JP6365820B2 - Secondary battery abnormality determination device - Google Patents
Secondary battery abnormality determination device Download PDFInfo
- Publication number
- JP6365820B2 JP6365820B2 JP2014043262A JP2014043262A JP6365820B2 JP 6365820 B2 JP6365820 B2 JP 6365820B2 JP 2014043262 A JP2014043262 A JP 2014043262A JP 2014043262 A JP2014043262 A JP 2014043262A JP 6365820 B2 JP6365820 B2 JP 6365820B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- short
- circuit current
- abnormality
- abnormality determination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005856 abnormality Effects 0.000 title claims description 60
- 230000006866 deterioration Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
本発明は、集電体が電池ケース内に封入されてなる二次電池の異常判定装置に関し、特に、短絡電流に基づいて電池異常の有無を判定する二次電池の異常判定装置に関する。 The present invention relates to an abnormality determination device for a secondary battery in which a current collector is enclosed in a battery case, and more particularly to an abnormality determination device for a secondary battery that determines the presence or absence of battery abnormality based on a short-circuit current.
近年、電気自動車(BEV)やプラグインハイブリッド自動車(PHEV)等の電動車両が多数実用化されている。このような電動車両には、走行用モータに電力を供給するためのリチウムイオン電池等の二次電池(高圧バッテリ)が搭載されている。この二次電池は、例えば、正極板と負極板とがセパレータを介して積層された積層体で形成される集電体を備え、この集電体をケース内に封入することによって形成されている。 In recent years, many electric vehicles such as electric vehicles (BEV) and plug-in hybrid vehicles (PHEV) have been put into practical use. Such an electric vehicle is equipped with a secondary battery (high voltage battery) such as a lithium ion battery for supplying electric power to the traveling motor. This secondary battery includes, for example, a current collector formed of a laminate in which a positive electrode plate and a negative electrode plate are laminated via a separator, and is formed by enclosing the current collector in a case. .
このような構成の二次電池では、例えば、電池ケース内に混入した異物等により、電池ケース内に収容された集電体において短絡(内部短絡)が発生してしまう虞がある。二次電池の集電体は電池ケース内に封入されているため、内部短絡の状態を直接検出することはできない。 In the secondary battery having such a configuration, there is a possibility that a short circuit (internal short circuit) may occur in the current collector housed in the battery case due to, for example, foreign matter mixed in the battery case. Since the current collector of the secondary battery is enclosed in the battery case, the internal short circuit state cannot be directly detected.
このため、従来は、所定時間における二次電池の電圧の変化量を計測し、この計測結果に基づいて内部短絡の有無、すなわち二次電池の異常の有無を判定していた(例えば、特許文献1参照)。 For this reason, conventionally, the amount of change in the voltage of the secondary battery during a predetermined time is measured, and the presence or absence of an internal short circuit, that is, the presence or absence of an abnormality in the secondary battery is determined based on the measurement result (for example, Patent Document 1).
特許文献1に記載されているように、二次電池の電池電圧の変化量から内部短絡の有無を判定することはできるが、適切に判定できているとは言い難い。 As described in Patent Document 1, it is possible to determine the presence or absence of an internal short circuit from the amount of change in the battery voltage of the secondary battery, but it is difficult to say that it has been properly determined.
電池電圧の変化量は、二次電池の状態、例えば、二次電池の充電率や、二次電池の経時劣化の程度等に応じて大きく変化する場合がある。このため、電池電圧の変化量に応じて内部短絡の有無、つまり二次電池の異常の有無を判定すると、正常な範囲と判定できるものまで異常ありと判定してしまう虞がある。すなわち電池電圧の変化量からは、短絡状態(内部短絡の程度)まで高精度に判定することは難しい。 The amount of change in battery voltage may vary greatly depending on the state of the secondary battery, for example, the charging rate of the secondary battery, the degree of deterioration of the secondary battery over time, and the like. For this reason, if the presence or absence of an internal short circuit, that is, the presence or absence of an abnormality of the secondary battery is determined according to the amount of change in the battery voltage, there is a possibility that it may be determined that there is an abnormality up to a normal range. That is, it is difficult to determine with high accuracy from the amount of change in the battery voltage to the short circuit state (the degree of internal short circuit).
本発明は、このような事情に鑑みてなされたものであり、内部短絡の程度を高精度に判定することができる二次電池の異常判定装置を提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the abnormality determination apparatus of the secondary battery which can determine the grade of an internal short circuit with high precision.
上記課題を解決する本発明の第1の態様は、正極板及び負極板を備える電極束がケース内に封入されて構成された二次電池の異常を判定する異常判定装置であって、前記二次電池の短絡電流を算出する短絡電流算出手段と、前記短絡電流算出手段の算出結果に基づいて前記二次電池の異常の有無を判定する異常判定手段と、前記二次電池の充電率に応じて判定基準値を設定する基準値設定手段と、を有し、前記異常判定手段は、前記短絡電流が前記判定基準値以上である場合に前記二次電池の異常ありと判定することを特徴とする二次電池の異常判定装置にある。 A first aspect of the present invention that solves the above problem is an abnormality determination device that determines an abnormality of a secondary battery configured by enclosing an electrode bundle including a positive electrode plate and a negative electrode plate in a case. Depending on the short-circuit current calculation means for calculating the short-circuit current of the secondary battery, the abnormality determination means for determining the presence or absence of abnormality of the secondary battery based on the calculation result of the short-circuit current calculation means, and the charging rate of the secondary battery Reference value setting means for setting a determination reference value, wherein the abnormality determination means determines that the secondary battery is abnormal when the short-circuit current is equal to or greater than the determination reference value. The secondary battery abnormality determination device.
本発明の第2の態様は、第1の態様の二次電池の異常判定装置において、前記基準値設定手段は、前記二次電池の充電率と共に当該二次電池の温度に応じて前記判定基準値を設定することを特徴とする二次電池の異常判定装置にある。 According to a second aspect of the present invention, in the abnormality determination device for a secondary battery according to the first aspect, the reference value setting unit is configured to determine the determination criterion according to a temperature of the secondary battery together with a charge rate of the secondary battery. In the secondary battery abnormality determination device, the value is set.
本発明の第3の態様は、第1又は2の態様の二次電池の異常判定装置において、前記短絡電流算出手段の算出結果に基づいて所定期間内の前記短絡電流の変化を演算する電流変化演算手段と、前記電流変化演算手段の演算結果に基づいて前記短絡電流が前記判定基準値に達する時期を推定する推定手段と、をさらに備えることを特徴とする二次電池の異常判定装置にある。 According to a third aspect of the present invention, in the abnormality determination device for a secondary battery according to the first or second aspect, a current change for calculating a change in the short-circuit current within a predetermined period based on a calculation result of the short-circuit current calculation unit An abnormality determination device for a secondary battery, further comprising: calculation means; and estimation means for estimating when the short-circuit current reaches the determination reference value based on a calculation result of the current change calculation means. .
かかる本発明に係る二次電池の異常判定装置によれば、内部短絡の有無を判定できると共に、短絡状態(内部短絡の程度)まで判定することができる。また、短絡電流の変化を検出することで、継続使用可能期間を推定することもできる。 According to the abnormality determination device for a secondary battery according to the present invention, it is possible to determine the presence or absence of an internal short circuit and to determine even a short circuit state (the degree of internal short circuit). Moreover, a continuous useable period can also be estimated by detecting the change of a short circuit current.
以下、本発明の一実施形態について図面を参照して詳細に説明する。
まずは、二次電池の構造の一例について簡単に説明する。図1及び図2に示すように、二次電池10は、例えば、リチウムイオン電池である密閉形電池であり、正極板21及び負極板22を備える電極束(エレメント)20と、集電体30,40とが非水電解液(図示なし)と共に電池ケース50内に収容されている。この電池ケース50の上部は、蓋部材60で密閉されている。なお図示は省略するが、電池ケース50内には電池ケース50の内面を覆う絶縁部材が設けられており、電池ケース50と内部に収容される電極束20及び集電体30,40との絶縁が図られている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
First, an example of the structure of the secondary battery will be briefly described. As shown in FIGS. 1 and 2, the secondary battery 10 is a sealed battery that is, for example, a lithium ion battery, and includes an electrode bundle (element) 20 including a positive electrode plate 21 and a negative electrode plate 22, and a current collector 30. 40 are accommodated in a battery case 50 together with a non-aqueous electrolyte (not shown). The upper part of the battery case 50 is sealed with a lid member 60. Although illustration is omitted, an insulating member that covers the inner surface of the battery case 50 is provided in the battery case 50 so that the battery case 50 is insulated from the electrode bundle 20 and the current collectors 30 and 40 accommodated therein. Is planned.
電極束20の正極板21には集電体30の一端側が接続され、この集電体30の他端側には、蓋部材60に設けられた貫通孔61から外部に突出する正極端子部材70が接続されている。負極板22には集電体40の一端側が接続されている。この集電体40の他端側には、蓋部材60に設けられた貫通孔61から外部に突出する負極端子部材80が接続されている。 One end side of the current collector 30 is connected to the positive electrode plate 21 of the electrode bundle 20, and the other end side of the current collector 30 is connected to the positive electrode terminal member 70 projecting outside from the through hole 61 provided in the lid member 60. Is connected. One end of a current collector 40 is connected to the negative electrode plate 22. The other end side of the current collector 40 is connected to a negative electrode terminal member 80 that protrudes to the outside from a through hole 61 provided in the lid member 60.
蓋部材60の上下面側には、各貫通孔61の開口部に対応して絶縁シート部材90がそれぞれ設けられている。正極端子部材70及び負極端子部材80は、この絶縁シート部材90によって蓋部材60との絶縁が図られている。 Insulating sheet members 90 are respectively provided on the upper and lower surfaces of the lid member 60 so as to correspond to the openings of the through holes 61. The positive electrode terminal member 70 and the negative electrode terminal member 80 are insulated from the lid member 60 by the insulating sheet member 90.
電極束20は、図3に示すように、例えば、金属箔からなる正極板21と負極板22とがセパレータ23を介してオフセット積層されて形成されている。本実施形態に係る電極束20は、セパレータ23を介して帯状の正極板21及び負極板22を扁平形状に捲回されて形成されている。なお帯状の正極板21及び負極板22には、両者が重なる部分に、それぞれ活物質が塗布されている。 As shown in FIG. 3, the electrode bundle 20 is formed, for example, by laminating a positive electrode plate 21 and a negative electrode plate 22 made of metal foil with an offset lamination via a separator 23. The electrode bundle 20 according to the present embodiment is formed by winding a belt-like positive electrode plate 21 and a negative electrode plate 22 in a flat shape via a separator 23. The strip-like positive electrode plate 21 and negative electrode plate 22 are each coated with an active material at a portion where they overlap.
次に、このような構成の二次電池10の内部短絡の有無等の異常を判定する異常判定装置について説明する。 Next, an abnormality determination device that determines abnormality such as the presence or absence of an internal short circuit of the secondary battery 10 having such a configuration will be described.
二次電池10では、例えば、電池ケース50内に混入した異物等による内部短絡が発生してしまう虞がある。本発明に係る異常判定装置は、二次電池10の異常判定として、二次電池10の内部短絡の有無の判定を所定のタイミングで実行する。 In the secondary battery 10, for example, there is a possibility that an internal short circuit may occur due to foreign matters mixed in the battery case 50. The abnormality determination device according to the present invention executes determination of the presence or absence of an internal short circuit of the secondary battery 10 at a predetermined timing as abnormality determination of the secondary battery 10.
本実施形態に係る異常判定装置100では、以下に詳しく説明するように、一定時間当たりの電圧の変化(低下)量を計測し、この電圧の変化量から算出される短絡電流に基づいて、二次電池10の内部短絡の有無を判定する。これにより二次電池10の内部短絡の有無を判定できると共に、短絡状態(短絡の程度)も比較的高精度に判定することができる。 In the abnormality determination device 100 according to the present embodiment, as will be described in detail below, a voltage change (decrease) amount per fixed time is measured, and based on a short-circuit current calculated from the voltage change amount, The presence or absence of an internal short circuit of the secondary battery 10 is determined. Thereby, the presence or absence of an internal short circuit of the secondary battery 10 can be determined, and the short circuit state (the degree of short circuit) can also be determined with relatively high accuracy.
図4に示すように、本実施形態に係る異常判定装置100は、制御部として、電圧検出手段110と、短絡電流算出手段120と、基準値設定手段130と、異常判定手段140と、を有する。 As shown in FIG. 4, the abnormality determination device 100 according to the present embodiment includes a voltage detection unit 110, a short-circuit current calculation unit 120, a reference value setting unit 130, and an abnormality determination unit 140 as a control unit. .
電圧検出手段110は、二次電池10の正極端子部材70と負極端子部材80との間における電圧(以下、電池電圧ともいう)を検出する。本実施形態では、短絡電流算出手段120は、電圧検出手段110によって検出された電池電圧に基づいて二次電池10の短絡電流値を算出する。ここで「短絡電流」とは、二次電池10の内部短絡に起因して生じる電流値をいう。 The voltage detection unit 110 detects a voltage (hereinafter also referred to as a battery voltage) between the positive electrode terminal member 70 and the negative electrode terminal member 80 of the secondary battery 10. In the present embodiment, the short circuit current calculation unit 120 calculates the short circuit current value of the secondary battery 10 based on the battery voltage detected by the voltage detection unit 110. Here, the “short circuit current” refers to a current value generated due to an internal short circuit of the secondary battery 10.
この「短絡電流」を算出するに当たって、まずは「総電流」を算出する。「総電流」とは、「短絡電流」と、その他の要因によって発生する電流との合計値である。まず二次電池10の電池電圧V1(V)の変化量ΔV1を、電池容量Ah1(Ah)の変化量ΔAh1に換算する。例えば、図5に示すような電池容量Ah1と電池電圧V1との関係を規定したマップに基づいて、電池電圧の変化量ΔV1を、電池容量の変化量ΔAh1に換算する。 In calculating the “short circuit current”, first, the “total current” is calculated. The “total current” is a total value of “short circuit current” and current generated by other factors. First, the change amount ΔV1 of the battery voltage V1 (V) of the secondary battery 10 is converted into the change amount ΔAh1 of the battery capacity Ah1 (Ah). For example, based on a map that defines the relationship between the battery capacity Ah1 and the battery voltage V1 as shown in FIG. 5, the battery voltage change amount ΔV1 is converted into the battery capacity change amount ΔAh1.
ここで、電池容量Ah1と電池電圧V1との関係は、二次電池10の劣化状態によって変化する。具体的には、二次電池10が「劣化あり」場合、「劣化なし」の場合よりも電池容量の最大値Ah1mが減少する傾向にある(図5参照)。このため、電池容量の変化量ΔAh1も、二次電池10の劣化の有無によって値が変化する。したがって、電池容量Ah1と電池電圧V1との関係は、複数の劣化状態で規定しておくことが好ましい。これにより、二次電池10の劣化状態に応じて、電池電圧の変化量ΔV1を、電池容量の変化量ΔAh1に適切に換算することができる。 Here, the relationship between the battery capacity Ah <b> 1 and the battery voltage V <b> 1 varies depending on the deterioration state of the secondary battery 10. Specifically, when the secondary battery 10 is “degraded”, the maximum value Ah1m of the battery capacity tends to be smaller than when the secondary battery 10 is “degraded” (see FIG. 5). For this reason, the value ΔAh1 of the battery capacity change also changes depending on whether the secondary battery 10 is deteriorated. Therefore, the relationship between the battery capacity Ah1 and the battery voltage V1 is preferably defined by a plurality of deterioration states. Thereby, according to the deterioration state of the secondary battery 10, battery voltage change amount (DELTA) V1 can be appropriately converted into battery capacity change amount (DELTA) Ah1.
なお、図5の例では、二次電池10の「劣化あり」の場合と、「劣化なし」の場合とで、電池容量Ah1と電池電圧V1との関係を規定しているが、「劣化あり」の替わりに、程度の異なる複数の劣化状態で、電池容量Ah1と電池電圧V1との関係を規定するようにしてもよい。 In the example of FIG. 5, the relationship between the battery capacity Ah1 and the battery voltage V1 is defined in the case of “with deterioration” and the case of “without deterioration” of the secondary battery 10. Instead of “,” the relationship between the battery capacity Ah1 and the battery voltage V1 may be defined in a plurality of deterioration states having different degrees.
この図5のグラフから分かるように、二次電池10を満充電(この例では、4.1(V))の状態から所定時間t(h)だけ放置したときの電池電圧の変化量ΔV1が二次電池10の劣化状態に拘わらず一定であるとすると、「劣化なし」の場合の電池容量の変化量ΔAh1aは、「劣化あり」の場合の電池容量の変化量ΔAh1bよりも大きい値となる。すなわち二次電池10の電池容量の変化量ΔAh1は、二次電池10の劣化状態によって変化する。したがって、図5のようなグラフ(マップ)に基づいて、二次電池10の劣化状態に応じて電池電圧の変化量ΔV1を電池容量の変化量ΔAh1に変換することで、電池容量の変化量ΔAh1の正確性を高めることができる。 As can be seen from the graph of FIG. 5, the amount of change ΔV1 in the battery voltage when the secondary battery 10 is left for a predetermined time t (h) from the fully charged state (4.1 (V) in this example) is Assuming that the secondary battery 10 is constant regardless of the deterioration state, the battery capacity change amount ΔAh1a in the case of “no deterioration” is larger than the battery capacity change amount ΔAh1b in the case of “with deterioration”. . That is, the change amount ΔAh1 of the battery capacity of the secondary battery 10 changes depending on the deterioration state of the secondary battery 10. Therefore, based on the graph (map) as shown in FIG. 5, the battery voltage change amount ΔAh1 is obtained by converting the battery voltage change amount ΔV1 into the battery capacity change amount ΔAh1 according to the deterioration state of the secondary battery 10. Can improve the accuracy.
総電流A1(A)は、このように換算した電池容量の変化量ΔAh1と、上記所定時間t(h)とから、下記式(1)で求めることができる。上述のように電池容量の変化量ΔAh1の正確性が向上することに伴って、総電流A1(A)の正確性も向上される。
A1=ΔAh1/t (1)
The total current A1 (A) can be obtained by the following equation (1) from the battery capacity change amount ΔAh1 thus converted and the predetermined time t (h). As described above, as the accuracy of the battery capacity change amount ΔAh1 is improved, the accuracy of the total current A1 (A) is also improved.
A1 = ΔAh1 / t (1)
そして、短絡電流A2は、下記式(2)で表されるように、このように算出した総電流A1から短絡なし電流A3を減算することで求められる。
A2=A1−A3 (2)
And short circuit current A2 is calculated | required by subtracting short circuitless current A3 from the total current A1 calculated in this way so that it may be represented by following formula (2).
A2 = A1-A3 (2)
ここで、「短絡なし電流」とは、例えば、自己放電、セルモニタユニット(CMU)での消費、暗電流等により流れる電流の値であり、予め計測しておく。またこの短絡なし電流は、二次電池10の状態、例えば、充電率(SOC)、温度、劣化状態等によって変化する。そこで、本実施形態では、異常判定装置100が、二次電池10の状態を変化させた複数のデータ(短絡なし電流)を保有するようにしている。例えば、図6に示すように、本実施形態では、温度を室温(25℃)、0℃、−30℃としたときの二次電池10のSOCと短絡なし電流との関係を規定したデータをマップとして保有するようにしている。また「劣化あり」の二次電池10についても同様のデータを保有している。 Here, the “current without short circuit” is, for example, a value of a current that flows due to self-discharge, consumption in a cell monitor unit (CMU), dark current, and the like, and is measured in advance. The short-circuitless current varies depending on the state of the secondary battery 10, for example, the charging rate (SOC), temperature, deterioration state, and the like. Therefore, in this embodiment, the abnormality determination device 100 holds a plurality of data (current without short circuit) in which the state of the secondary battery 10 is changed. For example, as shown in FIG. 6, in this embodiment, data defining the relationship between the SOC of the secondary battery 10 and the short-circuit current when the temperature is set to room temperature (25 ° C.), 0 ° C., and −30 ° C. I keep it as a map. The same data is held for the secondary battery 10 with “deteriorated”.
このようなデータに基づいて短絡なし電流を求めることで、短絡電流の正確性を向上することができる。また上述のように総電流A1(A)の正確性も向上している。したがって、上記式(2)で求められる短絡電流A2の正確性も大きく向上することになる。 The accuracy of the short circuit current can be improved by obtaining the current without a short circuit based on such data. As described above, the accuracy of the total current A1 (A) is also improved. Therefore, the accuracy of the short-circuit current A2 obtained by the above equation (2) is also greatly improved.
また、短絡電流A2は、二次電池10の短絡状態(短絡の程度)によって大きく変化する。例えば、図7に示すように、短絡の程度が小さい状態(短絡:小)と、短絡の程度が中程度の状態(短絡:中)と、短絡の程度が大きい状態(短絡:大)と、を比較すると、短絡の程度が大きいほど総電流A1の値は大きくなる。この傾向は、温度が違っていても同様である。そこで、本実施形態に係る異常判定装置100は、二次電池10の短絡状態に応じて、短絡電流A2から二次電池10の異常の有無を判定するようにしている。 Further, the short circuit current A <b> 2 varies greatly depending on the short circuit state (the degree of short circuit) of the secondary battery 10. For example, as shown in FIG. 7, a state where the degree of short circuit is small (short circuit: small), a state where the degree of short circuit is medium (short circuit: medium), a state where the degree of short circuit is large (short circuit: large), When the degree of short circuit is larger, the value of the total current A1 is larger. This tendency is the same even at different temperatures. Therefore, the abnormality determination device 100 according to the present embodiment determines whether there is an abnormality in the secondary battery 10 from the short-circuit current A2 according to the short-circuit state of the secondary battery 10.
ここで、基準値設定手段130は、二次電池10の異常の有無の判定基準となる判定基準値S1を設定する。本実施形態に係る基準値設定手段130は、例えば、二次電池10の充電率(SOC)、二次電池10の温度等に応じて判定基準値S1を設定する。 Here, the reference value setting unit 130 sets a determination reference value S1 that is a determination reference for the presence or absence of abnormality of the secondary battery 10. The reference value setting unit 130 according to the present embodiment sets the determination reference value S1 according to, for example, the charging rate (SOC) of the secondary battery 10, the temperature of the secondary battery 10, and the like.
そして異常判定手段140は、このように短絡電流算出手段120によって算出された短絡電流A2に基づいて、二次電池10の異常の有無を判定する。具体的には、異常判定手段140は、短絡電流A2が基準値設定手段130によって設定された判定基準値S1以上である場合に二次電池10の異常ありと判定する。 Then, the abnormality determination unit 140 determines whether there is an abnormality in the secondary battery 10 based on the short circuit current A2 calculated by the short circuit current calculation unit 120 in this way. Specifically, the abnormality determination unit 140 determines that there is an abnormality in the secondary battery 10 when the short-circuit current A2 is equal to or greater than the determination reference value S1 set by the reference value setting unit 130.
例えば、図8に示すように、判定基準値S1を0.08(A)に設定している場合、二次電池10の短絡状態が「短絡:中」「短絡:小」であると、SOCに拘わらず短絡電流A2が判定基準値S1を上回ることがないため、常に異常なしと判定される。一方、二次電池10の短絡状態が「短絡:大」の場合、SOCが80%以上になると短絡電流A2が判定基準値S1を上回る。したがって、SOCが80%よりも小さい場合には異常なしと判定され、SOCが80以上となると異常ありと判定されることになる。 For example, as shown in FIG. 8, when the determination reference value S1 is set to 0.08 (A), the SOC of the secondary battery 10 is “short: medium” and “short: small”. Regardless of this, since the short-circuit current A2 does not exceed the determination reference value S1, it is always determined that there is no abnormality. On the other hand, when the short circuit state of the secondary battery 10 is “short circuit: large”, the short circuit current A2 exceeds the determination reference value S1 when the SOC becomes 80% or more. Therefore, when the SOC is less than 80%, it is determined that there is no abnormality, and when the SOC is 80 or more, it is determined that there is an abnormality.
以上のように短絡電流A2に基づいて二次電池10の異常の有無を判定することで、二次電池10の状態に適した判定を行うことができる。 As described above, it is possible to make a determination suitable for the state of the secondary battery 10 by determining whether or not the secondary battery 10 is abnormal based on the short-circuit current A2.
なお異常判定手段140によって判定された結果は、例えば、異常判定装置100が備える表示装置150に表示される。 The result determined by the abnormality determination unit 140 is displayed on, for example, the display device 150 provided in the abnormality determination device 100.
また、上述のように本実施形態では、短絡電流A2に基づいて二次電池10の異常の有無を判定するようにしたが、本発明の異常判定装置100では、例えば、所定期間の短絡電流A2の変化を計測することで、その測定結果を基に短絡電流が判定基準値S1に達する期間を予測することもできる。すなわち異常判定装置100によって二次電池10の異常ありと判定されるまでの期間を予測することができる。例えば、図9に示すように、所定期間として30日間、短絡電流A2の変化を計測することで、図中点線で示すように、その後の短絡電流A2の変化を予測することができる。短絡電流A2は、必ずしも直線的に変化するものではないが、ある程度の期間(例えば30日程度)、短絡電流A2の変化を計測することで、その後の短絡電流A2の変化を予測することができる。つまり短絡電流A2が判定基準値S1に達するまでの期間を予測することができる。 Further, as described above, in the present embodiment, the presence / absence of abnormality of the secondary battery 10 is determined based on the short circuit current A2. However, in the abnormality determination device 100 of the present invention, for example, the short circuit current A2 for a predetermined period is used. By measuring this change, it is also possible to predict a period during which the short-circuit current reaches the determination reference value S1 based on the measurement result. That is, it is possible to predict a period until the abnormality determination device 100 determines that the secondary battery 10 is abnormal. For example, as shown in FIG. 9, by measuring the change in the short-circuit current A2 for a predetermined period of 30 days, the subsequent change in the short-circuit current A2 can be predicted as shown by the dotted line in the figure. The short-circuit current A2 does not necessarily change linearly, but a change in the short-circuit current A2 can be predicted by measuring the change in the short-circuit current A2 for a certain period (for example, about 30 days). . That is, it is possible to predict a period until the short-circuit current A2 reaches the determination reference value S1.
例えば、図9に示す例では、二次電池10の短絡状態が「短絡:A」のものは、短絡電流A2が判定基準値S1に達するまでの期間を約50日程度と予測でき、「短絡:B」のものは、短絡電流A2が判定基準値S1に達するまでの期間を約90日程度と予測でき、「短絡:C」のものは、短絡電流A2が判定基準値S1に達するまでの期間を約110日程度と予測することができる。 For example, in the example shown in FIG. 9, when the short-circuit state of the secondary battery 10 is “short-circuit: A”, the period until the short-circuit current A2 reaches the determination reference value S1 can be predicted to be about 50 days. : "B" can be predicted to have a period of about 90 days until the short-circuit current A2 reaches the judgment reference value S1, and "Short-circuit: C" is the time until the short-circuit current A2 reaches the judgment reference value S1. The period can be estimated to be about 110 days.
これにより、二次電池10の異常の発生を使用者に対して事前に警告することができ、使用者は、修理等の所望の対応を、時間的余裕をもって行うことができる。 Thereby, it is possible to warn the user in advance of the occurrence of an abnormality in the secondary battery 10, and the user can perform a desired response such as repair with sufficient time.
なお二次電池10の短絡電流A2の計測は、一定条件で行うことは難しい。しかしながら、短絡電流A2の測定値は、例えば、上述した各種マップを参照し、温度やSOCに応じて適宜補正することができる。したがって、短絡電流A2が判定基準値S1に達するまでの期間を比較的容易に予測することができる。 Note that it is difficult to measure the short-circuit current A2 of the secondary battery 10 under certain conditions. However, the measured value of the short-circuit current A2 can be appropriately corrected according to the temperature and the SOC with reference to, for example, the various maps described above. Therefore, the period until the short-circuit current A2 reaches the determination reference value S1 can be predicted relatively easily.
以上、本発明の実施形態について説明したが、勿論、本発明は上述の実施形態に限定されるものではない。本発明は、その趣旨を逸脱しない範囲で適宜変更が可能なものである。 As mentioned above, although embodiment of this invention was described, of course, this invention is not limited to the above-mentioned embodiment. The present invention can be modified as appropriate without departing from the spirit of the present invention.
上述した二次電池の異常判定装置は、例えば、車両用の二次電池の異常判定に好適に用いられるものであるが、二次電池の用途は限定されるものではない。本発明に係る二次電池の異常判定装置は、例えば、家庭用の補助電源、各種AV機器、パソコン、携帯電話など、車両以外の他の機器に搭載される二次電池の異常判定にも適用でき、その場合にも上述した実施形態と同様な効果を奏する。 The abnormality determination device for the secondary battery described above is preferably used for abnormality determination of a secondary battery for a vehicle, for example, but the application of the secondary battery is not limited. The abnormality determination device for a secondary battery according to the present invention is also applicable to an abnormality determination of a secondary battery mounted on a device other than a vehicle, such as a home auxiliary power source, various AV devices, a personal computer, a mobile phone, and the like. In this case, the same effects as those of the above-described embodiment can be obtained.
10 二次電池
20 電極束
21 正極板
22 負極板
23 セパレータ
30,40 集電体
50 電池ケース
60 蓋部材
70 正極端子部材
80 負極端子部材
90 絶縁シート部材
100 異常判定装置
DESCRIPTION OF SYMBOLS 10 Secondary battery 20 Electrode bundle 21 Positive electrode plate 22 Negative electrode plate 23 Separator 30,40 Current collector 50 Battery case 60 Lid member 70 Positive electrode terminal member 80 Negative electrode terminal member 90 Insulating sheet member 100 Abnormality determination apparatus
Claims (3)
前記二次電池の短絡電流を算出する短絡電流算出手段と、
前記短絡電流算出手段の算出結果に基づいて前記二次電池の異常の有無を判定する異常判定手段と、
前記二次電池の充電率に応じて判定基準値を設定する基準値設定手段と、を有し、
前記異常判定手段は、前記短絡電流が前記判定基準値以上である場合に前記二次電池の異常ありと判定する
ことを特徴とする二次電池の異常判定装置。 An abnormality determination device for determining an abnormality of a secondary battery configured by enclosing an electrode bundle including a positive electrode plate and a negative electrode plate in a case,
Short-circuit current calculating means for calculating a short-circuit current of the secondary battery;
An abnormality determining means for determining the presence or absence of abnormality of the secondary battery based on the calculation result of the short circuit current calculating means;
A reference value setting means for setting a determination reference value according to the charging rate of the secondary battery,
The abnormality determination device for a secondary battery, wherein the abnormality determination unit determines that there is an abnormality in the secondary battery when the short-circuit current is greater than or equal to the determination reference value .
前記基準値設定手段は、前記二次電池の充電率と共に当該二次電池の温度に応じて前記判定基準値を設定する
ことを特徴とする二次電池の異常判定装置。 In the secondary battery abnormality determination device according to claim 1 ,
The abnormality determination device for a secondary battery, wherein the reference value setting means sets the determination reference value according to a temperature of the secondary battery together with a charging rate of the secondary battery.
前記短絡電流算出手段の算出結果に基づいて所定期間内の前記短絡電流の変化を演算する電流変化演算手段と、
前記電流変化演算手段の演算結果に基づいて前記短絡電流が前記判定基準値に達する時期を推定する推定手段と、をさらに備える
ことを特徴とする二次電池の異常判定装置。 In the secondary battery abnormality determination device according to claim 1 or 2 ,
Current change calculating means for calculating a change in the short circuit current within a predetermined period based on the calculation result of the short circuit current calculating means;
An abnormality determination device for a secondary battery, further comprising: estimation means for estimating a time when the short-circuit current reaches the determination reference value based on a calculation result of the current change calculation means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043262A JP6365820B2 (en) | 2014-03-05 | 2014-03-05 | Secondary battery abnormality determination device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014043262A JP6365820B2 (en) | 2014-03-05 | 2014-03-05 | Secondary battery abnormality determination device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015169483A JP2015169483A (en) | 2015-09-28 |
JP6365820B2 true JP6365820B2 (en) | 2018-08-01 |
Family
ID=54202350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014043262A Expired - Fee Related JP6365820B2 (en) | 2014-03-05 | 2014-03-05 | Secondary battery abnormality determination device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6365820B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106526493B (en) * | 2016-11-01 | 2018-11-23 | 北京理工大学 | Power battery external short circuit fault diagnosis and temperature prediction method and system |
JP7283467B2 (en) | 2018-03-27 | 2023-05-30 | 株式会社Gsユアサ | Diagnostic device, power storage device, diagnostic method |
JP7171491B2 (en) * | 2019-03-29 | 2022-11-15 | 本田技研工業株式会社 | Measuring device and measuring method for internal short-circuit state quantity |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8049465B2 (en) * | 2007-10-10 | 2011-11-01 | Texas Instruments Incorporated | Systems, methods and circuits for determining micro-short |
JP2009170397A (en) * | 2007-12-18 | 2009-07-30 | Mitsumi Electric Co Ltd | Battery pack and portable device using the same, internal short-circuit detection method for the same, and internal short-circuit detection program |
JP2014002009A (en) * | 2012-06-18 | 2014-01-09 | Toyota Motor Corp | Method of inspecting secondary battery |
JP2014222603A (en) * | 2013-05-13 | 2014-11-27 | トヨタ自動車株式会社 | Inspection method for battery |
-
2014
- 2014-03-05 JP JP2014043262A patent/JP6365820B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015169483A (en) | 2015-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200355749A1 (en) | Device detecting abnormality of secondary battery, abnormality detection method, and program | |
JP5866063B2 (en) | Fault detection device for voltage sensor | |
US9506988B2 (en) | Condition estimation device and method of estimating condition | |
US20130022843A1 (en) | Assembled battery and method of controlling assembled battery | |
WO2019184843A1 (en) | Method and apparatus for calculating soh of battery power pack, and electric vehicle | |
JP6500789B2 (en) | Control system of secondary battery | |
EP3141919B1 (en) | Apparatus and method for estimating open circuit voltage | |
WO2013133077A1 (en) | Control device for secondary battery, charging control method, and soc detection method | |
JP6298920B2 (en) | Battery control device | |
JP5738784B2 (en) | Power storage system | |
US20140239914A1 (en) | Battery controller | |
JP6019318B2 (en) | Power storage device temperature measurement method | |
JP4810417B2 (en) | Remaining capacity calculation device for power storage device | |
JP2012198175A (en) | Battery state monitor device | |
JP2015109237A (en) | Battery control system and battery control method | |
JP5911407B2 (en) | Battery soundness calculation device and soundness calculation method | |
JP6365820B2 (en) | Secondary battery abnormality determination device | |
CN103872727A (en) | Method for determining largest use current of lithium-ion battery | |
JP2014109535A (en) | Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method | |
JP2016081579A (en) | Secondary battery system | |
JP2012190600A (en) | Battery system | |
US20180136286A1 (en) | Method for determining a potential of an anode and/or a potential of a cathode in a battery cell | |
JP2020079764A (en) | Secondary-battery state determination method | |
JP5975925B2 (en) | Battery control device, power storage device | |
JP2023047092A (en) | Charging method for battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180619 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6365820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |