[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6347615B2 - Impact absorbing resin composition - Google Patents

Impact absorbing resin composition Download PDF

Info

Publication number
JP6347615B2
JP6347615B2 JP2014019492A JP2014019492A JP6347615B2 JP 6347615 B2 JP6347615 B2 JP 6347615B2 JP 2014019492 A JP2014019492 A JP 2014019492A JP 2014019492 A JP2014019492 A JP 2014019492A JP 6347615 B2 JP6347615 B2 JP 6347615B2
Authority
JP
Japan
Prior art keywords
polymer
filler
block copolymer
manufactured
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014019492A
Other languages
Japanese (ja)
Other versions
JP2015145484A (en
Inventor
佐野 武司
武司 佐野
清博 井上
清博 井上
寿雄 杉前
寿雄 杉前
達也 野杁
達也 野杁
Original Assignee
高圧ガス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高圧ガス工業株式会社 filed Critical 高圧ガス工業株式会社
Priority to JP2014019492A priority Critical patent/JP6347615B2/en
Publication of JP2015145484A publication Critical patent/JP2015145484A/en
Application granted granted Critical
Publication of JP6347615B2 publication Critical patent/JP6347615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、衝撃からデバイスを保護する衝撃吸収用樹脂組成物に関する。   The present invention relates to an impact-absorbing resin composition that protects a device from impact.

スマートフォン、タブレット等の普及により、デバイスの小型化、軽量化はもちろんのこと、衝撃からデバイスを保護する衝撃吸収シートについても軽量化、薄型化が求められている。   With the widespread use of smartphones, tablets, etc., not only miniaturization and weight reduction of devices, but also impact absorption sheets that protect devices from impacts are required to be lighter and thinner.

衝撃吸収シートとしては、従来、ブチルゴム等の加硫ゴムやシリコーンゴム等の合成ゴムからなる防振ゴムが使用されていたが、近年、高い制振性能と製造コストの低減が期待できる制振材料が検討されている。制振材料は、振動エネルギーを熱エネルギーに変換するもので、高分子の粘弾性を利用するものが知られている。高分子による振動の減衰は、外部からの振動エネルギーを熱エネルギーに変換し、外部に放出させて振動エネルギーを損失させる機能を利用する。しかし、この減衰効果は、高分子のガラス転移温度(Tg)付近の温度領域にのみ制限される。換言すると、高分子を用いる従来の制振材料では、振動減衰に必要な高い損失係数(tanδ)を示す使用可能温度範囲が狭いという問題がある。   Conventionally, anti-vibration rubber made of vulcanized rubber such as butyl rubber or synthetic rubber such as silicone rubber has been used as the impact absorbing sheet. However, in recent years, damping materials that can be expected to have high vibration damping performance and reduced manufacturing costs. Is being considered. Damping materials are materials that convert vibration energy into thermal energy, and those that utilize the viscoelasticity of polymers are known. Damping of vibration by a polymer utilizes a function of converting vibration energy from the outside into heat energy and releasing the vibration energy by releasing it to the outside. However, this damping effect is limited only to a temperature region near the glass transition temperature (Tg) of the polymer. In other words, the conventional damping material using a polymer has a problem that the usable temperature range showing a high loss coefficient (tan δ) necessary for vibration damping is narrow.

これに対し、より広い温度範囲で制振性を発現させるために、ガラス転移温度が離れた2種類以上の高分子を混合することが行われている。混合された高分子が非相溶性であれば、それぞれのガラス転移温度で損失係数のピーク(以下、温度ピークという。)が現れ、幅広い温度ピークを得ることができない。また、相溶性が良ければ単一の温度ピークとなる。そこで、半相溶性の高分子を選択して混合することが試みられている。しかし、温度ピークの幅は広くなるが、温度ピークの高さが低くなり制振性能は低下するという問題がある。また、2つ以上の高分子を相互網目構造にしたり、非相溶性の樹脂に対し相溶化剤を用いる方法も提案されている(特許文献1)。   On the other hand, two or more types of polymers having different glass transition temperatures are mixed in order to develop vibration damping properties in a wider temperature range. If the mixed polymer is incompatible, a loss coefficient peak (hereinafter referred to as a temperature peak) appears at each glass transition temperature, and a wide temperature peak cannot be obtained. If the compatibility is good, a single temperature peak is obtained. Thus, attempts have been made to select and mix semi-compatible polymers. However, although the width of the temperature peak becomes wide, there is a problem that the vibration suppression performance deteriorates because the height of the temperature peak becomes low. In addition, a method has been proposed in which two or more polymers have a mutual network structure or a compatibilizing agent is used for an incompatible resin (Patent Document 1).

また、熱可塑性樹脂に3個以上の環を有する低分子を添加する方法(特許文献2)、高分子材料に双極子モーメントを増大させる低分子化合物を添加する方法(特許文献3)が提案されている。   In addition, a method of adding a low molecule having three or more rings to a thermoplastic resin (Patent Document 2) and a method of adding a low molecular compound that increases a dipole moment to a polymer material (Patent Document 3) have been proposed. ing.

特開2001−152028号公報JP 2001-152028 A 特開平5−112670号公報JP-A-5-112670 特開2004−300342号公報JP 2004-300342 A

しかしながら、従来の制振材料はその制振性能を発揮するためには少なくとも数mm程度の厚さが必要であり、それよりも薄くすると十分な制振性能を発揮することができないという問題がある。   However, the conventional damping material needs to have a thickness of at least several millimeters in order to exhibit the damping performance, and if it is thinner than that, there is a problem that sufficient damping performance cannot be exhibited. .

そこで、本発明は、薄型化しても優れた制振性能を有する衝撃吸収用樹脂組成物を提供することを目的とした。   Therefore, an object of the present invention is to provide an impact-absorbing resin composition that has excellent vibration damping performance even if it is thinned.

上記課題を解決するため、本発明の衝撃吸収用樹脂組成物は、ガラス転移点が30℃以上の重合体成分Aとガラス転移点が0℃以下の重合体成分Aとを含むブロック共重合体Aと、該重合体成分A1と相溶性がある重合体Bと、該重合体Bと相溶性がある、または該重合体Bに分散するフィラーCとを含んでなることを特徴とする。 To solve the above problems, the shock-absorbing resin composition of the present invention, the glass transition point is above 30 ° C. the polymer component A 1 and the glass transition point block copolymer containing a 0 ℃ less of the polymer component A 2 It comprises a polymer A, a polymer B compatible with the polymer component A1, and a filler C compatible with the polymer B or dispersed in the polymer B. .

また、本発明の衝撃吸収用樹脂組成物の製造方法は、前記重合体Bと前記フィラーCを含む混合物を、前記のブロック共重合体Aと混合することを特徴とする。   Moreover, the manufacturing method of the resin composition for shock absorption of this invention mixes the mixture containing the said polymer B and the said filler C with the said block copolymer A, It is characterized by the above-mentioned.

通常、ガラス転移点の高い重合体成分(ハードセグメント)とそのハードセグメントよりもガラス転移点の低い重合体成分(ソフトセグメント)とを含むブロック共重合体は、常温では、ゴム弾性を有するソフトセグメントが制振性能を発現し、ハードセグメントは制振性能には直接寄与しない。しかし、本発明の衝撃吸収用樹脂組成物は、ハードセグメントと相溶する重合体Bと、該重合体Bと相溶性がある、または該重合体Bに分散するフィラーCとを含んでいるので、ハードセグメントの存在する領域、いわゆるハードセグメントドメインに、重合体BとフィラーCが存在するので、ハードセグメントドメインにおいても制振性能を発現させることが可能となる。これにより、ゴム弾性を有するソフトセグメントとの相乗効果により、薄型化しても、制振性能の低下を抑制して、優れた衝撃吸収性を付与することが可能となる。   Usually, a block copolymer containing a polymer component having a high glass transition point (hard segment) and a polymer component having a glass transition point lower than that hard segment (soft segment) is a soft segment having rubber elasticity at room temperature. Develops damping performance, and the hard segment does not directly contribute to damping performance. However, the impact-absorbing resin composition of the present invention contains the polymer B that is compatible with the hard segment and the filler C that is compatible with the polymer B or is dispersed in the polymer B. In addition, since the polymer B and the filler C exist in a region where the hard segment exists, that is, a so-called hard segment domain, it is possible to exhibit the damping performance also in the hard segment domain. Thereby, due to a synergistic effect with the soft segment having rubber elasticity, even if the thickness is reduced, it is possible to suppress the deterioration of the vibration damping performance and to impart excellent shock absorption.

本発明の樹脂組成物からなるシートの厚さと衝撃吸収率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the sheet | seat which consists of a resin composition of this invention, and an impact absorption rate.

以下、本発明の実施の形態について詳細に説明する。
本発明の衝撃吸収用樹脂組成物は、ガラス転移点が30℃以上の重合体成分Aとガラス転移点が0℃以下の重合体成分Aとを含むブロック共重合体Aと、該重合体成分Aと相溶性がある重合体Bと、該重合体Bと相溶性がある、または該重合体Bに分散するフィラーCとを含んでなることを特徴とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
Shock absorbing resin composition of the present invention, the block copolymer A glass transition point of more than 30 ° C. the polymer component A 1 and the glass transition point containing a 0 ℃ following polymer components A 2, heavy It is characterized by comprising a polymer B compatible with the polymer component A 1 and a filler C compatible with the polymer B or dispersed in the polymer B.

(ブロック共重合体A)
本発明に用いるブロック共重合体Aは、ガラス転移点が30℃以上の重合体成分A(ハードセグメント)とガラス転移点が0℃以下の重合体成分A(ソフトセグメント)とを含むものである。重合体成分Aと重合体成分Aの配列は特に限定されるものではなく、任意の配列をとることができる。例えば、(A―A)p、(A―A―A)q、(A―A―A)rで表すことができる。ここで、p、q、rは任意の整数である。
(Block copolymer A)
The block copolymer A used in the present invention comprises a polymer component A 1 (hard segment) having a glass transition point of 30 ° C. or higher and a polymer component A 2 (soft segment) having a glass transition point of 0 ° C. or lower. . Sequence of the polymer component A 1 with the polymer component A 2 is not limited in particular, can take any sequence. For example, it can be represented by (A 1 -A 2 ) p, (A 1 -A 2 -A 1 ) q, (A 2 -A 1 -A 2 ) r. Here, p, q, and r are arbitrary integers.

重合体成分Aを構成する重合体は、ガラス転移点が30℃以上の重合体である、スチレン系樹脂、ポリ(メタ)アクリレート樹脂、ポリアミド樹脂、ポリエステル樹脂等を挙げることができる。スチレン系樹脂としては、ポリスチレン、ポリクロルスチレン、ポリα−メチルスチレン等を挙げることができるが、ポリスチレン(Tg=80〜100℃)が好ましい。また、ポリ(メタ)アクリレート樹脂としては、ポリメチルメタクリレート(Tg=72〜105℃)、ポリエチルメタクリレート(Tg=65℃)、ポリt-ブチルメタクリレート(Tg=107℃)を挙げることができる。また、ポリアミド樹脂としては、ポリアミド6(Tg=50℃)やポリアミド66(Tg=50℃)、ポリアミド610(Tg=50℃)を挙げることができる。また、ポリエステル樹脂としては、ポリエチレンテレフタレート(Tg=80℃)やポリブチレンテレフタレート(Tg=37〜53℃)、ポリエチレンナレフタレート(Tg=113℃)を挙げることができる。 Polymer constituting the polymer component A 1 may be mentioned a glass transition point of 30 ° C. or more polymers, styrene resins, poly (meth) acrylate resin, polyamide resin, polyester resin or the like. Examples of the styrene resin include polystyrene, polychlorostyrene, poly α-methylstyrene and the like, and polystyrene (Tg = 80 to 100 ° C.) is preferable. Examples of the poly (meth) acrylate resin include polymethyl methacrylate (Tg = 72 to 105 ° C.), polyethyl methacrylate (Tg = 65 ° C.), and poly t-butyl methacrylate (Tg = 107 ° C.). Examples of the polyamide resin include polyamide 6 (Tg = 50 ° C.), polyamide 66 (Tg = 50 ° C.), and polyamide 610 (Tg = 50 ° C.). Examples of the polyester resin include polyethylene terephthalate (Tg = 80 ° C.), polybutylene terephthalate (Tg = 37 to 53 ° C.), and polyethylene naphthalate (Tg = 113 ° C.).

また、重合体成分Aは、ガラス転移点が0℃以下の重合体であり、重合体成分Aに応じて選択することができる。例えば、ポリスチレンに対してはポリイソプレン、ポリビニルイソプレン、ポリブタジエン、およびこれらの水添物であるポリ(エチレン−プロピレン)、ポリ(エチレン−ブチレン)を挙げることができる。また、ポリメチルメタクリレートに対しては、ポリブチルアクリレートを挙げることができる。また、ポリアミドに対してはポリエステルまたはポリエーテルを挙げることができる。また、芳香族ポリエステルに対しては脂肪族ポリエステルまたはポリエーテルを挙げることができる。 In addition, the polymer component A 2 is a polymer having a glass transition point of 0 ° C. or lower, and can be selected according to the polymer component A 1 . For example, for polystyrene, polyisoprene, polyvinyl isoprene, polybutadiene, and hydrogenated products thereof such as poly (ethylene-propylene) and poly (ethylene-butylene) can be mentioned. Moreover, polybutyl acrylate can be mentioned with respect to polymethylmethacrylate. Also, for polyamides, mention may be made of polyesters or polyethers. For aromatic polyesters, mention may be made of aliphatic polyesters or polyethers.

ブロック共重合体Aの具体例としては、特に限定されるものではないが、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ビニルイソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体等のスチレン系ブロック共重合体およびこれらの水添物、並びにメチルメタクリレート−ブチルアクリレート−メチルアクリレート樹脂を挙げることができる。   Specific examples of the block copolymer A are not particularly limited, but styrene-isoprene-styrene block copolymer, styrene-vinylisoprene-styrene block copolymer, styrene-butadiene-styrene block copolymer. And styrene block copolymers such as hydrogenated products thereof, and methyl methacrylate-butyl acrylate-methyl acrylate resins.

本発明においては、例えば以下の市販のブロック共重合体を用いることができる。
(1)スチレン−イソプレン−スチレンブロック共重合体(SIS)
クレイトン社製のクレイトンD、JSR社製のJSR SIS、日本ゼオン社製のクインタック
(2)スチレン−ブタジエン−スチレンブロック共重合体(SBS)
クレイトン社製のクレイトンD、旭化成社製のタフプレン、旭化成社製のアサプレンT
(3)スチレン−(エチレン−プロピレン)−スチレンブロック共重合体(SEPS)(SISの水添物)
クレイトン社製のクレイトンG、クラレ社製のセプトン
(4)スチレン−(エチレン−ブチレン)−スチレンブロック共重合体(SEBS)(SBSの水添物)
クレイトン社製のクレイトンG、旭化成社製のタフテックH、クラレ社製のセプトン
(5)スチレン−ブタジエン−ブチレン−スチレンブロック共重合体(SBBS)
旭化成社製のタフテックP
(6)スチレン−エチレン−(エチレン−プロピレン)−スチレンブロック共重合体(SEEPS)
クラレ社製のセプトン
(8)スチレン−ビニルポリイソプレン−スチレンブロック共重合体
クラレ社製のハイブラー
(9)メタクリル酸メチル−アクリル酸ブチル−メタクリル酸メチルブロック共重合体
クラレ社製のクラリティ、アルケマ社製のナノストレングス
また、上記(1)〜(6)の共重合体のカルボキシル基、水酸基、エポキシ基、無水マレイン酸基等の変性物も用いることができる。
In the present invention, for example, the following commercially available block copolymers can be used.
(1) Styrene-isoprene-styrene block copolymer (SIS)
Clayton D manufactured by Clayton Co., JSR SIS manufactured by JSR Co., Ltd., Quintac manufactured by Nippon Zeon Co., Ltd. (2) Styrene-butadiene-styrene block copolymer (SBS)
Clayton D made by Clayton, Toughprene made by Asahi Kasei, Asaprene T made by Asahi Kasei
(3) Styrene- (ethylene-propylene) -styrene block copolymer (SEPS) (SIS hydrogenated product)
Clayton G manufactured by Clayton Co., Septon manufactured by Kuraray Co., Ltd. (4) Styrene- (ethylene-butylene) -styrene block copolymer (SEBS) (hydrogenated product of SBS)
Clayton G manufactured by Clayton Co., Tuftec H manufactured by Asahi Kasei Co., Ltd., Septon manufactured by Kuraray Co., Ltd. (5) Styrene-butadiene-butylene-styrene block copolymer (SBBS)
Tuftec P manufactured by Asahi Kasei
(6) Styrene-ethylene- (ethylene-propylene) -styrene block copolymer (SEEPS)
Kuraray Septon (8) Styrene-vinyl polyisoprene-styrene block copolymer Kuraray Hybra (9) Methyl methacrylate-butyl acrylate-methyl methacrylate block copolymer Kuraray Clarity, Arkema Nanostrength manufactured The modified products such as carboxyl group, hydroxyl group, epoxy group, and maleic anhydride group of the copolymers (1) to (6) can also be used.

(重合体B)
重合体Bは重合体成分Aと相溶性を有する。ここで、本発明において重合体Bが重合体成分Aと相溶性を有するとは、重合体成分Aの単独重合体と重合体Bとを混合してフィルムを作製でき、そのフィルムが室温での目視で透明であることをいう。
(Polymer B)
Polymer B having compatibility with the polymer component A 1. Here, the polymer B in the present invention is a polymer component A 1 and has a compatibility, a mixture of homopolymer of the polymer component A 1 and the polymer B can form a film, the film is at room temperature It is transparent by visual inspection.

重合体Bは重合体成分Aの種類に応じて選択することができる。例えば、重合体成分Aに上記のスチレン系樹脂を用いる場合、重合体Bには芳香族炭化水素樹脂、脂環式炭化水素樹脂、およびそれらの共重合樹脂を用いることができる。あるいは芳香族炭化水素オリゴマー、脂肪族環状炭化水素オリゴマー、およびそれらの共重合オリゴマーでもよい。ここで、本発明においては、オリゴマーとは、重合度が10以下のものをいう。芳香族炭化水素樹脂とは、ベンゼン環及び複数の縮合環から構成される化合物であり、例えば、スチレン、α−メチルスチレン、t−ブチルスチレン、ビニルトルエン等の置換スチレンの単独重合体またはその変性物を挙げることができる。また、脂環式炭化水素樹脂としては、芳香族樹脂の水添物やシクロヘキシルメタクリレート樹脂を挙げることができる。共重合樹脂とは、芳香族樹脂または脂環式樹脂と、脂肪族樹脂との共重合物である。好ましくは芳香族炭化水素樹脂、より好ましくはスチレンの単独重合体またはその変性物である。また、変性物としてはオキサゾリン基含有ポリスチレンが好ましい。 Polymer B can be selected depending on the type of the polymer component A 1. For example, if the polymer component A 1 using the above styrene-based resin, the polymer B can be used aromatic hydrocarbon resins, alicyclic hydrocarbon resins, and copolymer resin thereof. Or an aromatic hydrocarbon oligomer, an aliphatic cyclic hydrocarbon oligomer, and those copolymerization oligomers may be sufficient. Here, in the present invention, the oligomer means one having a polymerization degree of 10 or less. The aromatic hydrocarbon resin is a compound composed of a benzene ring and a plurality of condensed rings. For example, a homopolymer of a substituted styrene such as styrene, α-methylstyrene, t-butylstyrene, vinyltoluene, or a modification thereof. You can list things. Examples of the alicyclic hydrocarbon resin include hydrogenated aromatic resins and cyclohexyl methacrylate resins. The copolymer resin is a copolymer of an aromatic resin or alicyclic resin and an aliphatic resin. An aromatic hydrocarbon resin is preferable, and a homopolymer of styrene or a modified product thereof is more preferable. The modified product is preferably oxazoline group-containing polystyrene.

また、重合体成分Aに上記のポリ(メタ)アクリレート樹脂を用いる場合、重合体Bには、脂肪族炭化水素樹脂を用いることができる。脂肪族炭化水素樹脂としては、ポリオレフィン樹脂、ポリ(メタ)アクリレート樹脂、およびそれらの変性物を用いることができる。好ましくはポリ(メタ)アクリレート樹脂またはその変性物である。ここで、変性物はカルボキシル基、水酸基、エポキシ基、無水マレイン酸基等の変性物である。 Further, when the polymer components A 1 using the above poly (meth) acrylate resin, the polymer B, it is possible to use aliphatic hydrocarbon resins. As the aliphatic hydrocarbon resin, polyolefin resin, poly (meth) acrylate resin, and modified products thereof can be used. A poly (meth) acrylate resin or a modified product thereof is preferable. Here, the modified product is a modified product such as a carboxyl group, a hydroxyl group, an epoxy group, and a maleic anhydride group.

また、重合体成分Aに上記のポリアミド樹脂を用いる場合、重合体Bには、エポキシ基やオキサゾリン基を含有した、芳香族または脂環式樹脂を用いることができる。 Further, when the polymer components A 1 using the above polyamide resin, the polymer B, containing an epoxy group or oxazoline group, may be an aromatic or cycloaliphatic resins.

また、重合体成分Aに上記のポリエステル樹脂を用いる場合、重合体Bには、エポキシ基やオキサゾリン基を含有した、芳香族または脂環式樹脂を用いることができる。 Further, when the polymer components A 1 using the above polyester resin, the polymer B, containing an epoxy group or oxazoline group, may be an aromatic or cycloaliphatic resins.

本発明においては、重合体Bとして、例えば以下の市販の樹脂を用いることができる。
(芳香族炭化水素樹脂)
(1)スチレン系樹脂
三井化学社製のFTR、ヤスハラケミカル社製のYSレジンSX、東亜合成社製のアルフォンUP−1150
(2)芳香族系石油樹脂
JX日鉱日石エネルギー社製の芳香族系石油樹脂ネオポリマー、東ソー社製の石油樹脂ペトコール、東ソー社製の石油樹脂ペトコール、フドー社製のキシレン樹脂ニカノール
(3)芳香族変性樹脂
東ソー社製の石油樹脂ペトロタック、日本触媒社製のオキサゾリン基含有反応性ポリスチレンであるエポクロスRPS−1005
(4)芳香族系オイル
JX日鉱日石エネルギー社製の日石ハイゾールSAS、出光興産社製のダイアナプロセスオイルAC
(ポリ(メタ)アクリレート樹脂)
(1)ポリメタアクリレート樹脂
三菱レーヨン製のアクリペット、クラレ社製のパラペレット
(2)ポリアクリレート変性樹脂
東亜合成社製のカルボキシル基含有アクリル系ポリマーであるアルフォンUC−3000
In the present invention, as the polymer B, for example, the following commercially available resins can be used.
(Aromatic hydrocarbon resin)
(1) Styrenic resin FTR manufactured by Mitsui Chemicals, YS resin SX manufactured by Yasuhara Chemical, Alfon UP-1150 manufactured by Toa Gosei
(2) Aromatic petroleum resin Aromatic petroleum resin neopolymer manufactured by JX Nippon Oil & Energy, Petroleum resin Petcoal manufactured by Tosoh Corporation, Petroleum resin Petcole manufactured by Tosoh Corporation, Xylene resin Nikanol manufactured by Fudou Co., Ltd. (3) Aromatic modified resin PetroTac, a petroleum resin manufactured by Tosoh Corporation, Epocross RPS-1005, which is a reactive polystyrene containing oxazoline group, manufactured by Nippon Shokubai Co., Ltd.
(4) Aromatic oils JX Nippon Oil &Energy's Nisseki Hyzol SAS, Idemitsu Kosan Diana Process Oil AC
(Poly (meth) acrylate resin)
(1) Polymethacrylate resin Mitsubishi Rayon Acrypet, Kuraray Parapellet (2) Polyacrylate-modified resin Alfon UC-3000, a carboxyl group-containing acrylic polymer manufactured by Toa Gosei Co., Ltd.

また、重合体Bとして、フィラーと反応する重合体を用いることができる。フィラーと反応させることにより、重合体Bと一体的に、ハードセグメントの存在する領域、いわゆるハードセグメントドメインに、重合体BとフィラーCがより存在し易くなり、ハードセグメントドメインにおける制振性能をより向上させることが可能となる。フィラーと反応する重合体Bの例としては、上記のオキサゾリン基含有反応性ポリスチレンを挙げることができる。オキサゾリン基はフィラーのカルボン酸基、水酸基、チオール基と反応する。また、重合体Bの別の例としては、エポキシ基やカルボン酸基、水酸基等で変性した重合体を挙げることができる。   Moreover, the polymer which reacts with a filler can be used as the polymer B. By reacting with the filler, the polymer B and the filler C more easily exist in the region where the hard segment exists, that is, the so-called hard segment domain, integrally with the polymer B, and the damping performance in the hard segment domain is further improved. It becomes possible to improve. Examples of the polymer B that reacts with the filler include the above-mentioned oxazoline group-containing reactive polystyrene. The oxazoline group reacts with the carboxylic acid group, hydroxyl group, and thiol group of the filler. Another example of the polymer B is a polymer modified with an epoxy group, a carboxylic acid group, a hydroxyl group, or the like.

(フィラー)
本発明に用いるフィラーは、芳香族炭化水素、脂肪族環状炭化水素、およびヘテロ芳香族炭化水素からなる群から選択される2個以上の環状構造を有する化合物またはその化合物の金属塩である。ここで、2個以上の環状構造とは、2個以上の単環化合物が直接結合または連結基を介して結合したものや、2個以上の単環が縮合した縮合多環化合物や、架橋環式化合物や、スピロ多環化合物をいう。以下、特に断らない限り、縮合多環化合物、架橋環式化合物、およびスピロ多環化合物を多環化合物という。
(Filler)
The filler used in the present invention is a compound having two or more cyclic structures selected from the group consisting of aromatic hydrocarbons, aliphatic cyclic hydrocarbons, and heteroaromatic hydrocarbons, or a metal salt of the compound. Here, the two or more cyclic structures are those in which two or more monocyclic compounds are bonded directly or through a linking group, condensed polycyclic compounds in which two or more monocyclic rings are condensed, A formula compound or a spiro polycyclic compound. Hereinafter, unless otherwise specified, the condensed polycyclic compound, the bridged cyclic compound, and the spiro polycyclic compound are referred to as a polycyclic compound.

また、2個以上の環状構造を有する化合物には、低分子のみならず高分子も含まれる。例えば、該高分子が単独重合体の場合、繰り返し単位が2個以上の単環化合物が直接結合または連結基を介して結合した重合体、および繰り返し単位が1個以上の単環化合物と1個の多環化合物とが直接結合または連結基を介して結合した重合体を含む。また、該高分子が共重合体の場合、該共重合体の各成分の繰り返し単位が、1個の単環化合物、2個以上の単環化合物が直接結合または連結基を介して結合した化合物、および1個の多環化合物からなる群から選択されるいずれか1種の化合物を含む。   Further, the compound having two or more cyclic structures includes not only low molecules but also polymers. For example, when the polymer is a homopolymer, a polymer in which two or more monocyclic compounds having repeating units are bonded directly or via a linking group, and one monocyclic compound having one or more repeating units and one And a polycyclic compound bonded to each other via a direct bond or a linking group. Further, when the polymer is a copolymer, the repeating unit of each component of the copolymer is a compound in which one monocyclic compound or two or more monocyclic compounds are bonded directly or via a linking group. And any one compound selected from the group consisting of one polycyclic compound.

ここで、2個以上の単環化合物を連結する連結基としては、−O−、−S−、−P−、−NH−、−NR−(Rは炭素数1〜4のアルキル基)、−Si−、−COO―、―CONH−、−(CH−(nは1〜12の整数)、−CH=CH−、および−C≡C−から成る群から選択される1種を用いることができる。なお、−(CH−は、nが2以上の場合、メチレン基の少なくとも1つが−O−、−S−、−P−、−NH−、−NR−(Rは炭素数1〜4のアルキル基)、−Si−、−COO―、―CONH−、−CH=CH−、および−C≡C−で置換されてもよい。 Here, as a linking group for linking two or more monocyclic compounds, -O-, -S-, -P-, -NH-, -NR- (R is an alkyl group having 1 to 4 carbon atoms), One selected from the group consisting of —Si—, —COO—, —CONH—, — (CH 2 ) n — (n is an integer of 1 to 12), —CH═CH—, and —C≡C—. Can be used. In addition, — (CH 2 ) n — means that when n is 2 or more, at least one of the methylene groups is —O—, —S—, —P—, —NH—, —NR— (R represents a carbon number of 1 to 4 alkyl group), —Si—, —COO—, —CONH—, —CH═CH—, and —C≡C—.

芳香族炭化水素から選択される2個以上の環状構造を有する化合物としては、単環化合物であるベンゼンが直接結合または連結基を介して結合したものとして、置換基を有してもよい、ビフェニル、ジフェニルアミン、トリフェニルアミン、メチレンビスフェノールを挙げることができる。また、多環化合物としては、置換基を有してもよい、ナフタレン、アントラセン、フェナントレン、テトラフィドロナフタレン、9,10−ジヒドロアントラセン、およびアセトナフタレンを挙げることができる。   As the compound having two or more cyclic structures selected from aromatic hydrocarbons, biphenyl, which is a monocyclic compound bonded directly or via a linking group, may have a substituent. , Diphenylamine, triphenylamine, and methylenebisphenol. In addition, examples of the polycyclic compound include naphthalene, anthracene, phenanthrene, tetrafidronaphthalene, 9,10-dihydroanthracene, and acetonaphthalene, which may have a substituent.

脂肪族環状炭化水素から選択される2個以上の環状構造を有する化合物としては、単環化合物である、シクロヘキサン、シクロペンタン、シクロプロパン、シクロブタン、イソボルニル、または環内に二重結合を有するシクロヘキセン、シクロペンテン、シクロプロペンおよびシクロブテンが直接結合または連結基を介して結合したものを挙げることができる。また、多環化合物としては、置換基を有してもよい、炭素数5以上のモノシクロ体、ジシクロ体、トリシクロ体、テトラシクロ体、ペンタシクロ体、具体的にはジシクロペンテニル、ノルボルネニル等を挙げることができる。また、脂肪族環状炭化水素は、α−ピネン、β−ピネン、リモネン、カフェイン、アビエチン酸基、テルピノレン、テルピネン、フェランドレン、α−カロチン、β−カロチン、γ−カロチン等の脂環式テルペン類も含む。これらの成分が主である植物の精油成分から得られるテルペン油や松脂を精製して得られるロジン及びその誘導体(不均化ロジンを含む)も含む。   Examples of the compound having two or more cyclic structures selected from aliphatic cyclic hydrocarbons are monocyclic compounds such as cyclohexane, cyclopentane, cyclopropane, cyclobutane, isobornyl, or cyclohexene having a double bond in the ring, Examples include cyclopentene, cyclopropene and cyclobutene bonded directly or via a linking group. In addition, examples of the polycyclic compound include monocyclo, dicyclo, tricyclo, tetracyclo, and pentacyclo, which may have a substituent, specifically dicyclopentenyl, norbornenyl, and the like. Can do. Aliphatic cyclic hydrocarbons include alicyclic terpenes such as α-pinene, β-pinene, limonene, caffeine, abietic acid group, terpinolene, terpinene, ferrandolene, α-carotene, β-carotene, and γ-carotene. Also includes. The rosin obtained by refine | purifying the terpene oil obtained from the essential oil component of the plant in which these components are main, and a rosin, and its derivative (including disproportionated rosin) are also included.

ヘテロ芳香族炭化水素から選択される2個以上の環状構造を有する化合物としては、単環化合物である、置換基を有してもよい、ピロール、フラン、チオフェン、イミダゾール、マレイミド、オキサゾール、チアゾール、ピラゾール、イソオキサゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、ピペリジン、ピペラジン、モルホリンを挙げることができる。また、多環化合物としては、置換基を有してもよい、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、ベンゾトリアゾール、イソベンゾチオフェン、インドール、イソインドール、ベンゾイミダゾール、ベンゾチアゾール、ベンゾオキサゾール、キナゾール、ナフチリジン等を挙げることができる。   As the compound having two or more cyclic structures selected from heteroaromatic hydrocarbons, which may be a monocyclic compound and may have a substituent, pyrrole, furan, thiophene, imidazole, maleimide, oxazole, thiazole, Examples include pyrazole, isoxazole, isothiazole, pyridine, pyridazine, pyrimidine, piperidine, piperazine and morpholine. The polycyclic compound may have a substituent, such as benzofuran, isobenzofuran, benzothiophene, benzotriazole, isobenzothiophene, indole, isoindole, benzimidazole, benzothiazole, benzoxazole, quinazole, naphthyridine, etc. Can be mentioned.

ここで、2個以上の単環化合物は、同種の単環化合物のみからなる場合に限らず、異種の単環化合物を含んでもよい。また、上記の置換基には、炭素数1から4の直鎖または分岐のアルキル基、ハロゲン原子、シアノ基、水酸基、ニトロ基、アルコキシ基、カルボキシル基、アミノ基、アミド基等を挙げることができる。   Here, the two or more monocyclic compounds are not limited to the case of consisting of only the same type of monocyclic compound, and may include different types of monocyclic compounds. Examples of the substituent include linear or branched alkyl groups having 1 to 4 carbon atoms, halogen atoms, cyano groups, hydroxyl groups, nitro groups, alkoxy groups, carboxyl groups, amino groups, amide groups, and the like. it can.

また、2個以上の環状構造を有する化合物の金属塩としては、ナトリウム塩、マグネシウム塩、カリウム塩、カルシウム塩等を挙げることができる。   Examples of the metal salt of the compound having two or more cyclic structures include sodium salt, magnesium salt, potassium salt, calcium salt and the like.

また、2個以上の環状構造を有する高分子またはオリゴマーとしては、以下の例を挙げることができる。繰り返し単位が2個以上の単環化合物が直接結合または連結基を介して結合した単独重合体としては、テルペンフェノール樹脂を挙げることができる。また、共重合体の場合、例えば、クマロン・インデン樹脂を挙げることができる。   Examples of the polymer or oligomer having two or more cyclic structures include the following. A terpene phenol resin can be mentioned as a homopolymer in which a monocyclic compound having two or more repeating units is bonded directly or via a linking group. Moreover, in the case of a copolymer, a coumarone indene resin can be mentioned, for example.

また、フィラーとして、重合体Bと反応する低分子または高分子を用いることもできる。重合体Bと反応させることにより、重合体Bと一体的に、ハードセグメントの存在する領域、いわゆるハードセグメントドメインに、重合体BとフィラーCがより存在し易くなり、ハードセグメントドメインにおける制振性能をより向上させることが可能となる。重合体Bと反応するフィラーの例としては、重合体Bがオキサゾリン基含有反応性ポリスチレンの場合、カルボキシル基、芳香族チオール基、フェノール基またはアルコール基を含有する有機フィラーを挙げることができる。オキサゾリン基はフィラーのカルボキシル基、芳香族チオール基、フェノール基、アルコール基と反応する。カルボキシル基を含むフィラーとしては、4−フェニル安息香酸及びその誘導体、1−ナフトエ酸及びその誘導体、アビエチン酸基を含むロジン及びその誘導体等が挙げられる。芳香族チオール基を含むフィラーとしては、ビフェニル−4−チオール及びその誘導体、2−ナフタレンチオール及びその誘導体等が挙げられる。フェノール基を含むフィラーとしては、ビフェニル−4−オール等が、アルコール基を含むフィラーとしては、4−ヒドロキシメチルビフェニルが挙げられる。また、重合体Bの別の例としては、エポキシ基や水酸基等の官能基を導入したエポキシ基変性アクリル樹脂や水酸基変性アクリル樹脂を挙げることができる。   Moreover, the low molecule | numerator or polymer | macromolecule which reacts with the polymer B can also be used as a filler. By reacting with the polymer B, the polymer B and the filler C more easily exist in the region where the hard segment exists, that is, the so-called hard segment domain, integrally with the polymer B, and the damping performance in the hard segment domain Can be further improved. As an example of the filler which reacts with the polymer B, when the polymer B is an oxazoline group-containing reactive polystyrene, an organic filler containing a carboxyl group, an aromatic thiol group, a phenol group or an alcohol group can be exemplified. The oxazoline group reacts with the filler carboxyl group, aromatic thiol group, phenol group, and alcohol group. Examples of the filler containing a carboxyl group include 4-phenylbenzoic acid and derivatives thereof, 1-naphthoic acid and derivatives thereof, rosin containing abietic acid groups and derivatives thereof, and the like. Examples of the filler containing an aromatic thiol group include biphenyl-4-thiol and derivatives thereof, 2-naphthalenethiol and derivatives thereof, and the like. Examples of the filler containing a phenol group include biphenyl-4-ol, and examples of the filler containing an alcohol group include 4-hydroxymethylbiphenyl. Moreover, as another example of the polymer B, an epoxy group-modified acrylic resin or a hydroxyl group-modified acrylic resin into which a functional group such as an epoxy group or a hydroxyl group is introduced can be exemplified.

フィラーとしては、好ましくは、芳香族炭化水素から選択される2個以上の環状構造を有する化合物または高分子である。より好ましくは、置換基を有してもよい、ジフェニルアミン、トリフェニルアミン、メチレンビスフェノールを挙げることができる。   The filler is preferably a compound or polymer having two or more cyclic structures selected from aromatic hydrocarbons. More preferred examples include diphenylamine, triphenylamine, and methylenebisphenol, which may have a substituent.

本発明の樹脂組成物においては、ブロック共重合体Aは樹脂組成物全体の1〜99重量%、好ましくは5〜90重量%である。1重量%より少ないと製膜性が低下し、99重量%より多いと、制振性能が低下するからである。また、重合体Bは0.5〜90重量%、好ましくは1〜50重量%である。重合体Bが0.5重量%より少ないと曇点が高くなり、90重量%より多いとシートが脆くなり好ましくない。また、フィラーCは0.1〜90重量%、好ましくは0.5〜50重量%である。フィラーCが0.1重量%より少ないと後述の衝撃吸収率が減少し、90重量%より多いとシートが脆くなり好ましくない。   In the resin composition of the present invention, the block copolymer A is 1 to 99% by weight, preferably 5 to 90% by weight, based on the entire resin composition. If the amount is less than 1% by weight, the film forming property is lowered, and if it is more than 99% by weight, the vibration damping performance is lowered. The polymer B is 0.5 to 90% by weight, preferably 1 to 50% by weight. When the amount of the polymer B is less than 0.5% by weight, the cloud point becomes high, and when it is more than 90% by weight, the sheet becomes brittle. Further, the filler C is 0.1 to 90% by weight, preferably 0.5 to 50% by weight. When the filler C is less than 0.1% by weight, the impact absorption rate described later is decreased, and when it is more than 90% by weight, the sheet becomes unfavorable.

また、本発明の樹脂組成物には、衝撃吸収性を低下させない範囲で、添加剤を配合させてもよい。その添加剤としては、酸化防止剤、紫外線吸収剤、難燃剤等を挙げることができる。   Moreover, you may mix | blend an additive with the resin composition of this invention in the range which does not reduce a shock absorptivity. Examples of the additive include an antioxidant, an ultraviolet absorber, and a flame retardant.

(製造方法)
本発明の樹脂組成物は、ブロック共重合体Aに重合体BとフィラーCを、加熱による溶融混合や、溶媒を用いる溶解混合により混合して製造することができる。例えば、フィラーCを重合体Bと相溶させるため、あるいはフィラーCを重合体Bに分散させるため、重合体BとフィラーCを予め混合し、その混合物にブロック共重合体Aを混合する方法を用いてもよい。また、その際、重合体BとフィラーCを混合した温度よりも低い温度でブロック共重合体Aを混合してもよい。重合体BとフィラーCが分離しにくくなるからである。
(Production method)
The resin composition of the present invention can be produced by mixing the block copolymer A with the polymer B and the filler C by melt mixing by heating or dissolution mixing using a solvent. For example, in order to make the filler C compatible with the polymer B or to disperse the filler C in the polymer B, the polymer B and the filler C are mixed in advance, and the block copolymer A is mixed with the mixture. It may be used. At that time, the block copolymer A may be mixed at a temperature lower than the temperature at which the polymer B and the filler C are mixed. This is because the polymer B and the filler C are difficult to separate.

本発明の樹脂組成物は、重合体Bに相溶するまたは重合体Bに分散するフィラーCを含んでいるので、ハードセグメントの存在する領域、いわゆるハードセグメントドメインに、重合体BとフィラーCが存在して、ハードセグメントドメインにおいても制振性能を発現させる。ここで、フィラーCがハードセグメントドメインに存在することの確認には以下の方法を用いることができる。すなわち、ブロック共重合体Aと重合体BとフィラーCを混合して成型した成型体I、重合体BとフィラーCを混合して成型した成型体II、およびブロック共重合体AとフィラーCを混合して成型した成型体IIIの3種の成型体の曇点をそれぞれ測定する。曇点は、所定温度に加熱して成型体を透明状態とした後、徐々に温度を下げ、不透明になった温度である。曇点が低い程、相溶性が高い。したがって、成型体I(A+B+C)の曇点が、成型体III(A+C)の曇点に比べて成型体II(B+C)の曇点に近ければ、フィラーCがハードセグメントドメインに存在すると判断できる。   Since the resin composition of the present invention contains the filler C that is compatible with the polymer B or dispersed in the polymer B, the polymer B and the filler C are in a region where the hard segment exists, that is, a so-called hard segment domain. And presents damping performance even in the hard segment domain. Here, the following method can be used to confirm that the filler C is present in the hard segment domain. That is, a molded product I formed by mixing block copolymer A, polymer B and filler C, a molded product II formed by mixing polymer B and filler C, and block copolymer A and filler C. The clouding points of the three types of molded products III, which were mixed and molded, were measured. The cloud point is a temperature at which the temperature is gradually lowered by heating to a predetermined temperature to make the molded body transparent, and then the temperature is gradually lowered. The lower the cloud point, the higher the compatibility. Therefore, if the cloud point of the molded body I (A + B + C) is closer to the cloud point of the molded body II (B + C) than the cloud point of the molded body III (A + C), the filler C is hard. It can be determined that it exists in the segment domain.

なお、本発明の樹脂組成物は、種々の形状に成形して衝撃吸収材料として用いることができる。例えば、樹脂組成物をホットプレス等により単体でシート状に成形して非拘束型衝撃吸収材料として用いたり、変形しにくい拘束層の間に積層して拘束型衝撃吸収材料として用いることもできる。また、塗料タイプの樹脂組成物として用い、種々の形状の基材に塗布して塗膜を形成し、基材と複合化して用いることもできる。   The resin composition of the present invention can be molded into various shapes and used as an impact absorbing material. For example, the resin composition can be formed into a single sheet by hot pressing or the like and used as an unconstrained impact absorbing material, or can be laminated between constraining layers that are difficult to deform and used as a restraining impact absorbing material. It can also be used as a paint type resin composition, applied to a substrate of various shapes to form a coating film, and combined with the substrate.

以下、実施例を用いて本発明をさらに詳しく説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not limited to a following example.

実施例1.
重合体BとしてMMA樹脂(三菱レイヨン製アクリベットVH)60gに、フィラーとしてオクチル化ジフェニルアミン(精工化学製ノンフレックスOD−3)30gを東洋精機製ラボプラストミルにて、230℃、30rpmで10分間混練し、均一な組成物を得た。冷却後、この組成物を乳鉢で粉砕し、微粉末とした。ブロック共重合体Aとしてリビングアニオン重合で製造されたアクリル系熱可塑性エラストマーであるMMA−BAブロック共重合体(クラレ社製クラリティ2140e)60gを東洋精機製ラボプラストミルにて、180℃、30rpmで5分間溶融混練した後で、上記の微粉末30gを投入し、180℃、30rpmで5分間混練して樹脂組成物を得た。この樹脂組成物を180℃で加熱プレスして厚さ0.2mmの試験シートを作製した。
Example 1.
MMA resin (Acryvette VH manufactured by Mitsubishi Rayon) 60 g as polymer B and 30 g octylated diphenylamine (Nonflex OD-3 manufactured by Seiko Chemical Co., Ltd.) as filler are kneaded at 230 ° C. and 30 rpm for 10 minutes in a laboratory plasto mill. And a uniform composition was obtained. After cooling, the composition was pulverized in a mortar to obtain a fine powder. As block copolymer A, 60 g of MMA-BA block copolymer (clarity 2140e manufactured by Kuraray Co., Ltd.), which is an acrylic thermoplastic elastomer manufactured by living anion polymerization, is used at 180 ° C. and 30 rpm in a laboratory plastomill manufactured by Toyo Seiki. After melt-kneading for 5 minutes, 30 g of the above fine powder was added and kneaded at 180 ° C. and 30 rpm for 5 minutes to obtain a resin composition. This resin composition was heated and pressed at 180 ° C. to prepare a test sheet having a thickness of 0.2 mm.

実施例2.
重合体Bとしてカルボキシル基含有アクリル系ポリマー(東亜合成製アルフォンUS−3000)30gに、フィラーとして水添テルペンフェノール樹脂(ヤスハラケミカル製YSポリスターUH)を60g添加し、東洋精機製ラボプラストミルにて、180℃、30rpmで5分間溶融混練した。さらに、塩化鉄(III)六水和物を0.1g加え、180℃、30rpmで5分間溶融混練し、樹脂組成物を得た。ブロック共重合体Aとしてクラレ社製クラリティ2140e 10gを酢酸エチル80gに常温で溶解し、これに上記の組成物を10g添加し、撹拌混合して塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Example 2.
As polymer B, 30 g of carboxyl group-containing acrylic polymer (Alfon US-3000 manufactured by Toa Gosei Co., Ltd.), 60 g of hydrogenated terpene phenol resin (YS Hara Chemical YS Polystar UH) as a filler was added. Melt kneading was performed at 180 ° C. and 30 rpm for 5 minutes. Furthermore, 0.1 g of iron (III) chloride hexahydrate was added and melt-kneaded at 180 ° C. and 30 rpm for 5 minutes to obtain a resin composition. As block copolymer A, 10 g of Kuraray Clarity 2140e was dissolved in 80 g of ethyl acetate at room temperature, 10 g of the above composition was added thereto, and mixed by stirring to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

実施例3.
フィラーに、水添テルペンフェノール樹脂(ヤスハラケミカル製YSポリスターUH)に代えて2,2‘−メチレンビス(4−エチル−6−t−ブチルフェノール)(大内新興化学工業製ノクラックNS−5)を用いた以外は、実施例2と同様の方法を用いて試験シートを得た。
Example 3.
2,2′-methylenebis (4-ethyl-6-tert-butylphenol) (Nocrack NS-5 manufactured by Ouchi Shinsei Chemical Industry) was used as the filler in place of the hydrogenated terpene phenol resin (YS Polystar UH manufactured by Yasuhara Chemical). A test sheet was obtained using the same method as in Example 2 except for the above.

実施例4.
200mlのセパラブルフラスコに復水器を取り付け、トルエン80gを入れ、60℃の湯浴の中に入れ、増田理化工業製のスターラーHS−40を用いて撹拌を開始した。重合体Bとしてオキサゾリン基含有反応性ポリスチレン(日本触媒製エポクロスRPS−1005)10gを投入後、フィラーとして不均化ロジン(荒川化学工業製ロンジスR)10gを投入し、1時間混合し、淡黄色透明な溶液を得た。この溶液を室温まで冷却後、ブロック共重合体Aとしてスチレン系熱可塑性エラストマー(クラレ製ハイブラー5127)20gを溶解し、塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Example 4
A condenser was attached to a 200 ml separable flask, and 80 g of toluene was put into a 60 ° C. hot water bath, and stirring was started using a stirrer HS-40 manufactured by Masuda Rika Kogyo. 10 g of reactive polystyrene containing oxazoline group (Epocross RPS-1005 manufactured by Nippon Shokubai Co., Ltd.) was added as polymer B, then 10 g of disproportionated rosin (Longis R manufactured by Arakawa Chemical Industries) was added as a filler, mixed for 1 hour, and pale yellow A clear solution was obtained. After cooling this solution to room temperature, 20 g of a styrene-based thermoplastic elastomer (Kuraray Hibler 5127) was dissolved as the block copolymer A to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

実施例5.
重合体BとしてMMA樹脂(三菱レイヨン製アクリベットVH)60gに、フィラーとしてオクチル化ジフェニルアミン(精工化学製ノンフレックスOD−3)30gを東洋精機製ラボプラストミルにて、230℃、30rpmで10分間混練し、均一な組成物を得た。冷却後、この組成物を乳鉢で粉砕し、微粉末とした。ブロック共重合体Aとしてリビングアニオン重合で製造されたアクリル系熱可塑性エラストマーであるMMA−BAブロック共重合体(クラレ社製クラリティ2140e)60gを東洋精機製ラボプラストミルにて、230℃、30rpmで5分間溶融混練した後で、上記の微粉末30gを投入し、230℃、30rpmで5分間混練して樹脂組成物を得た。この樹脂組成物を180℃で加熱プレスして厚さ0.2mmの試験シートを作製した。
Example 5.
MMA resin (Acryvette VH manufactured by Mitsubishi Rayon) 60 g as polymer B and 30 g octylated diphenylamine (Nonflex OD-3 manufactured by Seiko Chemical Co., Ltd.) as filler are kneaded at 230 ° C. and 30 rpm for 10 minutes in a laboratory plasto mill. And a uniform composition was obtained. After cooling, the composition was pulverized in a mortar to obtain a fine powder. As block copolymer A, 60 g of MMA-BA block copolymer (clarity 2140e, manufactured by Kuraray Co., Ltd.), which is an acrylic thermoplastic elastomer manufactured by living anion polymerization, at 230 ° C., 30 rpm, using a Laboplast mill manufactured by Toyo Seiki. After melt-kneading for 5 minutes, 30 g of the above fine powder was added and kneaded at 230 ° C. and 30 rpm for 5 minutes to obtain a resin composition. This resin composition was heated and pressed at 180 ° C. to prepare a test sheet having a thickness of 0.2 mm.

実施例6.
重合体BとしてMMA樹脂(三菱レイヨン製アクリベットVH)20gと、ブロック共重合体AとしてMMA−BAブロック共重合体(クラレ社製クラリティ2140e)60gとフィラーとしてオクチル化ジフェニルアミン(精工化学製ノンフレックスOD−3)10gを加え、室温で岩谷産業株式会社製ミルサーを使用し混合した。その混合物を東洋精機製ラボプラストミルにて、230℃、30rpmで10分間混練した。この樹脂組成物を180℃で加熱プレスして厚さ0.2mmの試験シートを作製した。
Example 6
20 g of MMA resin (Acryvette VH manufactured by Mitsubishi Rayon) as polymer B, 60 g of MMA-BA block copolymer (Kuraray 2140e manufactured by Kuraray Co., Ltd.) as block copolymer A, and octylated diphenylamine (non-flex OD manufactured by Seiko Chemical Co., Ltd.) as filler -3) 10 g was added, and mixed at room temperature using a miller manufactured by Iwatani Corporation. The mixture was kneaded for 10 minutes at 230 ° C. and 30 rpm in a laboratory plast mill manufactured by Toyo Seiki. This resin composition was heated and pressed at 180 ° C. to prepare a test sheet having a thickness of 0.2 mm.

実施例7.
酢酸エチル80gを増田理化工業製のスターラーHS−40を用いて撹拌しながら、ブロック共重合体AとしてMMA−BAブロック共重合体(クラレ社製クラリティ2140e)10g、重合体Bとしてカルボキシル基含有アクリル系ポリマー(東亜合成製ARUFON US−3000)3.3g、フィラーとして水添テルペンフェノール樹脂(ヤスハラケミカル製YSポリスターUH)6.7gを添加し、混合して塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Example 7.
While stirring 80 g of ethyl acetate using a stirrer HS-40 manufactured by Masuda Rika Kogyo Co., Ltd., 10 g of MMA-BA block copolymer (Kuraray 2140e manufactured by Kuraray Co., Ltd.) is used as block copolymer A, and carboxyl group-containing acrylic is used as polymer B. 3.3 g of a polymer (ARUFON US-3000 manufactured by Toa Gosei Co., Ltd.) and 6.7 g of hydrogenated terpene phenol resin (YS Polystar UH manufactured by Yasuhara Chemical Co., Ltd.) as a filler were added and mixed to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

実施例8.
酢酸エチル80gを増田理化工業製のスターラーHS−40を用いて撹拌しながら、ブロック共重合体AとしてMMA−BAブロック共重合体(クラレ社製クラリティ2140e)10gと、重合体Bとしてカルボキシル基含有アクリル系ポリマー(東亜合成製ARUFON US−3000)3.3g、フィラーとして2,2‘−メチレンビス(4−エチル−6−t−ブチルフェノール)(大内新興化学工業製ノクラックNS−5)6.7gを添加し、混合して塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Example 8
While stirring 80 g of ethyl acetate using a stirrer HS-40 manufactured by Masuda Rika Kogyo, 10 g of MMA-BA block copolymer (Kuraray 2140e, manufactured by Kuraray Co., Ltd.) as a block copolymer A and a carboxyl group as a polymer B Acrylic polymer (ARUFON US-3000 manufactured by Toa Gosei) 3.3 g, 2,2′-methylenebis (4-ethyl-6-t-butylphenol) (Nouchi NS-5 manufactured by Ouchi Shinsei Chemical Industry) as filler 6.7 g Were added and mixed to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

実施例9.
200mlのセパラブルフラスコにトルエン80gを入れ、室温にて、増田理化工業製のスターラーHS−40を用いて撹拌を開始した。ブロック共重合体Aとしてスチレン系熱可塑性エラストマー(クラレ製ハイブラー5127)20gをトルエンに溶解後、重合体Bとしてオキサゾリン基含有反応性ポリスチレン(日本触媒製エポクロスRPS−1005)10gを投入した。フィラーとして不均化ロジン(荒川化学工業製ロンジスR)10gを投入し溶解させて、塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Example 9.
A 200 ml separable flask was charged with 80 g of toluene, and stirring was started at room temperature using a stirrer HS-40 manufactured by Masuda Rika Kogyo. 20 g of a styrene thermoplastic elastomer (Kuraray Hybler 5127) was dissolved in toluene as the block copolymer A, and 10 g of reactive polystyrene containing oxazoline group (Epocross RPS-1005 from Nippon Shokubai Co., Ltd.) was charged as the polymer B. As a filler, 10 g of disproportionated rosin (Longis R, manufactured by Arakawa Chemical Industries) was added and dissolved to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

実施例10.
試験シートの厚さを1mmとした以外は、実施例1と同様の方法で行った。
Example 10.
The test was performed in the same manner as in Example 1 except that the thickness of the test sheet was 1 mm.

実施例11.
試験シートの厚さを2mmとした以外は、実施例1の方法と同様の方法で行った。
Example 11.
The test was performed in the same manner as in Example 1 except that the thickness of the test sheet was 2 mm.

比較例1.
ブロック共重合体Aとしてクラレ社製クラリティ2140e 60gと、フィラーとしてオクチル化ジフェニルアミン(精工化学製ノンフレックスOD−3)10gを東洋精機製ラボプラストミルにて230℃、30rpmで10分間混練し、樹脂組成物を得た。この樹脂組成物を180℃で加熱プレスして厚さ0.2mmの試験シートを作製した。
Comparative Example 1.
Kuraray Clarity 2140e 60 g as block copolymer A and 10 g of octylated diphenylamine (Nonflex OD-3 manufactured by Seiko Chemical Co., Ltd.) as filler are kneaded at 230 ° C. and 30 rpm for 10 minutes in a Toyo Seiki lab plast mill. A composition was obtained. This resin composition was heated and pressed at 180 ° C. to prepare a test sheet having a thickness of 0.2 mm.

比較例2.
酢酸エチル80gを増田理化工業製のスターラーHS−40を用いて撹拌しながら、ブロック共重合体Aとしてクラレ社製クラリティ2140e 10gと、フィラーとして水添テルペンフェノール樹脂(ヤスハラケミカル製YSポリスターUH)6.7gを添加し、混合して塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Comparative Example 2.
While stirring 80 g of ethyl acetate using a stirrer HS-40 manufactured by Masuda Rika Kogyo Co., Ltd., 10 g of Kuraray Clarity 2140e as block copolymer A and hydrogenated terpene phenol resin (YS Hara Chemical YS Polystar UH) as filler 6. 7 g was added and mixed to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

比較例3.
フィラーに、水添テルペンフェノール樹脂(ヤスハラケミカル製YSポリスターUH)に代えて2,2‘−メチレンビス(4−エチル−6−t−ブチルフェノール)(大内新興化学工業製ノクラックNS−5)を用いた以外は、比較例2と同様の方法を用いて試験シートを得た。
Comparative Example 3.
2,2′-methylenebis (4-ethyl-6-tert-butylphenol) (Nocrack NS-5 manufactured by Ouchi Shinsei Chemical Industry) was used as the filler in place of the hydrogenated terpene phenol resin (YS Polystar UH manufactured by Yasuhara Chemical). Except for the above, a test sheet was obtained using the same method as in Comparative Example 2.

比較例4.
200mlのセパラブルフラスコにトルエン80gを入れ、室温にて、増田理化工業製のスターラーHS−40を用いて撹拌を開始した。ブロック共重合体Aとしてクラレ製ハイブラー5127の20gをトルエンに溶解後、フィラーとして不均化ロジン(荒川化学工業製ロンジスR)10gを投入し溶解させて、塗液を調製した。この塗液を用いて塗膜を作製し、溶剤を蒸発させて厚さ0.2mmの試験シートを得た。
Comparative Example 4.
A 200 ml separable flask was charged with 80 g of toluene, and stirring was started at room temperature using a stirrer HS-40 manufactured by Masuda Rika Kogyo. 20 g of Kuraray Hybler 5127 as block copolymer A was dissolved in toluene, and then 10 g of disproportionated rosin (Longis R, manufactured by Arakawa Chemical Industries) was added and dissolved as a filler to prepare a coating solution. A coating film was prepared using this coating liquid, and the solvent was evaporated to obtain a test sheet having a thickness of 0.2 mm.

比較例5.
試験シートの厚さを1mmとした以外は、比較例1と同様の方法で行った。
Comparative Example 5.
The test was performed in the same manner as in Comparative Example 1 except that the thickness of the test sheet was 1 mm.

比較例6.
試験シートの厚さを2mmとした以外は、比較例1と同様の方法で行った。
Comparative Example 6.
The test was performed in the same manner as in Comparative Example 1 except that the thickness of the test sheet was 2 mm.

以下の表1に実施例および比較例の樹脂組成物の組成を示す。   Table 1 below shows the compositions of the resin compositions of Examples and Comparative Examples.

Figure 0006347615
Figure 0006347615

(衝撃吸収性評価)
100×100mm、厚さ30mmのアクリル板上に所定の直径のステンレス球(直径10mm、4.1kg)を100mmの高さから落下させた時の衝撃加速度を測定した。測定は、アクリル板の裏面に加速度センサーを接着剤で貼り付け、ブルュケル・ケアー製の騒音計2250で測定した。衝撃吸収性能は、衝撃吸収率(%)で評価した。ここで、衝撃吸収率は、次式で定義され、衝撃伝達率(%)は、シート上に所定の直径のステンレス球を落下させたときの加速度をシート無しのときの加速度で除して算出した。
衝撃吸収率(%)=100(%)−衝撃伝達率(%)
(Shock absorption evaluation)
The impact acceleration was measured when a stainless steel ball having a predetermined diameter (diameter: 10 mm, 4.1 kg) was dropped from a height of 100 mm onto an acrylic plate having a size of 100 × 100 mm and a thickness of 30 mm. The measurement was carried out by attaching an acceleration sensor to the back surface of the acrylic plate with an adhesive and measuring with a noise meter 2250 made by Bruker Care. The impact absorption performance was evaluated by the impact absorption rate (%). Here, the impact absorption rate is defined by the following equation, and the impact transmission rate (%) is calculated by dividing the acceleration when a stainless steel ball of a predetermined diameter is dropped on the sheet by the acceleration when there is no sheet. did.
Impact absorption rate (%) = 100 (%)-Impact transmission rate (%)

(tanδ評価)
セイコー電子工業製の動的粘弾性測定装置SDM−5500を用いて23℃、周波数1Hzで測定した。
(Tan δ evaluation)
It measured at 23 degreeC and the frequency of 1 Hz using the dynamic viscoelasticity measuring device SDM-5500 made from Seiko Denshi Kogyo.

(曇点評価)
溶剤を含む樹脂組成物からシート状の塗膜を形成し、その塗膜を1日放置して溶剤を揮発させたシートを試料として用いた。試料50gをステンレス製ビーカーに入れ、マントルヒーターで200℃まで加熱した後、ヒーターの電源を切り、自然放冷した。シートを冷却すると、相分離によりシートは透明状態から不透明状態へと変化する。その変化を目視で観察し、不透明状態が発生した温度を曇点とした。試験は30℃まで冷却した時点で終了させた。
(Cloud point evaluation)
A sheet-like coating film was formed from a resin composition containing a solvent, and the coating film was allowed to stand for 1 day to volatilize the solvent, and used as a sample. A 50 g sample was placed in a stainless steel beaker and heated to 200 ° C. with a mantle heater, and then the heater was turned off and allowed to cool naturally. When the sheet is cooled, the sheet changes from a transparent state to an opaque state by phase separation. The change was observed visually, and the temperature at which the opaque state occurred was defined as the cloud point. The test was terminated when cooled to 30 ° C.

30℃より低温での曇点の測定は以下の方法で行った。試料が入ったステンレスビーカを楠本化成株式会社製恒温槽HIFLEX FX2050内に所定温度で放置する。8時間経過後、試料の状態を目視観察し、不透明状態が発生した温度を曇点とした。測定は20℃、10℃、0℃、−10℃、−20℃で行い、−20℃でも透明な試料は−20℃以下と表示した。   The cloud point was measured at a temperature lower than 30 ° C. by the following method. The stainless beaker containing the sample is left in a constant temperature bath HIFLEX FX2050 manufactured by Enomoto Kasei Co., Ltd. at a predetermined temperature. After 8 hours, the state of the sample was visually observed, and the temperature at which the opaque state occurred was defined as the cloud point. The measurement was performed at 20 ° C., 10 ° C., 0 ° C., −10 ° C., and −20 ° C., and a transparent sample was indicated as −20 ° C. or lower even at −20 ° C.

(結果)
実施例1、3、10、11は、重合体BとフィラーCとを溶融混合し、その後でブロック共重合体Aと溶融混合した例を示す。実施例2は、重合体BとフィラーCとを溶融混合し、その後でブロック共重合体Aと溶剤混合して例を示す。実施例4は、重合体BとフィラーCとを溶剤混合し、その後でブロック共重合体Aと溶剤混合して例を示す。実施例5は、重合体BとフィラーCとを溶融混合し、その後でブロック共重合体Aと溶融混合した例で、重合体BとフィラーCとを溶融混合した時の温度と、後でブロック共重合体Aを溶融混合した時の温度が同じ温度の例を示す。実施例6は、ブロック共重合体Aと重合体BとフィラーCとを一度に溶融混合した例を示す。実施例7〜9は、ブロック共重合体Aと重合体BとフィラーCとを溶剤混合した例を示す。
(result)
Examples 1, 3, 10, and 11 show examples in which the polymer B and the filler C were melt-mixed and then melt-mixed with the block copolymer A. Example 2 shows an example in which the polymer B and the filler C are melt-mixed, and then the block copolymer A and the solvent are mixed. Example 4 shows an example in which the polymer B and the filler C are mixed with a solvent, and then the block copolymer A and a solvent are mixed. Example 5 is an example in which the polymer B and the filler C are melt-mixed and then the block copolymer A is melt-mixed. The temperature when the polymer B and the filler C are melt-mixed and the block afterwards An example in which the temperature when the copolymer A is melt mixed is the same. Example 6 shows an example in which the block copolymer A, the polymer B, and the filler C are melted and mixed at a time. Examples 7 to 9 show examples in which a block copolymer A, a polymer B, and a filler C are mixed with a solvent.

表2〜5に、曇点、衝撃吸収率、tanδの結果を示す。また、図1は、実施例と比較例について、試験シートの厚さと衝撃吸収率の関係を示す。なお、表中の「B+C」は、BとCの混合物から得られた試験シートを指し、「A+C」はAとCの混合物から得られた試験シートを指し、「B+C+A」は、B、CおよびAの混合物から得られた試験シートを指す。   Tables 2 to 5 show the cloud point, impact absorption rate, and tan δ results. FIG. 1 shows the relationship between the thickness of the test sheet and the impact absorption rate for the examples and comparative examples. In the table, “B + C” indicates a test sheet obtained from a mixture of B and C, “A + C” indicates a test sheet obtained from a mixture of A and C, and “B + C”. "+ A" refers to a test sheet obtained from a mixture of B, C and A.

実施例1〜4と比較例1〜4から、(B+C+A)の曇点が、(A+C)の曇点に比べて(B+C)の曇点に近いので、フィラーCがハードセグメントドメインに存在していることを確認できた。   From Examples 1-4 and Comparative Examples 1-4, the cloud point of (B + C + A) is closer to the cloud point of (B + C) than the cloud point of (A + C), so filler C Was confirmed to exist in the hard segment domain.

表2〜4から明らかなように、実施例1〜9は、比較例1〜4に比べ、高い衝撃吸収率を与えた。また、実施例1と実施例5とを比較すると、「B+C+A」の混合温度を「B+C」の混合温度より低くすると衝撃吸収率が増加した。また、実施例1と実施例6とを比較すると、「B+C」を先に作り、後で「A」を混合する方法の方が、「B+C+A」を一度に混合して製造した方法よりも衝撃吸収率が増加した。   As is clear from Tables 2 to 4, Examples 1 to 9 gave higher impact absorption rates than Comparative Examples 1 to 4. Further, comparing Example 1 and Example 5, when the mixing temperature of “B + C + A” was made lower than the mixing temperature of “B + C”, the impact absorption rate increased. Also, comparing Example 1 and Example 6, the method of making “B + C” first and mixing “A” later is to mix “B + C + A” at once. The shock absorption rate increased compared to the manufactured method.

図1は、表5の結果をグラフ化したものであり、実施例と比較例について、試験シートの厚さと衝撃吸収率の関係を示す。厚さが2mmの場合には差は認められないが、2mmよりも薄くしても実施例では衝撃吸収率の低下が抑制され、優れた衝撃吸収性を示した。0.2mmでも、比較例の4%に対し、18%という非常に優れた値が得られた。   FIG. 1 is a graph of the results in Table 5, and shows the relationship between the thickness of the test sheet and the impact absorption rate for the examples and comparative examples. When the thickness was 2 mm, no difference was observed, but even when the thickness was thinner than 2 mm, in the examples, the decrease in the impact absorption rate was suppressed, and excellent shock absorption was exhibited. Even at 0.2 mm, a very excellent value of 18% was obtained as compared with 4% of the comparative example.

Figure 0006347615
Figure 0006347615

Figure 0006347615
Figure 0006347615

Figure 0006347615
Figure 0006347615

Figure 0006347615
Figure 0006347615

本発明の衝撃吸収用樹脂組成物は、薄型化しても優れた制振性能を有しているので、デバイス用の衝撃吸収シートのみならず、振動や騒音が問題となる他の用途においても好適に用いることができる。   The impact-absorbing resin composition of the present invention has excellent vibration damping performance even if it is thinned, so it is suitable not only for impact-absorbing sheets for devices but also for other applications where vibration and noise are a problem. Can be used.

Claims (5)

ガラス転移点が30℃以上の重合体成分Aとガラス転移点が0℃以下の重合体成分Aとを含むブロック共重合体Aと、該重合体成分Aと相溶性がある重合体Bと、該重合体Bと相溶性がある、または該重合体Bに分散するフィラーCとを含み、
前記重合体成分Aがスチレン系樹脂であり、前記重合体Bがオキサゾリン基含有反応性ポリスチレンであり、
前記フィラーCがロジンまたはその誘導体であり、前記フィラーCの含有量が、0.5〜50重量%である、衝撃吸収用樹脂組成物。
Polymer glass transition temperature that is compatible with the block copolymer A, the polymer component A 1 containing a 30 ° C. or more polymer components A 1 and the glass transition point of 0 ℃ less polymer component A 2 B and a filler C that is compatible with the polymer B or dispersed in the polymer B,
The polymer component A 1 is a styrenic resin, the polymer B is an oxazoline group-containing reactive polystyrene ,
The impact-absorbing resin composition, wherein the filler C is rosin or a derivative thereof, and the content of the filler C is 0.5 to 50% by weight.
前記ブロック共重合体Aの割合が、樹脂組成物全体の1〜99重量%である請求項1に記載の樹脂組成物。 The ratio of the said block copolymer A is 1 to 99 weight% of the whole resin composition, The resin composition of Claim 1 . 前記フィラーCの含有量が、11〜50重量%である請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2 , wherein a content of the filler C is 11 to 50% by weight. 請求項1に記載の衝撃吸収用樹脂組成物の製造方法であって、
重合体BとフィラーCを含む混合物を、ブロック共重合体Aと混合する衝撃吸収用樹脂組成物の製造方法。
It is a manufacturing method of the resin composition for shock absorption according to claim 1 ,
A method for producing an impact-absorbing resin composition, wherein a mixture containing a polymer B and a filler C is mixed with a block copolymer A.
前記重合体Bと前記フィラーCを混合した温度よりも低い温度でブロック共重合体Aと混合する請求項記載の製造方法。 The manufacturing method of Claim 4 which mixes with the block copolymer A at temperature lower than the temperature which mixed the said polymer B and the said filler C.
JP2014019492A 2014-02-04 2014-02-04 Impact absorbing resin composition Active JP6347615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014019492A JP6347615B2 (en) 2014-02-04 2014-02-04 Impact absorbing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019492A JP6347615B2 (en) 2014-02-04 2014-02-04 Impact absorbing resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018082983A Division JP6595035B2 (en) 2018-04-24 2018-04-24 Impact absorbing resin composition

Publications (2)

Publication Number Publication Date
JP2015145484A JP2015145484A (en) 2015-08-13
JP6347615B2 true JP6347615B2 (en) 2018-06-27

Family

ID=53889878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019492A Active JP6347615B2 (en) 2014-02-04 2014-02-04 Impact absorbing resin composition

Country Status (1)

Country Link
JP (1) JP6347615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943671B2 (en) * 2016-08-03 2021-10-06 リンテック株式会社 Manufacturing method of adhesive label for display
CN110191913A (en) * 2017-01-11 2019-08-30 积水化学工业株式会社 Impact-absorbing sheet
JP7064631B1 (en) * 2021-02-24 2022-05-10 高圧ガス工業株式会社 Impact absorbing resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598430B2 (en) * 1996-12-16 2004-12-08 株式会社クラレ Polymer composition
JP4408998B2 (en) * 1999-08-18 2010-02-03 株式会社ジーシー Mouthguard composition
JP4982081B2 (en) * 2004-12-21 2012-07-25 東海ゴム工業株式会社 High damping elastomer composition and vibration control damper obtained thereby
JP2007063327A (en) * 2005-08-29 2007-03-15 Bridgestone Corp Highly damping rubber composition
JP2010168491A (en) * 2009-01-23 2010-08-05 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2011006584A (en) * 2009-06-26 2011-01-13 As R&D合同会社 Organic vibration damping material
JP2012207194A (en) * 2011-03-30 2012-10-25 Mitsubishi Plastics Inc Transparent double-sided self-adhesive sheet
US8703852B2 (en) * 2011-06-03 2014-04-22 Sabic Innovative Plastics Ip B.V. Impact-resistant poly(arylene ether) resins with improved clarity

Also Published As

Publication number Publication date
JP2015145484A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
Lei et al. Fully bio-based pressure-sensitive adhesives with high adhesivity derived from epoxidized soybean oil and rosin acid
TWI628252B (en) Adhesive agent,forming article and manufacturing method of forming article
Yang et al. Preparation and characterization of room-temperature-vulcanized silicone rubber using acrylpimaric acid-modified aminopropyltriethoxysilane as a cross-linking agent
JP6347615B2 (en) Impact absorbing resin composition
WO2006085596A1 (en) Process for producing spherical polymer powder and spherical powder comprising (meth)acrylic block copolymer
JP2011162747A (en) Hot melt adhesive composition and laminate using the same
JP6313918B1 (en) Resin compositions, pellets, veils, damping materials, sound insulation materials, and interlayer films for laminated glass
Dhibar et al. Cocontinuous phase morphology of asymmetric compositions of polypropylene/high‐density polyethylene blend by the addition of clay
TWI670346B (en) Adhesive composition and method for producing the same and adhesive layer and method for producing the same
JP2013241499A (en) Composition for heat storage material, and heat storage material
JP2010095706A (en) Resin particle
JP6595035B2 (en) Impact absorbing resin composition
Hennemann et al. Structural methacrylate/epoxy based adhesives for aluminIum joints
JP2017145315A (en) Resin composition containing (meth)acrylic block copolymer, and tacky adhesive obtained from the resin composition
Wang et al. Morphology and properties of renewable poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) blends with thermoplastic polyurethane
TWI532781B (en) Adhesive compositions containing a block copolymer with polymyrcene
WO2017138399A1 (en) Adhesive composition for base with low-energy surface
JP2006258156A (en) Viscoelastic damper
Zhou et al. Amphiphilic reactive poly (glycidyl methacrylate)-block-poly (dimethyl siloxane)-block-poly (glycidyl methacrylate) triblock copolymer for the controlling nanodomain morphology of epoxy thermosets
TW202222975A (en) Tackifying resin, method of manufacturing the same, and composition including the same
JP7064631B1 (en) Impact absorbing resin composition
US20090008826A1 (en) Method For Production Of Objects From Thermosetting Resins
JP6673704B2 (en) Thermoplastic polymer composition for vibration damping material, method for producing molded article, and molded article
Seurer et al. Fluoroelastomer copolymers incorporating polyhedral oligomeric silsesquioxane
FR2841252A1 (en) Production of objects, especially panels, sheets or films, from thermosetting resins comprises using techniques normally reserved for thermoplastics

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180529

R150 Certificate of patent or registration of utility model

Ref document number: 6347615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250