JP6226542B2 - Steel with excellent toughness in weld heat affected zone - Google Patents
Steel with excellent toughness in weld heat affected zone Download PDFInfo
- Publication number
- JP6226542B2 JP6226542B2 JP2013060452A JP2013060452A JP6226542B2 JP 6226542 B2 JP6226542 B2 JP 6226542B2 JP 2013060452 A JP2013060452 A JP 2013060452A JP 2013060452 A JP2013060452 A JP 2013060452A JP 6226542 B2 JP6226542 B2 JP 6226542B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- rem
- steel
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、造船、建築、橋梁等の溶接構造物用として好適な厚鋼板に関し、特に大入熱溶接であっても優れたHAZ靭性を実現する鋼材に関する。 The present invention relates to a thick steel plate suitable for use in welded structures such as shipbuilding, construction, and bridges, and more particularly to a steel material that realizes excellent HAZ toughness even in high heat input welding.
近年、橋梁、高層建造物、および大型船舶等、鋼材を用いた構造物は大型化する傾向にあり、この大型構造物を実現するためには、鋼材の高強度化・厚肉化が望まれている。これと共に、大型構造物の施工効率の向上と施工コストの低減を目的として、高強度・厚肉の鋼材を溶接する際の溶接効率の向上が求められている。
ところで、鋼材の溶接効率を向上させるには、同一箇所に対する溶接回数を減らすことが有効であり、小さな熱量(溶接熱)で鋼材に対して溶接を複数回繰り返すよりも、鋼材に対して大きな熱量(溶接熱)を加える大入熱の溶接を行って1回で溶接を完了させる大入熱で高能率の溶接が指向される。
In recent years, structures using steel materials, such as bridges, high-rise buildings, and large ships, have tended to increase in size. To realize such large structures, it is desirable to increase the strength and thickness of steel materials. ing. At the same time, for the purpose of improving the construction efficiency of large structures and reducing the construction cost, there is a demand for improvement in welding efficiency when welding high-strength and thick steel materials.
By the way, in order to improve the welding efficiency of steel materials, it is effective to reduce the number of times of welding to the same location, and a large amount of heat is applied to the steel material rather than repeating the welding to the steel material several times with a small amount of heat (welding heat). High-efficiency welding with high heat input that completes welding at a time by performing welding with high heat input to add (welding heat) is directed.
しかし、一般的に、熱量の大小を問わず溶接熱に晒される溶接熱影響部(以下、HAZともいう)は、溶接時に高温となって鋼材の結晶粒が粗大化しやすい。加えて、鋼材への入熱量が増大するに従って溶接熱影響部が高温となり冷却時間が長くなる。高温かつ長い冷却時間は、溶接熱影響部における脆弱な上部ベイナイト組織の形成や、島状マルテンサイト等の脆化組織の形成を促進する条件となるため、鋼材のHAZ靭性を低下させる原因となることはすでに知られている。 However, in general, a weld heat affected zone (hereinafter also referred to as HAZ) that is exposed to welding heat regardless of the amount of heat becomes high temperature during welding, and the crystal grains of the steel material tend to be coarse. In addition, as the amount of heat input to the steel material increases, the weld heat affected zone becomes higher in temperature and the cooling time becomes longer. A high temperature and a long cooling time are conditions that promote the formation of a brittle upper bainite structure in the heat affected zone and the formation of an embrittled structure such as island martensite, and thus reduce the HAZ toughness of the steel material. That is already known.
上述のような溶接熱に起因するHAZ靭性の低下に対処するために、特許文献1〜5に開示される技術が提案されている。
特許文献1は、溶接熱影響部靭性(HAZ靭性)に優れた鋼材および製造方法を提供することを目的としたものである。具体的に、特許文献1に開示の製造方法は、溶鋼中で強い硫化物生成能を持つCaに加えてMgおよび/またはREMを添加し、微細酸化物を生成させることで微細硫化物を分散させて1400℃以上に加熱されたHAZ組織を細粒化し、200kJ/cm以上の大入熱溶接でも良好なHAZ靭性を実現するとされている。
In order to cope with the decrease in the HAZ toughness caused by the welding heat as described above, techniques disclosed in Patent Documents 1 to 5 have been proposed.
Patent document 1 aims at providing the steel material excellent in the welding heat affected zone toughness (HAZ toughness), and a manufacturing method. Specifically, the manufacturing method disclosed in Patent Document 1 disperses fine sulfides by adding Mg and / or REM in addition to Ca having strong sulfide-forming ability in molten steel to produce fine oxides. The HAZ structure heated to 1400 ° C. or higher is refined and good HAZ toughness is achieved even with high heat input welding of 200 kJ / cm or higher.
特許文献2は、母材靭性と溶接部HAZ靭性に優れた高強度溶接構造用鋼およびその製造方法を提供することを目的としたものである。具体的に、特許文献2に開示の製造方法は、Ti添加後にMg、Ca、REMの1種又は2種以上を添加するか、あるいはTi添加とMg、Ca、REMの1種又は2種以上とを同時に添加して酸化物や硫化物を微細分散させることで母材の加熱γ粒径を微細化し、さらに溶接入熱に関わらずHAZの加熱γ粒径も微細化することを意図している。特許文献2は、この二つの微細化による効果として、良好な母材靭性と溶接部HAZ靱性を有する高強度溶接構造用鋼を製造可能であるとされている。 Patent Document 2 aims to provide a high-strength welded structural steel excellent in base metal toughness and welded portion HAZ toughness and a method for producing the same. Specifically, the manufacturing method disclosed in Patent Document 2 includes adding one or more of Mg, Ca, and REM after adding Ti, or adding one or more of Ti, Mg, Ca, and REM. Is intended to refine the heated γ grain size of the base material by finely dispersing oxides and sulfides at the same time, and to further refine the heated γ grain size of HAZ regardless of welding heat input. Yes. In Patent Document 2, as an effect of these two miniaturizations, high strength welded structural steel having good base metal toughness and welded portion HAZ toughness can be manufactured.
特許文献3は、超大入熱溶接の溶接熱影響部靭性に優れた厚鋼板およびその製造方法を提供することを目的としたものである。具体的に、特許文献3の製造方法は、溶鋼中での酸化物、硫化物等の粒子組成の調整に加えて、さらに凝固過程で形成されるデンドライトの形態制御を行う。これにより特許文献3は、鋼板中における分散粒子を、従来に比べて均一かつ微細に分散させて、入熱量が300kJ/cm以上となる超大入熱溶接時のHAZにおいても、オーステナイト粒を微細化しHAZ靭性を顕向上させることができるとされている。 Patent document 3 aims at providing the thick steel plate excellent in the welding heat affected zone toughness of super-high heat input welding, and its manufacturing method. Specifically, the production method of Patent Document 3 controls the form of dendrites formed in the solidification process in addition to adjusting the particle composition of oxides, sulfides, etc. in the molten steel. As a result, Patent Document 3 disperses dispersed particles in a steel sheet more uniformly and finely than in the past, and refines austenite grains even in HAZ during super-high heat input welding where the heat input is 300 kJ / cm or more. It is said that the HAZ toughness can be significantly improved.
特許文献4は、良好なHAZ靭性を有するAPI規格X100以上の高強度鋼板を提供することを目的としたものである。具体的に、特許文献4の高強度鋼板は、Ti,Mg,REM,Al,S,N量を限定することにより、(1)0.1μm以下のMg系酸化物を含んだTiN系微細析出物を含有させて、溶融線近傍においてもγ粒の粗大化を抑制する。さらに、この高強度鋼板は、(2)0.1μm以上のTi、Mg、REMを主体とする酸化物とMnSとの複合体を含有させて比較的小さなγ粒内からIGFを生成させることで、HAZ全域にわたって組織を微細化しHAZ靱性を向上させることができるとされている。 Patent Document 4 aims to provide a high-strength steel sheet of API standard X100 or higher having good HAZ toughness. Specifically, the high-strength steel sheet of Patent Document 4 is limited to the amount of Ti, Mg, REM, Al, S, and N, (1) TiN-based fine precipitation containing Mg-based oxides of 0.1 μm or less. The inclusion of the material suppresses the coarsening of γ grains even in the vicinity of the melting line. Furthermore, this high-strength steel sheet (2) contains a complex of an oxide mainly composed of Ti, Mg, and REM of 0.1 μm or more and MnS to generate IGF from a relatively small γ grain. It is said that the HAZ toughness can be improved by refining the structure throughout the entire HAZ.
特許文献5は、良好な母材靱性および溶接熱影響部靱性を兼ね備えた非調質高張力鋼材を提案することを目的としたものである。具体的に、特許文献5の非調質高張力鋼材は、最適な酸化物系介在物の最適組成範囲として、Ti酸化物:20〜90重量%、CaOおよびREM酸化物の合計:5〜50重量%、Al2O3:70重量%以下に制御する。これによって、非調質高張力鋼材は、ノズル詰まりや有害な介在物クラスターの生成を引き起こすことなく介在物の結晶粒粗大化抑制能(ピン止め効果)を有効に利用できるので、溶接熱影響部靭性を向上させることができ、さらに、TiN、あるいはさらにVNを最適分散させることにより母材の靭性と強度を向上させることができるとされている。 Patent Document 5 aims to propose a non-tempered high-tensile steel material having both good base material toughness and weld heat-affected zone toughness. Specifically, the non-tempered high-tensile steel material of Patent Document 5 has an optimal composition range of the oxide-based inclusions as follows: Ti oxide: 20 to 90 wt%, CaO and REM oxide total: 5 to 50 Weight%, Al 2 O 3 : Controlled to 70% by weight or less. As a result, non-tempered high-tensile steel can effectively utilize the grain coarsening suppression ability (pinning effect) of inclusions without causing nozzle clogging or generation of harmful inclusion clusters. It is said that the toughness can be improved, and further, the toughness and strength of the base material can be improved by optimally dispersing TiN or VN.
上述のように、特許文献1〜5のそれぞれは、溶接熱に起因するHAZ靭性の低下に対処することができると開示しているが、いずれの技術によっても、更なる大入熱溶接時においてHAZ靭性を向上させることは困難である。
特許文献1〜3に開示の技術は、酸硫化物のピンニング効果によってHAZ組織の微細化を図るものであるが、酸化物起因の粒内変態による組織微細化効果については言及しておらず、更なる大入熱化に対応できる技術であるとはいえない。
As described above, each of Patent Documents 1 to 5 discloses that it is possible to cope with a decrease in the HAZ toughness caused by welding heat. It is difficult to improve the HAZ toughness.
The techniques disclosed in Patent Documents 1 to 3 are intended to refine the HAZ structure by the pinning effect of oxysulfides, but do not mention the structure refinement effect due to intragranular transformation caused by oxides. It cannot be said that it is a technology that can cope with further increase in heat input.
また、特許文献4では、酸化物を起点とした組織変態に言及しているが、粗大酸化物等に対する対策が示されていないので、粗大酸化物の生成によってHAZ靭性が低下する可能性を排除することができず、更なる大入熱化に対応できる技術であるとはいえない。
さらに、特許文献5に開示の技術は、酸硫化物のピン止め効果によってHAZ組織を微細化する技術であるが、酸硫化物を起点とする組織変態制御を考慮した技術ではないので、更なる大入熱化に対応できる技術であるとはいえない。
In addition, Patent Document 4 mentions a structural transformation starting from an oxide, but does not show a countermeasure against the coarse oxide and the like, and eliminates the possibility that the HAZ toughness is lowered due to the formation of the coarse oxide. It cannot be said that it is a technology that can cope with further increase in heat input.
Furthermore, the technique disclosed in Patent Document 5 is a technique for refining the HAZ structure by the pinning effect of oxysulfide, but it is not a technique that takes account of the structure transformation control starting from oxysulfide. It cannot be said that this technology can cope with large heat input.
本発明は、上述の問題に鑑みてなされたものであり、大入熱溶接時における溶接熱影響部の靭性(HAZ靭性)に優れた鋼材を提供することを目的とする。 This invention is made | formed in view of the above-mentioned problem, and it aims at providing the steel material excellent in the toughness (HAZ toughness) of the welding heat affected zone at the time of high heat input welding.
本発明は、上記目的を達成するために、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、C :0.02〜0.13%(質量%(mass%)の意味。以下成分について同じ。)、Si:0.05〜0.5%以下、Mn:1.0〜2.5%、P :0.03%以下(0%を含まない)、S :0.01%以下(0%を含まない)、Al:0.002〜0.040%以下、Ti:0.005〜0.040%、Zr:0.0003〜0.020%、REM:0.0003〜0.020%、Ca:0.0003〜0.0080%、N :0.0030〜0.010%以下(0%を含まない)、O :0.0003〜0.0050%を含有し、残部が鉄および不可避不純物からなる鋼材であって、前記鋼材は、REM、Zr、Ti、Al、CaおよびSを含有する複合酸化物を含み、前記鋼材中の複合酸化物について、円相当直径で3μm超の酸化物が1mm2あたり5.0個以下であって、かつ円相当直径が0.1〜3μmの複合酸化物の全てが下記式(1)を満たすと共に、前記円相当直径が0.1〜3μmの複合酸化物個数が100個/mm2以上であって、さらに、下記式(1)を満たす0.1〜3μmの全ての複合酸化物の平均組成が、Al2O3:20%以下、TiO2:3〜20%、ZrO2:5〜50%、REM酸化物:5〜50%、CaO:5〜50%、S:1〜15%であることを特徴とする。
In order to achieve the above object, the present invention has taken the following measures.
That is, technical means for solving the problems in the present invention are: C: 0.02 to 0.13% (meaning mass%), Si: 0.05 to 0.00. 5% or less, Mn: 1.0 to 2.5%, P: 0.03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.002 ~ 0.040% or less, Ti: 0.005 to 0.040%, Zr: 0.0003 to 0.020%, REM: 0.0003 to 0.020%, Ca: 0.0003 to 0.0080% , N: 0.0003 to 0.010% or less (excluding 0%), O: 0.0003 to 0.0050%, the balance being iron and inevitable impurities, wherein the steel is , REM, Zr, Ti, Al, Ca, and a composite oxide containing S, and for the composite oxide in the steel material, the equivalent circle diameter A is 3μm greater oxides of 1 mm 2 per 5.0 or less, and all equivalent circle diameter of the composite oxide of 0.1~3μm along with satisfying the following formula (1), the circle equivalent diameter 0 The number of composite oxides of 0.1 to 3 μm is 100 / mm 2 or more, and the average composition of all the composite oxides of 0.1 to 3 μm satisfying the following formula (1) is Al 2 O 3 : than 20%, TiO 2: 3~20%, ZrO 2: 5~50%, REM oxides: 5~50%, CaO: 5~50% , S: characterized in that 1 to 15%.
0.008 ≦ (1/d)×{mass%S/(mass%CaO+mass%REM2O3)} ≦ 0.289 ・・・(1)
(但し、dは個々の複合酸化物の円相当直径であって、0.1〜3μmである)
ここで、Ni:0.05〜1.50%、Cu:0.05〜1.50%、Cr:0.05〜1.50%、Mo:0.05〜1.50%のうち、少なくとも1種を含有するとよい。
0.008 ≦ (1 / d) × {mass% S / (mass% CaO + mass% REM 2 O 3 )} ≦ 0.289 (1)
(Where d is the equivalent circle diameter of each composite oxide and is 0.1 to 3 μm)
Here, at least among Ni: 0.05 to 1.50%, Cu: 0.05 to 1.50%, Cr: 0.05 to 1.50%, Mo: 0.05 to 1.50% It is good to contain 1 type.
また、Nb:0.002〜0.10%、V:0.002〜0.10%のうち少なくともいずれか一方を含有するとよい。
さらに、B:0.0005〜0.0050%を含有するとよい。
Moreover, it is good to contain at least any one among Nb: 0.002-0.10% and V: 0.002-0.10%.
Furthermore, it is good to contain B: 0.0005-0.0050%.
本発明によれば、大入熱溶接時における溶接熱影響部の靭性(HAZ靭性)に優れた鋼材を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the steel material excellent in the toughness (HAZ toughness) of the welding heat affected zone at the time of high heat input welding can be obtained.
以下に、図面を参照しながら、本願発明の実施形態による溶接熱影響部の靭性に優れた鋼材(以下、単に鋼材という)について詳細に説明する。
本実施形態による鋼材は、例えば溶接入熱量が60kJ/mmを超えるような、非常に大きな溶接エネルギーの影響を受けた溶接熱影響部(HAZ,Heat Affected Zone)において優れた靭性を発揮する鋼材である。以下の説明において、本実施形態による鋼材の溶接熱影響部をHAZと記し、HAZにおける靭性をHAZ靭性と記す。
Hereinafter, a steel material (hereinafter simply referred to as a steel material) excellent in toughness of a weld heat affected zone according to an embodiment of the present invention will be described in detail with reference to the drawings.
The steel material according to the present embodiment is a steel material that exhibits excellent toughness in a weld heat affected zone (HAZ, Heat Affected Zone) affected by a very large welding energy, for example, a welding heat input exceeding 60 kJ / mm. is there. In the following description, the welding heat-affected zone of the steel material according to the present embodiment is denoted as HAZ, and the toughness in the HAZ is denoted as HAZ toughness.
本実施形態による鋼材は、粒内変態の核となる複合酸化物(Al,Ti,Zr,REM,CaおよびSを含有する酸硫化物)を、そのサイズとS濃度を適切に制御して所定量生成させることによって、大入熱溶接においても良好なHAZ靭性を安定的に実現できる。具体的には、HAZ靭性向上に悪影響を及ぼす円相当直径が3μmを超える粗大な複合酸化物の個数を有意に抑制すると共に、HAZ靭性向上に有用な円相当直径が0.1〜3μmで組成と粒度が適切に制御された複合酸化物の個数を所定量以上含有することを特徴とする。この特徴によって、本実施形態による鋼材は、大きな入熱量で溶接を行っても安定的に優れたHAZ靭性を発揮することができる。 The steel material according to the present embodiment is a composite oxide (an oxysulfide containing Al, Ti, Zr, REM, Ca, and S) that serves as a nucleus of intragranular transformation, with its size and S concentration being appropriately controlled. By generating a constant amount, good HAZ toughness can be stably realized even in high heat input welding. Specifically, the number of coarse composite oxides having a circle equivalent diameter exceeding 3 μm that adversely affects the improvement of HAZ toughness is significantly suppressed, and the circle equivalent diameter useful for improving HAZ toughness is 0.1 to 3 μm. And a predetermined amount or more of complex oxides whose particle sizes are appropriately controlled. With this feature, the steel material according to the present embodiment can stably exhibit excellent HAZ toughness even when welding is performed with a large heat input.
上述の特徴を有する本実施形態による鋼材は、例えば、溶鋼の二次精錬において、以下に説明する化学成分組成となるように各元素を添加することで得られる。
本実施形態による鋼材(以下、単に本鋼材という)は、炭素Cを0.02〜0.13%、ケイ素Siを0.05〜0.5%以下、マンガンMnを1.0〜2.5%、リンPを0.03%以下(0%を含まない)、硫黄Sを0.01%以下(0%を含まない)、アルミニウムAlを0.002〜0.040%以下、チタンTiを0.005〜0.040%、ジルコニウムZrを0.0003〜0.020%、希土類金属REMを0.0003〜0.020%、カルシウムCaを0.0003〜0.0080%、窒素Nを0.0030〜0.010%以下(0%を含まない)、酸素Oを0.0003〜0.0050%を含有し、残部が鉄および不可避不純物からなる。さらに、本鋼材は、REM、Zr、Ti、Al、CaおよびSを含有する複合酸化物を含み、本鋼材中の複合酸化物について、円相当直径で3μm超の酸化物が1mm2あたり5.0個以下であって、かつ円相当直径が0.1〜3μmの複合酸化物について、下記式(1)を満たす複合酸化物の個数が100個/mm2以上である。
The steel material by this embodiment which has the above-mentioned characteristic is obtained by adding each element so that it may become the chemical composition composition explained below in the secondary refining of molten steel, for example.
The steel material according to the present embodiment (hereinafter simply referred to as the present steel material) has carbon C of 0.02 to 0.13%, silicon Si of 0.05 to 0.5% and manganese Mn of 1.0 to 2.5. %, Phosphorus P 0.03% or less (excluding 0%), sulfur S 0.01% or less (excluding 0%), aluminum Al 0.002 to 0.040% or less, titanium Ti 0.005 to 0.040%, zirconium Zr 0.0003 to 0.020%, rare earth metal REM 0.0003 to 0.020%, calcium Ca 0.0003 to 0.0008%, nitrogen N 0 .0030 to 0.010% or less (excluding 0%), oxygen O is contained in 0.0003 to 0.0050%, and the balance is composed of iron and inevitable impurities. Further, the steel material includes a composite oxide containing REM, Zr, Ti, Al, Ca, and S. As for the composite oxide in the steel material, an oxide having an equivalent circle diameter of more than 3 μm is 5 per 1 mm 2 . For the composite oxide having 0 or less and an equivalent circle diameter of 0.1 to 3 μm, the number of composite oxides satisfying the following formula (1) is 100 / mm 2 or more.
0.008 ≦ (1/d)×{mass%S/(mass%CaO+mass%REM2O3)} ≦ 0.289 ・・・(1)
(但し、dは個々の複合酸化物の円相当直径であって、0.1〜3μmである)
さらに、上記式(1)を満たす0.1〜3μmの複合酸化物の平均組成は、Al2O3が20%以下、TiO2が3〜20%、ZrO2が5〜50%、REM酸化物が5〜50%、CaOが5〜50%、Sが1〜15%である。
0.008 ≦ (1 / d) × {mass% S / (mass% CaO + mass% REM 2 O 3 )} ≦ 0.289 (1)
(Where d is the equivalent circle diameter of each composite oxide and is 0.1 to 3 μm)
Furthermore, the average composition of the composite oxide of 0.1 to 3 μm satisfying the above formula (1) is 20% or less for Al 2 O 3, 3 to 20% for TiO 2 , 5 to 50% for ZrO 2 , REM oxidation The product is 5 to 50%, CaO is 5 to 50%, and S is 1 to 15%.
本実施形態において、元素および成分の含有量を単に百分率「%」を用いて記載しているが、これは、質量百分率「質量%(mass%)」を簡略化して記載したものであることに留意されたい。
続いて、上述した本鋼材の構成について詳細に説明する。
[炭素C:0.02〜0.13%]
炭素Cは、鋼材(母材)の強度を確保するために欠くことのできない元素である。しかし、Cの含有量が0.13%を超えると、HAZに島状マルテンサイト(MA)が多く生成してHAZの靱性低下を招くばかりでなく、COガスの発生などに起因して溶接性にも悪影響を及ぼす。従って、Cの含有量を0.02質量%以上0.13質量%以下に規定する。好ましくは0.04質量%以上0.1質量%以下である。
In the present embodiment, the contents of elements and components are simply described using the percentage “%”, but this is a simplified description of the mass percentage “mass%”. Please keep in mind.
Then, the structure of this steel material mentioned above is demonstrated in detail.
[Carbon C: 0.02 to 0.13%]
Carbon C is an element indispensable for securing the strength of the steel material (base material). However, if the content of C exceeds 0.13%, not only does island martensite (MA) form in the HAZ, leading to a reduction in the toughness of the HAZ, but also weldability due to the generation of CO gas, etc. It also has an adverse effect. Therefore, the C content is specified to be 0.02 mass% or more and 0.13 mass% or less. Preferably they are 0.04 mass% or more and 0.1 mass% or less.
[ケイ素Si:0.05〜0.5%]
ケイ素Siは、脱酸作用を有すると共に、固溶強化により母材の強度向上に寄与する元素である。しかし、Siの含有量が0.5%を超えると、鋼材の溶接性や靱性が低下するので、Siの含有量の上限を0.5%とする。特にHAZ靱性を高めるには、Siの含有量を0.3%以下とすることが推奨される。但し、Siの含有量を抑えるほどHAZ靱性が向上するが、その一方で鋼材の強度が低下する場合がある。従って、Siの含有量の下限を0.05%とし、Siの含有量を0.05質量%以上0.5質量%以下に規定する。好ましくは0.07質量%以上0.35質量%以下、より好ましくは0.1質量%以上0.25質量%以下である。
[Silicon Si: 0.05-0.5%]
Silicon Si is an element that has a deoxidizing action and contributes to improving the strength of the base material by solid solution strengthening. However, if the Si content exceeds 0.5%, the weldability and toughness of the steel material deteriorate, so the upper limit of the Si content is set to 0.5%. In particular, in order to increase the HAZ toughness, it is recommended that the Si content be 0.3% or less. However, as the Si content is reduced, the HAZ toughness is improved, while the strength of the steel material may be reduced. Therefore, the lower limit of the Si content is set to 0.05%, and the Si content is specified to be 0.05% by mass or more and 0.5% by mass or less. Preferably they are 0.07 mass% or more and 0.35 mass% or less, More preferably, they are 0.1 mass% or more and 0.25 mass% or less.
[マンガンMn:1.0〜2.5%]
マンガンMnは、母材の強度向上に寄与する元素である。しかし、Mnの含有量が2.5%を超えると、母材の溶接性が低下する。さらに、Mnの含有量が1.0%を下回ると強度が低下してしまうため、Mnの含有量を1.0質量%以上2.5質量%以下に規定する。好ましくは1.3質量%以上2.0質量%以下である。
[Manganese Mn: 1.0 to 2.5%]
Manganese Mn is an element that contributes to improving the strength of the base material. However, if the Mn content exceeds 2.5%, the weldability of the base material is degraded. Furthermore, since intensity | strength will fall when content of Mn is less than 1.0%, content of Mn is prescribed | regulated to 1.0 mass% or more and 2.5 mass% or less. Preferably they are 1.3 mass% or more and 2.0 mass% or less.
[リンP:0.03%以下]
リンPは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析してHAZ靱性を低下させる元素である。Pは、通常、母材に不可避的に0.001%程度含有されているので、Pの含有量を0.03質量%以下に規定する。好ましくは0.02質量%以下、より好ましくは0.01質量%以下である。但し、本実施形態は、Pの含有量が0質量%である場合を含まない。
[Phosphorus P: 0.03% or less]
Phosphorus P is an element that easily segregates, and is an element that segregates at a grain boundary in a steel material and lowers the HAZ toughness. Usually, P is unavoidably contained in the base material in an amount of about 0.001%, so the content of P is specified to be 0.03% by mass or less. Preferably it is 0.02 mass% or less, More preferably, it is 0.01 mass% or less. However, this embodiment does not include the case where the P content is 0% by mass.
[硫黄S:0.01%以下]
硫黄Sは、Mnと結合して硫化物(MnS)を生成し、母材の靱性や板厚方向における延性を低下させる元素である。例えば、Sが、ランタンLaやセリウムCeなどのREMと結合してREMの硫化物(例えば、LaSやCeS)を生成すると、REM酸化物の生成が阻害されるため、HAZ靱性が低下する。しかし、Sは、通常、母材に不可避的に0.0005%程度含有されているので、Sの含有量を0.01質量%以下に規定する。好ましくは0.008質量%以下、より好ましくは0.006質量%以下である。但し、本実施形態は、Sの含有量が0質量%である場合を含まない。
[Sulfur S: 0.01% or less]
Sulfur S is an element that combines with Mn to produce sulfide (MnS) and lowers the toughness of the base material and the ductility in the plate thickness direction. For example, when S is combined with REM such as lanthanum La or cerium Ce to generate a REM sulfide (for example, LaS or CeS), generation of REM oxide is inhibited, so that HAZ toughness is reduced. However, since S is normally unavoidably contained in the base material in an amount of about 0.0005%, the S content is specified to be 0.01% by mass or less. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less. However, this embodiment does not include the case where the S content is 0% by mass.
[アルミニウムAl:0.002〜0.040%]
アルミニウムAlは、脱酸剤として作用する元素である。しかし、Alを母材に対して過剰に添加すると、添加されたAlは母材中の酸化物を還元して粗大なAl酸化物を形成するので、HAZ靱性が低下する。一方で、Alの含有量が少ないと溶鋼が酸素で汚染されやすくなるため、Alの含有量は0.002%が下限である。従って、Alの含有量を0.002質量%以上0.040質量%以下に規定する。好ましくは0.004質量%以上0.025質量%以下、より好ましくは0.005質量%以上0.015質量%以下である。
[Aluminum Al: 0.002 to 0.040%]
Aluminum Al is an element that acts as a deoxidizer. However, when Al is added excessively with respect to the base material, the added Al reduces oxides in the base material to form coarse Al oxide, so that the HAZ toughness decreases. On the other hand, when the Al content is small, the molten steel is easily contaminated with oxygen, so the lower limit of the Al content is 0.002%. Therefore, the Al content is specified to be 0.002 mass% or more and 0.040 mass% or less. Preferably it is 0.004 mass% or more and 0.025 mass% or less, More preferably, it is 0.005 mass% or more and 0.015 mass% or less.
[チタンTi:0.005〜0.040%]
チタンTiは、母材中にTiNなどの窒化物や、Tiを含む酸化物を生成し、HAZ靱性の向上に寄与する元素である。しかし、Tiを母材に対して過剰に添加すると、Tiの固溶強化によって母材自体が硬化しHAZ靱性の低下に繋がるため、Tiの含有量を0.04%以下に抑えなくてはならない。従って、Tiの含有量を0.005質量%以上0.040質量%以下に規定する。好ましくは0.010質量%以上0.030質量%以下、より好ましくは0.014質量%以上0.025質量%以下である。
[Titanium Ti: 0.005 to 0.040%]
Titanium Ti is an element that contributes to the improvement of HAZ toughness by generating a nitride such as TiN or an oxide containing Ti in the base material. However, if Ti is excessively added to the base material, the base material itself is hardened by solid solution strengthening of Ti and leads to a decrease in HAZ toughness. Therefore, the Ti content must be suppressed to 0.04% or less. . Therefore, the Ti content is specified to be 0.005% by mass or more and 0.040% by mass or less. Preferably it is 0.010 mass% or more and 0.030 mass% or less, More preferably, it is 0.014 mass% or more and 0.025 mass% or less.
[ジルコニウムZr:0.0003〜0.020%]
ジルコニウムZrは、Zrを含む複合酸化物を生成してHAZ靱性の向上に寄与する元素である。しかし、Zrを母材に対して過剰に添加すると、粗大なZr酸化物(ZrO2)が生成してHAZ靱性が低下する。また、粗大なZr炭化物(ZrC)が生成することで、母材自体の靱性が低下する。従って、Zrの含有量を0.0003質量%以上0.020質量%以下に規定する。好ましくは0.0005質量%以上0.015質量%以下、よりに好ましくは0.0009質量%以上0.010質量%以下である。
[Zirconium Zr: 0.0003-0.020%]
Zirconium Zr is an element that contributes to the improvement of HAZ toughness by generating a complex oxide containing Zr. However, when Zr is added excessively with respect to the base material, coarse Zr oxide (ZrO 2 ) is generated and HAZ toughness is lowered. Further, the formation of coarse Zr carbide (ZrC) reduces the toughness of the base material itself. Therefore, the Zr content is specified to be 0.0003 mass% or more and 0.020 mass% or less. Preferably it is 0.0005 mass% or more and 0.015 mass% or less, More preferably, it is 0.0009 mass% or more and 0.010 mass% or less.
[希土類金属REM:0.0003〜0.020%]
REM(希土類元素)は、酸化物の生成に必要な元素である。REMによるこれらの酸化物を含有することで、酸化物が鋼材中に微細分散し易くなる。この微細分散した酸化物が、HAZの粒内αの生成核となりHAZ靱性の向上に寄与する。しかし、REMを過剰に添加すると、固溶REMが生成して母材内で偏析するので、母材自体の靱性が劣化する。従って、REMの含有量を0.0003質量%以上0.020質量%以下に規定する。好ましくは0.0005質量%以上0.015質量%以下、よりに好ましくは0.0009質量%以上0.010質量%以下である。
[Rare earth metal REM: 0.0003-0.020%]
REM (rare earth element) is an element necessary for generation of oxides. By containing these oxides by REM, the oxides are easily finely dispersed in the steel material. This finely dispersed oxide serves as a production nucleus for intra-grain α of HAZ and contributes to improvement of HAZ toughness. However, when REM is added excessively, solid solution REM is generated and segregates in the base material, so that the toughness of the base material itself deteriorates. Therefore, the content of REM is specified to be 0.0003 mass% or more and 0.020 mass% or less. Preferably it is 0.0005 mass% or more and 0.015 mass% or less, More preferably, it is 0.0009 mass% or more and 0.010 mass% or less.
具体的にREMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む元素を意味する。本実施形態では、これらの元素の中でもLa、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するとよい。
[カルシウムCa:0.0003〜0.0080%]
カルシウムCaは、酸化物の生成に必要な元素である。Caも、HAZの粒内αの生成核となりHAZ靱性の向上に寄与するので、0.0003%以上含有させるとよい。しかし、Caを過剰に添加すると、粗大なCa硫化物が生成して母材の靱性が劣化する。従って、Caの含有量を0.0003質量%以上0.0080質量%以下に規定する。好ましくは0.0005質量%以上0.0060質量%以下、より好ましくは0.0007質量%以上0.0030質量%以下である。
Specifically, REM means an element containing a lanthanoid element (15 elements from La to Ln) and Sc (scandium) and Y (yttrium). In this embodiment, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y among these elements, and more preferably La and / or Ce.
[Calcium Ca: 0.0003-0.0080%]
Calcium Ca is an element necessary for the production of oxides. Ca also becomes a production nucleus of intra-grain α of HAZ and contributes to the improvement of HAZ toughness. However, when Ca is added excessively, coarse Ca sulfide is generated and the toughness of the base material is deteriorated. Therefore, the Ca content is specified to be 0.0003 mass% or more and 0.0008 mass% or less. Preferably it is 0.0005 mass% or more and 0.0006 mass% or less, More preferably, it is 0.0007 mass% or more and 0.0003 mass% or less.
[窒素N:0.0030〜0.010%以下]
窒素Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素である。窒化物は、ピン止め効果によって溶接時のオーステナイト粒の粗大化を抑制することで、HAZ靱性の向上に寄与する。Nは、含有量が多いほど窒化物を形成してオーステナイト粒の微細化を促進するため、HAZ靱性の向上に有効に作用する。しかし、Nの含有量が0.010%を超えると、固溶Nの量が増大して母材自体の靱性が劣化し、HAZ靱性も低下する。従って、Nの含有量を0.0030質量%以上0.010質量%以下に規定する。好ましくは0.0040質量%以上0.0090質量%以下、より好ましくは0.0050質量%以上0.0080質量%以下である。
[Nitrogen N: 0.0003 to 0.010% or less]
Nitrogen N is an element that precipitates nitrides (eg, ZrN, TiN, etc.). Nitride contributes to the improvement of HAZ toughness by suppressing the austenite grain coarsening during welding by the pinning effect. Since N forms a nitride and promotes refinement of austenite grains as the content increases, it effectively works to improve HAZ toughness. However, if the N content exceeds 0.010%, the amount of solute N increases, the toughness of the base metal itself deteriorates, and the HAZ toughness also decreases. Therefore, the N content is specified to be 0.0030% by mass or more and 0.010% by mass or less. Preferably it is 0.0040 mass% or more and 0.0009 mass% or less, More preferably, it is 0.0050 mass% or more and 0.0008 mass% or less.
[酸素O:0.0003〜0.0050%]
酸素Oは、酸化物の生成に必須の元素であり、含有量が0.0003%より少ないと、母材中に十分な量の酸化物が得られない。また、含有量が0.0050%より多いと、酸化物の粗大化によりHAZ靭性の低下を招く。従って、Oの含有量を0.0003質量%以上0.0050質量%以下に規定する。好ましくは0.0010質量%以上0.0040質量%以下、より好ましくは0.0015質量%以上0.0035質量%以下である。
[Oxygen O: 0.0003 to 0.0050%]
Oxygen O is an essential element for the formation of oxides. If the content is less than 0.0003%, a sufficient amount of oxide cannot be obtained in the base material. On the other hand, when the content is more than 0.0050%, the HAZ toughness is lowered due to the coarsening of the oxide. Therefore, the O content is specified to be 0.0003 mass% or more and 0.0050 mass% or less. Preferably it is 0.0010 mass% or more and 0.0040 mass% or less, More preferably, it is 0.0015 mass% or more and 0.0033 mass% or less.
ここでOの含有量は、トータル酸素量を示し、母材中の酸化物を形成しているOと、母材中に固溶しているフリーのOの合計量を意味している。
本鋼材は、上述の各元素を含有し、残部が鉄および不可避不純物からなる。
上述の各元素以外の残部の成分は、鉄および不可避不純物(例えば、MgやAs,Seなど)である。
Here, the content of O represents the total amount of oxygen, and means the total amount of O forming an oxide in the base material and free O dissolved in the base material.
This steel material contains the above-mentioned elements, and the balance consists of iron and inevitable impurities.
The remaining components other than the above-described elements are iron and inevitable impurities (for example, Mg, As, Se, etc.).
さて、上述の元素を含有する本鋼材は、REM、Zr、Ti、Al、CaおよびSを含有する複合酸化物(酸化物および/または酸硫化物)を含む。本鋼材に含有される複合酸化物は、Al、Ti、Zr、REM、およびCaの酸化物と硫化物を含むAl・Ti・Zr・REM・Ca・S系複合酸化物であるが、これら以外に、例えば、Mn、Siなどの
元素や、その他の成分元素を含んでいても良い。Al・Ti・Zr・REM・Ca系の酸化物は、鋼材との格子整合性がよく、HAZにおいて粒内組織変態(粒内変態)を促進するので、HAZの組織を微細化するのに有効である。
Now, the steel material containing the above-described element includes a composite oxide (oxide and / or oxysulfide) containing REM, Zr, Ti, Al, Ca, and S. The composite oxides contained in this steel are Al, Ti, Zr, REM, and Al / Ti / Zr / REM / Ca / S based composite oxides containing oxides and sulfides of Ca. In addition, for example, elements such as Mn and Si and other component elements may be included. Al, Ti, Zr, REM, and Ca-based oxides have good lattice matching with steel materials, and promote intragranular structure transformation (intragranular transformation) in HAZ, so they are effective in refining the HAZ structure. It is.
本鋼材は、上述の複合酸化物について、円相当直径で3μm超の酸化物の個数は、本鋼材の断面において1mm2あたり5.0個以下である。円相当直径で3μmを超える複合酸化物は粗大であるため、入熱量が60kJ/mmに達するような大入熱溶接においては、HAZ靭性をかえって低下させる。そのため、3μmを超える複合酸化物の個数は5.0個/mm2以下に抑える必要がある。 In the present steel material, the number of oxides having an equivalent circle diameter of more than 3 μm in the above-described composite oxide is 5.0 or less per 1 mm 2 in the cross section of the steel material. Since the complex oxide having an equivalent circle diameter exceeding 3 μm is coarse, in high heat input welding in which the heat input reaches 60 kJ / mm, the HAZ toughness is reduced. Therefore, the number of composite oxides exceeding 3 μm needs to be suppressed to 5.0 pieces / mm 2 or less.
一方、本鋼材は、上述の複合酸化物が、円相当直径で0.1μm以上3μm以下(以下、0.1〜3μmと表記する)の大きさであり、下記式(1)を満たし、かつその個数が本鋼材の断面において100個/mm2以上存在するように含有している。
0.008 ≦ (1/d)×{mass%S/(mass%CaO+mass%REM2O3)} ≦ 0.289 ・・・(1)
(但し、dは個々の複合酸化物の円相当直径であって、0.1〜3μmである)
この円相当直径で0.1〜3μmの複合酸化物は、HAZにおいて粒内組織変態(粒内変態)を促進してHAZ靭性を向上させるためのものであるため、以下に、円相当直径で0.1〜3μmの複合酸化物について検討する。なお、円相当直径で0.1μm未満の複合酸化物は、HAZ靱性の向上に殆ど寄与しないため、上記複合酸化物の個数には含めない。
On the other hand, in the present steel material, the above-mentioned composite oxide has a circle equivalent diameter of 0.1 μm to 3 μm (hereinafter referred to as 0.1 to 3 μm), satisfies the following formula (1), and It is contained so that the number thereof is 100 / mm 2 or more in the cross section of the steel material.
0.008 ≦ (1 / d) × {mass% S / (mass% CaO + mass% REM 2 O 3 )} ≦ 0.289 (1)
(Where d is the equivalent circle diameter of each composite oxide and is 0.1 to 3 μm)
This composite oxide having an equivalent circle diameter of 0.1 to 3 μm is for promoting intragranular structure transformation (intragranular transformation) in HAZ and improving HAZ toughness. A composite oxide having a thickness of 0.1 to 3 μm will be examined. Note that a complex oxide having an equivalent circle diameter of less than 0.1 μm hardly contributes to the improvement of HAZ toughness, and thus is not included in the number of complex oxides.
以下、円相当直径で0.1〜3μmの複合酸化物が式(1)を満たすべき理由について説明する。
まず、REMとCaは酸化物も硫化物も形成しうる酸硫化物形成元素である。そこで、酸硫化物形成元素(REM2O3とCaO)の濃度に対するS濃度(mass%S)が高すぎると、過剰に生成される硫化物が、酸化物とマトリックスとの整合を阻害してしまうため、複合酸化物が組織制御に寄与する能力(粒内変態能)が低下する。また、酸硫化物形成元素(REM2O3とCaO)の濃度に対するS濃度(mass%S)が低すぎる場合、硫化物生成に伴うひずみエネルギーが得られず粒内変態にとって不利となるため、粒内変態能が低下する。さらに、複合酸化物そのもののサイズ(複合酸化物の円相当直径d)に起因するひずみエネルギーが粒内変態に影響を与える。
Hereinafter, the reason why a complex oxide having an equivalent circle diameter of 0.1 to 3 μm should satisfy the formula (1) will be described.
First, REM and Ca are oxysulfide-forming elements that can form oxides and sulfides. Therefore, if the S concentration (mass% S) with respect to the concentration of the oxysulfide forming elements (REM 2 O 3 and CaO) is too high, the excessively generated sulfide inhibits the matching between the oxide and the matrix. Therefore, the ability (intragranular transformation ability) of the composite oxide to contribute to the structure control is reduced. Also, if the S concentration (mass% S) relative to the concentration of oxysulfide forming elements (REM 2 O 3 and CaO) is too low, strain energy associated with sulfide formation cannot be obtained, which is disadvantageous for intragranular transformation. The intragranular transformation ability decreases. Furthermore, the strain energy resulting from the size of the composite oxide itself (equivalent circle diameter d of the composite oxide) affects the intragranular transformation.
式(1)では、これら粒内変態に影響を及ぼすと考えられる条件を考慮した第二項が示されている。ところで、この式(1)の第二項において、酸硫化物形成元素(REM2O3とCaO)に対するS濃度(mass%S)、および複合酸化物のサイズ(複合酸化物の円相当直径d)には、粒内変態に貢献するひずみエネルギーを産み出すための最適範囲があり、式(1)の第二項に上限値および下限値が存在すると推察される。そこで、実験的に式(1)の第二項の上限値および下限値を求めた。 In Formula (1), the 2nd term which considered the conditions considered to influence these intragranular transformation is shown. By the way, in the second term of the formula (1), the S concentration (mass% S) with respect to the oxysulfide forming elements (REM 2 O 3 and CaO), and the size of the composite oxide (the equivalent circle diameter d of the composite oxide) ) Has an optimum range for producing strain energy that contributes to intragranular transformation, and it is presumed that an upper limit value and a lower limit value exist in the second term of Equation (1). Therefore, the upper limit value and the lower limit value of the second term of Expression (1) were experimentally obtained.
式(1)の第二項の上限値および下限値の求め方を説明する。
まず、試作材に対して入熱量60kJ/mmの溶接のHAZを模擬した入熱試験を実施した。その後、入熱試験後の試作材を鏡面研磨し腐食を行い、腐食により組織を顕にして複合酸化物に起因する粒内変態の有無を調査した。
続いて、EPMA(Electron Probe MicroAnalyzer)にて、試作材における複合酸化物の組成とサイズを測定し、0.1〜3μmの複合酸化物について式(1)の第二項の値を算出した。
A method for obtaining the upper limit value and the lower limit value of the second term of Expression (1) will be described.
First, a heat input test simulating welding HAZ with a heat input of 60 kJ / mm was performed on the prototype material. Thereafter, the prototype material after the heat input test was mirror-polished and corroded, and the presence of intragranular transformation caused by the composite oxide was investigated by revealing the structure by the corrosion.
Subsequently, the composition and size of the composite oxide in the prototype were measured by EPMA (Electron Probe MicroAnalyzer), and the value of the second term of the formula (1) was calculated for the composite oxide of 0.1 to 3 μm.
粒内変態の有無と算出した第二項の値を表1に示す結果としてまとめ、粒内変態の有無が○印で示された(粒内変態が有った)鋼材の第二項の値に基づいて、第二項の範囲を0.008以上0.289以下に設定した。 The presence or absence of intragranular transformation and the calculated value of the second term are summarized as the results shown in Table 1, and the presence or absence of intragranular transformation is indicated by a circle (the value of the second term of the steel material having intragranular transformation). Based on the above, the range of the second term was set to 0.008 or more and 0.289 or less.
円相当直径0.1〜3μmの複合酸化物は、式(1)を満たした上で100個/mm2以上含有されるが、さらに、平均組成について、Al2O3が20%以下、TiO2が3%以上20%以下(3〜20%)、ZrO2が5%以上50%以下(5〜50%)、REM酸化物が5%以上50%以下(5〜50%)、CaOが5%以上50%以下(5〜50%)、Sが1%以上15%以下(1〜15%)となる必要がある。 The complex oxide having an equivalent circle diameter of 0.1 to 3 μm is contained at 100 pieces / mm 2 or more after satisfying the formula (1). Furthermore, the average composition is 20% or less of Al 2 O 3 , TiO 2. 2 is 3% to 20% (3 to 20%), ZrO 2 is 5% to 50% (5 to 50%), REM oxide is 5% to 50% (5 to 50%), CaO is It is necessary to be 5% or more and 50% or less (5 to 50%) and S is 1% or more and 15% or less (1 to 15%).
これは、酸化物組成がHAZにおける酸化物と鋼材との格子整合性に影響するので、酸化物組成を上記範囲の含有量に制御しなければ、円相当直径0.1〜3μmの複合酸化物がHAZにおける粒内変態に寄与できない、つまりHAZの組織微細化に寄与できないからである。
以上のような化学成分組成を有する本鋼材は、板厚が約3.0mm以上の厚鋼板などを対象としており、小〜中入熱溶接はもとより、入熱量が50kJ/mm以上となる大入熱溶接においてもHAZ靱性の低下を防ぐことができるので、例えば橋梁や高層建造物、船舶などの大型構造物の材料として使用できる。
This is because the oxide composition affects the lattice matching between the oxide and the steel material in the HAZ. Therefore, if the oxide composition is not controlled to the content in the above range, a composite oxide having a circle equivalent diameter of 0.1 to 3 μm. This is because it cannot contribute to the intragranular transformation in HAZ, that is, it cannot contribute to the refinement of the HAZ structure.
This steel material having the chemical composition as described above is intended for thick steel plates having a plate thickness of about 3.0 mm or more. In addition to small to medium heat input welding, the heat input is 50 kJ / mm or more. Since the HAZ toughness can be prevented from being lowered even in thermal welding, it can be used as a material for large structures such as bridges, high-rise buildings, and ships.
[ニッケルNi、銅Cu、クロムCr、モリブデンMo:0.05〜1.50%]
本実施形態に係る鋼材は、上述の成分元素に加えて、ニッケルNi、銅Cu、クロムCr、モリブデンMoのうち少なくとも1種を0.05%以上1.50%以下(0.05〜1.50%)含有してもよい。
Cu、Ni、Cr、Moは、いずれも本鋼材の靭性と強度を高めるのに寄与する元素であり、各々単独で、あるいは複合して添加できる。例えば、Cuの添加によって靭性と強度を有効に向上させるには、Cuを0.05%以上含有させることが好ましい。しかし、Cuの含有量が1.50%を超えると、母材の強度を高め過ぎて却って母材の靱性を低下させるため、HAZ靱性も低下してしまう。従って、Cuの含有量を0.05質量%以上1.50質量%以下に規定する。
[Nickel Ni, Copper Cu, Chromium Cr, Molybdenum Mo: 0.05 to 1.50%]
In the steel material according to the present embodiment, in addition to the above-described component elements, at least one of nickel Ni, copper Cu, chromium Cr, and molybdenum Mo is 0.05% to 1.50% (0.05 to 1.50). 50%) may be contained.
Cu, Ni, Cr, and Mo are all elements that contribute to increasing the toughness and strength of the steel material, and can be added alone or in combination. For example, in order to effectively improve toughness and strength by adding Cu, it is preferable to contain 0.05% or more of Cu. However, if the Cu content exceeds 1.50%, the strength of the base material is excessively increased and the toughness of the base material is decreased, so that the HAZ toughness is also decreased. Therefore, the Cu content is specified to be 0.05% by mass or more and 1.50% by mass or less.
Ni、Cr、MoもCuと同様に、0.05%以上含有させることが好ましいが、含有量が1.50%を超えると、母材の強度を高め過ぎて却って母材の靱性を低下させるため、HAZ靱性も低下してしまう。従って、Ni、Cr、Moの含有量も0.05質量%以上1.50質量%以下に規定する。
[ニオブNb、バナジウムV:0.002〜0.10%]
さらに、本実施形態に係る鋼材は、ニオブNb、バナジウムVのうち少なくともいずれか一方を0.002%以上0.10%以下(0.002〜0.10%)含有していてもよい。NbとVは、いずれも炭窒化物として析出する。この炭窒化物はピン止め効果を発揮するので、溶接時におけるオーステナイト粒の粗大化が抑止され、HAZ靱性の向上に寄与する。そこで、Nbの添加によってHAZ靭性を有効に向上させるには、Nbを、0.002%以上含有させるのが好ましい。しかし、Nbの含有量が0.10%を超えると、析出する炭窒化物が粗大化し、却ってHAZ靱性を低下させてしまう。従って、Nbの含有量を0.002質量%以上0.10%質量%以下に規定する。
Like Cu, Ni, Cr, and Mo are preferably contained in an amount of 0.05% or more. However, if the content exceeds 1.50%, the strength of the base material is excessively increased and the toughness of the base material is decreased. Therefore, the HAZ toughness is also lowered. Therefore, the contents of Ni, Cr, and Mo are also specified to be 0.05% by mass or more and 1.50% by mass or less.
[Niobium Nb, Vanadium V: 0.002 to 0.10%]
Furthermore, the steel material according to the present embodiment may contain at least one of niobium Nb and vanadium V in a range of 0.002% to 0.10% (0.002 to 0.10%). Nb and V are both precipitated as carbonitrides. Since this carbonitride exhibits a pinning effect, coarsening of austenite grains at the time of welding is suppressed, contributing to improvement of HAZ toughness. Therefore, in order to effectively improve the HAZ toughness by adding Nb, it is preferable to contain Nb of 0.002% or more. However, if the Nb content exceeds 0.10%, the precipitated carbonitrides become coarse, and on the contrary, the HAZ toughness is lowered. Therefore, the Nb content is specified to be 0.002% by mass or more and 0.10% by mass or less.
VもNbと同様に、0.002%以上含有させるのが好ましい。しかし、Vの含有量が0.10%を超えると、析出する炭窒化物が粗大化し、却ってHAZ靱性を低下させてしまう。従って、Vの含有量を0.002質量%以上0.10%質量%以下に規定する。
[ホウ素B:0.0005〜0.0050%]
加えて、本実施形態に係る鋼材は、ホウ素Bを0.0005%以上0.0050%以下(0.0005〜0.0050%)含有していてもよい。Bは、粒界フェライトの生成を抑制して靱性を向上させる元素である。そこで、Bの添加によって本鋼材の靭性を向上させるには、Bを0.0005%以上含有させるのが好ましい。しかし、Bの含有量が0.0050%を超えると、オーステナイト粒界にBNとして析出し、靱性の低下を招く。従って、Bの含有量を0.0005質量%以上0.0050質量%以下に規定する。好ましくは0.0010質量%以上0.0040質量%以下、より好ましくは0.0015質量%以上0.0030質量%以下である。
V, like Nb, is preferably contained in an amount of 0.002% or more. However, when the content of V exceeds 0.10%, the precipitated carbonitrides are coarsened, and on the contrary, the HAZ toughness is lowered. Therefore, the V content is specified to be 0.002% by mass or more and 0.10% by mass or less.
[Boron B: 0.0005 to 0.0050%]
In addition, the steel material according to this embodiment may contain 0.0005% or more and 0.0050% or less (0.0005 to 0.0050%) of boron B. B is an element that suppresses the formation of grain boundary ferrite and improves toughness. Therefore, in order to improve the toughness of the present steel material by adding B, it is preferable to contain 0.0005% or more of B. However, if the B content exceeds 0.0050%, it precipitates as BN at the austenite grain boundaries, leading to a decrease in toughness. Therefore, the B content is specified to be 0.0005 mass% or more and 0.0050 mass% or less. Preferably it is 0.0010 mass% or more and 0.0040 mass% or less, More preferably, it is 0.0015 mass% or more and 0.0003 mass% or less.
[本実施形態に係る鋼材の製造]
本実施形態に係る鋼材は、例えば溶鋼の二次精錬において、上述した化学成分組成となるように各元素を添加することで得られるが、本鋼材の製造方法の一例として、後述する実施例に示す鋼の製造方法(製造条件)、つまり各元素の添加方法について説明する。
以下の説明では、真空溶解炉(容量150kg)を用いて鋼を溶製し、150kgのインゴットに鋳造して冷却することで、後述する実施例および比較例に示す鋼を得た。
[Manufacture of steel materials according to this embodiment]
The steel material according to the present embodiment can be obtained by adding each element so as to have the above-described chemical component composition, for example, in the secondary refining of molten steel. The steel manufacturing method (manufacturing conditions) shown, that is, the method of adding each element will be described.
In the following description, steel was melted using a vacuum melting furnace (capacity 150 kg), cast into a 150 kg ingot, and cooled to obtain steels shown in examples and comparative examples described later.
[溶存酸素量の調整]
初めに、真空溶解炉で溶解された溶鋼において、複合酸化物を形成する元素(複合酸化物形成元素)を添加する前に溶存酸素量とS濃度を調整する。
まず、複合酸化物形成元素の添加前における溶存酸素量(mass%Of)を0.005%以下となるように調整した。その後、溶存酸素濃度(mass%Of)と、溶鋼中のS濃度(mass%S)の比(mass%Of/mass%S)が、0.2 ≦ mass%Of/mass%S ≦ 9.6となるようにS濃度(mass%S)を調整した。
[Adjustment of dissolved oxygen content]
First, in a molten steel melted in a vacuum melting furnace, the amount of dissolved oxygen and the S concentration are adjusted before adding an element for forming a complex oxide (a complex oxide forming element).
First, the amount of dissolved oxygen (mass% Of) before the addition of the complex oxide-forming element was adjusted to 0.005% or less. Then, the ratio (mass% Of / mass% S) of dissolved oxygen concentration (mass% Of) and S concentration (mass% S) in molten steel is 0.2 ≦ mass% Of / mass% S ≦ 9.6. S concentration (mass% S) was adjusted so that
ここで、S濃度(mass%S)を調整するための脱硫方法は特に限定されないが、予めS濃度の低い溶鋼を用いても良い。
上述の溶存酸素量とS濃度の根拠は次の通りである。まず、溶存酸素量が0.005%を超えると、溶鋼中で生成する酸化物が粗大化してしまう。その上で、(mass%Of/mass%S)の値が大きい場合、酸化物に対して必要な硫化物が十分に生成しない。また、(mass%Of/mass%S)の値が小さい場合、所望の酸化物を得ることができないだけでなく、S濃度が高すぎるため粒内変態を阻害する水準にまで硫化物が生成してしまう。
Here, the desulfurization method for adjusting the S concentration (mass% S) is not particularly limited, but molten steel having a low S concentration may be used in advance.
The grounds for the dissolved oxygen amount and the S concentration are as follows. First, when the amount of dissolved oxygen exceeds 0.005%, the oxide generated in the molten steel becomes coarse. In addition, when the value of (mass% Of / mass% S) is large, the sulfide necessary for the oxide is not sufficiently generated. Moreover, when the value of (mass% Of / mass% S) is small, not only the desired oxide cannot be obtained, but also the sulfide is generated to a level that inhibits intragranular transformation because the S concentration is too high. End up.
そのため、mass%Ofとmass%Sの間には適正なバランスが有り、(mass%Of/mass%S)の値には適正な範囲が存在する。その範囲を実験的に求め、0.2 ≦ mass%Of/mass%S ≦ 9.6とした。
[Alの添加]
次に、Alは酸硫化物構成元素の一つであり、Ti酸化物を確保するために、Tiよりも先に溶鋼に添加した。
Therefore, there is an appropriate balance between mass% Of and mass% S, and an appropriate range exists for the value of (mass% Of / mass% S). The range was experimentally determined, and 0.2 ≦ mass% Of / mass% S ≦ 9.6.
[Addition of Al]
Next, Al is one of oxysulfide constituent elements, and was added to the molten steel before Ti in order to secure Ti oxide.
[Tiの添加]
Alの添加に続いて、REM、Zrよりも先にTiを溶鋼に添加した。TiをAlよりも先に添加すると、その後の工程でTi酸化物が全てAlによって還元されてしまうので
、Alを添加した後にTiを添加しなくてはならない。Tiの添加後、2分以上15分以下にわたって、他の元素を添加せずに溶鋼を保持した。
[Addition of Ti]
Following the addition of Al, Ti was added to the molten steel before REM and Zr. If Ti is added before Al, all Ti oxides are reduced by Al in the subsequent steps. Therefore, Ti must be added after Al is added. After the addition of Ti, the molten steel was held for 2 to 15 minutes without adding other elements.
これは、Al→Tiの順で添加しても、その後の溶鋼の保持時間が2分未満では、十分にAlとTiの複合酸化物が形成されず、逆に15分を超えれば、Alによる還元が進みすぎてしまうからである。つまり、AlおよびTiの添加順は上述の式(1)に影響する。
[REM・Zrの添加]
溶鋼を2分〜15分間保持した後に、REMおよびZrを添加した。REMとZrの添加順は、特に問わない。つまり、REM→Zrでも良いし、Zr→REMでも良いし、またREMとZrを同時に添加しても良い。
Even if it is added in the order of Al → Ti, if the holding time of the molten steel thereafter is less than 2 minutes, a complex oxide of Al and Ti is not sufficiently formed. This is because the reduction proceeds too much. That is, the order of addition of Al and Ti affects the above formula (1).
[Addition of REM / Zr]
After holding the molten steel for 2 to 15 minutes, REM and Zr were added. The order of addition of REM and Zr is not particularly limited. That is, REM → Zr, Zr → REM, or REM and Zr may be added simultaneously.
Zrの添加量とREMの添加量について、ZrとREMのうちいずれか一方でも過剰であると、円相当直径で3μmを超える粗大な複合酸化物が形成されてしまうからであり、また、いずれか一方の元素でも少な過ぎると、円相当直径で0.1〜3μmの微細な複合酸硫化物が不足してしまう。つまり、ZrとREMの添加量は複合酸化物の粒度分布に影響する。 For the addition amount and the addition amount of REM and Zr, if an excessive even either one of the Zr and REM, it is because coarse complex oxides of more than 3μm in equivalent circle diameter will be formed, also, any If one of these elements is too small, a fine complex oxysulfide having an equivalent circle diameter of 0.1 to 3 μm is insufficient. That is, the amount of Zr and REM added affects the particle size distribution of the composite oxide.
これに加えて、REMは酸化物も硫化物も形成しやすい性質を有する反面、Zrは酸化物を形成するが硫化物は形成しないという性質を有する。従って、酸化物と硫化物のバランスを適正化するには、mass%Ofとmass%Sに応じてZrとREMを添加する必要がある。
そこで、以下の式(2)を満足するように、Zr添加量とREM添加量の比(add[Zr]/add[REM])を決定する。
In addition to this, REM has the property of easily forming oxides and sulfides, while Zr has the property of forming oxides but not sulfides. Therefore, in order to optimize the balance between oxide and sulfide, it is necessary to add Zr and REM according to mass% Of and mass% S.
Therefore, the ratio (add [Zr] / add [REM]) of the Zr addition amount and the REM addition amount is determined so as to satisfy the following expression (2).
0.27×(mass%Of/mass%S)+0.21≦add[Zr]/add[REM]≦0.41×(mass%Of/mass%S)+0.77 ・・・(2)
式(2)に基づいて、(mass%Of/mass%S)の値が大きい、すなわち、オキサイドが生成しやすく硫化物が生成しにくい場合には、ZrをREMより多めに添加する(add[Zr]/add[REM]の値を大きくする)。また、(mass%Of/mass%S)の値が小さい、すなわち、オキサイドよりも硫化物が生成しやすい場合には、REMをZrより多めに添加する(add[Zr]/add[REM]の値を小さくする)。この考え方に立脚し、add[Zr]/add[REM]の値の上限および下限を実験的に求め、式(2)を得た。
0.27 × (mass% Of / mass% S) + 0.21 ≦ add [Zr] / add [REM] ≦ 0.41 × (mass% Of / mass% S) +0.77 (2)
Based on the formula (2), when the value of (mass% Of / mass% S) is large, that is, when oxide is easily generated and sulfide is difficult to be generated, Zr is added more than REM (add [ Increase the value of Zr] / add [REM]. In addition, when the value of (mass% Of / mass% S) is small, that is, when sulfides are more easily generated than oxide, REM is added more than Zr (add [Zr] / add [REM] Decrease the value). Based on this concept, the upper and lower limits of the value of add [Zr] / add [REM] were experimentally determined to obtain Equation (2).
[Caの添加と鍛造]
REMおよびZrを添加した後、Caを添加して鋳造した。Caもオキサイドや硫化物を形成するが、それらオキサイドや硫化物の形態は、基本的に既に存在する介在物の形態に依存するので、Caの添加前の介在物の形態に特に留意すべきである。
なお、脱酸元素であるAl,REM,Zr,Caは、全量を一度に溶鋼へ投入するのではなく、2回以上に分割して投入するか、少量ずつ連続的に投入するのが望ましい。
[Ca addition and forging]
After REM and Zr were added, Ca was added and cast. Ca also forms oxides and sulfides. However, since the form of these oxides and sulfides basically depends on the form of inclusions already present, special attention should be paid to the form of inclusions before the addition of Ca. is there.
The deoxidizing elements Al, REM, Zr, and Ca are preferably not added all at once to the molten steel, but divided into two or more times or continuously in small amounts.
なお、溶鋼へ添加するREMやCa,Zr,Tiの形態は特に限定されず、例えば、REMとして、純La,純Ce,および純Y、或いは純Ca,純Zr,および純Ti、更にはFe−Si−La合金、Fe−Si−Ce合金、Fe−Si−Ca合金、Fe−Si−La−Ce合金、Fe−Ca合金、およびNi−Ca合金などを添加すればよい。また、ミッシュメタルを溶鋼へ添加してもよい。ミッシュメタルとは、希土類元素の混合物であり、具体的には、Ceを40〜50%程度、Laを20〜40%程度含有している。但し、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は、本実施形態で規定するCa含有量の範囲を満足する必要がある。 In addition, the form of REM, Ca, Zr, Ti added to molten steel is not specifically limited, For example, as REM, pure La, pure Ce, and pure Y, pure Ca, pure Zr, pure Ti, and also Fe -Si-La alloy, Fe-Si-Ce alloy, Fe-Si-Ca alloy, Fe-Si-La-Ce alloy, Fe-Ca alloy, Ni-Ca alloy, etc. may be added. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of rare earth elements, and specifically contains about 40 to 50% Ce and about 20 to 40% La. However, since misch metal often contains Ca as an impurity, when the misch metal contains Ca, it is necessary to satisfy the range of the Ca content defined in the present embodiment.
ここまでで説明した成分元素の組成(含有量)、成分元素の含有量に関する関係式及び製造条件などを、「本実施形態で規定する条件」とよぶ。
[鋳造・圧延]
上述のように成分調整された溶鋼をインゴットに鋳造した。鋳造されたインゴットを熱間圧延して加工し、厚さが30mm〜80mmの厚鋼板を製造した。実際の操業においては、成分調整して得られた溶鋼を、常法に従って連続鋳造してスラブとした後、常法に従
って熱間圧延すればよい。
The composition (content) of the component elements described so far, the relational expression regarding the content of the component elements, the manufacturing conditions, and the like are referred to as “conditions defined in the present embodiment”.
[Casting / Rolling]
Molten steel whose components were adjusted as described above was cast into an ingot. The cast ingot was hot-rolled and processed to produce a thick steel plate having a thickness of 30 mm to 80 mm. In actual operation, the molten steel obtained by adjusting the components may be continuously cast according to a conventional method to form a slab and then hot rolled according to a conventional method.
[HAZ靭性値の測定]
得られた厚鋼板について、溶接熱の影響を受けたHAZの靱性を評価するために、該厚鋼板から、溶接継手用試験片を採取してV先加工を施した後、大入熱溶接相当の60kJ/mmの入熱量でのエレクトロガスアーク溶接を実施した。この溶接された試験片の表面から深さt/4(t:試験片の板厚)の位置の溶接線(ボンド)近傍のHAZに切欠きを加工したシャルピー衝撃試験片(JIS Z 2202のVノッチ試験片)を3本採取した。これら3本のVノッチ試験片の各々に対して、−40℃でシャルピー衝撃試験を行い、吸収エネルギー(vE−40)を測定し、3本のVノッチ試験片の測定結果の平均値と最小値を求めた。
[Measurement of HAZ toughness value]
In order to evaluate the toughness of the HAZ affected by the welding heat for the obtained thick steel plate, a specimen for a welded joint was sampled from the thick steel plate and subjected to V pre-processing, followed by high heat input welding. Electrogas arc welding was performed at a heat input of 60 kJ / mm. Charpy impact test piece (V of JIS Z 2202) in which a notch is machined in the HAZ near the weld line (bond) at a depth t / 4 (t: thickness of the test piece) from the surface of the welded test piece. Three notch specimens) were collected. For each of these three V-notch test pieces, a Charpy impact test is performed at −40 ° C., the absorbed energy (vE-40) is measured, and the average value and the minimum value of the measurement results of the three V-notch test pieces are measured. The value was determined.
この測定結果において、vE−40の平均値が140Jを超える試験片(厚鋼板)を、HAZ靭性に優れる鋼板であると評価した。
[0.1〜3μmの複合酸化物組成の測定方法]
厚鋼板の表面から深さt/4(t:厚鋼板の板厚)の位置から試験片を切り出し(試験片の軸心が深さt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を鏡面研磨し、日本電子データム製の電子線マイクロプローブX線分析計(Electron Probe X-ray Microanalyzer:EPMA,商品名JXA-8500F)を用いて、0.1〜3μmの複合酸化物組成を測定した。この時の観察条件は、加速電圧を20kV、試料電流を0.01μA、倍率5000倍、観察面積を0.4mm2以上とし、複合酸化物の中央部での成分組成を特性X線の波長分散分光により定量分析した。
In this measurement result, a test piece (thick steel plate) having an average value of vE-40 exceeding 140 J was evaluated as a steel plate excellent in HAZ toughness.
[Method for measuring composite oxide composition of 0.1 to 3 μm]
A test piece is cut out from the surface of the thick steel plate at a depth t / 4 (t: thickness of the thick steel plate) (taken so that the axis of the test piece passes through the position of the depth t / 4), and the rolling direction and The cross section parallel to the plate thickness direction is mirror-polished and 0.1-3 μm using an electron probe X-ray Microanalyzer (EPMA, trade name JXA-8500F) manufactured by JEOL Datum. The composite oxide composition of was measured. The observation conditions at this time were an acceleration voltage of 20 kV, a sample current of 0.01 μA, a magnification of 5000 times, an observation area of 0.4 mm 2 or more, and the component composition at the center of the composite oxide with wavelength dispersion of characteristic X-rays. Quantitative analysis was performed by spectroscopy.
つまり、定量の対象となる元素をSi、Mn、S、Al、Ti、Zr、La、Ce、Ca、およびO(酸素)とし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする複合酸化物から得られたX線強度と検量線に基づいて、その複合酸化物に含まれる元素量を定量した。それらの元素の存在を示すX線強度の比から、S以外の各元素を単独酸化物に換算して酸化物の組成を算出した。Sは単独の濃度のまま算出した。本実施形態では、このように単独酸化物およびS単体濃度として質量換算し、複数の複合酸化物について平均したものを複合酸化物の組成とした。 In other words, the elements to be quantified are Si, Mn, S, Al, Ti, Zr, La, Ce, Ca, and O (oxygen), and the relationship between the X-ray intensity and element concentration of each element using a known substance. Was previously obtained as a calibration curve, and the amount of elements contained in the composite oxide was quantified based on the X-ray intensity and calibration curve obtained from the composite oxide to be analyzed. From the X-ray intensity ratio indicating the presence of these elements, each element other than S was converted to a single oxide, and the composition of the oxide was calculated. S was calculated with a single concentration. In this embodiment, mass conversion is performed as the single oxide and S single element concentration in this way, and the average of a plurality of composite oxides is used as the composite oxide composition.
なお、REMの酸化物は、REMを記号Mで表すと、鋼材中にM2O3、M3O5、MO2などの形態で存在するが、REMの酸化物をすべてM2O3に換算した。Tiについても同様に、全てTiO2に換算した。
[複合酸化物の円相当直径と個数の測定方法]
上述したEPMAを用いた複合酸化物の組成測定において、複合酸化物の面積を測定すると共に複合酸化物を円と仮定して、測定した面積に対応する円の直径を円相当直径として算出した。円相当直径が5μmを超える複合酸化物の個数を測定する際には、倍率を200倍、観察面積を50mm2以上とし、それ以外の条件を、円相当直径が5μm以下の複合酸化物の個数を測定する場合と同じ条件に揃えて実施した。
In addition, when the REM is represented by the symbol M, the REM oxide is present in the steel material in the form of M 2 O 3 , M 3 O 5 , MO 2, etc., but all the REM oxide is converted to M 2 O 3 . Converted. Similarly, all Ti was converted to TiO 2 .
[Measurement method of equivalent circle diameter and number of composite oxide]
In the composition measurement of the composite oxide using the above-described EPMA, the area of the composite oxide was measured and the composite oxide was assumed to be a circle, and the diameter of the circle corresponding to the measured area was calculated as the equivalent circle diameter. When measuring the number of composite oxides whose equivalent circle diameter exceeds 5 μm, the magnification is 200 times, the observation area is 50 mm 2 or more, and the other conditions are the number of composite oxides whose equivalent circle diameter is 5 μm or less. The measurement was performed under the same conditions as in the measurement.
次に、本実施形態による鋼材の実施例を、具体的に説明する。
下の表2は、本実施形態による鋼材の実施例である鋼材No.1〜No.31の化学成分組成を示している。鋼材No.1〜No.31の成分組成は全て、本実施形態で規定する条件を満たしている。
Next, examples of the steel material according to the present embodiment will be specifically described.
Table 2 below shows the chemical composition of steel materials No. 1 to No. 31 which are examples of the steel material according to the present embodiment. All the component compositions of the steel materials No. 1 to No. 31 satisfy the conditions defined in this embodiment.
下の表3は、本鋼材の実施例である鋼材No.1〜No.31の製造条件を示している。鋼材No.1〜No.31の製造条件も全て、本実施形態で規定する条件を満たしている。成分元素の添加順序や添加方法などが複数ある場合は、備考の欄に、選択した添加順序や添加方法が示されている。 Table 3 below shows the manufacturing conditions of steel materials No. 1 to No. 31 which are examples of this steel material. All the manufacturing conditions of the steel materials No. 1 to No. 31 also satisfy the conditions specified in this embodiment. When there are a plurality of addition orders and addition methods of the component elements, the selected addition order and addition method are shown in the remarks column.
下の表4は、本鋼材の実施例である鋼材No.1〜No.31についての、複合酸化物の
粒径および個数分布、複合酸化物の平均組成、およびHAZ靭性の試験結果を示している。本鋼材の実施例である鋼材No.1〜No.31では全て、円相当直径で3μmを超える複合酸化物の個数は5.0個/mm2以下であり、円相当直径が0.1〜3μmの複合酸化物の個数は100個/mm2以上である。さらに鋼材No.1〜No.31では全て、円相当直径0.1〜3μmの複合酸化物の平均組成が、本実施形態で規定する条件を満たしている。その結果、鋼材No.1〜No.31は全て、HAZ靭性の試験結果が140J以上であり、優れたHAZ靭性を発揮すると評価することができる。
Table 4 below shows the test results of the composite oxide particle size and number distribution, the composite oxide average composition, and the HAZ toughness for steel materials No. 1 to No. 31, which are examples of this steel material. Yes. In all the steel materials No. 1 to No. 31, which are examples of the present steel material, the number of complex oxides having a circle equivalent diameter exceeding 3 μm is 5.0 pieces / mm 2 or less, and the circle equivalent diameter is 0.1 to 0.1. The number of composite oxides of 3 μm is 100 / mm 2 or more. Furthermore, in all the steel materials No. 1 to No. 31, the average composition of the composite oxide having an equivalent circle diameter of 0.1 to 3 μm satisfies the conditions defined in this embodiment. As a result, all the steel materials No. 1 to No. 31 have a HAZ toughness test result of 140 J or more, and can be evaluated as exhibiting excellent HAZ toughness.
ここで、下の表5は、本実施形態で規定する条件を満たさない比較例としての鋼材No.32〜No.67の成分組成を示している。鋼材No.32は、Alの含有量が本実施形態で規定する条件を満たしていない。鋼材No.34,35は、Tiの含有量が本実施形態で規定する条件を満たしていない。鋼材No.40,41は、REMの含有量が本実施形態で規定する条件を満たしていない。鋼材No.44,45は、Zrの含有量が本実施形態で規定する条件を満たしていない。鋼材No.48,49は、Caの含有量が本実施形態で規定する条件を満たしていない。鋼材No.52,53は、Sの含有量が本実施形態で規定する条件を満たしていない。その他の鋼材については、上述した成分組成を満たしている。 Here, Table 5 below shows component compositions of steel materials No. 32 to No. 67 as comparative examples that do not satisfy the conditions defined in the present embodiment. Steel material No. 32 does not satisfy the conditions defined by the present embodiment for the content of Al. Steel materials No. 34 and 35 do not satisfy the conditions defined by the present embodiment for the Ti content. Steel materials No. 40 and 41 do not satisfy the conditions specified in the present embodiment by the REM content. In the steel materials No. 44 and 45, the content of Zr does not satisfy the conditions specified in this embodiment. Steel materials No. 48 and 49 do not satisfy the conditions defined by the present embodiment for the Ca content. Steel materials No. 52 and 53 do not satisfy the conditions defined by the present embodiment for the S content. About other steel materials, the component composition mentioned above is satisfy | filled.
下の表6は、本実施形態で規定する条件を満たさない鋼材No.32〜No.67の製造条件を示している。鋼材No.33,36,37,42,43,46,47,50,51では、「複合酸化物形成元素の添加順序」に「×」印が付されており、複合酸化物形成元素(Al
とTi)が上述した順序とは異なった順序で添加されたことを示している。鋼材No.38,39は、Ti添加後の溶鋼の保持時間が、本実施形態で規定する条件を満たしていないことを示している。鋼材No.52は、(mass%Of/mass%S)の値が本実施形態で規定する条件を満たしていないことを示している。鋼材No.53は、mass%Ofの値、(mass%Of/mass%S)の値、および(add[Zr]/add[REM])の実績が、本実施形態で規定する条件を満たしていないことを示している。鋼材No.54,55は、共に(add[Zr]/add[REM])の実績が本実施形態で規定する条件を満たしていないことを示している。鋼材No.56,57は、mass%Ofの値が、本実施形態で規定する条件を満たしていないことを示している。鋼材No.58,59は、add[Zr]の添加量、および(add[Zr]/add[REM])の実績が、本実施形態で規定する条件を満たしていないことを示している。鋼材No.60,61は、add[REM]の添加量、および(add[Zr]/add[REM])の実績が、本実施形態で規定する条件を満たしていないことを示している。鋼材No.62〜67は、(add[Zr]/add[REM])の実績が、本実施形態で規定する条件を満たしていないことを示している。
Table 6 below shows the manufacturing conditions of steel materials No. 32 to No. 67 that do not satisfy the conditions specified in the present embodiment. In the steel materials No. 33, 36, 37, 42, 43, 46, 47, 50, and 51, “addition order of complex oxide forming elements” is marked with “x”, and complex oxide forming elements (Al
And Ti) are added in an order different from that described above. Steel materials No. 38 and 39 show that the holding time of the molten steel after addition of Ti does not satisfy the conditions defined in this embodiment. Steel material No. 52 has shown that the value of (mass% Of / mass% S) does not satisfy the conditions specified in this embodiment. In Steel No. 53, the value of mass% Of, the value of (mass% Of / mass% S), and the results of (add [Zr] / add [REM]) satisfy the conditions specified in this embodiment. It shows no. Steel materials Nos. 54 and 55 both indicate that the results of (add [Zr] / add [REM]) do not satisfy the conditions defined in this embodiment. Steel materials No. 56 and 57 indicate that the value of mass% Of does not satisfy the conditions defined in the present embodiment. Steel Nos. 58 and 59 indicate that the addition amount of add [Zr] and the results of (add [Zr] / add [REM]) do not satisfy the conditions defined in this embodiment. Steel materials No. 60 and 61 indicate that the addition amount of add [REM] and the result of (add [Zr] / add [REM]) do not satisfy the conditions defined in this embodiment. Steel materials Nos. 62 to 67 indicate that the results of (add [Zr] / add [REM]) do not satisfy the conditions defined in this embodiment.
このように、鋼材No.32〜No.67は、表5に示す成分組成および表6に示す製造条件の一方または両方において、本実施形態で規定する条件を満たしていない。 Thus, steel materials No. 32 to No. 67 do not satisfy the conditions defined in the present embodiment in one or both of the component composition shown in Table 5 and the manufacturing conditions shown in Table 6.
表7は、本実施形態で規定する条件を満たさない比較例としての鋼材No.32〜No.67の、複合酸化物の粒径および個数分布、複合酸化物の平均組成、およびHAZ靭性の試験結果を示している。鋼材No.32〜No.55は、複合生成物の平均組成が本実施形態で規定する条件を満たしていない。鋼材No.56,57は、円相当直径で3μmを超える複合酸化物の個数が5.0個/mm2を超えている。鋼材No.58〜No.67は、円相当直径3μmを超える複合酸化物の個数および円相当直径0.1〜3μmの複合酸化物の個数の一方または両方が、本実施形態で規定する条件を満たしていない。鋼材No.32〜No.55のそれぞれについて、本実施形態で規定する条件のうち満たしていない条件を「備考」に示されている。 Table 7 shows the particle size and number distribution of the composite oxide, the average composition of the composite oxide, and the HAZ toughness test of steel materials No. 32 to No. 67 as comparative examples that do not satisfy the conditions specified in this embodiment. Results are shown. Steel materials No. 32 to No. 55 do not satisfy the conditions defined by the average composition of the composite product in this embodiment. In the steel materials Nos. 56 and 57, the number of complex oxides having a circle equivalent diameter exceeding 3 μm exceeds 5.0 pieces / mm 2 . Steel materials No. 58 to No. 67 have a condition that one or both of the number of complex oxides having an equivalent circle diameter exceeding 3 μm and the number of complex oxides having an equivalent circle diameter of 0.1 to 3 μm are defined in this embodiment. not filled. About each of steel materials No.32-No.55, the conditions which are not satisfy | filled among the conditions prescribed | regulated by this embodiment are shown by "remarks."
その結果、鋼材No.32〜No.67は全て、HAZ靭性の試験結果が140J未満となり、本実施形態で規定する条件を1つ以上満たさない比較例において、HAZ靭性に優れた鋼材を得ることができなかった。 As a result, all of the steel materials No. 32 to No. 67 have a HAZ toughness test result of less than 140 J, and in a comparative example that does not satisfy one or more of the conditions specified in this embodiment, obtain a steel material having excellent HAZ toughness. I could not.
図1〜図3を参照しながら、表4に示す本実施形態による鋼材のHAZ靭性と表7に示す比較例のHAZ靭性を比較する。
図1は、表4に示す本実施形態による鋼材のHAZ靭性と、表7に示す比較例の鋼材No.59,61〜67のHAZ靭性を示すグラフである。図1に示す全ての実施例および比較例において、円相当直径3μmを超える複合酸化物の個数は5.0個/mm2未満であるが、比較例の鋼材No.59,61〜67は、円相当直径0.1〜3μmの複合酸化物の個数が100個に満たなかった例であり、いずれにおいても、HAZ靭性の試験結果が140Jを大きく下回っている。
The HAZ toughness of the steel material according to this embodiment shown in Table 4 and the HAZ toughness of the comparative example shown in Table 7 will be compared with reference to FIGS.
FIG. 1 is a graph showing the HAZ toughness of steel materials according to the present embodiment shown in Table 4 and the HAZ toughness of steel materials Nos. 59 and 61 to 67 of comparative examples shown in Table 7. In all the examples and comparative examples shown in FIG. 1, the number of complex oxides having an equivalent circle diameter of more than 3 μm is less than 5.0 pieces / mm 2 . This is an example in which the number of composite oxides having an equivalent circle diameter of 0.1 to 3 μm is less than 100, and in any case, the HAZ toughness test result is significantly lower than 140J.
図2は、表4に示す本実施形態による鋼材のHAZ靭性と、表7に示す比較例の鋼材No.32〜55のHAZ靭性を示すグラフである。図1に示す全ての実施例および比較例において、円相当直径3μmを超える複合酸化物の個数は5.0個/mm2未満であり、円相当直径0.1〜3μmの複合酸化物の個数が100個以上であるが、比較例の鋼材No.32〜55は、複合酸化物の平均組成が本実施形態で規定する条件を満たさなかった例であり、いずれにおいても、HAZ靭性の試験結果が140Jを大きく下回っている。 FIG. 2 is a graph showing the HAZ toughness of the steel materials according to the present embodiment shown in Table 4 and the HAZ toughness of steel materials Nos. 32-55 of the comparative examples shown in Table 7. In all the examples and comparative examples shown in FIG. 1, the number of complex oxides having a circle equivalent diameter of more than 3 μm is less than 5.0 / mm 2 , and the number of complex oxides having a circle equivalent diameter of 0.1 to 3 μm. However, the steel materials Nos. 32-55 of the comparative examples are examples in which the average composition of the composite oxide did not satisfy the conditions specified in the present embodiment, and in any case, the test results of the HAZ toughness Is far below 140J.
図3は、表4に示す本実施形態による鋼材のHAZ靭性と、表7に示す比較例の鋼材No.56,57のHAZ靭性を示すグラフである。図3に示す全ての実施例および比較例において、円相当直径0.1〜3μmの複合酸化物の個数は100個以上であるが、比較例の鋼材No.56,57は、円相当直径3μmを超える複合酸化物の個数が5.0個/mm2以上となった例であり、いずれにおいても、HAZ靭性の試験結果が140Jを大きく下回っている。 FIG. 3 is a graph showing the HAZ toughness of the steel material according to the present embodiment shown in Table 4 and the HAZ toughness of steel materials Nos. 56 and 57 of the comparative examples shown in Table 7. In all the examples and comparative examples shown in FIG. 3, the number of complex oxides having a circle equivalent diameter of 0.1 to 3 μm is 100 or more, but the steel materials No. 56 and 57 of the comparative example have a circle equivalent diameter of 3 μm. This is an example in which the number of composite oxides exceeding 5.0 is 5.0 pieces / mm 2 or more, and in any case, the HAZ toughness test result is significantly lower than 140J.
上述のとおり、本実施形態で規定した条件を満たす構成の鋼材であれば、大入熱溶接においても優れたHAZ靭性を発揮することができる。
なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
As described above, if the steel material has a configuration that satisfies the conditions defined in the present embodiment, it can exhibit excellent HAZ toughness even in high heat input welding.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. In particular, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.
例えば、本鋼材を二次精錬において製造すると説明したが、転炉や電気炉を用いて製造しても、同様のHAZ靭性を発揮する鋼材を得ることができる。従って、転炉や電気炉を用いた本鋼材の製造も本発明の技術的範囲に包含される。 For example, although it has been described that the present steel material is manufactured by secondary refining, a steel material that exhibits the same HAZ toughness can be obtained even when manufactured using a converter or an electric furnace. Therefore, the production of the present steel material using a converter or an electric furnace is also included in the technical scope of the present invention.
Claims (4)
Si:0.05〜0.5%以下、
Mn:1.0〜2.5%、
P :0.03%以下(0%を含まない)、
S :0.01%以下(0%を含まない)、
Al:0.002〜0.040%以下、
Ti:0.005〜0.040%、
Zr:0.0003〜0.020%、
REM:0.0003〜0.020%、
Ca:0.0003〜0.0080%、
N :0.0030〜0.010%以下(0%を含まない)、
O :0.0003〜0.0050%を含有し、残部が鉄および不可避不純物からなる鋼材であって、
前記鋼材は、REM、Zr、Ti、Al、CaおよびSを含有する複合酸化物を含み、
前記鋼材中の複合酸化物について、
円相当直径で3μm超の酸化物が1mm2あたり5.0個以下であって、
かつ円相当直径が0.1〜3μmの複合酸化物の全てが下記式(1)を満たすと共に、前記円相当直径が0.1〜3μmの複合酸化物個数が100個/mm2以上であって、
さらに、下記式(1)を満たす0.1〜3μmの全ての複合酸化物の平均組成が、Al2O3:20%以下、TiO2:3〜20%、ZrO2:5〜50%、REM酸化物:5〜50%、CaO:5〜50%、S:1〜15%であることを特徴とする溶接熱影響部の靭性に優れた鋼材。
0.008 ≦ (1/d)×{mass%S/(mass%CaO+mass%REM2O3)} ≦ 0.289 ・・・(1)
(但し、dは個々の複合酸化物の円相当直径であって、0.1〜3μmである) C: 0.02 to 0.13% (meaning mass% (mass%); the same applies to the following components)),
Si: 0.05-0.5% or less,
Mn: 1.0-2.5%,
P: 0.03% or less (excluding 0%),
S: 0.01% or less (excluding 0%),
Al: 0.002 to 0.040% or less,
Ti: 0.005 to 0.040%,
Zr: 0.0003-0.020%,
REM: 0.0003-0.020%,
Ca: 0.0003-0.0080%,
N: 0.0003 to 0.010% or less (excluding 0%),
O: a steel material containing 0.0003 to 0.0050%, the balance being iron and inevitable impurities,
The steel material includes a composite oxide containing REM, Zr, Ti, Al, Ca and S,
About the complex oxide in the steel material,
There are no more than 5.0 oxides with an equivalent circle diameter of more than 3 μm per mm 2 ,
In addition , all the complex oxides having an equivalent circle diameter of 0.1 to 3 μm satisfy the following formula (1), and the number of complex oxides having an equivalent circle diameter of 0.1 to 3 μm is 100 / mm 2 or more. And
Furthermore, the average composition of all composite oxides of 0.1 to 3 μm satisfying the following formula (1) is Al 2 O 3 : 20% or less, TiO 2 : 3 to 20%, ZrO 2 : 5 to 50%, REM oxide: 5 to 50%, CaO: 5 to 50%, S: 1 to 15%, a steel material excellent in toughness of a weld heat affected zone.
0.008 ≦ (1 / d) × {mass% S / (mass% CaO + mass% REM 2 O 3 )} ≦ 0.289 (1)
(Where d is the equivalent circle diameter of each composite oxide and is 0.1 to 3 μm)
Cu:0.05〜1.50%、
Cr:0.05〜1.50%、
Mo:0.05〜1.50%
のうち、少なくとも1種を含有することを特徴とする請求項1に記載の溶接熱影響部の靭性に優れた鋼材。 Ni: 0.05 to 1.50%,
Cu: 0.05 to 1.50%,
Cr: 0.05 to 1.50%,
Mo: 0.05 to 1.50%
The steel material excellent in toughness of the weld heat affected zone according to claim 1, comprising at least one of them.
V :0.002〜0.10%
のうち少なくともいずれか一方を含有することを特徴とする請求項1または2に記載の溶接熱影響部の靭性に優れた鋼材。 Nb: 0.002 to 0.10%,
V: 0.002 to 0.10%
The steel material excellent in the toughness of the welding heat affected zone according to claim 1 or 2, characterized by containing at least one of the above.
を含有することを特徴とする請求項1〜3のいずれかに記載の溶接熱影響部の靭性に優れた鋼材。 B: 0.0005 to 0.0050%
The steel material excellent in the toughness of the weld heat affected zone according to any one of claims 1 to 3, characterized by comprising:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013060452A JP6226542B2 (en) | 2013-03-22 | 2013-03-22 | Steel with excellent toughness in weld heat affected zone |
EP14767775.1A EP2977479B1 (en) | 2013-03-22 | 2014-03-17 | Steel material having superior toughness at welding heat affected zone |
KR1020157025566A KR101718275B1 (en) | 2013-03-22 | 2014-03-17 | Steel material having superior toughness at welding heat affected zone |
CN201480016899.4A CN105051229B (en) | 2013-03-22 | 2014-03-17 | The steel of the tenacity excellent of welding heat affected zone |
PCT/JP2014/057205 WO2014148447A1 (en) | 2013-03-22 | 2014-03-17 | Steel material having superior toughness at welding heat affected zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013060452A JP6226542B2 (en) | 2013-03-22 | 2013-03-22 | Steel with excellent toughness in weld heat affected zone |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014185364A JP2014185364A (en) | 2014-10-02 |
JP6226542B2 true JP6226542B2 (en) | 2017-11-08 |
Family
ID=51580126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013060452A Expired - Fee Related JP6226542B2 (en) | 2013-03-22 | 2013-03-22 | Steel with excellent toughness in weld heat affected zone |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2977479B1 (en) |
JP (1) | JP6226542B2 (en) |
KR (1) | KR101718275B1 (en) |
CN (1) | CN105051229B (en) |
WO (1) | WO2014148447A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6301805B2 (en) * | 2014-10-17 | 2018-03-28 | 株式会社神戸製鋼所 | Thick steel plate for tanks with excellent toughness of weld heat affected zone |
JP2016216819A (en) * | 2015-05-22 | 2016-12-22 | 株式会社神戸製鋼所 | Thick steel plate and welded joint |
WO2017094593A1 (en) * | 2015-12-04 | 2017-06-08 | 株式会社神戸製鋼所 | Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed |
KR102183900B1 (en) * | 2016-02-19 | 2020-11-27 | 닛폰세이테츠 가부시키가이샤 | River |
US20200165711A1 (en) * | 2016-02-19 | 2020-05-28 | Nippon Steel & Sumitomo Metal Corporation | Steel |
WO2017183630A1 (en) * | 2016-04-19 | 2017-10-26 | 新日鐵住金株式会社 | Steel |
JP6828638B2 (en) * | 2017-08-14 | 2021-02-10 | 日本製鉄株式会社 | Steel plate and steel plate manufacturing method |
JP2018016890A (en) * | 2017-09-26 | 2018-02-01 | 株式会社神戸製鋼所 | Thick steel sheet for tank excellent in toughness of hot affected zone |
JP7172100B2 (en) * | 2018-04-02 | 2022-11-16 | 日本製鉄株式会社 | Non-oriented electrical steel sheet |
JP7328491B2 (en) * | 2018-11-09 | 2023-08-17 | 日本製鉄株式会社 | Non-oriented electrical steel sheet |
CN113614271A (en) | 2019-06-27 | 2021-11-05 | 日本制铁株式会社 | Steel material and method for producing same |
JP7492118B2 (en) * | 2020-03-25 | 2024-05-29 | 日本製鉄株式会社 | Steel product with low ductile MnS, steel slab, and manufacturing method thereof |
CN113025903B (en) * | 2021-03-04 | 2022-03-25 | 东北大学 | Fine-grain hot-rolled plate strip steel and preparation method thereof |
CN114075617B (en) * | 2021-09-30 | 2023-05-16 | 山东钢铁股份有限公司 | Method for reducing harm of TiN inclusion in steel |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264048A (en) | 1998-03-16 | 1999-09-28 | Nippon Steel Corp | High-strength steel plate excellent in toughness of welded zone |
JP4144121B2 (en) | 1999-07-06 | 2008-09-03 | Jfeスチール株式会社 | Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone |
JP4762450B2 (en) | 2001-08-06 | 2011-08-31 | 新日本製鐵株式会社 | Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness |
JP4039223B2 (en) | 2002-01-22 | 2008-01-30 | Jfeスチール株式会社 | Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same |
JP4261968B2 (en) | 2003-04-24 | 2009-05-13 | 新日本製鐵株式会社 | Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof |
JP4515428B2 (en) * | 2006-09-29 | 2010-07-28 | 株式会社神戸製鋼所 | Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method |
JP5201665B2 (en) * | 2007-11-13 | 2013-06-05 | 株式会社神戸製鋼所 | High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding |
JP2009179844A (en) * | 2008-01-30 | 2009-08-13 | Kobe Steel Ltd | High tensile strength thick steel plate having excellent toughness in weld heat affected zone |
JP5231042B2 (en) * | 2008-02-20 | 2013-07-10 | 株式会社神戸製鋼所 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
JP5342902B2 (en) * | 2009-03-11 | 2013-11-13 | 株式会社神戸製鋼所 | Steel material excellent in toughness and base metal fatigue characteristics of weld heat-affected zone and its manufacturing method |
JP5520105B2 (en) * | 2009-07-15 | 2014-06-11 | 株式会社神戸製鋼所 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
JP2011127220A (en) * | 2009-11-18 | 2011-06-30 | Kobe Steel Ltd | Method for manufacturing steel member excellent in toughness at weld heat-affected zone |
JP5444093B2 (en) * | 2010-04-07 | 2014-03-19 | 株式会社神戸製鋼所 | Thick steel plate with excellent toughness in weld heat affected zone |
JP5651090B2 (en) * | 2011-01-18 | 2015-01-07 | 株式会社神戸製鋼所 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
JP5158272B2 (en) * | 2011-03-10 | 2013-03-06 | 新日鐵住金株式会社 | High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel |
-
2013
- 2013-03-22 JP JP2013060452A patent/JP6226542B2/en not_active Expired - Fee Related
-
2014
- 2014-03-17 WO PCT/JP2014/057205 patent/WO2014148447A1/en active Application Filing
- 2014-03-17 CN CN201480016899.4A patent/CN105051229B/en not_active Expired - Fee Related
- 2014-03-17 EP EP14767775.1A patent/EP2977479B1/en not_active Not-in-force
- 2014-03-17 KR KR1020157025566A patent/KR101718275B1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
KR101718275B1 (en) | 2017-03-20 |
WO2014148447A1 (en) | 2014-09-25 |
EP2977479B1 (en) | 2018-04-25 |
JP2014185364A (en) | 2014-10-02 |
KR20150119391A (en) | 2015-10-23 |
EP2977479A4 (en) | 2016-11-30 |
CN105051229A (en) | 2015-11-11 |
EP2977479A1 (en) | 2016-01-27 |
CN105051229B (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6226542B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP4825057B2 (en) | Steel with excellent toughness of weld heat affected zone and its manufacturing method | |
JP5201665B2 (en) | High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding | |
JP5202031B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
KR101697845B1 (en) | Steel material having enhanced toughness in weld-heat-affected zone | |
JP5651090B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
JP5444093B2 (en) | Thick steel plate with excellent toughness in weld heat affected zone | |
JP4515430B2 (en) | Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method | |
KR20090090254A (en) | Steel materials having superior toughness in weldheat-affected zone and manufacturing method of the same | |
JP2005320624A (en) | Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding | |
JP4950529B2 (en) | Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method | |
JP2003213366A (en) | Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone | |
KR20110055428A (en) | Manufacturing method of steel with excellent toughness of weld heat affected zone | |
JP5394849B2 (en) | Thick steel plate with excellent toughness in weld heat affected zone | |
JP5340839B2 (en) | Steel sheet with excellent toughness of weld heat affected zone | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JP4299769B2 (en) | High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm | |
JP5103037B2 (en) | Thick steel plate with excellent toughness of base metal and weld heat affected zone | |
KR101659245B1 (en) | Thick steel sheet having excellent welding heat-affected part toughness | |
JP6515287B2 (en) | Method of manufacturing welded joint | |
JP4261968B2 (en) | Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof | |
JP2021008653A (en) | Steel plate for pressure vessel excellent in low temperature toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160819 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160819 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160829 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20161007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171010 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6226542 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |