrometer-1 cm.
前記CSNFを含有する被覆層の形成は、公知の方法と同様にして実施できる。例えば、水性媒体中に前記変性CSNFが分散し、任意に他の成分が配合された水性分散液を用い、これに基材を浸漬することによって該水性分散液からなる被膜を形成し、該被膜を乾燥することにより被覆層(前記CSNFが積層したCSNF積層膜)が形成される。
前記水性分散液の乾燥は、熱風乾燥、熱ロール乾燥、赤外線照射など、公知の乾燥方法を用いて実施できる。乾燥条件としては、特に限定しないが、乾燥温度としては20℃以上200℃以下が好ましく、30℃以上150℃以下がより好ましい。20℃以下では水性媒体の除去に時間がかかりすぎてしまい、200度以上ではCSNFが熱分解し黄変してしまうおそれがある。
被覆層の厚み(乾燥後の厚み)は、用途に応じて適宜設定でき特に限定されないが、0.1〜1000μmが好ましく、0.2 〜500μmがより好ましい。該厚みが0.1μm以上であると、被覆層を均一に設けることができ、生体材料の吸着抑制効果が充分に得られ、1000μm以下であると、透明性および生産性が良好である。
被覆層は、基材表面の一部のみに設けてもよく、全面に設けてもよい。
Formation of the coating layer containing CSNF can be carried out in the same manner as a known method. For example, an aqueous dispersion in which the modified CSNF is dispersed in an aqueous medium and optionally mixed with other components is used, and a film made of the aqueous dispersion is formed by immersing a base material in the aqueous dispersion. Is dried to form a coating layer (CSNF laminated film in which the CSNF is laminated).
The aqueous dispersion can be dried using a known drying method such as hot air drying, hot roll drying, or infrared irradiation. Although it does not specifically limit as drying conditions, As a drying temperature, 20 to 200 degreeC is preferable and 30 to 150 degreeC is more preferable. If it is 20 ° C. or less, it takes too much time to remove the aqueous medium, and if it is 200 ° C. or more, CSNF may be thermally decomposed and yellowed.
Although the thickness (thickness after drying) of a coating layer can be suitably set according to a use and is not specifically limited, 0.1-1000 micrometers is preferable and 0.2-500 micrometers is more preferable. When the thickness is 0.1 μm or more, the coating layer can be provided uniformly, and the effect of suppressing the adsorption of the biomaterial is sufficiently obtained. When the thickness is 1000 μm or less, the transparency and productivity are good.
The coating layer may be provided only on a part of the surface of the substrate, or may be provided on the entire surface.
本発明の生体保存容器は、前記基材と前記被覆層の間に接着層(以下、アンカー層ともいう。)をさらに有することもできる。
アンカー層は、基材と被覆層の間の密着性を改善するために設けられるものである。アンカー層の形成方法としては公知のものを用いることができ、2液硬化型ウレタン樹脂などを用いるのが一般的であるが、これに限定されず、公知の方法により積層することができる。
アンカー層の厚さは、目的に応じて決められるが、一般的には0.01〜100μmの範囲である。
The biological preservation container of the present invention may further have an adhesive layer (hereinafter also referred to as an anchor layer) between the base material and the coating layer.
An anchor layer is provided in order to improve the adhesiveness between a base material and a coating layer. As a method for forming the anchor layer, a known method can be used, and a two-component curable urethane resin or the like is generally used. However, the method is not limited to this, and the anchor layer can be laminated by a known method.
The thickness of the anchor layer is determined according to the purpose, but is generally in the range of 0.01 to 100 μm.
本発明における培養装置は、その製造工程において滅菌を目的とした放射線照射処理を行っても良い。以下、放射線照射の効果について詳細に説明する。 The culture apparatus in the present invention may be subjected to a radiation irradiation process for the purpose of sterilization in the production process. Hereinafter, the effect of radiation irradiation will be described in detail.
本発明における培養装置は、滅菌処理を行ったのちに用いることが好ましく、滅菌の方法としては放射線処理が好ましい。被覆層が形成された培養装置に放射線を照射すると、滅菌の効果に加えて、被覆層の構造が変化することが確認されている。具体的には、被覆層を構成するCSNF同士が架橋する。
放射線照射による被覆層の構造の変化について、より詳細に説明する。
まず、CSNFに放射線が照射されると、CSNFの繊維表面で、CSNFを構成するセルロース分子の原子間の結合が切断されてラジカルが生成する。ラジカルは反応性が高く、瞬時に再結合して共有結合を形成する。隣接するCSNFの表面に生じたラジカル同士の再結合により、CSNF同士が架橋する。すなわち、微細化セルロース繊維が架橋構造を持つことになる。
The culture apparatus in the present invention is preferably used after sterilization, and the sterilization method is preferably radiation treatment. It has been confirmed that when the culture apparatus on which the coating layer is formed is irradiated with radiation, the structure of the coating layer changes in addition to the effect of sterilization. Specifically, CSNFs constituting the coating layer are cross-linked.
The change in the structure of the coating layer due to radiation irradiation will be described in more detail.
First, when radiation is applied to CSNF, the bonds between the atoms of cellulose molecules constituting CSNF are broken on the fiber surface of CSNF to generate radicals. Radicals are highly reactive and recombine instantly to form covalent bonds. CSNFs are cross-linked by recombination of radicals generated on the surface of adjacent CSNFs. That is, the refined cellulose fiber has a crosslinked structure.
放射線としては、ラジカルを生成させ得る限り特に限定されないが、電子線もしくはガンマー線が好ましく、改質効果に優れることから、電子線がより好ましい。
電子線の照射方法として、カーテン型、スキャン型、プラズマ放電型等、いずれも適用可能である。電子線の加速電圧としては1keVから10MeVが適用可能である。
放射線を照射する環境中に酸素が存在すると共有結合の生成が阻害されるため、酸素が存在しない環境で放射線を照射することが好ましい。例えば放射線照射中は、窒素パージなどを行い、酸素濃度が500ppm以下となるように保つことが好ましい。
The radiation is not particularly limited as long as radicals can be generated, but an electron beam or a gamma ray is preferable, and an electron beam is more preferable because of its excellent modification effect.
As an electron beam irradiation method, any of a curtain type, a scan type, a plasma discharge type, and the like can be applied. An acceleration voltage of the electron beam is applicable from 1 keV to 10 MeV.
Since the formation of covalent bonds is inhibited when oxygen is present in the environment where radiation is irradiated, it is preferable to irradiate the radiation in an environment where oxygen is not present. For example, during radiation irradiation, nitrogen purge or the like is preferably performed to keep the oxygen concentration at 500 ppm or less.
放射線の照射線量としては、1kGy以上10MGy未満が好ましく、10kGy以上、8MGy未満がより好ましく、50kGy以上5MGy未満が特に好ましい。
照射線量が1kGy以上であると、充分な量の共有結合が生成し、被覆層の膜凝集力の改善効果が充分に得られ、CSNF同士の架橋によってCSNFが生体材料に含まれる溶媒中に溶出することがなくなり、生体材料に対する汚染防止効果が期待できる。10MGy未満であると、放射線による基材やCSNFの損傷を抑制できる。
The radiation dose is preferably 1 kGy or more and less than 10 M Gy, more preferably 10 kGy or more and less than 8 M Gy, and particularly preferably 50 kGy or more and less than 5 M Gy.
When the irradiation dose is 1 kGy or more, a sufficient amount of covalent bonds are generated, and the effect of improving the cohesive strength of the coating layer is sufficiently obtained, and CSNF is eluted in the solvent contained in the biomaterial by cross-linking of CSNFs. The anti-contamination effect on the biomaterial can be expected. If it is less than 10 M Gy, damage to the substrate and CSNF due to radiation can be suppressed.
以下、本発明を実施例に基づいて詳細に説明するが、本発明の技術範囲はこれらの実施形態に限定されるものではない。
以下の各例において、「%」は、特に断りのない限り、質量%(w/w%)を示す。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, the technical scope of this invention is not limited to these embodiment.
In the following examples, “%” indicates mass% (w / w%) unless otherwise specified.
[実施例1]
(木材セルロースのTEMPO酸化)
針葉樹クラフトパルプ70gを蒸留水3500gに懸濁し、蒸留水350gにTEMPOを0.7g、臭化ナトリウムを7g溶解させた溶液を加え、20℃まで冷却した。ここに2mol/L、密度1.15g/mLの次亜塩素酸ナトリウム水溶液450gを滴下により添加し、酸化反応を開始した。系内の温度は常に20℃に保ち、反応中のpHの低下は0.5Nの水酸化ナトリウム水溶液を添加することでpH10に保ち続けた。セルロースの質量に対して、水酸化ナトリウムが3.00mmol/gになったと時点で、過剰量のエタノールを添加し反応を停止させた。その後、ガラスフィルターを用いて蒸留水によるろ過洗浄を繰り返し、酸化パルプを得た。
[Example 1]
(TEMPO oxidation of wood cellulose)
70 g of softwood kraft pulp was suspended in 3500 g of distilled water, and a solution of 0.7 g of TEMPO and 7 g of sodium bromide dissolved in 350 g of distilled water was added and cooled to 20 ° C. 450 g of sodium hypochlorite aqueous solution having a concentration of 2 mol / L and a density of 1.15 g / mL was added dropwise thereto to initiate an oxidation reaction. The temperature in the system was always kept at 20 ° C., and the decrease in pH during the reaction was kept at pH 10 by adding a 0.5N aqueous sodium hydroxide solution. When sodium hydroxide reached 3.00 mmol / g based on the mass of cellulose, an excessive amount of ethanol was added to stop the reaction. Thereafter, filtration and washing with distilled water were repeated using a glass filter to obtain oxidized pulp.
(酸化パルプのカルボキシル基量測定)
上記TEMPO酸化で得た酸化パルプを固形分重量で0.1g量りとり、1%濃度で水に分散させ、塩酸を加えてpHを2.5とした。その後0.5N水酸化ナトリウム水溶液を用いた電導度滴定法により、酸化パルプ1g当たりのカルボキシル基量(mmol/g)を求めた。結果は1.6mmol/gであった。
(Measurement of carboxyl group content of oxidized pulp)
Oxidized pulp obtained by the above TEMPO oxidation was weighed by 0.1 g in terms of solid content, dispersed in water at a concentration of 1%, and hydrochloric acid was added to adjust the pH to 2.5. Thereafter, the carboxyl group amount (mmol / g) per 1 g of oxidized pulp was determined by conductivity titration using a 0.5N aqueous sodium hydroxide solution. The result was 1.6 mmol / g.
(CSNF分散液の調製)
前記TEMPO酸化で得た酸化パルプ1gを99gの蒸留水に分散させ、ジューサーミキサーで30分間微細化処理し、CSNF濃度1%のCSNF水分散液を得た。該CSNF水分散液は本発明におけるコーティング組成物として用いることが可能である。
該CSNF水分散液に含まれるCSNFの数平均短軸径は3nm、数平均長軸径は1035nmであった。
(Preparation of CSNF dispersion)
1 g of oxidized pulp obtained by the TEMPO oxidation was dispersed in 99 g of distilled water and refined with a juicer mixer for 30 minutes to obtain a CSNF aqueous dispersion having a CSNF concentration of 1%. The CSNF aqueous dispersion can be used as a coating composition in the present invention.
The number average minor axis diameter of CSNF contained in the CSNF aqueous dispersion was 3 nm, and the number average major axis diameter was 1035 nm.
(培養装置の作製と評価)
基材容器として、遠心分離用コニカルチューブ(日本BD社製、15mL/ポリプロピレン)を用いた。前記コニカルチューブに対し、プラズマ処理装置 (MicroLabo−PS、(株)ニッシン製)を用いてプラズマ処理を行った。
前記チューブに前記CSNF水分散液を分注して、10分間の間チューブ内壁にCSNF水分散液を接触させた。10分経過後に、CSNF水分散液を排出し、チューブをさかさまに返した状態で、30℃で50分間一次乾燥した後、大型基盤対応電子線照射装置(型式LB4008、(株)アイ・エレクトロンビーム)を用いて、吸収線量が400kGyとなるように電子線照射処理を行った。吸収線量はビーム電流値とラインスピードにより制御した。また、加速電圧は120keVに固定した。
こうして得られたチューブの表面には、CSNFが緻密に積層した被覆層が厚さ約1μmで形成されていた。なお、被覆層の厚さは液体窒素中でチューブを破断させた破断面を走査型電子顕微鏡(S−4800、(株)日立ハイテクノロジー社製)で観察することにより確認した。
(Production and evaluation of culture device)
As a substrate container, a conical tube for centrifugation (manufactured by Japan BD, 15 mL / polypropylene) was used. Plasma treatment was performed on the conical tube using a plasma treatment apparatus (MicroLab-PS, manufactured by Nissin Co., Ltd.).
The CSNF aqueous dispersion was dispensed into the tube, and the CSNF aqueous dispersion was brought into contact with the inner wall of the tube for 10 minutes. After 10 minutes, the CSNF aqueous dispersion was discharged, the tube was turned upside down, and then primary dried at 30 ° C. for 50 minutes, and then an electron beam irradiation apparatus (model LB4008, I Electron Co., Ltd.) for large substrates. Beam) was used to perform electron beam irradiation treatment so that the absorbed dose was 400 kGy. The absorbed dose was controlled by the beam current value and line speed. The acceleration voltage was fixed at 120 keV.
On the surface of the tube thus obtained, a coating layer in which CSNF was densely laminated was formed with a thickness of about 1 μm. In addition, the thickness of the coating layer was confirmed by observing a fractured surface obtained by breaking the tube in liquid nitrogen with a scanning electron microscope (S-4800, manufactured by Hitachi High-Technology Corporation).
[実施例2]
基材容器として、遠心分離用コニカルチューブ(日本BD社製、15mL/ポリスチレン)を用いた以外は実施例1と同様の方法でチューブを作製した。
[Example 2]
A tube was prepared in the same manner as in Example 1 except that a conical tube for centrifugation (15 mL / polystyrene, manufactured by Japan BD) was used as the substrate container.
[比較例1]
CSNF分散液の代わりに1%PVA水溶液を用いた以外は実施例1と同様の方法でチューブを作製した。
[Comparative Example 1]
A tube was produced in the same manner as in Example 1 except that a 1% PVA aqueous solution was used instead of the CSNF dispersion.
[比較例2]
CSNF分散液を用いた被覆層の形成を行わなかったこと以外は実施例1と同様の方法でチューブを作製した。
[Comparative Example 2]
A tube was produced in the same manner as in Example 1 except that the coating layer was not formed using the CSNF dispersion.
得られたチューブについて、以下の評価を行なった。評価項目、内容及び得られた結果を表1に示す。 The following evaluation was performed about the obtained tube. Table 1 shows the evaluation items, contents, and obtained results.
(細胞回収率)
ラット胎児大脳皮質神経細胞を含む培養液を各実施例及び比較例で得られたチューブに各々10mLずつ分注し、高速冷却遠心機を用いて、1,200rpmで10分の条件で遠心分離した。遠心分離後各チューブから上清を捨て、10mLの培養液で再分散してから血球計算版を用いて細胞数をカウントした。
(Cell recovery rate)
10 mL each of the culture solution containing rat fetal cerebral cortical neurons was dispensed into the tubes obtained in each Example and Comparative Example, and centrifuged at 1200 rpm for 10 minutes using a high-speed cooling centrifuge. . After centrifugation, the supernatant was discarded from each tube, redispersed with 10 mL of the culture solution, and then the number of cells was counted using a hemocytometer.
(生体材料吸着性)
・ウシ血清アルブミン吸着性
タンパク質は,ベリタス社製の動物血清アルブミン(BSAStandard Grade (pH 7.0) LyophilizedPowder /10 kg Container)を用いた。前記BSAをクロラミンT法で125Iラベル化した前記BSAをリン酸バッファー中にて分散させ1μg/mLに希釈した。各実施例および比較例で獲られた容器に5mLずつ分注し、37℃ で2時間ゲルに吸着させた後、125Iの放射能を測定することにより吸着量を求めた。
(Biomaterial adsorption)
-Bovine serum albumin adsorptive protein Animal serum albumin (BSAS Standard Grade (pH 7.0) Lyophilized Powder / 10 kg Container) manufactured by Veritas was used as the protein. The BSA, 125 I-labeled by the chloramine T method, was dispersed in a phosphate buffer and diluted to 1 μg / mL. 5 mL each was dispensed into the containers obtained in each Example and Comparative Example, adsorbed onto the gel for 2 hours at 37 ° C., and then the amount of adsorption was determined by measuring the radioactivity of 125 I.
(保存安定性)
各実施例及び比較例で得られた容器を60℃の恒温槽に入れ、30日間保存後に前記生体材料吸着性評価をおこない生体材料非吸着特性について劣化の有無を確認した。
(Storage stability)
The containers obtained in each Example and Comparative Example were placed in a constant temperature bath at 60 ° C., and the biomaterial adsorptivity evaluation was performed after storage for 30 days, and the presence or absence of deterioration of the biomaterial non-adsorption property was confirmed.
(耐溶媒性)
各実施例及び各比較例で得られたチューブに各々に蒸留水:エタノールを1:1で混合した溶媒を10.0mLずつ分注し、10分間放置した後、影響の有無を目視で判断した。
(Solvent resistance)
In each tube obtained in each example and each comparative example, 10.0 mL each of a mixed solvent of distilled water and ethanol in a ratio of 1: 1 was dispensed, and allowed to stand for 10 minutes. .
(遠心強度)
遠心強度は、高速冷却遠心機を用いて、25,000rpmで10分遠心した後で、目視により各チューブの変形、割れを確認した。
(Centrifugal strength)
The centrifugal strength was determined by visually observing deformation and cracking of each tube after centrifugation at 25,000 rpm for 10 minutes using a high-speed cooling centrifuge.
表1から明らかなように本発明の培養装置を用いた実施例1および2は、細胞回収率に優れ、生体由来物質の吸着性も抑えることができた。更に保存安定性試験においても生体由来物質吸着性に変化はなく、耐溶剤性、遠心強度ともに良好な結果が得られていることから、実際に生体材料用保存容器として好適に使用可能であることが示された。
一方、本発明を用いなかった比較例1および2においては細胞回収率が低く、生体由来物質の吸着性も認められ、比較例2はとくに吸着が顕著であった。比較例1では保存安定性試験において劣化が確認され試料汚染の可能性が示された。特に耐溶媒性に問題があった。
As is clear from Table 1, Examples 1 and 2 using the culture apparatus of the present invention were excellent in cell recovery rate and could suppress the adsorptivity of biological substances. Furthermore, in the storage stability test, there is no change in the adsorptivity of biological substances, and good results have been obtained for both solvent resistance and centrifugal strength, so it can be used suitably as a storage container for biological materials. It has been shown.
On the other hand, in Comparative Examples 1 and 2 in which the present invention was not used, the cell recovery rate was low, and the adsorptivity of the biological substance was also observed. In Comparative Example 2, the adsorption was particularly remarkable. In Comparative Example 1, deterioration was confirmed in the storage stability test, and the possibility of sample contamination was shown. In particular, there was a problem with solvent resistance.
本発明は、培養装置、及びその為のコーティング組成物に利用出来る。 The present invention can be used for a culture apparatus and a coating composition therefor.
Claims (10)
前記被覆膜を乾燥させる被覆膜乾燥工程と、
前記被覆膜に放射線を照射する放射線照射工程と、
を含むことを特徴とする培養装置の製造方法。 A coating film coating step of coating a finely divided cellulose fiber dispersed in an aqueous medium on a substrate to form a coating film;
A coating film drying step of drying the coating film;
A radiation irradiation step of irradiating the coating film with radiation;
A method for producing a culture apparatus comprising the steps of:
The method for producing a culture apparatus according to claim 8, wherein the radiation is an electron beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014029944A JP6369044B2 (en) | 2014-02-19 | 2014-02-19 | Cultivation apparatus and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014029944A JP6369044B2 (en) | 2014-02-19 | 2014-02-19 | Cultivation apparatus and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015149980A JP2015149980A (en) | 2015-08-24 |
JP6369044B2 true JP6369044B2 (en) | 2018-08-08 |
Family
ID=53892897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014029944A Active JP6369044B2 (en) | 2014-02-19 | 2014-02-19 | Cultivation apparatus and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6369044B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6758621B2 (en) * | 2016-10-17 | 2020-09-23 | 株式会社日本触媒 | Substrate for cell culture and its manufacturing method, and cell culture container and cell culture method using this |
TW201939036A (en) * | 2018-03-05 | 2019-10-01 | 日商第一工業製藥股份有限公司 | Device provided with composite immobilized on support, and biosensor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04293481A (en) * | 1991-03-19 | 1992-10-19 | San Five Kk | Petri dish for cell culture |
JP3311074B2 (en) * | 1993-03-31 | 2002-08-05 | 株式会社ヤトロン | Cell culture substrate |
US8334121B2 (en) * | 2006-02-13 | 2012-12-18 | Donaldson Company, Inc. | Method of converting cellulosic biomass to alcohol using web comprising fine fiber and bioactive particulate |
JP4998981B2 (en) * | 2006-06-20 | 2012-08-15 | 国立大学法人 東京大学 | Fine cellulose fiber |
FI123988B (en) * | 2010-10-27 | 2014-01-31 | Upm Kymmene Corp | Cell Culture Materials |
FI123715B (en) * | 2011-12-22 | 2013-09-30 | Upm Kymmene Corp | Composition for embedded microbial culture |
JP6024047B2 (en) * | 2012-06-04 | 2016-11-09 | 国立大学法人京都大学 | Method for culturing pluripotent stem cells and substrate therefor |
JP6163710B2 (en) * | 2012-06-14 | 2017-07-19 | 凸版印刷株式会社 | Antifouling film and method for producing the same |
JP5657744B2 (en) * | 2013-05-13 | 2015-01-21 | 大日本印刷株式会社 | Method for producing cell culture support |
-
2014
- 2014-02-19 JP JP2014029944A patent/JP6369044B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015149980A (en) | 2015-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Interface and bonding mechanisms of plant fibre composites: An overview | |
Nair et al. | Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties | |
Dufresne | Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites | |
Ilyas et al. | Production, processes and modification of nanocrystalline cellulose from agro-waste: a review | |
JP5319806B2 (en) | Method for producing gas barrier material | |
Huang et al. | Lignin-rich nanocellulose fibrils isolated from parenchyma cells and fiber cells of western red cedar bark | |
dos Santos et al. | The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications | |
JP6326721B2 (en) | Gas barrier packaging material and method for producing the same | |
JP6331262B2 (en) | Gas barrier laminate and method for producing the same | |
JP6107297B2 (en) | Fiber resin composite material | |
JP6665410B2 (en) | Gas barrier film and method of manufacturing gas barrier film | |
JP2014208721A (en) | Resin porous body and method for producing the same | |
WO2019045076A1 (en) | Cellulose nanofiber liquid dispersion, cellulose nanofiber composite resin, and methods for producing dispersion and resin | |
Spence et al. | Nanocellulose-based composites | |
JP6369044B2 (en) | Cultivation apparatus and manufacturing method thereof | |
Long et al. | Synthesis, characterization and enzymatic surface roughing of cellulose/xylan composite films | |
Abdulkhani et al. | Effect of nanofibers on the structure and properties of biocomposites | |
Petinakis et al. | Interfacial adhesion in natural fiber‐reinforced polymer composites | |
JP2011207939A (en) | Cellulose dispersion and molding thereof | |
Bajpai | Pulp and paper industry: nanotechnology in forest industry | |
Nagalakshmaiah et al. | Cellulose nanocrystals-based nanocomposites | |
JP6402454B2 (en) | Optical material and optical filter | |
JP6786859B2 (en) | Humidity responsive moisture permeable sheet and its manufacturing method | |
EP4317192A1 (en) | Dispersion, composite, and production methods therefor | |
Nagalakshmaiah | Melt processing of cellulose nanocrystals: thermal, mechanical and rheological properties of polymer nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180625 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6369044 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |