JP6349865B2 - Hot-rolled steel sheet and manufacturing method thereof - Google Patents
Hot-rolled steel sheet and manufacturing method thereof Download PDFInfo
- Publication number
- JP6349865B2 JP6349865B2 JP2014069557A JP2014069557A JP6349865B2 JP 6349865 B2 JP6349865 B2 JP 6349865B2 JP 2014069557 A JP2014069557 A JP 2014069557A JP 2014069557 A JP2014069557 A JP 2014069557A JP 6349865 B2 JP6349865 B2 JP 6349865B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel sheet
- rolling
- width direction
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 65
- 239000010959 steel Substances 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005096 rolling process Methods 0.000 claims description 43
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 3
- 238000005097 cold rolling Methods 0.000 description 31
- 230000009466 transformation Effects 0.000 description 18
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 239000010960 cold rolled steel Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000004566 building material Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、屋根材などの建材の分野で用いられる薄物の冷延鋼板または、それに表面処理を施した冷延鋼板、特には、冷間圧延ままの鋼板または、それに表面処理を施した鋼板の製造において、安定した冷間圧延を可能とする、熱延鋼板およびその製造方法に関する。 The present invention relates to a thin cold-rolled steel sheet used in the field of building materials such as roofing materials, or a cold-rolled steel sheet subjected to surface treatment thereon, in particular, a cold-rolled steel plate or a steel sheet subjected to surface treatment thereon. The present invention relates to a hot-rolled steel sheet and a method for manufacturing the hot-rolled steel sheet that enable stable cold rolling.
近年、世界的な人口増加や経済発展に伴い、建材の需要が増加している。特に、建物の外壁や屋根などには、板厚0.3mm以下の薄物の冷延鋼板、あるいはそれにめっきや塗装を施した表面処理鋼板を合板などの基板に貼り合わせたものが使用されている。かような用途では、冷延鋼板に加工を加えることはほとんどないため、加工性が問われることはなく、冷間圧延ままの鋼板にZnめっきなどの表面処理を施した鋼板が使用されるのが一般的である。 In recent years, demand for building materials has increased with the global population growth and economic development. In particular, a thin cold-rolled steel plate having a thickness of 0.3 mm or less or a surface-treated steel plate plated or painted on a substrate such as plywood is used for the outer wall or roof of a building. In such applications, there is almost no processing on the cold-rolled steel sheet, so workability is not questioned, and steel sheets that have been subjected to surface treatment such as Zn plating are used on steel sheets that have been cold-rolled. Is common.
このような使途の鋼板は、コストの低減に向けた鋼板の薄肉化が望まれているが、冷間圧延時の荷重不足で薄肉化ができない問題が生じている。特に新興国などでの圧延能力が低いミルでも薄厚の冷延鋼板が製造可能である、熱延鋼板が求められている。 In such a steel sheet, although it is desired to reduce the thickness of the steel sheet for cost reduction, there is a problem that the thickness cannot be reduced due to insufficient load during cold rolling. In particular, there is a need for a hot-rolled steel sheet that can produce a thin cold-rolled steel sheet even in a mill with a low rolling capacity in emerging countries.
そこで、冷間圧延に供する素材として該冷間圧延が低荷重で済む、軟質な熱延鋼板の需要が高まっている。
例えば、特許文献1には、鋼中のC量を0.010%以下に低減した熱延鋼板に関する技術が記載されている。また、特許文献2には、鋼中のN量を0.0020%以下にした熱延鋼板に関する技術が記載されている。さらに、特許文献3には、鋼中のC量を0.01−0.10%、N量を0.010%以下にして、仕上げ圧延温度を700℃以上Ar3変態点以下で圧延する、いわゆるフェライト域圧延にて粗大な結晶粒を有する熱延鋼板を製造する技術が提案されている。
Thus, there is an increasing demand for a soft hot-rolled steel sheet that can be cold-rolled with a low load as a material for cold rolling.
For example, Patent Document 1 describes a technique related to a hot-rolled steel sheet in which the C content in steel is reduced to 0.010% or less. Patent Document 2 describes a technique related to a hot-rolled steel sheet in which the N content in steel is 0.0020% or less. Further, Patent Document 3 discloses a so-called ferrite zone rolling in which the C content in steel is 0.01-0.10%, the N content is 0.010% or less, and the finish rolling temperature is rolled at 700 ° C. or higher and below the Ar 3 transformation point. A technique for manufacturing a hot-rolled steel sheet having coarse crystal grains has been proposed.
しかし、特許文献1および2で提案された、C量およびN量の低減は製鋼時の雰囲気ガスにおける、CおよびNの量を低減する必要があり、そのためには、製鋼時に脱ガス処理を施す必要があり、製造コストを引き上げることになる。
また、新興国での製造の要請から、圧延能力の低い冷間圧延ミルで0.3mm以下の材料を製造するには、熱延板を少なくとも3mm以下にしておく必要があり、CやN量の低い鋼ではAr3変態点以上での圧延が難しく、板厚方向及び幅方向に不均一なミクロ組織が形成されやすく、冷間圧延性を阻害する。
However, the reduction of the amount of C and N proposed in Patent Documents 1 and 2 needs to reduce the amount of C and N in the atmospheric gas during steelmaking. For that purpose, degassing treatment is performed during steelmaking. This will increase production costs.
In addition, due to demands for manufacturing in emerging countries, it is necessary to keep hot-rolled sheets at least 3 mm or less in order to produce materials of 0.3 mm or less in a cold rolling mill with low rolling capacity. With low steel, rolling beyond the Ar 3 transformation point is difficult, and a non-uniform microstructure tends to be formed in the thickness direction and width direction, impairing cold rolling properties.
また、特許文献3に記載のフェライト域圧延では、熱延板の強度が仕上げ圧延温度や巻取り温度に影響されやすくなり、安定した軟質熱延鋼板の確保が難しい。 Further, in the ferrite zone rolling described in Patent Document 3, the strength of the hot-rolled sheet is easily affected by the finish rolling temperature and the winding temperature, and it is difficult to secure a stable soft hot-rolled steel sheet.
本発明は、以上の問題を解決すべくなされたものであり、圧延能力の小さい冷間圧延ミルを用いた場合にも、冷間圧延ままの薄鋼板や、それに表面処理を施した鋼板を安定して製造することができる、冷間圧延用素材としての熱延鋼板およびその製造方法について提供することを目的とする。 The present invention has been made to solve the above problems, and even when a cold rolling mill having a small rolling capacity is used, a thin steel plate as cold-rolled or a steel plate subjected to surface treatment can be stabilized. An object of the present invention is to provide a hot-rolled steel sheet as a material for cold rolling, which can be manufactured by the manufacturing method, and a manufacturing method thereof.
本発明者らは、冷間圧延および表面処理後の冷延鋼板の諸特性とその素材として用いた熱延鋼板のミクロ組織との相関を鋭意調査、そして検討した結果、所定の成分組成およびミクロ組織を有する素材であれば、冷間圧延時の圧延抵抗がコイル内で均一になり、また特に冷間圧延後段での変形抵抗が小さくなること、すなわち冷間圧延性に優れる熱延鋼板を安定して製造できることを見出し、本発明を完成するに至った。すなわち、冷間圧延性には、熱延板の結晶方位の板厚方向および幅方向での不均一性が大きな影響を及ぼしており、それを制御することが重要である。 As a result of intensive investigation and examination on the correlation between various properties of the cold-rolled steel sheet after cold rolling and surface treatment and the microstructure of the hot-rolled steel sheet used as the raw material, If the material has a structure, the rolling resistance during cold rolling becomes uniform in the coil, and especially the deformation resistance after the cold rolling is reduced, that is, a hot-rolled steel sheet having excellent cold rolling properties is stable. As a result, the present invention was completed. That is, the non-uniformity of the crystal orientation of the hot-rolled sheet in the thickness direction and the width direction has a great influence on the cold rolling property, and it is important to control it.
すなわち、本発明の要旨構成は、次のとおりである。
1.質量%で
C:0.015〜0.035%、
Si:0.2%以下、
Mn:0.05〜0.35%、
P:0.02%以下、
S:0.02%以下、
sol.Al:0.01〜0.1%および
N:0.005%以下
を含有し、残部がFeおよび不可避的不純物の成分組成を有し、鋼板の幅方向端縁から幅方向へ50mmの位置および幅方向端縁から板幅の1/4の位置の、板表面から板厚の1/4の深さにおける集合組織は、下記式(1)にて定義されるXが0.5〜1.0の範囲を満足することを特徴とする熱延鋼板。
記
X=F1/(F2+F3) …(1)
ただし
F1:{001}<110>のODF強度
F2:{211}<110>のODF強度
F3:{111}<112>のODF強度
That is, the gist configuration of the present invention is as follows.
1. In mass% C: 0.015-0.035%,
Si: 0.2% or less,
Mn: 0.05 to 0.35%,
P: 0.02% or less,
S: 0.02% or less,
sol.Al: 0.01 to 0.1% and N: 0.005% or less, with the balance being the composition of Fe and inevitable impurities, 50 mm from the width direction edge of the steel plate to the width direction and the width direction edge As for the texture at the position of 1/4 of the plate width from the plate surface to the depth of 1/4 of the plate thickness, X defined by the following formula (1) satisfies the range of 0.5 to 1.0. Features hot-rolled steel sheet.
X = F1 / (F2 + F3) (1)
However,
F1: ODF strength of {001} <110>
F2: {211} <110> ODF strength
F3: ODF strength of {111} <112>
2.前記成分組成は、さらに質量%で
B:0.0003〜0.0030%、
Ti:0.002〜0.1%、
Nb:0.002〜0.1%、
V:0.002〜0.1%および
Cr:0.01〜0.5%
のうちから選ばれるいずれか1種または2種以上を含有する前記1に記載の熱延鋼板。
2. The component composition is further in mass% B: 0.0003 to 0.0030%,
Ti: 0.002 to 0.1%,
Nb: 0.002 to 0.1%,
V: 0.002 to 0.1% and
Cr: 0.01-0.5%
2. The hot-rolled steel sheet according to 1 above, containing any one or more selected from among the above.
3.前記1または2に記載した成分組成を有する鋼素材に熱間圧延を施す際に、仕上圧延の入側における、鋼板の幅方向中央部と幅方向端縁から幅方向へ50mmまでの領域との温度差を30℃以内にするとともに、仕上圧延出側温度を870℃から930℃とし、該熱間圧延後1秒以内に冷却を開始し、前記仕上圧延出側温度から750℃までの平均冷却速度を10℃/s以上とし、その後、550℃から700℃の温度域にて鋼板を巻取ることを特徴とする熱延鋼板の製造方法。 3. When hot rolling a steel material having the component composition described in 1 or 2 above, the width direction center of the steel sheet and the region extending from the edge in the width direction up to 50 mm in the width direction on the entry side of finish rolling The temperature difference is set within 30 ° C, the finish rolling exit temperature is changed from 870 ° C to 930 ° C, cooling is started within 1 second after the hot rolling, and the average cooling from the finish rolling exit temperature to 750 ° C is started. A method for producing a hot-rolled steel sheet, characterized by winding the steel sheet in a temperature range of 550 ° C to 700 ° C after setting the speed to 10 ° C / s or more.
本発明の熱延鋼板によれば、圧延能力の低い圧延ミルでも例えば0.3mm以下とする圧延が可能であり、屋根材などの建材分野で用いられる薄物の冷延鋼板または表面処理冷延鋼板の冷間圧延素材として好適の熱延鋼板を提供できる。 According to the hot-rolled steel sheet of the present invention, even a rolling mill having a low rolling capacity can be rolled to 0.3 mm or less, for example, a thin cold-rolled steel sheet or a surface-treated cold-rolled steel sheet used in the building material field such as a roofing material. A hot-rolled steel sheet suitable as a cold rolled material can be provided.
以下、本発明の熱延鋼板について、詳しく説明する。
まず、成分組成における各成分の含有量の限定理由について述べる。なお、成分に関する「%」表示は、特に断らない限り「質量%」を意味する。
C:0.015〜0.035%
Cが0.035%を超えると、結晶粒径が細かくなり、炭化物も増加して熱延板の強度が上昇し、冷間圧延性を阻害することになる。一方、Cが0.015%未満の領域ではセメンタイトが析出しにくく、多くの固溶炭素が熱延板に残存し、熱延板の強度が上昇する結果、冷間圧延性を阻害することになるため、0.015%以上とする。よって、C量は、0.015〜0.035%、より好ましくは0.030%以下とする。
Hereinafter, the hot-rolled steel sheet of the present invention will be described in detail.
First, the reasons for limiting the content of each component in the component composition will be described. In addition, unless otherwise indicated, the "%" display regarding a component means "mass%".
C: 0.015-0.035%
When C exceeds 0.035%, the crystal grain size becomes fine, the carbides increase, the strength of the hot-rolled sheet increases, and the cold rolling property is impaired. On the other hand, when C is less than 0.015%, cementite hardly precipitates, and a large amount of solute carbon remains in the hot-rolled sheet, resulting in an increase in the strength of the hot-rolled sheet. , 0.015% or more. Therefore, the C content is 0.015 to 0.035%, more preferably 0.030% or less.
Si:0.2%以下
Siは、含有量が多すぎると、熱延板の強度が上昇して冷間圧延性を阻害し、また化成処理性や亜鉛めっき等のめっき密有性を劣化させることから、0.2%以下とする。なお、Siは無添加でも材質上の問題はないが、0.005%未満に抑制するには、多くのコストを要することから、0.005%以上の含有は許容される。
Si: 0.2% or less
If the Si content is too high, the strength of the hot-rolled sheet will increase, impairing the cold rolling property, and will deteriorate the plating density such as chemical conversion treatment and galvanization, so it is 0.2% or less. To do. In addition, although Si does not add, there is no problem in the material, but since it requires a lot of cost to suppress it to less than 0.005%, the content of 0.005% or more is allowed.
Mn:0.05〜0.35%
Mnは、熱間脆性の防止を主目的として0.05%以上で添加されるが、添加量が多すぎると、熱延板の結晶粒を微細化するとともに、固溶強化作用により熱延板の強度が上昇し、冷間圧延性を阻害するため、上限を0.35%とする。より好ましくは、0.10〜0.20%である。
Mn: 0.05-0.35%
Mn is added at 0.05% or more for the main purpose of preventing hot brittleness. However, if the added amount is too large, the hot rolled sheet crystal grains are refined and the strength of the hot rolled sheet is enhanced by the solid solution strengthening action. Rises and hinders cold rollability, so the upper limit is made 0.35%. More preferably, it is 0.10 to 0.20%.
P:0.02%以下
Pは、添加量が多すぎると、熱延板の強度が上昇し、冷間圧延性を阻害するため、0.02%以下とする。なお、Pは無添加でも材質上の問題はないが、0.0010%未満に抑制するには、多くのコストを要することから、0.0010%以上の含有は許容される。
P: 0.02% or less P is set to 0.02% or less because if the addition amount is too large, the strength of the hot-rolled sheet increases and the cold rolling property is impaired. In addition, although there is no problem in the material even if P is not added, since it takes a lot of cost to suppress it to less than 0.0010%, the content of 0.0010% or more is allowed.
S:0.02%以下
Sは、鋼中で硫化物系介在物となって存在する。この硫化物系介在物は冷間圧延中に伸張し加工時の割れ起点となるため、極力低減することが望ましく、その上限を0.02%とする。なお、Sは無添加でも材質上の問題はないが、0.0005%未満に抑制するには、多くのコストを要することから、0.0005%以上の含有は許容される。
S: 0.02% or less S is present as sulfide inclusions in steel. Since the sulfide inclusions extend during cold rolling and become crack starting points during processing, it is desirable to reduce them as much as possible, and the upper limit is made 0.02%. It should be noted that even if S is not added, there is no problem in the material, but since it requires a lot of cost to suppress it to less than 0.0005%, the content of 0.0005% or more is allowed.
sol.Al:0.01〜0.1%
Alは、溶鋼の脱酸を目的に添加されるが、その添加量がsol.Alで0.01%より少ないと効果に乏しく、一方0.1%を超えると脱酸効果が飽和する上に、Al2O3介在物が増加し、冷間加工性を劣化させる。したがって、添加量の範囲をsol.Alで0.01%以上、0.1%以下とする。
sol.Al: 0.01-0.1%
Al is added for the purpose of deoxidation of molten steel, but if the addition amount is less than 0.01% in sol.Al, the effect is poor, while if it exceeds 0.1%, the deoxidation effect is saturated and Al 2 O 3 Inclusions increase and cold workability deteriorates. Therefore, the range of the addition amount is 0.01% or more and 0.1% or less with sol.Al.
N:0.005%以下
Nは、Ti、Nb、Al等と窒化物を形成する。冷間加工性の観点からは、Nをこれらの窒化物として極力析出させて固溶Nを低減することがより有利であり、Nの含有量は少ないほどよいことから、上限を0.005%とする。なお、Nは無添加でも材質上の問題はないが、0.0003%未満に抑制するには、多くのコストを要することから、0.0003%以上の含有は許容される。
N: 0.005% or less N forms nitrides with Ti, Nb, Al and the like. From the viewpoint of cold workability, it is more advantageous to reduce the solid solution N by precipitating N as these nitrides as much as possible, and the lower the N content, the better. Therefore, the upper limit is made 0.005% . In addition, even if N is not added, there is no problem in the material, but since it requires a lot of cost to suppress it to less than 0.0003%, the content of 0.0003% or more is allowed.
本発明の熱延鋼板の基本組成は上記の通りであり、残部はFeおよび不可避的不純物としてよい。ただし、特性改善のために、さらに下記の元素を添加してもよい。
B:0.0003〜0.0030%、Ti:0.002〜0.1%、Nb:0.002〜0.1%、V:0.002〜0.1%およびCr:0.01〜0.5%のうちから選ばれるいずれか1種または2種以上
The basic composition of the hot-rolled steel sheet of the present invention is as described above, and the balance may be Fe and inevitable impurities. However, the following elements may be further added to improve the characteristics.
B: 0.0003 to 0.0030%, Ti: 0.002 to 0.1%, Nb: 0.002 to 0.1%, V: 0.002 to 0.1%, and Cr: 0.01 to 0.5%
まず、Bは、微量を添加すると、熱延板組織の粒径を大きくして冷間圧延性を向上するのに寄与する。そのためには、下限を0.0003%とする。しかし、0.0030%を超えて添加すると、逆に熱間圧延後にフェライト変態が起こり難くなって組織が微細化し、熱延板の強度が上昇して冷間圧延性を阻害するため、上限を0.0030%とする。 First, when B is added in a small amount, B contributes to increasing the grain size of the hot-rolled sheet structure and improving the cold rolling property. For that purpose, the lower limit is made 0.0003%. However, if added over 0.0030%, the ferrite transformation hardly occurs after hot rolling, the structure becomes finer, the strength of the hot-rolled sheet increases, and the cold rolling property is hindered. And
次に、Ti、Nb、VおよびCrは、微量を添加することによって炭、窒化物を形成し、鋼板への固溶CおよびNの残留を防止して冷間圧延性を向上させる。従って、Ti、Nb、VおよびCrは、高い加工性および非時効性を確保するために単独または複合して添加する。Ti、NbおよびVは0.002%未満、そしてCrは0.01%未満になると、CおよびNを固定する効果が過小になり、所期した効果を得ることが難しくなる。一方、Ti、NbおよびVは0.1%超、そしてCrは0.5%超になると、組織が微細化して熱延板の硬さが上昇すること、また固溶炭素が低下して変態点がさらに上昇して熱延板の組織を不均一にすることから、冷間圧延性を阻害することになる。 Next, Ti, Nb, V, and Cr form charcoal and nitride by adding a trace amount, thereby preventing the solid solution C and N from remaining in the steel sheet and improving the cold rolling property. Therefore, Ti, Nb, V and Cr are added alone or in combination in order to ensure high workability and non-aging properties. When Ti, Nb and V are less than 0.002% and Cr is less than 0.01%, the effect of fixing C and N becomes too small, and it becomes difficult to obtain the desired effect. On the other hand, when Ti, Nb, and V exceed 0.1% and Cr exceeds 0.5%, the microstructure becomes finer and the hardness of the hot rolled sheet increases, and the solid solution carbon decreases and the transformation point further increases. As a result, the structure of the hot-rolled sheet is made non-uniform, so that cold rolling properties are hindered.
さらに、本発明では、熱延板の集合組織を規定することが、安定した冷間圧延を実現する上で重要である。すなわち、鋼板の幅方向端部域および幅方向内部域の集合組織は、下記式(1)にて定義されるXが0.5〜1.0の範囲を満足することが、肝要である。
記
X=F1/(F2+F3) …(1)
ただし
F1:{001}<110>のODF強度
F2:{211}<110>のODF強度
F3:{111}<112>のODF強度
ここで、鋼板の幅方向端部域の集合組織は、鋼板の幅方向端縁から幅方向へ50mmすなわち幅方向中心側に50mmの位置の、板表面から板厚の1/4の深さにおける集合組織で代表するものとし、また幅方向内部域の集合組織は、鋼板の幅方向端縁から幅方向中心側に板幅の1/4の位置(以下、1/4位置という)の、板表面から板厚の1/4の深さにおける集合組織で代表するものとする。
Furthermore, in the present invention, it is important to define the texture of the hot-rolled sheet in order to realize stable cold rolling. That is, it is important that the texture in the width direction end region and the width direction internal region of the steel sheet satisfies the range X of 0.5 to 1.0 defined by the following formula (1).
X = F1 / (F2 + F3) (1)
However,
F1: ODF strength of {001} <110>
F2: {211} <110> ODF strength
F3: ODF strength of {111} <112> Here, the texture in the width direction end region of the steel sheet is 50 mm in the width direction from the edge in the width direction of the steel sheet, that is, 50 mm in the center in the width direction. The texture at the depth of 1/4 of the sheet thickness is represented by the texture, and the texture of the inner area in the width direction is a position of 1/4 of the sheet width from the edge in the width direction to the center in the width direction ( Hereinafter, it is represented by a texture at a depth of 1/4 of the plate thickness from the plate surface.
上記ODF(orientation determination function)は3次元方位密度関数であり、3面以上の極点図より、級数展開法などにより求められ、3つのオイラー角で指定される特定の結晶方位がランダム方位に対して、どのくらい集積するかを示すものである。
すなわち、{001}<110>は、冷間加工に伴う加工硬化が小さく、冷間圧延性の向上に有利な結晶方位であり、その意味では多く集積することが重要である。ただし、{001}<110>のODF強度が極めて高い場合は、フェライト域圧延などの圧延性を不安定にする条件で圧延したことにより集積度が増大している場合であり、これは冷間圧延性の観点から好ましくない。
The above ODF (orientation determination function) is a three-dimensional orientation density function, which is obtained from a pole figure of three or more planes by a series expansion method or the like, and a specific crystal orientation specified by three Euler angles is relative to a random orientation. It shows how much it accumulates.
That is, {001} <110> is a crystal orientation that is small in work hardening accompanying cold working and is advantageous for improving cold rolling properties, and in that sense, it is important to accumulate a large amount. However, if the ODF strength of {001} <110> is extremely high, it is a case where the degree of accumulation has increased due to rolling under conditions that make rolling properties unstable, such as ferrite region rolling. It is not preferable from the viewpoint of rollability.
逆に、{211}<110>や{111}<112>は、冷間加工したときの加工硬化が比較的大きいため、あまり、その集積を高めることは好ましくない。しかし、フェライト域圧延ではこれらの方位は生成しにくいので、集積が極めて低くなる。その意味では、{211}<110>や{111}<112>は、冷間圧延の安定性を示す(集積がある程度が高い方が安定性が高い)方位である。
このようにF1と、F2およびF3とは、加工硬化の大きさの指標としても、不安定域圧延の指標としても、数値の大小が逆に現れる、性質をもち、その比X=F1/(F2+F3)で冷間圧延性を評価したところ、X:0.5〜1.0である必要性を見出した。すなわち、Xが0.5未満では加工硬化が大きく、圧延後期での圧延荷重が高くなる。一方、1.0を超えると、板厚方向および板幅方向で組織が不均一となり、冷間圧延の制御が難しくなる。
On the other hand, {211} <110> and {111} <112> have a relatively large work-hardening when cold-worked, so it is not preferable to increase their accumulation. However, since these orientations are difficult to generate in the ferrite zone rolling, the accumulation becomes extremely low. In that sense, {211} <110> and {111} <112> are orientations indicating the stability of cold rolling (the higher the accumulation, the higher the stability).
In this way, F1, F2 and F3 have the property that the numerical value appears oppositely as an index of the magnitude of work hardening and as an index of unstable zone rolling, and the ratio X = F1 / ( When the cold rolling property was evaluated by F2 + F3), the necessity of X: 0.5 to 1.0 was found. That is, when X is less than 0.5, work hardening is large, and the rolling load in the latter stage of rolling becomes high. On the other hand, if it exceeds 1.0, the structure becomes non-uniform in the sheet thickness direction and the sheet width direction, making it difficult to control cold rolling.
ここで、上記した集合組織の規定を実現するには、CおよびMnの含有量に応じて仕上圧延温度を調整することが有利であり、詳しくは後述する。
なお、本発明の熱延鋼板の組織は、フェライト単相またはフェライト−パーライト相である。
Here, in order to realize the above-mentioned texture definition, it is advantageous to adjust the finish rolling temperature according to the contents of C and Mn, which will be described in detail later.
In addition, the structure of the hot-rolled steel sheet of the present invention is a ferrite single phase or a ferrite-pearlite phase.
次に、上記した熱延板の製造条件について説明する。
上記した成分組成を有する鋼素材、例えばスラブを熱間圧延に供して製造するが、その際、熱間圧延の仕上圧延を次の条件にて行う必要がある。
Next, the manufacturing conditions of the above hot-rolled sheet will be described.
A steel material having the above-described composition, such as a slab, is manufactured by hot rolling. At that time, it is necessary to perform hot rolling finish rolling under the following conditions.
[仕上圧延の入側における、鋼板の幅方向中央部と幅方向端縁から幅方向へ50mmまでの領域との温度差を30℃以内]
本発明では、冷間圧延を安定して行える冷間圧延用素材としての熱延板を提供することを所期しているために、熱延組織の均一性を高める必要がある。特に、炭素量の低い成分組成の薄鋼板では、変態点割れによって組織がとりわけ上記した端部域で大きく変化してしまう。このような事態を回避するためには、端部域の温度低下を抑制することが有効である。すなわち、この温度低下は仕上圧延の入側温度の幅方向分布に起因しており、端部域の温度低下を抑制するために、バーヒーターなどを適宜使用する必要がある。幅中央部(温度管理および機械的特性における幅方向内部域の代表部)と端部域との温度差が30℃を超えて低くなると、端部域と幅中央部との仕上圧延出側温度(FDT)を適正範囲に維持できなくなる。
[Temperature difference between the center in the width direction of the steel sheet and the area from the edge in the width direction to 50 mm in the width direction on the entry side of finish rolling is within 30 ° C]
In the present invention, since it is intended to provide a hot-rolled sheet as a material for cold rolling capable of stably performing cold rolling, it is necessary to improve the uniformity of the hot-rolled structure. In particular, in a thin steel plate having a low carbon content component composition, the structure changes greatly in the above-described end region due to transformation point cracking. In order to avoid such a situation, it is effective to suppress the temperature drop in the end region. That is, this temperature decrease is caused by the width direction distribution of the entrance side temperature of finish rolling, and a bar heater or the like needs to be used as appropriate in order to suppress the temperature decrease in the end region. When the temperature difference between the center of the width (representative part of the inner area in the width direction in the temperature control and mechanical properties) and the end area becomes lower than 30 ° C, the finish rolling exit temperature between the end area and the center of the width (FDT) cannot be maintained within the proper range.
なお、幅中央と端部域との温度差は、コイルの長手方向でも多少変動するため、コイル長手方向の先端部、中央部および後端部の5m長さ部分の3位置で温度測定を行って、それらの平均値をもって温度制御を行う。また、温度の測定対象は、鋼板の表面であり、以下の製造条件における仕上温度を含む温度表示はいずれも、鋼板表面の温度である。 Note that the temperature difference between the center of the width and the end region varies somewhat in the longitudinal direction of the coil, so temperature measurement is performed at three positions of the 5 m long portion of the front end portion, the central portion and the rear end portion in the coil longitudinal direction. Then, temperature control is performed with the average value thereof. Moreover, the temperature measurement object is the surface of the steel sheet, and any temperature display including the finishing temperature in the following manufacturing conditions is the temperature of the steel sheet surface.
[仕上圧延出側温度:870℃から930℃]
仕上圧延出側温度は、熱延板の組織制御に重要な条件である。仕上圧延出側温度が870℃未満では鋼板幅方向の特に端部域で変態点割れを生じて、ミクロ組織や結晶方位が不均一となる。仕上圧延出側温度が870℃以上であれば均一なミクロ組織が得られるが、930℃を超えるとスケール欠陥が出やすくなり、表面品質に悪影響を与えるため930℃以下とする。
さらに、上記式(1)にて定義されるXが0.5〜1.0の範囲を満足する熱延板の集合組織を得るために、鋼板組成(とくにCおよびMnの含有量)に応じて仕上圧延出側温度を上記870℃から930℃の範囲内でさらに適正に調整する。例えば、CおよびMnの含有量が低いとAr3変態温度が高くなるため、仕上圧延出側温度を高くしないとAr3変態点割れを生じ、上記Xが1.0を超える場合がある。
一方、Ar3変態点直上で圧延を行った場合、未再結晶域で圧延されたオーステナイトのフェライト変態に基づく変態集合組織が発達し、上記Xが0.5未満になる場合がある。前記変態集合組織はMn含有量の増加とともに強まる傾向があり、またC含有量が多いほど変態集合組織中の上記F2の集合組織({211}<110>)が強くなる。そのためMnやCの含有量を本願の上限値以下とする必要がある。
[Finish rolling delivery temperature: 870 ° C to 930 ° C]
The finish rolling outlet temperature is an important condition for controlling the structure of the hot rolled sheet. When the finish rolling exit temperature is less than 870 ° C., transformation point cracks occur in the width direction of the steel sheet, particularly in the end region, and the microstructure and crystal orientation become nonuniform. If the finish rolling exit temperature is 870 ° C or higher, a uniform microstructure can be obtained, but if it exceeds 930 ° C, scale defects are likely to occur, and the surface quality is adversely affected.
Further, in order to obtain a hot rolled sheet texture satisfying the X defined by the above formula (1) in the range of 0.5 to 1.0, finish rolling out according to the steel sheet composition (particularly the contents of C and Mn). Adjust the side temperature more appropriately within the range of 870 ° C to 930 ° C. For example, if the content of C and Mn is low, the Ar 3 transformation temperature becomes high. Therefore, if the finish rolling exit temperature is not increased, Ar 3 transformation point cracking occurs, and the above X may exceed 1.0.
On the other hand, when rolling is performed immediately above the Ar 3 transformation point, a transformation texture based on the ferrite transformation of austenite rolled in the non-recrystallized region develops, and the above X may be less than 0.5. The transformation texture tends to increase as the Mn content increases, and the F2 texture ({211} <110>) in the transformation texture increases as the C content increases. Therefore, it is necessary to make the content of Mn and C not more than the upper limit of the present application.
[熱間圧延後1秒以内に冷却を開始]
熱間圧延後にフェライト変態によって均一な組織を生じさせるためには、フェライト変態を促進する必要があり、圧延後1秒以内に冷却を開始する必要がある。冷却開始までの時間が1秒を超えると、変態前のオーステナイト粒が再結晶、そして粒成長し、フェライト変態が一部で遅れることになる。ここでの冷却速度は特に規定する必要はないが、好ましくは後述する条件に従って行う。
[Cooling starts within 1 second after hot rolling]
In order to produce a uniform structure by ferrite transformation after hot rolling, it is necessary to promote ferrite transformation and to start cooling within 1 second after rolling. When the time until the start of cooling exceeds 1 second, the austenite grains before transformation are recrystallized and grains grow, and the ferrite transformation is delayed in part. Although the cooling rate here does not need to be specified, it is preferably performed according to the conditions described later.
[仕上圧延出側温度から750℃までの平均冷却速度を10℃/s以上]
熱間圧延後1秒以内に冷却を開始して高温域での滞留を回避し、さらに、750℃までの温度域を10℃/s以上で冷却させる必要がある。なぜなら、750℃までの平均冷却速度が10℃/s未満では、フェライト変態が一部不均一に生じて材質を不均一にする、おそれがある。
[Average cooling rate from finish rolling exit temperature to 750 ℃ is 10 ℃ / s or more]
It is necessary to start cooling within 1 second after hot rolling to avoid staying in a high temperature region, and to cool the temperature region up to 750 ° C. at 10 ° C./s or more. This is because if the average cooling rate up to 750 ° C. is less than 10 ° C./s, the ferrite transformation may be partially uneven and the material may be uneven.
[550℃から700℃の温度域にて鋼板を巻取る]
熱間圧延後の巻取り冷却過程において、固溶CおよびNを抑制するには、セメンタイトやAlNの析出を促進させる必要がある。この析出は、巻取り温度が550℃未満では不十分となり、固溶CおよびNによる熱延板の硬質化が生じてしまう。一方、700℃を超えると、粒径が不均一になることや、本発明の炭素量範囲ではセメンタイトの析出の駆動力が小さく固溶Cが残る可能性があることから、700℃以下とする。
[Winding the steel sheet in the temperature range of 550 ℃ to 700 ℃]
In order to suppress solute C and N in the winding cooling process after hot rolling, it is necessary to promote precipitation of cementite and AlN. This precipitation becomes insufficient when the coiling temperature is lower than 550 ° C., and the hot-rolled sheet is hardened by the solute C and N. On the other hand, if it exceeds 700 ° C., the particle size becomes non-uniform, and since the driving force for precipitation of cementite is small and solid solution C may remain in the carbon amount range of the present invention, it is set to 700 ° C. or less. .
表1に示す成分組成に溶製した鋼を用いて、表2に示す各条件に従って熱間圧延を施し、板厚2mmおよび板幅800mmの熱延鋼板を製造した。かくして得られた熱延鋼板について、ミクロ組織および引張特性を調査した。引張試験はJIS5号試験片を用いてJIS Z2241に準拠して行った。 Using steel melted in the composition shown in Table 1, hot rolling was performed according to the conditions shown in Table 2 to produce a hot-rolled steel sheet having a plate thickness of 2 mm and a plate width of 800 mm. The hot rolled steel sheet thus obtained was examined for microstructure and tensile properties. The tensile test was performed according to JIS Z2241 using a JIS No. 5 test piece.
また、熱延鋼板のX値についても、次のように測定した。すなわち、熱延板の幅方向端部から50mmと同端部から板幅の1/4との位置にて、それぞれ30mmφの面積部分を打ち抜いた鋼片を板厚の1/4部分が露出するまで研削した後、その露出面をナイタール液にてマクロ組織が確認できるまで腐食し、(110)、(220)および(211)の3面につき、反射法にて極点図を作成し、これら極点図から級数展開法により上記したODFを算出した。 Further, the X value of the hot-rolled steel sheet was also measured as follows. That is, at the position of 50 mm from the end in the width direction of the hot-rolled sheet and 1/4 of the sheet width from the same end, a 1/4 part of the plate thickness is exposed from the steel piece punched out with an area of 30 mmφ. After that, the exposed surface was corroded with a nital solution until the macro structure was confirmed, and pole figures were created by reflection method for the three surfaces (110), (220) and (211). The above ODF was calculated from the figure by the series expansion method.
さらに、得られた熱延鋼板を冷間圧延に供して、冷間圧延性を評価した。ここで、冷間圧延性は、圧下率95%の圧延における降伏強さにて圧延負荷を評価し、圧延の変動性は鋼板幅中央部に対する端部域の前記降伏強さの比にて評価を行った。 Furthermore, the obtained hot-rolled steel sheet was subjected to cold rolling to evaluate cold rollability. Here, the cold rolling property is evaluated by the rolling load by the yield strength in the rolling with a reduction ratio of 95%, and the rolling variability is evaluated by the ratio of the yield strength in the end region to the central portion of the steel plate width. Went.
表2から、本発明に従う熱延鋼板はいずれも、95%圧延時の降伏強さが830MPa未満と低く、冷延負荷が小さいとともに、幅方向での強度変動も小さく、冷間圧延性に優れることがわかる。 From Table 2, all the hot-rolled steel sheets according to the present invention have a low yield strength at 95% rolling of less than 830 MPa, a small cold-rolling load, a small strength fluctuation in the width direction, and excellent cold rolling properties. I understand that.
Claims (3)
C:0.015〜0.035%、
Si:0.2%以下、
Mn:0.05〜0.35%、
P:0.02%以下、
S:0.02%以下、
Al:0.01〜0.1%および
N:0.005%以下
を含有し、残部がFeおよび不可避的不純物の成分組成を有し、鋼板の幅方向端縁から幅方向へ50mmまでの領域および幅方向端縁から板幅の1/4の位置の、板表面から板厚の1/4の深さにおける集合組織は、下記式(1)にて定義されるXが0.5〜1.0の範囲を満足することを特徴とする熱延鋼板。
記
X=F1/(F2+F3) …(1)
ただし
F1:[001]<110>のODF強度
F2:[211]<110>のODF強度
F3:[111]<112>のODF強度 In mass% C: 0.015-0.035%,
Si: 0.2% or less,
Mn: 0.05 to 0.35%,
P: 0.02% or less,
S: 0.02% or less,
Al: 0.01 to 0.1% and N: 0.005% or less, with the balance being the component composition of Fe and inevitable impurities, from the width direction edge to the width direction of the steel sheet up to 50 mm and from the width direction edge The texture at the position of 1/4 of the sheet width at the depth of 1/4 of the sheet thickness from the sheet surface satisfies that X defined by the following formula (1) is in the range of 0.5 to 1.0. Hot rolled steel sheet.
X = F1 / (F2 + F3) (1)
However,
F1: ODF strength of [001] <110>
F2: ODF strength of [211] <110>
F3: ODF strength of [111] <112>
B:0.0003〜0.0030%、
Ti:0.002〜0.1%、
Nb:0.002〜0.1%、
V:0.002〜0.1%および
Cr:0.01〜0.5%
のうちから選ばれるいずれか1種または2種以上を含有する請求項1に記載の熱延鋼板。 The component composition is further in mass% B: 0.0003 to 0.0030%,
Ti: 0.002 to 0.1%,
Nb: 0.002 to 0.1%,
V: 0.002 to 0.1% and
Cr: 0.01-0.5%
The hot-rolled steel sheet according to claim 1, comprising one or more selected from among the above.
When hot rolling a steel material having the component composition described in claim 1 or 2, on the entry side of finish rolling, a central portion in the width direction of the steel sheet and a region from the edge in the width direction up to 50 mm in the width direction; The temperature difference between the finishing rolling is set to within 30 ° C., the finish rolling exit temperature is set to 870 ° C. to 930 ° C., cooling is started within 1 second after the hot rolling, and the average from the finish rolling exit temperature to 750 ° C. The method for producing a hot-rolled steel sheet according to claim 1 or 2, wherein the cooling rate is 10 ° C / s or more, and then the steel sheet is wound in a temperature range of 550 ° C to 700 ° C.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014069557A JP6349865B2 (en) | 2014-03-28 | 2014-03-28 | Hot-rolled steel sheet and manufacturing method thereof |
CN201580015591.2A CN106103780B (en) | 2014-03-28 | 2015-03-27 | Hot rolled steel plate and its manufacture method |
PCT/JP2015/001770 WO2015146186A1 (en) | 2014-03-28 | 2015-03-27 | Hot-rolled steel sheet and method for producing same |
KR1020167022833A KR101920981B1 (en) | 2014-03-28 | 2015-03-27 | Hot-rolled steel sheet and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014069557A JP6349865B2 (en) | 2014-03-28 | 2014-03-28 | Hot-rolled steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015190027A JP2015190027A (en) | 2015-11-02 |
JP6349865B2 true JP6349865B2 (en) | 2018-07-04 |
Family
ID=54194730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014069557A Active JP6349865B2 (en) | 2014-03-28 | 2014-03-28 | Hot-rolled steel sheet and manufacturing method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6349865B2 (en) |
KR (1) | KR101920981B1 (en) |
CN (1) | CN106103780B (en) |
WO (1) | WO2015146186A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113699445B (en) * | 2021-08-18 | 2022-05-31 | 中天钢铁集团有限公司 | Rolling process of coarse grain low-carbon steel |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6330969A (en) | 1986-07-25 | 1988-02-09 | Dainippon Printing Co Ltd | Catalog editing system |
JP2879575B2 (en) | 1989-08-22 | 1999-04-05 | 日新製鋼株式会社 | Manufacturing method of ultra-thin cold rolled steel sheet having both high ductility and deep drawability |
JP2000158888A (en) * | 1998-11-25 | 2000-06-13 | Okamoto Ind Inc | Mat |
JP4380349B2 (en) * | 2004-02-10 | 2009-12-09 | Jfeスチール株式会社 | Method for producing precipitation-strengthened hot-rolled steel sheet with uniform mechanical properties |
JP4496995B2 (en) * | 2005-03-10 | 2010-07-07 | Jfeスチール株式会社 | Method for producing hot-rolled sheet steel for hot-dip galvanized steel sheets with excellent cold-rollability and corrugation workability |
JP5045176B2 (en) * | 2007-02-15 | 2012-10-10 | 住友金属工業株式会社 | Hot-rolled steel sheet excellent in in-plane anisotropy of r value and method for producing the same |
JP5396793B2 (en) | 2008-09-25 | 2014-01-22 | Jfeスチール株式会社 | Ultra-thin cold-rolled steel sheet for building materials and manufacturing method thereof |
JP4998757B2 (en) * | 2010-03-26 | 2012-08-15 | Jfeスチール株式会社 | Manufacturing method of high strength steel sheet with excellent deep drawability |
JP5534112B2 (en) * | 2011-12-08 | 2014-06-25 | Jfeスチール株式会社 | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof |
JP5838796B2 (en) * | 2011-12-27 | 2016-01-06 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof |
-
2014
- 2014-03-28 JP JP2014069557A patent/JP6349865B2/en active Active
-
2015
- 2015-03-27 CN CN201580015591.2A patent/CN106103780B/en active Active
- 2015-03-27 WO PCT/JP2015/001770 patent/WO2015146186A1/en active Application Filing
- 2015-03-27 KR KR1020167022833A patent/KR101920981B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101920981B1 (en) | 2018-11-21 |
CN106103780A (en) | 2016-11-09 |
JP2015190027A (en) | 2015-11-02 |
CN106103780B (en) | 2018-01-26 |
KR20160111485A (en) | 2016-09-26 |
WO2015146186A1 (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI465583B (en) | Galvanized steel sheet and method for manufacturing the same | |
JP4902026B2 (en) | Steel plate and steel plate manufacturing method | |
KR102004077B1 (en) | High-strength cold-rolled steel sheet, high-strength coated steel sheet, method for manufacturing high-strength cold-rolled steel sheet, and method for manufacturing high-strength coated steel sheet | |
JP5838796B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof | |
JP5270274B2 (en) | High strength cold-rolled steel sheet with excellent elongation and stretch flangeability | |
KR102259597B1 (en) | Hot rolled steel sheet and manufacturing method thereof | |
KR101706441B1 (en) | High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method for manufacturing the same | |
JP6460258B2 (en) | High strength hot-rolled steel sheet and manufacturing method thereof | |
WO2014171057A1 (en) | High strength hot rolled steel sheet and method for producing same | |
JP4888255B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP6631762B1 (en) | Cold rolled steel sheet and method for producing the same | |
JP4840270B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP6066023B1 (en) | Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method | |
JP4626484B2 (en) | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof | |
JP6349865B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP2007119848A (en) | Cold rolled ferritic stainless steel sheet having excellent press formability and its production method | |
JP2015137422A (en) | Hot rolled steel sheet and production method thereof | |
JP6628018B1 (en) | Hot rolled steel sheet | |
JP5534112B2 (en) | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof | |
KR20120099144A (en) | Cold-rolled steel plate and method for producing same | |
JP5862254B2 (en) | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof | |
JP2009149924A (en) | Steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6349865 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |