[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6236314B2 - Silicon carbide bonded body and method for manufacturing the same - Google Patents

Silicon carbide bonded body and method for manufacturing the same Download PDF

Info

Publication number
JP6236314B2
JP6236314B2 JP2013271316A JP2013271316A JP6236314B2 JP 6236314 B2 JP6236314 B2 JP 6236314B2 JP 2013271316 A JP2013271316 A JP 2013271316A JP 2013271316 A JP2013271316 A JP 2013271316A JP 6236314 B2 JP6236314 B2 JP 6236314B2
Authority
JP
Japan
Prior art keywords
silicon carbide
bonding
pore diameter
carbide sintered
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271316A
Other languages
Japanese (ja)
Other versions
JP2015124137A (en
Inventor
梅津 基宏
基宏 梅津
愛 早坂
愛 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013271316A priority Critical patent/JP6236314B2/en
Publication of JP2015124137A publication Critical patent/JP2015124137A/en
Application granted granted Critical
Publication of JP6236314B2 publication Critical patent/JP6236314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、炭化珪素焼結体同士を接合させた炭化珪素接合体、及びその製造方法に関する。   The present invention relates to a silicon carbide joined body in which silicon carbide sintered bodies are joined together, and a method for manufacturing the same.

炭化珪素焼結体は、機械的強度、耐熱性、耐食性などに優れており、水冷機構を有するピンチャック、液浸露光装置の液体回収部、CVD装置のガス供給部であるシャワープレートなど、半導体製造装置用の部材に多く用いられている。   Silicon carbide sintered body is excellent in mechanical strength, heat resistance, corrosion resistance, etc., such as a pin chuck having a water cooling mechanism, a liquid recovery part of an immersion exposure apparatus, a shower plate which is a gas supply part of a CVD apparatus, etc. It is often used as a member for manufacturing equipment.

しかし、炭化珪素焼結体は、焼結温度が高く、不活性ガス雰囲気で焼成されるので、良好に形成可能な大きさには限界がある。そこで、種々の接合技術が提案されている。   However, since the silicon carbide sintered body has a high sintering temperature and is fired in an inert gas atmosphere, there is a limit to the size that can be formed satisfactorily. Therefore, various joining techniques have been proposed.

例えば、特許文献1には、炭化珪素焼結体同士を、炭化珪素を主成分として厚さが1〜100mmの脱脂体を介して接合する技術が記載されている。脱脂体が熱処理されてなる接合層(接合部材)の最大空孔(ボイド)径を、炭化珪素焼結体の最大空孔径よりも小さくすることで、接合強度を高めている。   For example, Patent Document 1 describes a technique in which silicon carbide sintered bodies are bonded to each other through a degreased body having a thickness of 1 to 100 mm containing silicon carbide as a main component. The bonding strength is increased by making the maximum void diameter of the bonding layer (bonding member) formed by heat treating the degreased body smaller than the maximum void diameter of the silicon carbide sintered body.

特開2013−216500号公報JP 2013-216500 A

しかしながら、上記特許文献1に記載の技術では、接合時の熱処理によって脱脂体は緻密化するので、熱処理時に炭化珪素焼結体に生じる歪みを吸収できない。よって、炭化珪素接合体に大きな残留応力が残留し、その後の加工時に炭化珪素接合体が破損するおそれがあった。   However, in the technique described in Patent Document 1, the degreased body is densified by the heat treatment at the time of bonding, and thus strain generated in the silicon carbide sintered body at the time of heat treatment cannot be absorbed. Therefore, a large residual stress remains in the silicon carbide joined body, and the silicon carbide joined body may be damaged during subsequent processing.

本発明は、炭化珪素接合体に残留する残留応力を小さく図ることが可能な炭化珪素接合体及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a silicon carbide joined body capable of reducing the residual stress remaining in the silicon carbide joined body and a method for manufacturing the same.

本発明の炭化珪素接合体は、炭化珪素焼結体が炭化珪素からなる接合層を介して接合された炭化珪素接合体であって、前記接合層は、厚さが35〜55μm、気孔割合が10〜20%、平均気孔径が0.1〜7.0μmであることを特徴とする。   The silicon carbide bonded body of the present invention is a silicon carbide bonded body in which a silicon carbide sintered body is bonded via a bonding layer made of silicon carbide, and the bonding layer has a thickness of 35 to 55 μm and a pore ratio. It is characterized by being 10 to 20% and an average pore diameter of 0.1 to 7.0 μm.

接合層の厚さが35μm未満であると、接合時の熱処理で生じた炭化珪素焼結体の内部歪みが十分に吸収されず、炭化珪素接合体に残留する残留応力が大きくなる。一方、接合層の厚さが55μmを超えると、破壊の起源となる欠陥数が増加するため、炭化珪素接合体の接合強度が低下する。   When the thickness of the bonding layer is less than 35 μm, the internal strain of the silicon carbide sintered body generated by the heat treatment during bonding is not sufficiently absorbed, and the residual stress remaining in the silicon carbide bonded body increases. On the other hand, when the thickness of the bonding layer exceeds 55 μm, the number of defects that cause fracture increases, so that the bonding strength of the silicon carbide bonded body decreases.

また、接合層の気孔割合が10%未満、又は接合層の平均気孔径が0.1μm未満であると、接合時の熱処理で生じた炭化珪素焼結体の内部歪みが接合層内の気孔で十分に吸収されず、炭化珪素接合体に残留する残留応力が大きくなる。一方、接合層の気孔割合が20%を超える、又は接合層の平均気孔径が7.0μmを超えると、気孔が大きく多いため、接合層の強度が劣り、炭化珪素接合体の接合強度が低下する。   In addition, when the porosity of the bonding layer is less than 10% or the average pore diameter of the bonding layer is less than 0.1 μm, the internal strain of the silicon carbide sintered body generated by the heat treatment during bonding is a pore in the bonding layer. Residual stress that is not sufficiently absorbed and remains in the silicon carbide bonded body increases. On the other hand, when the porosity of the bonding layer exceeds 20% or the average pore diameter of the bonding layer exceeds 7.0 μm, the bonding layer has poor strength due to the large number of pores, and the bonding strength of the silicon carbide bonded body decreases. To do.

これらにより、本発明の炭化珪素接合体によれば、接合強度を確保したうえで、炭化珪素接合体に残留する残留応力を小さく図ることが可能となる。   Thus, according to the silicon carbide bonded body of the present invention, it is possible to reduce the residual stress remaining in the silicon carbide bonded body while ensuring the bonding strength.

さらに、炭化珪素焼結体の気孔割合が1%未満であると、接合時の熱処理で生じた炭化珪素焼結体の内部歪みが十分に吸収されず、炭化珪素接合体に残留する残留応力が大きくなる。一方、炭化珪素焼結体の気孔割合が5%を超えると、炭化珪素焼結体の空孔が多くなるため、炭化珪素焼結体の強度が劣り、炭化珪素接合体の接合強度が低下する。なお、炭化珪素焼結体の気孔割合とは、炭化珪素焼結体の切断断面における、気孔の面積の割合である。   Furthermore, if the porosity of the silicon carbide sintered body is less than 1%, the internal strain of the silicon carbide sintered body generated by the heat treatment during bonding is not sufficiently absorbed, and the residual stress remaining in the silicon carbide bonded body growing. On the other hand, if the porosity of the silicon carbide sintered body exceeds 5%, the number of voids in the silicon carbide sintered body increases, so that the strength of the silicon carbide sintered body is inferior and the bonding strength of the silicon carbide bonded body decreases. . The pore ratio of the silicon carbide sintered body is the ratio of the area of the pores in the cut section of the silicon carbide sintered body.

そして、炭化珪素焼結体の平均気孔径が0.1μm未満であると、接合時の熱処理で生じた炭化珪素焼結体の内部歪みが十分に吸収されず、炭化珪素接合体に残留する残留応力が大きくなる。一方、炭化珪素焼結体の平均気孔径が5.0μmを超えると、炭化珪素焼結体の空孔が大きくなるため、炭化珪素焼結体の強度が劣り、炭化珪素接合体の接合強度が低下する。   If the average pore diameter of the silicon carbide sintered body is less than 0.1 μm, the internal strain of the silicon carbide sintered body generated by the heat treatment during bonding is not sufficiently absorbed, and the residual remaining in the silicon carbide bonded body Stress increases. On the other hand, if the average pore diameter of the silicon carbide sintered body exceeds 5.0 μm, the pores of the silicon carbide sintered body increase, so that the strength of the silicon carbide sintered body is inferior, and the bonding strength of the silicon carbide bonded body is low. descend.

よって、本発明の炭化珪素接合体において、前記炭化珪素焼結体は、気孔割合が1〜5%、平均気孔径が0.1〜5.0μmであることが好ましい。   Therefore, in the silicon carbide joined body of the present invention, the silicon carbide sintered body preferably has a pore ratio of 1 to 5% and an average pore diameter of 0.1 to 5.0 μm.

本発明の炭化珪素接合体の製造方法は、炭化珪素焼結体の間に、厚さが50〜130μmであり、平均粒径が1〜20μmの炭化珪素及び結合材としてバインダを含み前記炭化珪素の含有率が85〜95質量%である接合シートを挟み込み、2〜4MPaの荷重で加圧しながら1900〜2100℃の温度で熱処理を3〜10時間行い、厚さが35〜55μm、気孔割合が10〜20%、平均気孔径が0.1〜7.0μmである接合層を形成することを特徴とする。 The method for manufacturing the silicon carbide joined body of the present invention, between the silicon carbide sintered body, has a thickness of 50~130Myuemu, said silicon carbide average grain size comprises a binder as silicon carbide and binder 1~20μm Sandwiching a joining sheet having a content of 85 to 95% by mass, performing heat treatment at a temperature of 1900 to 2100 ° C. for 3 to 10 hours while pressing with a load of 2 to 4 MPa, a thickness of 35 to 55 μm, and a porosity ratio A bonding layer having an average pore diameter of 10 to 20% and an average pore diameter of 0.1 to 7.0 μm is formed.

本発明の炭化珪素接合体の製造方法によれば、上述した本発明の好ましい炭化珪素接合体を製造することができる。   According to the method for manufacturing a silicon carbide bonded body of the present invention, the above-described preferable silicon carbide bonded body of the present invention can be manufactured.

(a)〜(c)は、本発明の実施形態に係る炭化珪素焼結接合体の製造方法を順次模式的に示す断面図である。(A)-(c) is sectional drawing which shows typically the manufacturing method of the silicon carbide sintered joined body which concerns on embodiment of this invention one by one.

以下、本発明の実施形態に係る炭化珪素焼結体の製造方法について説明する。   Hereinafter, the manufacturing method of the silicon carbide sintered compact which concerns on embodiment of this invention is demonstrated.

図1(a)に示すように、母材として、複数、ここでは2個の炭化珪素焼結体11,12を用意する。炭化珪素焼結体11,12は、プレス成形、CIP成形、鋳込み成形等の成形方法、及び常圧焼結、加圧焼結、反応焼結等の焼結方法により作製することができる。焼結助剤として、炭化珪素に対し、炭化硼素0.1〜1.0%、グラファイトを1.0〜5.0%添加してもよい。   As shown in FIG. 1A, a plurality of, here two, silicon carbide sintered bodies 11 and 12 are prepared as base materials. Silicon carbide sintered bodies 11 and 12 can be produced by a molding method such as press molding, CIP molding, and cast molding, and a sintering method such as atmospheric pressure sintering, pressure sintering, and reaction sintering. As a sintering aid, 0.1 to 1.0% boron carbide and 1.0 to 5.0% graphite may be added to silicon carbide.

炭化珪素焼結体11,12は、気孔割合が1〜5%であることが好ましい。気孔割合が1%未満であると、接合時の熱処理で生じた炭化珪素焼結体11,12の内部歪みが十分に吸収されず、炭化珪素接合体20に残留する残留応力が大きくなる。一方、気孔割合が5%を超えると、炭化珪素焼結体11,12の空孔が多くなるため、炭化珪素焼結体11,12の強度が劣り、炭化珪素接合体20の接合強度が低下する。   Silicon carbide sintered bodies 11 and 12 preferably have a pore ratio of 1 to 5%. If the porosity is less than 1%, the internal strain of silicon carbide sintered bodies 11 and 12 generated by the heat treatment during bonding is not sufficiently absorbed, and the residual stress remaining in silicon carbide bonded body 20 increases. On the other hand, if the porosity ratio exceeds 5%, the number of voids in silicon carbide sintered bodies 11 and 12 increases, so that the strength of silicon carbide sintered bodies 11 and 12 is inferior and the bonding strength of silicon carbide bonded body 20 decreases. To do.

なお、炭化珪素焼結体11,12の気孔割合とは、炭化珪素焼結体11,12の切断断面における、気孔の面積の割合である。気孔の面積は、顕微鏡を用いて切断断面を写真撮影し、画像処理することで得ることができる。   The pore ratio of silicon carbide sintered bodies 11 and 12 is the ratio of the area of the pores in the cut cross section of silicon carbide sintered bodies 11 and 12. The area of the pores can be obtained by taking a photograph of the cut section using a microscope and processing the image.

また、炭化珪素焼結体11,12は、平均気孔径が0.1〜5.0μmであることが好ましい。炭化珪素焼結体11,12の平均気孔径が0.1μm未満であると、接合時の熱処理で生じた炭化珪素焼結体11,12の内部歪みが十分に吸収されず、炭化珪素接合体20に残留する残留応力が大きくなる。一方、平均気孔径が5.0μmを超えると、炭化珪素焼結体11,12の空孔が大きくなるため、炭化珪素焼結体11,12の強度が劣り、炭化珪素接合体20の接合強度が低下する。   Silicon carbide sintered bodies 11 and 12 preferably have an average pore diameter of 0.1 to 5.0 μm. If the average pore diameter of the silicon carbide sintered bodies 11 and 12 is less than 0.1 μm, the internal strain of the silicon carbide sintered bodies 11 and 12 generated by the heat treatment during bonding is not sufficiently absorbed, and the silicon carbide bonded body The residual stress remaining in 20 increases. On the other hand, when the average pore diameter exceeds 5.0 μm, since the pores of silicon carbide sintered bodies 11 and 12 become large, the strength of silicon carbide sintered bodies 11 and 12 is inferior, and the bonding strength of silicon carbide bonded body 20 Decreases.

さらに、炭化珪素焼結体11,12は、最大気孔径が3〜10μmであることが好ましい。炭化珪素焼結体11,12の最大気孔径が3μm未満であると、接合時の熱処理で生じた炭化珪素焼結体11,12の内部歪みが十分に吸収されず、炭化珪素接合体20に残留する残留応力が大きくなる。一方、最大気孔径が10μmを超えると、炭化珪素焼結体11,12の強度が劣り、炭化珪素接合体20の接合強度が低下する。   Furthermore, the silicon carbide sintered bodies 11 and 12 preferably have a maximum pore diameter of 3 to 10 μm. If the maximum pore diameter of silicon carbide sintered bodies 11 and 12 is less than 3 μm, the internal strain of silicon carbide sintered bodies 11 and 12 generated by the heat treatment during bonding is not sufficiently absorbed, and silicon carbide bonded body 20 The residual stress that remains is increased. On the other hand, when the maximum pore diameter exceeds 10 μm, the strength of silicon carbide sintered bodies 11 and 12 is inferior, and the bonding strength of silicon carbide joined body 20 is lowered.

各炭化珪素焼結体11,12の接合面11a,12aの表面粗さが0.7μm以下となるように、平面研削機、マシニングセンタ等により研削することが好ましい。接合面11a,12aの表面粗さが0.7μmを超えると、炭化珪素焼結体11,12と接合シート13の接触不足が生じ、接合が不十分となり、剥離が発生するからである。ラッピング加工等の鏡面研磨加工は必要ない。また、接合面11a,12aの平坦度は5μm以下であることが好ましい。接合面11a,12aの平坦度が5μmを超えると、炭化珪素焼結体11,12と接合シート13の接触不足が生じ、接合が不十分となり、剥離が発生するからである。   It is preferable to perform grinding with a surface grinder, a machining center, or the like so that the surface roughness of the joint surfaces 11a, 12a of the silicon carbide sintered bodies 11, 12 is 0.7 μm or less. This is because if the surface roughness of bonding surfaces 11a and 12a exceeds 0.7 μm, contact between silicon carbide sintered bodies 11 and 12 and bonding sheet 13 is insufficient, bonding becomes insufficient, and peeling occurs. Mirror polishing such as lapping is not necessary. The flatness of the bonding surfaces 11a and 12a is preferably 5 μm or less. If the flatness of the joining surfaces 11a and 12a exceeds 5 μm, insufficient contact between the silicon carbide sintered bodies 11 and 12 and the joining sheet 13 occurs, resulting in insufficient joining and peeling.

さらに、炭化珪素及び結合材としてのバインダを材料として含み、シート状に成形した接合シート13を用意する。接合シート13の厚さは、50〜130μmである。   Furthermore, the joining sheet | seat 13 which contains silicon carbide and the binder as a binder as a material, and shape | molded in the sheet form is prepared. The thickness of the bonding sheet 13 is 50 to 130 μm.

接合シート13を構成する炭化珪素の含有率は85〜95質量%であることが好ましい。含有率が85質量%未満であると、接合層内における骨格としての機能が発現されないため、接合層23の体積変化を生じ、剥離が発生するおそれがある。一方、95質量%を超えると、炭化珪素が相対的に多く存在し、シート状に成形することが難しい。   It is preferable that the content rate of the silicon carbide which comprises the joining sheet | seat 13 is 85-95 mass%. When the content is less than 85% by mass, the function as a skeleton in the bonding layer is not expressed, so that the volume of the bonding layer 23 is changed and peeling may occur. On the other hand, when it exceeds 95% by mass, silicon carbide is present in a relatively large amount, and it is difficult to form a sheet.

また、炭化珪素の平均粒径は1〜20μmであることが好ましい。平均粒径が1μm未満であると、接合層内における骨格としての機能が発現されないため、接合層23の体積変化を生じ、未接合部が発生し易くなる。一方、平均粒径が20μmを超えると、炭化珪素焼結体11,12との接触する比表面積が少なくなるため、剥離が発生するおそれがある。   Moreover, it is preferable that the average particle diameter of silicon carbide is 1-20 micrometers. When the average particle size is less than 1 μm, the function as a skeleton in the bonding layer is not expressed, so that the volume of the bonding layer 23 is changed and an unbonded portion is easily generated. On the other hand, when the average particle size exceeds 20 μm, the specific surface area in contact with the silicon carbide sintered bodies 11 and 12 is reduced, and thus there is a risk of peeling.

バインダとして、例えば、アクリル樹脂系バインダを用いることができる。例えば、炭化珪素を85〜95体積%、バインダを5〜15体積%の割合で混合すればよい。   As the binder, for example, an acrylic resin binder can be used. For example, silicon carbide may be mixed at a ratio of 85 to 95% by volume and a binder at a ratio of 5 to 15% by volume.

また、接合シート13は、炭化硼素、グラファイトなどの焼結助剤を、炭化珪素に対し添加してもよい、例えば、炭化硼素0.1〜1.0体積%、グラファイトを1.0〜5.0体積%添加してもよい。さらに、接合シート13は、ポリカルボン酸系などの分散剤、フタル酸系などの可塑剤を添加したものであってもよい。可塑剤は、例えば、バインダに対して40〜50体積%添加すればよい。   In addition, the bonding sheet 13 may be added with a sintering aid such as boron carbide or graphite to silicon carbide. For example, boron carbide is 0.1 to 1.0% by volume, and graphite is 1.0 to 5%. 0.0% by volume may be added. Further, the joining sheet 13 may be one to which a dispersant such as polycarboxylic acid or a plasticizer such as phthalic acid is added. What is necessary is just to add 40-50 volume% of plasticizers with respect to a binder, for example.

位置ずれを防止するために、接着剤を用いて接合シート13を接合面11a,12aに接着させてもよい。なお、接合シート13は、脱脂されていない。   In order to prevent displacement, the bonding sheet 13 may be bonded to the bonding surfaces 11a and 12a using an adhesive. Note that the bonding sheet 13 is not degreased.

次に、図1(b)に示すように、接合シート13を炭化珪素焼結体11,12の間に挟み込み、接合面11a,12aと当接させる。そして、その状態で加圧しながら、加熱することにより接合する。   Next, as shown in FIG. 1B, the bonding sheet 13 is sandwiched between the silicon carbide sintered bodies 11 and 12 and brought into contact with the bonding surfaces 11a and 12a. And it joins by heating, pressing in that state.

この接合工程では、1900〜2100℃の温度で、3〜10時間保持することが好ましい。これは、接合温度が1900℃未満であると、接合シート13の溶融不足となり緻密化せず、剥離が発生するおそれがあり、2100℃を超えると、炭化珪素焼結体11,12の炭化珪素が異常粒成長し、接合強度が低下するためである。   In this joining step, it is preferable to hold at a temperature of 1900 to 2100 ° C. for 3 to 10 hours. If the bonding temperature is lower than 1900 ° C., the bonding sheet 13 is insufficiently melted and does not become densified, and peeling may occur. If the bonding temperature exceeds 2100 ° C., the silicon carbide of the silicon carbide sintered bodies 11 and 12 This is because abnormal grain growth occurs and bonding strength decreases.

保持時間が3時間未満であると、接合シート13の溶融不足となり緻密化せず、剥離が発生するおそれがある。一方、保持時間が10時間を超えると、炭化珪素焼結体11,12の炭化珪素が異常粒成長し、接合強度が低下する。   If the holding time is less than 3 hours, the bonding sheet 13 is insufficiently melted and does not become dense, and peeling may occur. On the other hand, when holding time exceeds 10 hours, the silicon carbide of the silicon carbide sintered bodies 11 and 12 grows abnormally, and the bonding strength decreases.

そして、1800℃までは真空中で、1800℃からは不活性ガス雰囲気、例えばアルゴン雰囲気であることが好ましい。1800℃まで真空中とするのは、炭化珪素の表面酸化層の除去や、接合材のバインダを炭化するためである。   Then, it is preferable that the vacuum is up to 1800 ° C., and the inert gas atmosphere, for example, the argon atmosphere is used from 1800 ° C. The reason why the vacuum is used up to 1800 ° C. is to remove the surface oxide layer of silicon carbide and carbonize the binder of the bonding material.

また、接合時には、2〜4MPaの荷重をかけることが望ましい。接合荷重が2MPa未満であると、接合シート13と接合面11a,12aとが密着せずに隙間が生じるおそれがあり、4MPaを超えると、接合シート13が変形するおそれがあるためである。   Moreover, it is desirable to apply a load of 2 to 4 MPa at the time of joining. This is because if the bonding load is less than 2 MPa, the bonding sheet 13 and the bonding surfaces 11a and 12a may not be in close contact with each other, and a gap may be formed. If the bonding load exceeds 4 MPa, the bonding sheet 13 may be deformed.

これにより、図1(c)に示すように、本発明の実施形態に係る炭化珪素接合体20が得られる。炭化珪素接合体20は、炭化珪素焼結体11,12からなる母材層21,22が、接合シート13が変質してなる接合層23を介して接合されたものである。   Thereby, as shown in FIG.1 (c), the silicon carbide joined body 20 which concerns on embodiment of this invention is obtained. The silicon carbide bonded body 20 is obtained by bonding base material layers 21 and 22 made of silicon carbide sintered bodies 11 and 12 via a bonding layer 23 formed by modifying the bonding sheet 13.

接合層23の厚さは、接合シート13の厚さの35〜55%となっている。また、母材層21,22は炭化珪素焼結体11,12に対して厚さ方向に0.04%以下しか収縮しておらず、寸法変化は非常に小さい。   The thickness of the bonding layer 23 is 35 to 55% of the thickness of the bonding sheet 13. Base material layers 21 and 22 contract only 0.04% or less in the thickness direction with respect to silicon carbide sintered bodies 11 and 12, and the dimensional change is very small.

接合層23の厚さは、35〜55μmである。接合層23の厚さが35μm未満であると、接合時の熱処理で生じた母材層21,22の内部歪みを接合層23で十分に吸収することができない。一方、接合層23の厚さが55μmを超えると、炭化珪素接合体20の気孔割合が多くなるため、炭化珪素接合体20の接合強度が低下する。   The thickness of the bonding layer 23 is 35 to 55 μm. When the thickness of the bonding layer 23 is less than 35 μm, the bonding layer 23 cannot sufficiently absorb the internal strain of the base material layers 21 and 22 generated by the heat treatment during bonding. On the other hand, when the thickness of bonding layer 23 exceeds 55 μm, the porosity of silicon carbide bonded body 20 increases, so that the bonding strength of silicon carbide bonded body 20 decreases.

接合層23は、気孔割合が10〜20%、平均気孔径が0.1〜7.0μmである。接合層23の気孔割合が10%未満、又は接合層23の平均気孔径が0.1μm未満であると、接合時の熱処理で生じた母材層21,22の内部歪みを接合層23内の空孔で十分に吸収することができない。一方、接合層23の気孔割合が20%を超える、又は接合層23の平均気孔径が7.0μmを超えると、空孔が大きく多いため、接合層23の強度が劣り、炭化珪素接合体20の接合強度が低下する。   The bonding layer 23 has a pore ratio of 10 to 20% and an average pore diameter of 0.1 to 7.0 μm. When the porosity of the bonding layer 23 is less than 10%, or the average pore diameter of the bonding layer 23 is less than 0.1 μm, the internal strain of the base material layers 21 and 22 generated by the heat treatment during bonding is reduced in the bonding layer 23. It cannot be sufficiently absorbed by the pores. On the other hand, when the porosity ratio of bonding layer 23 exceeds 20% or the average pore diameter of bonding layer 23 exceeds 7.0 μm, the number of voids is large and the strength of bonding layer 23 is inferior, and silicon carbide bonded body 20 The bonding strength of the is reduced.

さらに、接合層23は、最大気孔径が5〜15μmであり、母材層21,22の最大気孔径より大きいことが好ましい。接合層23の最大気孔径が5μm未満であると、接合時の熱処理で生じた母材層21,22の内部歪みが十分に吸収することができない。一方、接合層23の最大気孔径が15μmを超えると、接合層23の空孔が大きくなるため、接合層23の強度が劣り、炭化珪素接合体20の接合強度が低下する。なお、母材層21,22の最大気孔径は、炭化珪素焼結体11,12の最大気孔径とほぼ同じである。   Further, the bonding layer 23 preferably has a maximum pore diameter of 5 to 15 μm and is larger than the maximum pore diameter of the base material layers 21 and 22. When the maximum pore diameter of the bonding layer 23 is less than 5 μm, the internal strain of the base material layers 21 and 22 generated by the heat treatment at the time of bonding cannot be sufficiently absorbed. On the other hand, when the maximum pore diameter of bonding layer 23 exceeds 15 μm, the pores of bonding layer 23 increase, so that the strength of bonding layer 23 is inferior and the bonding strength of silicon carbide bonded body 20 decreases. The maximum pore diameter of the base material layers 21 and 22 is substantially the same as the maximum pore diameter of the silicon carbide sintered bodies 11 and 12.

このような接合層23は、上述した接合シート13が接合処理によって緻密化することで形成される。接合層23は、焼成温度が高い、加圧圧力が高い、又は、接合シート13のバインダ量が多いと、気孔割合、平均気孔径及び最大気孔径が大きくなる。   Such a bonding layer 23 is formed by densifying the bonding sheet 13 described above by a bonding process. When the bonding layer 23 has a high firing temperature, a high pressing pressure, or a large amount of binder in the bonding sheet 13, the pore ratio, the average pore diameter, and the maximum pore diameter increase.

このような炭化珪素接合体20は、室温において、曲げ強度が、母材である炭化珪素焼結体11,12の曲げ強度の78〜100%となり、高強度である。   Such a silicon carbide bonded body 20 has a high bending strength at room temperature of 78 to 100% of the bending strength of the silicon carbide sintered bodies 11 and 12 as the base materials.

また、炭化珪素接合体20は、残留応力が、引張り応力で50〜150MPaと小さく、内部歪みが抑制されている。   In addition, the silicon carbide bonded body 20 has a small residual stress of 50 to 150 MPa in terms of tensile stress, and internal strain is suppressed.

以下、本発明の実施例及び比較例を具体的に挙げ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples and comparative examples of the present invention.

〔実施例1〕
図1(a)に示すように、直径100mm、厚さ6mmの2枚の炭化珪素焼結体11,12を用意した。これらの炭化珪素焼結体11,12は、市販の炭化珪素粉末(シュタルク社製UF−10)を用い、プレス成形後、CIP成形し、常圧焼結した。焼結助剤として、炭化珪素に対し、炭化硼素を0.25%、グラファイトを2.0%添加した。接合面の表面粗さは、平面研削機により研削し、0.3μmに調整した。
[Example 1]
As shown in FIG. 1A, two silicon carbide sintered bodies 11 and 12 having a diameter of 100 mm and a thickness of 6 mm were prepared. These silicon carbide sintered bodies 11 and 12 were commercially available silicon carbide powder (UF-10 manufactured by Stark), press-molded, CIP-molded, and sintered at normal pressure. As sintering aids, 0.25% boron carbide and 2.0% graphite were added to silicon carbide. The surface roughness of the joint surface was ground by a surface grinder and adjusted to 0.3 μm.

室温における炭化珪素接合体20の曲げ強度を、JIS R 1624−2010に準拠して測定した。曲げ強度は420MPaであった。   The bending strength of silicon carbide joined body 20 at room temperature was measured in accordance with JIS R 1624-2010. The bending strength was 420 MPa.

そして、接合面11a,12aの表面粗さが0.3μm、平坦度が2.3μmとなるように研削加工した。   And it grind-processed so that the surface roughness of joint surface 11a, 12a might be 0.3 micrometer, and flatness might be 2.3 micrometers.

また、直径100mm、厚さ100μmの接合シート13を用意した。この接合シート13は、炭化珪素及び結合材としてバインダを添加したスラリーを作製し、ドクターブレード法により作製した。バインダとして、アクリル樹脂系バインダを用いた。バインダは、炭化珪素を85体積%、バインダを15体積%の割合で混合した。   Further, a bonding sheet 13 having a diameter of 100 mm and a thickness of 100 μm was prepared. This joining sheet 13 was produced by preparing a slurry to which silicon carbide and a binder as a binder were added, and using a doctor blade method. An acrylic resin binder was used as the binder. The binder was mixed at a ratio of 85% by volume of silicon carbide and 15% by volume of binder.

また、接合シート13には、焼結助剤として炭化硼素を0.25%、グラファイトを2.0%添加した。さらに、接合シート13は、ポリカルボン酸系の分散剤、フタル酸系の可塑剤を添加した。   Further, 0.25% boron carbide and 2.0% graphite were added to the bonding sheet 13 as sintering aids. Further, the bonding sheet 13 was added with a polycarboxylic acid-based dispersant and a phthalic acid-based plasticizer.

次に、図1(b)に示すように、炭化珪素焼結体11,12の接合面11a,12aと当接するように、炭化珪素焼結体11,12の間に接合シート13を挟み込んだ状態で4.0MPaの圧力で加圧しながら、加熱することにより接合する。   Next, as shown in FIG.1 (b), the joining sheet | seat 13 was inserted | pinched between the silicon carbide sintered compacts 11 and 12 so that it might contact | abut with the joining surfaces 11a and 12a of the silicon carbide sintered compacts 11 and 12. FIG. In the state, it joins by heating, pressurizing with the pressure of 4.0 Mpa.

1800℃までは真空中で、1800℃から常温(熱処理終了)までアルゴン雰囲気とした。2100℃の温度で、6時間保持した。   Up to 1800 ° C., an argon atmosphere was used in vacuum from 1800 ° C. to room temperature (end of heat treatment). The temperature was maintained at 2100 ° C. for 6 hours.

これにより、図1(c)に示すように、炭化珪素接合体20が得られた。接合層23の厚さは45μmであった。また、接合層23は、気孔割合が10%、平均気孔径が0.1μm、最大気孔径が5μmであった。   Thereby, as shown in FIG.1 (c), the silicon carbide joined body 20 was obtained. The thickness of the bonding layer 23 was 45 μm. The bonding layer 23 had a porosity ratio of 10%, an average pore diameter of 0.1 μm, and a maximum pore diameter of 5 μm.

なお、気孔割合は、炭化珪素接合体20の切断断面を研磨し、光学顕微鏡を用いて2500倍の倍率で研磨面を拡大して撮影し、120μm×90μmの範囲内の気孔の割合(面積)を測定した。気孔径は、上述した画像の範囲内の気孔径を全数測定し、平均気孔径と最大気孔径を求めた。   The pore ratio is the ratio (area) of pores in the range of 120 μm × 90 μm, which is obtained by polishing a cut cross section of the silicon carbide bonded body 20 and enlarging the polished surface at a magnification of 2500 times using an optical microscope. Was measured. As for the pore diameter, the total pore diameter within the above-mentioned image range was measured, and the average pore diameter and the maximum pore diameter were determined.

室温における炭化珪素接合体20の曲げ強度を、JIS R 1624−2010に準拠して測定した。曲げ強度は423MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の101%であり、高強度であった。   The bending strength of silicon carbide joined body 20 at room temperature was measured in accordance with JIS R 1624-2010. The bending strength was 423 MPa, which was 101% of the bending strength of the silicon carbide sintered bodies 11 and 12 as the base material, and was high strength.

また、炭化珪素接合体20の残留応力の測定は、測定装置として、プロトマニュファクチュアリング株式会社製LXRDを用いて、ASTM−E915(米国材料試験協会)の方法に準拠して、実施した。残留応力は148MPaと小さかった。   Moreover, the measurement of the residual stress of the silicon carbide bonded body 20 was performed according to the method of ASTM-E915 (American Society for Testing and Materials) using LXRD manufactured by Proto Manufacturing Co., Ltd. as a measuring device. The residual stress was as small as 148 MPa.

実施例1〜7の結果を、表1及び表2にまとめた。   The results of Examples 1 to 7 are summarized in Tables 1 and 2.

〔実施例2〕
実施例2として、焼成温度を2050℃とし、3.5MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、気孔割合が13%、平均気孔径が0.5μm、最大気孔径が7μmであった。
[Example 2]
As Example 2, a silicon carbide joined body 20 was manufactured in the same manner as in Example 1 except that the firing temperature was 2050 ° C. and the pressure was 3.5 MPa. The bonding layer 23 had a pore ratio of 13%, an average pore diameter of 0.5 μm, and a maximum pore diameter of 7 μm.

室温における炭化珪素接合体20の曲げ強度は415MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の99%であり、高強度であった。また、炭化珪素接合体20の残留応力は102MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 415 MPa, 99% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength. Moreover, the residual stress of the silicon carbide joined body 20 was as small as 102 MPa.

〔実施例3〕
実施例3として、焼成温度を2000℃とし、3.5MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、気孔割合が15%、平均気孔径が1.0μm、最大気孔径が10μmであった。
Example 3
As Example 3, a silicon carbide joined body 20 was produced in the same manner as in Example 1 except that the firing temperature was 2000 ° C. and the pressure was 3.5 MPa. The bonding layer 23 had a pore ratio of 15%, an average pore diameter of 1.0 μm, and a maximum pore diameter of 10 μm.

室温における炭化珪素接合体20の曲げ強度は398MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の95%であり、高強度であった。また、炭化珪素接合体20の残留応力は84MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 398 MPa, which was 95% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength. Moreover, the residual stress of the silicon carbide joined body 20 was as small as 84 MPa.

〔実施例4〕
実施例4として、焼成温度を1950℃とし、3.0MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、気孔割合が18%、平均気孔径が3.0μm、最大気孔径が12μmであった。
Example 4
As Example 4, a silicon carbide joined body 20 was produced in the same manner as in Example 1 except that the firing temperature was 1950 ° C. and the pressure was 3.0 MPa. The bonding layer 23 had a porosity ratio of 18%, an average pore diameter of 3.0 μm, and a maximum pore diameter of 12 μm.

室温における炭化珪素接合体20の曲げ強度は372MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の89%であり、高強度であった。また、炭化珪素接合体20の残留応力は68MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 372 MPa, 89% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength. Further, the residual stress of silicon carbide joined body 20 was as small as 68 MPa.

〔実施例5〕
実施例5として、焼成温度を1900℃とし、2.0MPaの圧力で加圧したこと以外は、実施例1と炭化珪素接合体20を製造同様にした。接合層23は、気孔割合が20%、平均気孔径が5.0μm、最大気孔径が15μmであった。
Example 5
As Example 5, Example 1 and silicon carbide joined body 20 were manufactured in the same manner as in Example 1 except that the firing temperature was 1900 ° C. and the pressure was 2.0 MPa. The bonding layer 23 had a pore ratio of 20%, an average pore diameter of 5.0 μm, and a maximum pore diameter of 15 μm.

室温における炭化珪素接合体20の曲げ強度は359MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の85%であり、高強度であった。また、炭化珪素接合体20の残留応力は50MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 359 MPa, 85% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength. Moreover, the residual stress of the silicon carbide joined body 20 was as small as 50 MPa.

〔実施例6〕
実施例6として、接合シート13の厚さを80μmとし、焼成温度を2000℃とし、3.5MPaの圧力で加圧したこと以外は、実施例1と炭化珪素接合体20を製造同様にした。接合層23は、厚さが35μm、気孔割合が15%、平均気孔径が1.0μm、最大気孔径が10μmであった。
Example 6
As Example 6, Example 1 and the silicon carbide bonded body 20 were manufactured in the same manner as in Example 6 except that the thickness of the bonding sheet 13 was 80 μm, the firing temperature was 2000 ° C., and the pressure was 3.5 MPa. The bonding layer 23 had a thickness of 35 μm, a pore ratio of 15%, an average pore diameter of 1.0 μm, and a maximum pore diameter of 10 μm.

室温における炭化珪素接合体20の曲げ強度は402MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の96%であり、高強度であった。また、炭化珪素接合体20の残留応力は113MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 402 MPa, which was 96% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength. Further, the residual stress of silicon carbide joined body 20 was as small as 113 MPa.

〔実施例7〕
実施例7として、接合シート13の厚さを120μmとし、焼成温度を2000℃とし、3.5MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、厚さが55μm、気孔割合が15%、平均気孔径が1.0μm、最大気孔径が10μmであった。
Example 7
As Example 7, a silicon carbide bonded body 20 was manufactured in the same manner as in Example 1 except that the thickness of the bonding sheet 13 was 120 μm, the firing temperature was 2000 ° C., and the pressure was 3.5 MPa. The bonding layer 23 had a thickness of 55 μm, a pore ratio of 15%, an average pore diameter of 1.0 μm, and a maximum pore diameter of 10 μm.

室温における炭化珪素接合体20の曲げ強度は328MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の78%であり、高強度であった。また、炭化珪素接合体20の残留応力は75MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 328 MPa, 78% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength. Further, the residual stress of silicon carbide joined body 20 was as small as 75 MPa.

〔比較例1〕
比較例1として、焼成温度を2150℃としたこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、厚さが45μm、気孔割合が8%、平均気孔径が0.08μm、最大気孔径が4μmであった。
[Comparative Example 1]
As Comparative Example 1, silicon carbide joined body 20 was manufactured in the same manner as in Example 1 except that the firing temperature was 2150 ° C. The bonding layer 23 had a thickness of 45 μm, a porosity ratio of 8%, an average pore diameter of 0.08 μm, and a maximum pore diameter of 4 μm.

室温における炭化珪素接合体20の曲げ強度は436MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の104%であり、高強度であった。   The bending strength of silicon carbide joined body 20 at room temperature was 436 MPa, which was 104% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength.

しかし、炭化珪素接合体20の残留応力は248MPaと大きかった。これは、接合層23の気孔割合が8%と低く、平均気孔径が0.08μm、最大気孔径が4μmと気孔が小さく、接合時の熱処理で生じた母材層21,22の内部歪みを十分に吸収できなかったためであると考えられる。   However, the residual stress of silicon carbide joined body 20 was as large as 248 MPa. This is because the pore ratio of the bonding layer 23 is as low as 8%, the average pore diameter is 0.08 μm, the maximum pore diameter is 4 μm and the pores are small, and the internal strain of the base material layers 21 and 22 generated by the heat treatment during bonding is reduced. This is thought to be due to insufficient absorption.

比較例1〜4の結果を、表3及び表4にまとめた。   The results of Comparative Examples 1 to 4 are summarized in Table 3 and Table 4.

〔比較例2〕
比較例2として、焼成温度を1850℃とし、2.0MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、厚さが45μm、気孔割合が22%、平均気孔径が6.0μm、最大気孔径が17μmであった。
[Comparative Example 2]
As Comparative Example 2, silicon carbide joined body 20 was produced in the same manner as in Example 1 except that the firing temperature was 1850 ° C. and the pressure was 2.0 MPa. The bonding layer 23 had a thickness of 45 μm, a porosity ratio of 22%, an average pore diameter of 6.0 μm, and a maximum pore diameter of 17 μm.

室温における炭化珪素接合体20の曲げ強度は291MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の69%しかなく、強度が劣っていた。これは、接合層23の気孔割合が22と高く、平均気孔径が6.0μm、最大気孔径が17μmと気孔が大きく、母材層21,22の強度が低下したためであると考えられる。炭化珪素接合体20の残留応力は48MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 291 MPa, which was only 69% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and the strength was poor. This is considered to be because the pore ratio of the bonding layer 23 is as high as 22, the average pore diameter is 6.0 μm, the maximum pore diameter is 17 μm, the pores are large, and the strength of the base material layers 21 and 22 is reduced. Residual stress of silicon carbide joined body 20 was as small as 48 MPa.

〔比較例3〕
比較例3として、接合シート13の厚さを45μmとし、焼成温度を2000℃とし、3.5MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、厚さが25μm、気孔割合が15%、平均気孔径が1.0μm、最大気孔径が10μmであった。
[Comparative Example 3]
As Comparative Example 3, silicon carbide bonded body 20 was manufactured in the same manner as in Example 1 except that the thickness of bonding sheet 13 was 45 μm, the firing temperature was 2000 ° C., and the pressure was 3.5 MPa. The bonding layer 23 had a thickness of 25 μm, a pore ratio of 15%, an average pore diameter of 1.0 μm, and a maximum pore diameter of 10 μm.

室温における炭化珪素接合体20の曲げ強度は411MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の98%であり、高強度であった。   The bending strength of silicon carbide joined body 20 at room temperature was 411 MPa, which was 98% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and was high strength.

しかし、炭化珪素接合体20の残留応力は298MPaと大きかった。これは、接合層23の厚さが25μmと薄く、接合時の熱処理で生じた母材層21,22の内部歪みを十分に吸収できなかったためであると考えられる。   However, the residual stress of silicon carbide joined body 20 was as large as 298 MPa. This is presumably because the thickness of the bonding layer 23 was as thin as 25 μm and the internal strains of the base material layers 21 and 22 generated by the heat treatment during bonding could not be sufficiently absorbed.

〔比較例4〕
比較例4として、接合シート13の厚さを150μmとし、焼成温度を2000℃とし、3.5MPaの圧力で加圧したこと以外は、実施例1と同様に炭化珪素接合体20を製造した。接合層23は、厚さが65μm、気孔割合が15%、平均気孔径が1.0μm、最大気孔径が10μmであった。
[Comparative Example 4]
As Comparative Example 4, a silicon carbide bonded body 20 was manufactured in the same manner as in Example 1 except that the thickness of the bonding sheet 13 was 150 μm, the firing temperature was 2000 ° C., and the pressure was 3.5 MPa. The bonding layer 23 had a thickness of 65 μm, a pore ratio of 15%, an average pore diameter of 1.0 μm, and a maximum pore diameter of 10 μm.

室温における炭化珪素接合体20の曲げ強度は284MPaであり、母材である炭化珪素焼結体11,12の曲げ強度の68%しかなく、強度が劣っていた。これは、接合層23の厚さが65μmと厚く、破壊の起源となる欠陥数が増加したためであると考えられる。炭化珪素接合体20の残留応力は52MPaと小さかった。   The bending strength of silicon carbide joined body 20 at room temperature was 284 MPa, which was only 68% of the bending strength of silicon carbide sintered bodies 11 and 12 as the base material, and the strength was poor. This is presumably because the thickness of the bonding layer 23 is as thick as 65 μm, and the number of defects that cause the breakdown has increased. Residual stress of silicon carbide joined body 20 was as small as 52 MPa.

11,12…炭化珪素焼結体、母材、 11a,12a…接合面、 13…接合シート、20…炭化珪素接合体、 21,22…母材層、 23…接合層。   DESCRIPTION OF SYMBOLS 11, 12 ... Silicon carbide sintered compact, base material, 11a, 12a ... Joining surface, 13 ... Joining sheet, 20 ... Silicon carbide joined body, 21, 22 ... Base material layer, 23 ... Joining layer.

Claims (3)

炭化珪素焼結体が炭化珪素からなる接合層を介して接合された炭化珪素接合体であって、
前記接合層は、厚さが35〜55μm、気孔割合が10〜20%、平均気孔径が0.1〜7.0μmであることを特徴とする炭化珪素接合体。
The silicon carbide sintered body is joined through a joining layer made of silicon carbide,
The bonding layer has a thickness of 35 to 55 μm, a pore ratio of 10 to 20%, and an average pore diameter of 0.1 to 7.0 μm.
前記炭化珪素焼結体は、気孔割合が1〜5%、平均気孔径が0.1〜5.0μmであることを特徴とする請求項1に記載の炭化珪素接合体。   2. The silicon carbide bonded body according to claim 1, wherein the silicon carbide sintered body has a pore ratio of 1 to 5% and an average pore diameter of 0.1 to 5.0 μm. 炭化珪素焼結体の間に、厚さが50〜130μmであり、平均粒径が1〜20μmの炭化珪素及び結合材としてバインダを含み前記炭化珪素の含有率が85〜95質量%である接合シートを挟み込み、2〜4MPaの荷重で加圧しながら1900〜2100℃の温度で熱処理を3〜10時間行い、厚さが35〜55μm、気孔割合が10〜20%、平均気孔径が0.1〜7.0μmである接合層を形成することを特徴とする炭化珪素焼結接合体の製造方法。 Bonding between silicon carbide sintered bodies having a thickness of 50 to 130 μm , an average particle diameter of 1 to 20 μm, a binder as a binder, and a silicon carbide content of 85 to 95% by mass The sheet was sandwiched and heat-treated for 3 to 10 hours at a temperature of 1900 to 2100 ° C. while being pressed with a load of 2 to 4 MPa. A method for producing a silicon carbide sintered joined body, comprising forming a joining layer having a thickness of ˜7.0 μm.
JP2013271316A 2013-12-27 2013-12-27 Silicon carbide bonded body and method for manufacturing the same Active JP6236314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271316A JP6236314B2 (en) 2013-12-27 2013-12-27 Silicon carbide bonded body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271316A JP6236314B2 (en) 2013-12-27 2013-12-27 Silicon carbide bonded body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015124137A JP2015124137A (en) 2015-07-06
JP6236314B2 true JP6236314B2 (en) 2017-11-22

Family

ID=53535109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271316A Active JP6236314B2 (en) 2013-12-27 2013-12-27 Silicon carbide bonded body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6236314B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960264B1 (en) * 2017-03-10 2019-03-20 서울시립대학교 산학협력단 Residual stress free joined SiC ceramics and the processing method of the same
KR102261947B1 (en) * 2020-02-12 2021-06-08 에스케이씨솔믹스 주식회사 Method for manufacturing a ceramic part for apparatus manufacturing a semiconductor device and a ceramic part

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122774A (en) * 1983-12-05 1985-07-01 日産自動車株式会社 Method of bonding silicon carbide sintered body
JPS62197361A (en) * 1986-02-25 1987-09-01 バブコツク日立株式会社 Method of joining silicon carbide ceramics
JPH0776134B2 (en) * 1986-11-27 1995-08-16 日本ピラ−工業株式会社 Adhesive for silicon carbide based compact and method for producing silicon carbide based sintered body
US4925608A (en) * 1988-09-27 1990-05-15 Norton Company Joining of SiC parts by polishing and hipping
JPH03112871A (en) * 1989-09-27 1991-05-14 Eagle Ind Co Ltd Silicon carbide zygote and its junction
JP4537669B2 (en) * 2003-06-30 2010-09-01 株式会社東芝 Silicon carbide-based bonded component and method for manufacturing the same
JP5322382B2 (en) * 2006-11-30 2013-10-23 株式会社東芝 Ceramic composite member and manufacturing method thereof
JP2010173922A (en) * 2009-01-30 2010-08-12 Taiheiyo Cement Corp Silicon carbide joined body and method for producing the same
JP5498191B2 (en) * 2009-02-16 2014-05-21 株式会社東芝 Hydrogen power storage system and hydrogen power storage method

Also Published As

Publication number Publication date
JP2015124137A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
JPWO2017065139A1 (en) Aluminum-diamond composite and method for producing the same
JPWO2006057408A1 (en) Composite ceramic body, method for producing the same, microchemical chip, and reformer
JP3830382B2 (en) Ceramic sintered body and method for producing the same
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP5805556B2 (en) Alumina ceramic joined body and method for producing the same
JP6236314B2 (en) Silicon carbide bonded body and method for manufacturing the same
JP5231064B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6196492B2 (en) Manufacturing method of alumina ceramic joined body
JP5928672B2 (en) Manufacturing method of alumina ceramic joined body
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
KR101498410B1 (en) Alumina conjugate and bonding method for alumina sintered bodies
JP2012106929A (en) Method for producing porous body
JP5929899B2 (en) Zinc sulfide sintered body, optical member, and manufacturing method thereof
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JP2008230904A (en) Porous body, and its production method
JP7216611B2 (en) Manufacturing method of SiC sintered member
JP6975598B2 (en) Manufacturing method of silicon carbide member
JP4370624B2 (en) Alumina member joining method
JP5457992B2 (en) Method for producing aluminum-ceramic composite structural part
JP2010173881A (en) Ceramic porous body and method for producing the same
JP2015224152A (en) Method for joining silicon carbide ceramics
JP5674602B2 (en) Method for manufacturing silicon carbide sintered body and silicon carbide sintered body
JP4373560B2 (en) Boron carbide joined body and method for producing the same
JP2010070397A (en) Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6236314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250