JP6221569B2 - Driving assistance device - Google Patents
Driving assistance device Download PDFInfo
- Publication number
- JP6221569B2 JP6221569B2 JP2013200011A JP2013200011A JP6221569B2 JP 6221569 B2 JP6221569 B2 JP 6221569B2 JP 2013200011 A JP2013200011 A JP 2013200011A JP 2013200011 A JP2013200011 A JP 2013200011A JP 6221569 B2 JP6221569 B2 JP 6221569B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- inter
- distance
- lane
- adjacent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Controls For Constant Speed Travelling (AREA)
Description
本発明は、運転支援装置に関する。 The present invention relates to a driving support device.
従来、運転支援装置としては、例えば、特許文献1に記載の従来技術がある。この従来技術では、自車両が隣接車線へ車線変更したときの干渉予測時間を算出する。干渉予測時間としては、例えば、隣接車線を走行する後方車両(以下、隣接後方車両とも呼ぶ)と自車両とが干渉するまでに要する時間がある。続いて、この従来技術では、算出した干渉予測時間が設定閾値以上である場合に、自車両を隣接車線へ車線変更させる。 Conventionally, as a driving assistance device, for example, there is a conventional technique described in Patent Document 1. In this prior art, the estimated interference time when the host vehicle changes lanes to the adjacent lane is calculated. As the interference prediction time, for example, there is a time required for a rear vehicle traveling in an adjacent lane (hereinafter also referred to as an adjacent rear vehicle) to interfere with the host vehicle. Subsequently, in this prior art, when the calculated interference prediction time is equal to or longer than the set threshold, the host vehicle is changed to an adjacent lane.
しかしながら、上記従来技術では、例えば、隣接車線を走行する車列に比べ、自車線を走行する車列が低速であった場合には、隣接後方車両と自車両との干渉予測時間とが低減する可能性があった。それゆえ、上記従来技術では、隣接後方車両と自車両との干渉予測時間が設定閾値未満となり、自車両を隣接車線へ車線変更不可となる可能性があった。
本発明は、上記のような点に着目したもので、自車両の車線変更に対するより適切な運転支援を可能とすることを目的とする。
However, in the above-described conventional technology, for example, when the vehicle train traveling in the own lane is at a low speed compared to the vehicle train traveling in the adjacent lane, the interference prediction time between the adjacent rear vehicle and the host vehicle is reduced. There was a possibility. Therefore, in the prior art, there is a possibility that the interference prediction time between the adjacent rear vehicle and the own vehicle becomes less than the set threshold value, and the own vehicle cannot be changed to the adjacent lane.
The present invention focuses on the above points, and an object of the present invention is to enable more appropriate driving support for a lane change of the host vehicle.
上記課題を解決するために、本発明の一態様では、自車両が車線変更先の候補とする車間空間である候補車間空間へ車線変更できるか否かを判定する。続いて、自車両を候補車間空間へ車線変更できないと判定すると、自車線の前方車両と自車両との車間距離が現在の当該車間距離よりも大きい設定距離となるように自車両の制動駆動力を制御する。続いて、自車線の前方車両と自車両との車間距離と前記設定距離との差が設定値以下になると、自車両が加速するように自車両の制駆動力を制御する。続いて、自車両の制駆動力の制御を行い、自車両が加速すると、自車両が隣接車線への車線変更を開始するように自車両の制御及び運転者への報知の少なくとも一方を行う。 In order to solve the above-described problem, according to one aspect of the present invention, it is determined whether or not a vehicle can change lanes to a candidate inter-vehicle space that is an inter-vehicle space that is a candidate for a lane change destination. Subsequently, when it is determined that the lane cannot be changed to the candidate inter-vehicle space, the braking driving force of the own vehicle is set such that the inter-vehicle distance between the vehicle ahead of the own lane and the own vehicle is larger than the current inter-vehicle distance. To control. Subsequently, when the difference between the distance between the vehicle ahead of the host lane and the host vehicle and the set distance is equal to or less than the set value, the braking / driving force of the host vehicle is controlled so that the host vehicle accelerates. Subsequently, the braking / driving force of the host vehicle is controlled, and when the host vehicle accelerates, at least one of the control of the host vehicle and the notification to the driver is performed so that the host vehicle starts lane change to the adjacent lane.
本発明の一態様によれば、自車線の前方車両と自車両との車間距離を増大させ、増大させた車間距離によって自車両を加速できる。これにより、自車線を走行する車列が比較的低速である場合にも、自車両をより適切に車線変更できる。 According to one aspect of the present invention, the inter-vehicle distance between the vehicle ahead of the own lane and the own vehicle can be increased, and the own vehicle can be accelerated by the increased inter-vehicle distance. Thereby, even when the vehicle train traveling in the own lane is relatively slow, the lane can be changed more appropriately.
本発明に係る運転支援装置の実施形態について図面を参照しつつ説明する。
(構成)
図1は、運転支援装置を搭載した自車両Aの概略構成を表すブロック図である。
図1に示すように、自車両Aは、レーダー部1、ナビゲーション部2、車速検出部3、コントローラ4、制駆動力制御部5、車線変更意思提示部6及び運転支援部7を備える。
An embodiment of a driving support apparatus according to the present invention will be described with reference to the drawings.
(Constitution)
FIG. 1 is a block diagram showing a schematic configuration of a host vehicle A equipped with a driving support device.
As shown in FIG. 1, the host vehicle A includes a radar unit 1, a navigation unit 2, a vehicle speed detection unit 3, a controller 4, a braking / driving
図2は、各種状態量を説明するための説明図である。
レーダー部1は、自車両Aと他車両との車間距離を検出する。他車両としては、例えば、図2に示すように、自車線の前方車両B、隣接車線の後方車両(以下、隣接後方車両とも呼ぶ)C、及び隣接車線の前方車両(以下、隣接前方車両とも呼ぶ)Dがある。また、車間距離としては、例えば、自車両Aと隣接後方車両Cとの車間距離L1、隣接前方車両Dと隣接後方車両Cとの車間距離L2、自車線の前方車両Bと自車両Aとの車間距離L3がある。また、レーダー部1は、隣接後方車両Cの車速V2を検出する。そして、レーダー部1は、検出結果をコントローラ4に出力する。レーダー部1としては、例えば、自車両Aの周囲(例えば、前方、後方、斜め前方、斜め後方)にレーザー光を出射して反射光を検出するレーザ距離計を採用できる。なお、隣接後方車両Cの車速V2の検出方法としては、例えば、車間距離L1を時間微分して自車両Aと隣接後方車両Cとの相対車速を算出し、算出結果に車速検出部3が検出した自車両Aの車速を加算する方法がある。
FIG. 2 is an explanatory diagram for explaining various state quantities.
The radar unit 1 detects the inter-vehicle distance between the host vehicle A and another vehicle. As other vehicles, for example, as shown in FIG. 2, a front vehicle B in the own lane, a rear vehicle in the adjacent lane (hereinafter also referred to as an adjacent rear vehicle) C, and a forward vehicle in the adjacent lane (hereinafter referred to as an adjacent forward vehicle). D). Further, as the inter-vehicle distance, for example, the inter-vehicle distance L1 between the own vehicle A and the adjacent rear vehicle C, the inter-vehicle distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C, and the front vehicle B and the own vehicle A in the own lane. There is an inter-vehicle distance L3. Further, the radar unit 1 detects the vehicle speed V2 of the adjacent rear vehicle C. Then, the radar unit 1 outputs the detection result to the controller 4. As the radar unit 1, for example, a laser rangefinder that emits laser light around the host vehicle A (for example, forward, backward, diagonally forward, diagonally backward) to detect reflected light can be employed. As a method for detecting the vehicle speed V2 of the adjacent rear vehicle C, for example, the relative vehicle speed between the own vehicle A and the adjacent rear vehicle C is calculated by time-differentiating the inter-vehicle distance L1, and the vehicle speed detection unit 3 detects the calculation result. There is a method of adding the vehicle speed of the subject vehicle A.
ナビゲーション部2は、GPS(Global Positioning System)受信機、地図データベース、及び表示モニタを備える。そして、ナビゲーション部2は、GPS受信機、及び地図データベースから自車両Aの位置及び道路情報を取得する。続いて、ナビゲーション部2は、取得した自車両Aの位置及び道路情報に基づいて経路探索を行う。続いて、ナビゲーション部2は、経路探索の結果を表示モニタに表示する。また、ナビゲーション部2は、取得した自車両Aの位置及び道路情報に基づき、自車両Aが合流車線を走行している場合には自車両Aから合流車線終点までの距離L4をコントローラ4に出力する。 The navigation unit 2 includes a GPS (Global Positioning System) receiver, a map database, and a display monitor. And the navigation part 2 acquires the position and road information of the own vehicle A from a GPS receiver and a map database. Subsequently, the navigation unit 2 performs a route search based on the acquired position of the own vehicle A and road information. Subsequently, the navigation unit 2 displays the route search result on the display monitor. In addition, the navigation unit 2 outputs the distance L4 from the own vehicle A to the end point of the merged lane to the controller 4 when the own vehicle A is traveling in the merged lane based on the acquired position of the own vehicle A and road information. To do.
車速検出部3は、自車両Aの車速V1を検出する。そして、車速検出部3は、検出結果をレーダー部1及びコントローラ4に出力する。車速検出部3としては、例えば、自車両Aの車輪速を検出して自車両Aの車速V1を演算する車輪速センサを採用できる。
コントローラ4は、A/D(Analog to Digital)変換回路、D/A(Digital to Analog)変換回路、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等から構成した集積回路を備える。ROMは、各種処理を実現する1または2以上のプログラムを記憶している。CPUは、レーダー部1、ナビゲーション部2、及び車速検出部3が出力した検出結果等に基づき、ROMが記憶している1または2以上のプログラムに従って各種処理(例えば、運転支援処理)を実行する。運転支援処理では、コントローラ4は、自車両Aを減速させる指令(以下、減速指令とも呼ぶ)を制駆動力制御部5に出力する。また、コントローラ4は、自車両Aを加速させる指令(以下、加速指令とも呼ぶ)を制駆動力制御部5に出力する。さらに、コントローラ4は、自車両Aの車線変更先の隣接車線側のウィンカーを点滅させる指令(以下、意思提示指令とも呼ぶ)を車線変更意思提示部6に出力する。また、コントローラ4は、隣接車線への車線変更の開始を促す音声を出力する指令(以下、車線変更指令とも呼ぶ)を運転支援部7に出力する。コントローラ4が実行する運転支援処理の詳細については後述する。
The vehicle speed detector 3 detects the vehicle speed V1 of the host vehicle A. Then, the vehicle speed detection unit 3 outputs the detection result to the radar unit 1 and the controller 4. As the vehicle speed detection unit 3, for example, a wheel speed sensor that detects the wheel speed of the host vehicle A and calculates the vehicle speed V1 of the host vehicle A can be employed.
The controller 4 includes an A / D (Analog to Digital) conversion circuit, a D / A (Digital to Analog) conversion circuit, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Integrated circuit. The ROM stores one or more programs that realize various processes. The CPU executes various processes (for example, driving support processes) according to one or more programs stored in the ROM based on the detection results output by the radar unit 1, the navigation unit 2, and the vehicle speed detection unit 3. . In the driving support process, the controller 4 outputs a command to decelerate the host vehicle A (hereinafter also referred to as a deceleration command) to the braking / driving
制駆動力制御部5は、コントローラ4が減速指令を出力すると、自車両Aを減速させる。具体的には、制駆動力制御部5は、自車両Aの各車輪の制動力の発生、及び自車両Aの駆動力の低減の少なくともいずれかを実行する。また、運転支援部7は、コントローラ4が加速指令を出力すると、自車両Aを加速させる。具体的には、制駆動力制御部5は、制動力の低減、及び駆動力の増大の少なくともいずれかを実行する。
The braking / driving
車線変更意思提示部6は、コントローラ4が意思提示指令を出力すると、車線変更しようとしている隣接車線側のウィンカーの点滅制御を行う。これにより、車線変更意思提示部6は、隣接後方車両の運転者に自車両Aの車線変更の意図を伝える。
運転支援部7は、コントローラ4が車線変更指令を出力すると、車線変更の開始を促す音声を出力する。これにより、運転支援部7は、運転者に車線変更の可否を伝える。
When the controller 4 outputs the intention presentation command, the lane change intention presenting unit 6 performs blink control of the blinker on the adjacent lane side where the lane is to be changed. Thereby, the lane change intention presenting unit 6 notifies the driver of the adjacent rear vehicle of the intention of changing the lane of the own vehicle A.
When the controller 4 outputs a lane change command, the driving support unit 7 outputs a sound prompting the start of the lane change. As a result, the driving support unit 7 informs the driver whether the lane can be changed.
なお、本実施形態では、運転支援部7が、コントローラ4が車線変更指令を出力すると、車線変更の開始を促す音声を出力する例を示したが、他の構成を採用することもできる。例えば、運転支援部7が、車線変更の開始を促す画像を表示する構成としてもよく、自車両Aが隣接車線に車線変更を行うように車両制御を行う構成としてもよい。車両制御を行う場合、左右輪を転舵し、自車両Aが隣接車線に車線変更を行う構成としてもよく、左右輪の制動力を制御し、自車両Aが隣接車線に車線変更を行う構成としてもよい。
(運転支援処理)
次に、コントローラ4が実行する運転支援処理について説明する。運転支援処理は、隣接車線を走行する車列に比べ、自車線を走行する車列が低速である場合、つまり、自車両Aの車速V1が隣接後方車両Cの車速V2未満である場合に、運転者が車線変更の意図を表す操作(例えば、ウィンカーレバーの操作)を行うと実行される。
In the present embodiment, an example in which the driving support unit 7 outputs a voice prompting the start of lane change when the controller 4 outputs a lane change command has been described, but other configurations may be employed. For example, the driving support unit 7 may be configured to display an image that prompts the start of lane change, or may be configured to perform vehicle control such that the own vehicle A changes the lane to the adjacent lane. When performing vehicle control, the left and right wheels may be steered so that the own vehicle A may change the lane to the adjacent lane, the braking force of the left and right wheels may be controlled, and the own vehicle A may change the lane to the adjacent lane. It is good.
(Driving support processing)
Next, driving support processing executed by the controller 4 will be described. The driving support processing is performed when the vehicle train traveling in the own lane is at a lower speed than the vehicle train traveling in the adjacent lane, that is, when the vehicle speed V1 of the own vehicle A is less than the vehicle speed V2 of the adjacent rear vehicle C. This is executed when the driver performs an operation (for example, an operation of a blinker lever) indicating the intention of changing the lane.
図3は、コントローラ4が実行する運転支援処理を表すフローチャートである。
図3に示すように、まず、ステップS101では、コントローラ4は、レーダー部1が出力した自車両Aと隣接後方車両Cとの車間距離L1、及び隣接後方車両Cの車速V2、並びに車速検出部3が出力した自車両Aの車速V1を取得する。続いて、コントローラ4は、取得した自車両Aと隣接後方車両Cとの車間距離L1、隣接後方車両Cの車速V2、及び自車両Aの車速V1に基づき、下記(1)式に従って自車両Aと隣接後方車両Cとの干渉予測時間TTC1を算出する。干渉予測時間TTC1としては、例えば、自車両Aが隣接前方車両Dと隣接後方車両Cとの間の車間空間を、隣接車線における自車両Aが車線変更先の候補とする車間空間である候補車間空間とした場合に、当該候補者間空間へ車線変更した場合に自車両Aと隣接後方車両Cとが干渉するまでに要する時間がある。
FIG. 3 is a flowchart showing the driving support process executed by the controller 4.
As shown in FIG. 3, first, in step S101, the controller 4 causes the inter-vehicle distance L1 between the own vehicle A and the adjacent rear vehicle C output by the radar unit 1, the vehicle speed V2 of the adjacent rear vehicle C, and the vehicle speed detection unit. 3 obtains the vehicle speed V1 of the host vehicle A output by the vehicle. Subsequently, the controller 4 follows the following formula (1) based on the acquired inter-vehicle distance L1 between the own vehicle A and the adjacent rear vehicle C, the vehicle speed V2 of the adjacent rear vehicle C, and the vehicle speed V1 of the own vehicle A. And an interference prediction time TTC1 between the adjacent rear vehicle C is calculated. As the estimated interference time TTC1, for example, the own vehicle A is the inter-vehicle space between the adjacent front vehicle D and the adjacent rear vehicle C, and the inter-vehicle space in which the own vehicle A in the adjacent lane is the lane change destination candidate. In the case of a space, there is a time required for the own vehicle A and the adjacent rear vehicle C to interfere when the lane is changed to the inter-candidate space.
TTC1=L1/(V2−V1) ………(1)
続いて、コントローラ4は、自車両Aを候補車間空間へ車線変更できるか否かを判定する。具体的には、コントローラ4は、算出した干渉予測時間TTC1が設定閾値(例えば、5秒)以上であるか否かを判定する。そして、コントローラ4は、干渉予測時間TTC1が設定閾値(5秒)以上であると判定した場合には、自車両Aを候補車間空間へ車線変更できると判定し、ステップS105に移行する。一方、コントローラ4は、干渉予測時間TTC1が設定閾値(5秒)未満であると判定した場合には、自車両Aを候補車間空間へ車線変更できないと判定する。続いて、コントローラ4は、自車両Aを候補車間空間へ車線変更できないと判定すると、図2(a)に示すように、レーダー部1が出力した自車線の前方車両Bと自車両Aとの車間距離L3、及び隣接後方車両Cの車速V2を取得する。続いて、コントローラ4は、取得した車速V2及び車間距離L3に基づき、下記(2)式に従って車線変更時目標車速V1’(>現在の自車両Aの車速V1)を算出した後、ステップS102に移行する。車線変更時目標車速V1’としては、例えば、自車両Aを隣接車線へ車線変更させるための自車両Aの目標値(目標車速)がある(例えば、図2(b)に示すように、自車両Aが合流車線を走行している場合には自車両Aが車線変更して隣接車線(本線)に合流するときの自車両Aの車速の目標値がある)。
TTC1 = L1 / (V2-V1) (1)
Subsequently, the controller 4 determines whether or not the own vehicle A can be changed to the candidate inter-vehicle space. Specifically, the controller 4 determines whether or not the calculated interference prediction time TTC1 is equal to or longer than a set threshold (for example, 5 seconds). If the controller 4 determines that the interference prediction time TTC1 is equal to or longer than the set threshold (5 seconds), the controller 4 determines that the own vehicle A can be changed to the candidate inter-vehicle space, and proceeds to step S105. On the other hand, if the controller 4 determines that the interference prediction time TTC1 is less than the set threshold value (5 seconds), the controller 4 determines that the own vehicle A cannot be changed to the candidate inter-vehicle space. Subsequently, when the controller 4 determines that the own vehicle A cannot be changed to the candidate inter-vehicle space, as shown in FIG. 2 (a), the front vehicle B of the own lane output by the radar unit 1 and the own vehicle A The inter-vehicle distance L3 and the vehicle speed V2 of the adjacent rear vehicle C are acquired. Subsequently, the controller 4 calculates the lane change target vehicle speed V1 ′ (> the current vehicle speed V1 of the host vehicle A) according to the following equation (2) based on the acquired vehicle speed V2 and the inter-vehicle distance L3, and then proceeds to step S102. Transition. As the target vehicle speed V1 ′ at the time of lane change, for example, there is a target value (target vehicle speed) of the host vehicle A for changing the host vehicle A to an adjacent lane (for example, as shown in FIG. When the vehicle A is traveling in the merge lane, there is a target value of the vehicle speed of the vehicle A when the vehicle A changes lanes and merges with the adjacent lane (main line).
V1’=V2−(L3+Lmargin1)/設定閾値 ………(2)
ここで、第1設定マージンLmargin1は、隣接後方車両Cの車速V2及び自車両Aから合流車線終点までの距離L4の少なくとも一方に基づいて設定する。具体的には、コントローラ4は、隣接後方車両Cの車速V2が低いほど第1設定マージンLmargin1を小さい値に設定する。これにより、コントローラ4は、車線変更時目標車速V1’が増大する。それゆえ、コントローラ4は、自車両Aを隣接車線へ車線変更しやすくなる。
V1 ′ = V2− (L3 + Lmargin1) / setting threshold value (2)
Here, the first setting margin Lmargin1 is set based on at least one of the vehicle speed V2 of the adjacent rear vehicle C and the distance L4 from the own vehicle A to the merging lane end point. Specifically, the controller 4 sets the first setting margin Lmargin1 to a smaller value as the vehicle speed V2 of the adjacent rear vehicle C is lower. As a result, the controller 4 increases the target vehicle speed V1 ′ at the time of lane change. Therefore, the controller 4 can easily change the own vehicle A to the adjacent lane.
また、コントローラ4は、自車両Aから合流車線終点までの距離L4が短いほど第1設
定マージンLmargin1を小さい値に設定する。これにより、距離L4が短いほど車線変更時目標車速V1'が増大する。それゆえ、自車両Aを隣接車線へ車線変更しやすくなる。自車両Aから合流車線終点までの距離L4は、ナビゲーション部2から取得する。
続いてステップS102に移行して、コントローラ4は、車速検出部3が検出した車速V1、及び前記ステップS101で算出した車線変更時目標車速V1'、及び予め定めた設定加速度αに基づき、必要距離ΔLを算出する。必要距離ΔLとしては、例えば、自車両Aを車線変更時目標車速V1'まで加速するまでに要する距離がある。
Further, the controller 4 sets the first setting margin Lmargin1 to a smaller value as the distance L4 from the own vehicle A to the merging lane end point is shorter. Thereby, the target vehicle speed V1 ′ at the time of lane change increases as the distance L4 becomes shorter. Therefore, it becomes easy to change the vehicle A to the adjacent lane. The distance L4 from the own vehicle A to the merging lane end point is acquired from the navigation unit 2.
Then the process proceeds to step S102, the controller 4, vehicle speed V1 is the vehicle speed detecting unit 3 detects, and the step S101 lane change when the target speed V1 calculated in ', and on the basis of the preset acceleration α a predetermined, required A distance ΔL is calculated. The required distance ΔL includes, for example, a distance required to accelerate the host vehicle A to the target vehicle speed V1 ′ when changing lanes.
続いて、コントローラ4は、図2(c)に示すように、算出した必要距離ΔL及びレーダー部1が出力した自車線の前方車両Bと自車両Aとの車間距離L3に基づき、下記(4
)式に従って車間距離L3の目標値(以下、目標車間距離とも呼ぶ)L3'を算出する。
Continued There, the controller 4, as shown in FIG. 2 (c), based on the inter-vehicle distance L3 to the preceding vehicle B and the vehicle A in the own lane calculated required distance ΔL and the radar unit 1 is output, the following (4
) To calculate a target value (hereinafter also referred to as a target inter-vehicle distance) L3 ′ of the inter-vehicle distance L3.
L3’=L3+ΔL ………(4)
続いて、コントローラ4は、自車線の前方車両Bと自車両Aとの車間距離L3が目標車間距離L3’(>現在の車間距離L3)となるように自車両Aの制駆動力を制御する指令(減速指令)を制駆動力制御部5に出力する。これにより、制駆動力制御部5が、制動力の発生及び駆動力の低減の少なくともいずれかを行う。そして、自車両Aが減速し、車間距離L3が増大し、目標車間距離L3’と車間距離L3との差が低減する。
L3 ′ = L3 + ΔL (4)
Subsequently, the controller 4 controls the braking / driving force of the host vehicle A so that the inter-vehicle distance L3 between the vehicle B ahead of the host lane and the host vehicle A becomes the target inter-vehicle distance L3 ′ (> current inter-vehicle distance L3). A command (deceleration command) is output to the braking / driving
続いて、ステップS103に移行して、コントローラ4は、自車両Aの制駆動力の制御を行い、図2(d)に示すように、目標車間距離L3’と車間距離L3との差が設定値(≒0)以下になると、レーダー部1が出力した隣接前方車両Dと隣接後方車両Cとの車間距離L2、及び隣接後方車両Cの車速V2を取得する。続いて、コントローラ4は、取得した隣接前方車両Dと隣接後方車両Cとの車間距離L2、及び隣接後方車両Cの車速V2、並びに前記ステップS101で算出した車線変更時目標車速V1’に基づき、下記(5)式に従って自車両Aと隣接後方車両Cとの干渉予測時間TTC2を算出する。干渉予測時間TTC2としては、例えば、自車両Aの車速V1を車線変更時目標車速V1’とした後に、自車両Aを候補者間空間(隣接車線)に車線変更した場合に、自車両Aと隣接後方車両Cとが干渉するまでに要する時間がある。 Subsequently, the process proceeds to step S103, where the controller 4 controls the braking / driving force of the host vehicle A, and the difference between the target inter-vehicle distance L3 ′ and the inter-vehicle distance L3 is set as shown in FIG. When the value is less than (≈0), the inter-vehicle distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C output by the radar unit 1 and the vehicle speed V2 of the adjacent rear vehicle C are acquired. Subsequently, the controller 4 is based on the acquired inter-vehicle distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C, the vehicle speed V2 of the adjacent rear vehicle C, and the target vehicle speed V1 ′ at the time of lane change calculated in step S101. The interference prediction time TTC2 between the host vehicle A and the adjacent rear vehicle C is calculated according to the following equation (5). The predicted interference time TTC2 is, for example, when the host vehicle A is changed to the inter-candidate space (adjacent lane) after the vehicle speed V1 of the host vehicle A is set to the target vehicle speed V1 ′ at the time of lane change. There is a time required for the adjacent rear vehicle C to interfere.
TTC2=(L2+Lmargin2)/(V2−V1’) ………(5)
ここで、第2設定マージンLmargin2は、予め定めた設定値である。
続いて、コントローラ4は、算出した干渉予測時間TTC2に基づき、自車両Aの車速V1を車線変更時目標車速V1’とした後に、自車両Aを候補車間空間(隣接車線)に車線変更できるか否かを判定する。具体的には、コントローラ4は、干渉予測時間TTC2が設定閾値(例えば、5秒)以上であるか否かを判定する。そして、コントローラ4は、干渉予測時間TTC2が設定閾値(5秒)以上であると判定した場合には、自車両Aを隣接車線へ車線変更できると判定し、ステップS104に移行する。一方、コントローラ4は、干渉予測時間TTC2が設定閾値(5秒)未満であると判定した場合には、自車両Aを隣接車線へ車線変更できないと判定し、前記ステップS101に移行する。
TTC2 = (L2 + Lmargin2) / (V2-V1 ') (5)
Here, the second setting margin Lmargin2 is a predetermined setting value.
Subsequently, can the controller 4 change the vehicle A to the candidate inter-vehicle space (adjacent lane) after setting the vehicle speed V1 of the host vehicle A to the target vehicle speed V1 ′ at the time of lane change based on the calculated predicted interference time TTC2? Determine whether or not. Specifically, the controller 4 determines whether or not the interference prediction time TTC2 is equal to or longer than a set threshold value (for example, 5 seconds). If the controller 4 determines that the interference prediction time TTC2 is equal to or longer than the set threshold value (5 seconds), the controller 4 determines that the host vehicle A can be changed to the adjacent lane, and proceeds to step S104. On the other hand, if the controller 4 determines that the interference prediction time TTC2 is less than the set threshold value (5 seconds), the controller 4 determines that the host vehicle A cannot be changed to the adjacent lane, and proceeds to step S101.
前記ステップS104では、コントローラ4は、前記ステップS101で算出した車線変更時目標車速V1’と自車両Aの車速とが一致するように、つまり、自車両Aが加速するように自車両Aの制駆動力を制御する指令(加速指令)を制駆動力制御部5に出力する。これにより、制駆動力制御部5が、制動力の低減及び駆動力の増大の少なくともいずれかを行う。その際、自車両Aの加速度は上記(3)式で算出に用いた設定加速度αに一致させる。そして、自車両Aが加速し、車線変更時目標車速V1’と自車両Aの車速との差が低減する。また、コントローラ4は、隣接車線側のウィンカーを点滅させる制御の指令(意思提示指令)を車線変更意思提示部6に出力する。これにより、車線変更意思提示部6が、図2(e)に示すように、自車両Aの車線変更先の隣接車線側のウィンカーを点滅させる制御を行なって、自車両Aの車線変更の意思を周囲に提示する。そして、隣接後方車両Cの運転者が、自車両Aの車線変更の意図を把握し、自車両Aとの干渉を警戒する。
In step S104, the controller 4 controls the host vehicle A so that the lane change target vehicle speed V1 ′ calculated in step S101 matches the host vehicle A speed, that is, the host vehicle A accelerates. A command (acceleration command) for controlling the driving force is output to the braking / driving
なお、本実施形態では、運転支援部7が、コントローラ4が意思提示指令を出力すると、自車両Aの車線変更先の隣接車線側のウィンカーを点滅させる制御を行う例を示したが、他の構成を採用することもできる。例えば、車線変更意思提示部6が、自車両Aを隣接車線との境界に沿って走行させる制御を行って、自車両の車線変更の意思を周囲に提示する構成としてもよい。この場合、左右輪を転舵し、自車両Aを隣接車線との境界に沿って走行させる制御を行う構成としてもよく、左右輪の制動力を制御し、自車両Aを隣接車線との境界に沿って走行させる制御を行う構成としてもよい。これにより、コントローラ4が、隣接後方車両Cに自車両Aの車線変更の意図を伝達できる。 In the present embodiment, the driving support unit 7 performs the control to blink the blinker on the adjacent lane side of the lane change destination of the own vehicle A when the controller 4 outputs the intention presentation command. A configuration can also be adopted. For example, the configuration may be such that the lane change intention presenting unit 6 performs a control of causing the own vehicle A to travel along the boundary with the adjacent lane and presents the intention of changing the lane of the own vehicle to the surroundings. In this case, the left and right wheels may be steered and the vehicle A may be controlled to travel along the boundary with the adjacent lane, the braking force of the left and right wheels is controlled, and the vehicle A is bounded with the adjacent lane. It is good also as a structure which performs control made to drive along. Thereby, the controller 4 can transmit the intention of the lane change of the own vehicle A to the adjacent rear vehicle C.
続いて、コントローラ4は、自車両Aの制駆動力の制御を行い、車線変更時目標車速V1’に自車両Aの車速が一致すると(自車両Aが加速すると)、レーダー部1が出力した隣接前方車両Dと隣接後方車両Cとの車間距離L2、及び隣接後方車両Cの車速V2を取得する。続いて、コントローラ4は、取得した隣接前方車両Dと隣接後方車両Cとの車間距離L2、及び隣接後方車両Cの車速V2、並びに前記ステップS101で算出した車線変更時目標車速V1’に基づき、下記(6)式に従って自車両Aと隣接後方車両Cとの干渉予測時間TTC3を算出する。干渉予測時間TTC3としては、例えば、自車両Aが隣接車線へ車線変更した場合に自車両Aと隣接後方車両Cとが干渉するまでに要する時間がある。 Subsequently, the controller 4 controls the braking / driving force of the host vehicle A. When the vehicle speed of the host vehicle A coincides with the target vehicle speed V1 ′ at the time of lane change (when the host vehicle A accelerates), the radar unit 1 outputs it. The inter-vehicle distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C and the vehicle speed V2 of the adjacent rear vehicle C are acquired. Subsequently, the controller 4 is based on the acquired inter-vehicle distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C, the vehicle speed V2 of the adjacent rear vehicle C, and the target vehicle speed V1 ′ at the time of lane change calculated in step S101. The interference prediction time TTC3 between the host vehicle A and the adjacent rear vehicle C is calculated according to the following equation (6). As the predicted interference time TTC3, for example, there is a time required for the own vehicle A and the adjacent rear vehicle C to interfere when the own vehicle A changes the lane to the adjacent lane.
TTC3=(L2+Lmargin3)/(V2−V1’) ………(6)
ここで、第3設定マージンLmargin3は、第1設定マージンLmargin1よりも小さい値に設定する。これにより、コントローラ4は、干渉予測時間TTC3を比較的小さな値とすることができ、自車両Aの隣接車線への合流可能性を向上できる。
続いて、コントローラ4は、自車両Aを隣接車線へ車線変更できるか否かを判定する。具体的には、算出した干渉予測時間TTC3が設定閾値(5秒)以上であるか否かを判定する。そして、コントローラ4は、干渉予測時間TTC3が設定閾値(5秒)以上であると判定した場合には、自車両Aを隣接車線へ車線変更できると判定し、前記ステップS105に移行する。一方、コントローラ4は、干渉予測時間TTC3が設定閾値(5秒)未満であると判定した場合には、自車両Aを隣接車線へ車線変更できないと判定し、前記ステップS101に移行する。これにより、前記ステップS101に移行することで、現在の隣接後方車両Cよりも後方の車両を新しい隣接後方車両Cとして上記フローを繰り返す。
TTC3 = (L2 + Lmargin3) / (V2-V1 ') (6)
Here, the third setting margin Lmargin3 is set to a value smaller than the first setting margin Lmargin1. Thereby, the controller 4 can set the interference prediction time TTC3 to a relatively small value, and can improve the possibility of joining the own vehicle A to the adjacent lane.
Subsequently, the controller 4 determines whether or not the vehicle A can be changed to an adjacent lane. Specifically, it is determined whether or not the calculated interference prediction time TTC3 is equal to or longer than a set threshold value (5 seconds). If the controller 4 determines that the interference prediction time TTC3 is equal to or longer than the set threshold (5 seconds), the controller 4 determines that the host vehicle A can be changed to the adjacent lane, and proceeds to step S105. On the other hand, if the controller 4 determines that the interference prediction time TTC3 is less than the set threshold value (5 seconds), the controller 4 determines that the host vehicle A cannot be changed to the adjacent lane, and proceeds to step S101. Thereby, the said flow is repeated by making the vehicle behind the present adjacent back vehicle C into the new adjacent back vehicle C by moving to said step S101.
前記ステップS105では、コントローラ4は、運転者に隣接車線への車線変更の開始を促す音声を出力する指令(車線変更指令)を運転支援部7に出力した後、この演算処理を終了する。これにより、運転支援部7が、運転者に隣接車線への車線変更の開始を促す音声を出力する。そして、自車両Aの運転者が、ステアリングホイールの操舵操作を開始し、図2(f)に示すように、自車両Aを隣接車線へ車線変更する。 In step S105, the controller 4 outputs a command (lane change command) for outputting a voice prompting the driver to start the lane change to the adjacent lane to the driving support unit 7, and then ends the calculation process. As a result, the driving support unit 7 outputs a voice prompting the driver to start the lane change to the adjacent lane. Then, the driver of the host vehicle A starts the steering operation of the steering wheel, and changes the host vehicle A to the adjacent lane as shown in FIG.
なお、本実施形態では、運転支援部7が、車線変更指令を取得すると、運転者に車線変更の開始を促す音声を出力する例を示したが、他の構成を採用することもできる。例えば、運転支援部7が、運転者に車線変更を促す画像を表示する構成としてもよく、自車両Aが候補車間空間(隣接車線)に車線変更を行うように車両制御を行う構成としてもよい。車両制御を行う場合、左右輪を転舵し、自車両Aが候補車間空間(隣接車線)に車線変更を行う構成としてもよく、左右輪の制動力を制御し、自車両Aが候補車間空間(隣接車線)に車線変更を行う構成としてもよい。 In the present embodiment, when the driving support unit 7 obtains a lane change command, an example of outputting a voice prompting the driver to start the lane change has been shown, but other configurations may be employed. For example, the driving support unit 7 may be configured to display an image that prompts the driver to change lanes, or may be configured to perform vehicle control such that the own vehicle A changes lanes in the candidate inter-vehicle space (adjacent lane). . When vehicle control is performed, the left and right wheels may be steered so that the own vehicle A changes lanes to the candidate inter-vehicle space (adjacent lane). It is good also as a structure which changes a lane to (adjacent lane).
(動作その他)
次に、本実施形態の運転支援装置を搭載した車両の動作について説明する。
自車両Aの走行中、図2(a)に示すように、自車線の右側に隣接車線が存在し、隣接車線を走行する車列に比べ、自車線を走行する車列が低速であったとする。そして、自車両Aの運転者が、当該隣接車線への車線変更の意図を表す操作としてウィンカーレバーを操作したとする。すると、コントローラ4が、運転支援処理を実行し、自車両Aと隣接後方車両Cとの車間距離L1、隣接後方車両Cの車速V2、及び自車両Aの車速V1に基づき、自車両Aと隣接後方車両Cとの干渉予測時間TTC1を算出する(図3のステップS101)。ここで、算出した干渉予測時間TTC1が設定閾値(5秒)未満であったとする。すると、コントローラ4が、干渉予測時間TTC1が設定閾値(5秒)未満であると判定し、自車両Aを隣接車線へ車線変更できないと判定する(図3のステップS101「No」)。続いて、コントローラ4が、車速V2及び車間距離L3に基づき、自車両Aが隣接車線へ車線変更するときの車速(車線変更時目標車速V1’)を算出する。
(Operation other)
Next, the operation of the vehicle equipped with the driving support device of this embodiment will be described.
During traveling of the host vehicle A, as shown in FIG. 2A, there is an adjacent lane on the right side of the own lane, and the lane running in the own lane is lower than the lane driving in the adjacent lane. To do. Then, it is assumed that the driver of the host vehicle A operates the blinker lever as an operation indicating the intention of changing the lane to the adjacent lane. Then, the controller 4 executes a driving support process and is adjacent to the own vehicle A based on the inter-vehicle distance L1 between the own vehicle A and the adjacent rear vehicle C, the vehicle speed V2 of the adjacent rear vehicle C, and the vehicle speed V1 of the own vehicle A. A predicted interference time TTC1 with the rear vehicle C is calculated (step S101 in FIG. 3). Here, it is assumed that the calculated interference prediction time TTC1 is less than the set threshold value (5 seconds). Then, the controller 4 determines that the interference prediction time TTC1 is less than the set threshold value (5 seconds), and determines that the own vehicle A cannot be changed to the adjacent lane ("No" in step S101 in FIG. 3). Subsequently, the controller 4 calculates the vehicle speed (target vehicle speed V1 ′ at the time of lane change) when the host vehicle A changes the lane to the adjacent lane based on the vehicle speed V2 and the inter-vehicle distance L3.
続いて、コントローラ4が、算出した車線変更時目標車速V1’及び自車両Aの車速V1に基づき、自車両Aを車線変更時目標車速V1’まで加速するための必要距離ΔLを算出する(図3のステップS102)。続いて、コントローラ4が、図2(c)に示すように、算出した必要距離ΔL及び自車線の前方車両Bと自車両Aとの車間距離L3に基づき、車間距離L3の目標値(目標車間距離L3’)を算出する(図3のステップS102)。続いて、コントローラ4が、算出した目標車間距離L3’と車間距離L3とが一致するように自車両Aの制駆動力を制御する減速指令を制駆動力制御部5に出力する。これにより、制駆動力制御部5が、コントローラ4が減速指令を出力すると、自車両Aが減速し、車間距離L3が増大して、目標車間距離L3’と車間距離L3との差が低減する。
Subsequently, the controller 4 calculates a necessary distance ΔL for accelerating the host vehicle A to the target vehicle speed V1 ′ at the time of lane change based on the calculated target vehicle speed V1 ′ at the time of lane change and the vehicle speed V1 of the host vehicle A (FIG. 3 step S102). Subsequently, as shown in FIG. 2C, the controller 4 calculates the target value (target vehicle distance) of the inter-vehicle distance L3 based on the calculated necessary distance ΔL and the inter-vehicle distance L3 between the preceding vehicle B and the own vehicle A on the own lane. The distance L3 ′) is calculated (step S102 in FIG. 3). Subsequently, the controller 4 outputs a deceleration command for controlling the braking / driving force of the host vehicle A to the braking / driving
続いて、コントローラ4が、図2(d)に示すように、目標車間距離L3’と車間距離L3との差が設定値以下になると、隣接前方車両Dと隣接後方車両Cとの車間距離L2、隣接後方車両Cの車速V2、及び車線変更時目標車速V1’に基づき、自車両Aと隣接後方車両Cとの干渉予測時間TTC2を算出する(図3のステップS103)。ここで、算出した干渉予測時間TTC2が設定閾値(5秒)以上であったとする。すると、コントローラ4が、算出した干渉予測時間TTC2が設定閾値(5秒)以上であると判定し、自車両Aを隣接車線へ車線変更できると判定する(図3のステップS103「Yes」)。続いて、コントローラ4が、車線変更時目標車速V1’に自車両Aの車速が一致するように自車両Aを加速させる加速指令を制駆動力制御部5に出力する(図3のステップS104)。これにより、制駆動力制御部5が、コントローラ4が加速指令を出力すると、自車両Aを加速させる。そして、自車両Aの車速が増大し、車線変更時目標車速V1’と自車両Aの車速との差が低減する。また、コントローラ4が、意思提示指令を車線変更意思提示部6に出力する。これにより、車線変更意思提示部6が、コントローラ4が意思提示指令を出力すると、図2(e)に示すように、隣接車線側のウィンカーを点滅させる制御を行う。そして、隣接後方車両Cの運転者が、自車両Aの車線変更の意図を把握し、隣接後方車両Cとの干渉に警戒する。
Subsequently, as shown in FIG. 2D, when the difference between the target inter-vehicle distance L3 ′ and the inter-vehicle distance L3 becomes equal to or smaller than the set value, the controller 4 determines the inter-vehicle distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C. Based on the vehicle speed V2 of the adjacent rear vehicle C and the target vehicle speed V1 ′ at the time of lane change, an estimated interference time TTC2 between the host vehicle A and the adjacent rear vehicle C is calculated (step S103 in FIG. 3). Here, it is assumed that the calculated interference prediction time TTC2 is equal to or longer than a set threshold value (5 seconds). Then, the controller 4 determines that the calculated interference prediction time TTC2 is equal to or longer than the set threshold (5 seconds), and determines that the host vehicle A can be changed to an adjacent lane (“Yes” in step S103 in FIG. 3). Subsequently, the controller 4 outputs an acceleration command for accelerating the host vehicle A to the braking / driving
続いて、コントローラ4が、車線変更時目標車速V1’に自車両Aの車速が一致すると、隣接前方車両Dと隣接後方車両Cとの車間距離L2、隣接後方車両Cの車速V2、及び車線変更時目標車速V1’に基づき、自車両Aと隣接後方車両Cとの干渉予測時間TTC3を算出する。ここで、算出した干渉予測時間TTC3が設定閾値(5秒)以上であったとする。すると、コントローラ4が、干渉予測時間TTC3が設定閾値(5秒)以上であると判定し、自車両Aを隣接車線へ車線変更できると判定する。続いて、コントローラ4が、車線変更指令を運転支援部7に出力する(図3のステップS105)。これにより、運転支援部7が、運転者に隣接車線への車線変更の開始を促す音声を出力する。そして、図2(f)に示すように、運転者が操舵操作を開始し、自車両Aを隣接車線へ車線変更する。 Subsequently, when the controller 4 matches the target vehicle speed V1 ′ when the lane is changed, the vehicle speed of the host vehicle A matches the distance L2 between the adjacent front vehicle D and the adjacent rear vehicle C, the vehicle speed V2 of the adjacent rear vehicle C, and the lane change. Based on the hour target vehicle speed V1 ′, an estimated interference time TTC3 between the host vehicle A and the adjacent rear vehicle C is calculated. Here, it is assumed that the calculated interference prediction time TTC3 is equal to or longer than the set threshold value (5 seconds). Then, the controller 4 determines that the interference prediction time TTC3 is equal to or longer than the set threshold (5 seconds), and determines that the host vehicle A can be changed to the adjacent lane. Subsequently, the controller 4 outputs a lane change command to the driving support unit 7 (step S105 in FIG. 3). As a result, the driving support unit 7 outputs a voice prompting the driver to start the lane change to the adjacent lane. And as shown in FIG.2 (f), a driver | operator starts steering operation and changes the own vehicle A to an adjacent lane.
このように、本実施形態では、自車両Aが車線変更先の候補とする車間空間である候補車間空間へ車線変更できるか否かを判定する。続いて、本実施形態では、自車両Aを候補車間空間へ車線変更できないと判定すると、自車線の前方車両Bと自車両Aとの車間距離L3が現在の当該車間距離L3よりも大きい目標車間距離L3’となるように自車両Aの制動駆動力を制御する。続いて、本実施形態では、自車線の前方車両Bと自車両Aとの車間距離L3と目標車間距離L3’との差が設定値以下になると、自車両Aが加速するように自車両Aの制駆動力を制御する。続いて、本実施形態では、自車両Aの制駆動力の制御を行い、自車両Aが加速すると、自車両Aが隣接車線への車線変更を開始するように自車両Aの制御、及び運転者への報知の少なくとも一方を行う。それゆえ、本実施形態では、自車線の前方車両Bと自車両Aとの車間距離L3を増大させ、増大させた車間距離L3によって自車両Aを加速できる。これにより、本実施形態では、自車線を走行する車列が比較的低速である場合にも、自車両Aをより適切に車線変更できる。 Thus, in the present embodiment, it is determined whether or not the own vehicle A can change the lane to the candidate inter-vehicle space that is the inter-vehicle space that is the candidate for the lane change destination. Subsequently, in this embodiment, when it is determined that the own vehicle A cannot be changed to the candidate inter-vehicle space, the target inter-vehicle distance L3 between the vehicle B ahead of the own lane and the own vehicle A is larger than the current inter-vehicle distance L3. The braking driving force of the host vehicle A is controlled so as to be the distance L3 ′. Subsequently, in the present embodiment, when the difference between the inter-vehicle distance L3 between the vehicle B ahead of the own lane and the own vehicle A and the target inter-vehicle distance L3 ′ is equal to or less than the set value, the own vehicle A is accelerated. Controls the braking / driving force. Subsequently, in the present embodiment, the braking / driving force of the own vehicle A is controlled, and when the own vehicle A accelerates, the own vehicle A is controlled and operated so that the own vehicle A starts to change lanes to the adjacent lane. At least one of notification to a person. Therefore, in the present embodiment, the inter-vehicle distance L3 between the vehicle B ahead of the own lane and the own vehicle A can be increased, and the own vehicle A can be accelerated by the increased inter-vehicle distance L3. Thereby, in this embodiment, the vehicle lane can be changed more appropriately even when the vehicle train traveling in the vehicle lane is at a relatively low speed.
本実施形態では、図1の車速検出部3が自車速検出部を検出する。以下同様に、図1のレーダー部1が隣接車速検出部、隣接車間距離検出部及び車間距離検出部を構成する。また、図1のコントローラ4及び図3のステップS101が干渉予測時間算出部、車線変更可否判定部、目標車速算出部及び設定マージン設定部を構成する。さらに、図1のコントローラ4及び図3のステップS102が車間距離制御部、制駆動力制御部及び距離算出部を構成する。また、図1のコントローラ4及び図3のステップS103〜S105が車線変更支援部を構成する。さらに、車線変更時目標車速V1’が目標車速を構成する。また、図1のナビゲーション部2が終点距離検出部を構成する。さらに、図1のコントローラ4及び図3のステップS103が第2干渉予測時間算出部を構成する。また、図1のコントローラ4及び図3のステップS104が車速制御部、第3干渉予測時間算出部及び車線変更意思提示部を構成する。さらに、図1のコントローラ4及び図3のステップS105が車線変更支援実行部を構成する。 In the present embodiment, the vehicle speed detection unit 3 in FIG. 1 detects the own vehicle speed detection unit. Similarly, the radar unit 1 in FIG. 1 constitutes an adjacent vehicle speed detection unit, an adjacent inter-vehicle distance detection unit, and an inter-vehicle distance detection unit. Further, the controller 4 in FIG. 1 and step S101 in FIG. 3 constitute an interference prediction time calculation unit, a lane change possibility determination unit, a target vehicle speed calculation unit, and a setting margin setting unit. Further, the controller 4 in FIG. 1 and step S102 in FIG. 3 constitute an inter-vehicle distance control unit, a braking / driving force control unit, and a distance calculation unit. Further, the controller 4 in FIG. 1 and steps S103 to S105 in FIG. 3 constitute a lane change support unit. Further, the target vehicle speed V1 'at the time of lane change constitutes the target vehicle speed. Moreover, the navigation part 2 of FIG. 1 comprises an end point distance detection part. Furthermore, the controller 4 in FIG. 1 and step S103 in FIG. 3 constitute a second interference prediction time calculation unit. Moreover, the controller 4 of FIG. 1 and step S104 of FIG. 3 comprise a vehicle speed control part, a 3rd interference estimated time calculation part, and a lane change intention presentation part. Further, the controller 4 in FIG. 1 and step S105 in FIG. 3 constitute a lane change support execution unit.
(本実施形態の効果)
本実施形態は、次のような効果を奏する。
(1)コントローラ4が、自車両Aが車線変更先の候補とする車間空間である候補車間空間へ車線変更できるか否かを判定する。続いて、コントローラ4が、自車両Aを候補車間空間へ車線変更できないと判定すると、自車線の前方車両Bと自車両Aとの車間距離L3が現在の当該車間距離L3よりも大きい目標車間距離L3’となるように自車両Aの制動駆動力を制御する。続いて、コントローラ4が、自車線の前方車両Bと自車両Aとの車間距離L3と目標車間距離L3’との差が設定値以下になると、自車両Aが加速するように自車両Aの制駆動力を制御する。続いて、コントローラ4が、自車両Aの制駆動力の制御を行い、自車両Aが加速すると、自車両Aが隣接車線への車線変更を開始するように自車両Aの制御、及び運転者への報知の少なくとも一方を行う。
このような構成によれば、自車線の前方車両Bと自車両Aとの車間距離L3を増大させ、増大させた車間距離L3によって自車両Aを加速できる。これにより、自車線を走行する車列が比較的低速である場合にも、自車両Aをより適切に車線変更できる。
(Effect of this embodiment)
This embodiment has the following effects.
(1) The controller 4 determines whether or not the own vehicle A can change the lane to the candidate inter-vehicle space that is the inter-vehicle space that is the candidate for the lane change destination. Subsequently, when the controller 4 determines that the own vehicle A cannot be changed to the candidate inter-vehicle space, the inter-vehicle distance L3 between the vehicle B ahead of the own lane and the own vehicle A is larger than the current inter-vehicle distance L3. The braking driving force of the host vehicle A is controlled so as to be L3 ′. Subsequently, when the difference between the inter-vehicle distance L3 between the vehicle B ahead of the host lane and the host vehicle A and the target inter-vehicle distance L3 ′ becomes equal to or less than the set value, the controller 4 causes the host vehicle A to accelerate. Controls braking / driving force. Subsequently, the controller 4 controls the braking / driving force of the host vehicle A. When the host vehicle A accelerates, the controller 4 controls the host vehicle A so that the host vehicle A starts a lane change to the adjacent lane, and the driver. At least one of notifications to
According to such a configuration, the inter-vehicle distance L3 between the vehicle B ahead of the host lane and the host vehicle A can be increased, and the host vehicle A can be accelerated by the increased inter-vehicle distance L3. Thereby, even when the vehicle train traveling in the own lane is at a relatively low speed, the lane of the own vehicle A can be changed more appropriately.
(2)コントローラ4が、自車両Aを隣接車線へ車線変更させるための車線変更時目標車速V1’及び自車両Aの車速に基づいて、自車両Aを車線変更時目標車速V1’まで加速するための必要距離ΔLを算出する。続いて、コントローラ4が、算出した必要距離ΔLを車間距離L3に加算して目標車間距離L3’とする。
このような構成によれば、自車線の前方車両Bと自車両Aとの車間距離L3を増大でき、自車線の前方車両Bよりも速い速度に自車両Aを加速できる。
(2) The controller 4 accelerates the host vehicle A to the target vehicle speed V1 ′ at the time of lane change based on the target vehicle speed V1 ′ at the time of lane change and the vehicle speed of the host vehicle A for changing the host vehicle A to the adjacent lane. Necessary distance ΔL is calculated. Subsequently, the controller 4 adds the calculated required distance ΔL to the inter-vehicle distance L3 to obtain a target inter-vehicle distance L3 ′.
According to such a configuration, the inter-vehicle distance L3 between the vehicle B ahead of the host lane and the host vehicle A can be increased, and the host vehicle A can be accelerated at a higher speed than the vehicle B ahead of the host lane.
(3)コントローラ4が、隣接後方車両Cの車速V2が低いほど第1設定マージンLmargin1を小さい値に設定する。
このような構成によれば、隣接後方車両Cの車速V2が小さいほど車線変更時目標車速V1’が増大するため、自車両Aを隣接車線へ車線変更しやすくなる。
(4)コントローラ4が、自車両Aから合流車線終点までの距離L4が短いほど第1設定マージンLmargin1を小さい値に設定する。
このような構成によれば、自車両Aから合流車線終点までの距離L4が短いほど車線変更時目標車速V1’が増大するため、自車両Aを隣接車線へ車線変更しやすくなる。
(3) The controller 4 sets the first setting margin Lmargin1 to a smaller value as the vehicle speed V2 of the adjacent rear vehicle C is lower.
According to such a configuration, the target vehicle speed V1 ′ at the time of lane change increases as the vehicle speed V2 of the adjacent rear vehicle C decreases, so that the host vehicle A can be easily changed to the adjacent lane.
(4) The controller 4 sets the first setting margin Lmargin1 to a smaller value as the distance L4 from the own vehicle A to the merging lane end point is shorter.
According to such a configuration, the target vehicle speed V1 ′ at the time of lane change increases as the distance L4 from the host vehicle A to the end point of the merging lane increases, so that the host vehicle A can be easily changed to the adjacent lane.
(5)コントローラ4が、自車両Aが加速するように自車両Aの制駆動力を制御する際に、ウィンカーを点滅させる制御、及び自車両Aを隣接車線との境界に沿って走行させる制御の少なくとも一方を行なって、自車両の車線変更の意思を周囲に提示する。
このような構成によれば、隣接後方車両Cに自車両Aの車線変更の意図を伝達できる。
(5) When the controller 4 controls the braking / driving force of the host vehicle A so that the host vehicle A accelerates, the controller 4 controls blinking of the blinker and controls the host vehicle A to travel along the boundary with the adjacent lane. At least one of the above is performed and the intention to change the lane of the host vehicle is presented to the surroundings.
According to such a structure, the intention of the lane change of the own vehicle A can be transmitted to the adjacent rear vehicle C.
3 車速検出部(自車速検出部)
1 レーダー部1(隣接車速検出部、隣接車間距離検出部、車間距離検出部)
2 ナビゲーション部(終点距離検出部)
4 コントローラ4(干渉予測時間算出部、車線変更可否判定部、目標車速算出部、設定マージン設定部、車間距離制御部、制駆動力制御部、距離算出部、車線変更支援部、第2干渉予測時間算出部、車速制御部、第3干渉予測時間算出部、車線変更意思提示部、車線変更支援実行部)
3 Vehicle speed detector (own vehicle speed detector)
1 Radar unit 1 (adjacent vehicle speed detection unit, adjacent inter-vehicle distance detection unit, inter-vehicle distance detection unit)
2 Navigation unit (end point distance detection unit)
4 Controller 4 (interference prediction time calculation unit, lane change availability determination unit, target vehicle speed calculation unit, setting margin setting unit, inter-vehicle distance control unit, braking / driving force control unit, distance calculation unit, lane change support unit, second interference prediction Time calculation unit, vehicle speed control unit, third interference prediction time calculation unit, lane change intention presentation unit, lane change support execution unit)
Claims (4)
隣接車線における前記自車両が車線変更先の候補とする車間空間である候補車間空間の後方車両と自車両との車間距離を検出する隣接車間距離検出部と、
前記候補車間空間の後方車両の車速を検出する隣接車速検出部と、
前記自車速検出部が検出した車速、前記隣接車間距離検出部が検出した車間距離、及び前記隣接車速検出部が検出した車速に基づいて、前記自車両が前記候補車間空間へ車線変更した場合に前記自車両と前記候補車間空間の後方車両とが干渉するまでに要する時間である干渉予測時間を算出する干渉予測時間算出部と、
前記干渉予測時間算出部が算出した干渉予測時間及び設定閾値に基づいて、前記自車両が前記候補車間空間へ車線変更できるか否かを判定する車線変更可否判定部と、
前記車線変更可否判定部が前記自車両が前記候補車間空間へ車線変更できないと判定すると、自車線の前方車両と前記自車両との車間距離が現在の当該車間距離よりも大きい設定距離となるように前記自車両の制動駆動力を制御する車間距離制御部と、
前記車間距離制御部が前記自車両の制駆動力の制御を行い、前記自車線の前方車両と前記自車両との車間距離と前記設定距離との差が設定値以下になると、前記自車両が加速するように前記自車両の制駆動力を制御する制駆動力制御部と、
前記制駆動力制御部が前記自車両の制駆動力の制御を行い、前記自車両が加速すると、前記自車両が隣接車線への車線変更を開始するように前記自車両の制御及び運転者への報知の少なくとも一方を行う車線変更支援部と、
前記自車線の前方車両と前記自車両との車間距離を検出する車間距離検出部と、
前記車間距離検出部が検出した車間距離、前記隣接車速検出部が検出した車速、予め定めた設定マージン、及び前記設定閾値に基づいて、前記自車両を隣接車線へ車線変更させるための目標車速を算出する目標車速算出部と、
前記自車速検出部が検出した車速、及び前記目標車速算出部が算出した目標車速に基づいて、前記自車両が前記目標車速まで加速するための必要距離を算出する距離算出部と、
前記車間距離検出部が検出した車間距離、及び前記距離算出部が算出した必要距離に基づいて前記設定距離を算出する距離設定部と、
を備えたことを特徴とする運転支援装置。 A vehicle speed detection unit for detecting the vehicle speed of the vehicle;
An adjacent inter-vehicle distance detection unit that detects an inter-vehicle distance between a vehicle behind the candidate inter-vehicle space that is an inter-vehicle space in which the own vehicle in the adjacent lane is a candidate for a lane change destination; and
An adjacent vehicle speed detector that detects a vehicle speed of a vehicle behind the candidate inter-vehicle space;
When the host vehicle changes lanes to the candidate inter-vehicle space based on the vehicle speed detected by the host vehicle speed detection unit, the inter-vehicle distance detected by the adjacent inter-vehicle distance detection unit, and the vehicle speed detected by the adjacent vehicle speed detection unit. An interference prediction time calculation unit that calculates an interference prediction time that is a time required for the host vehicle and a vehicle behind the candidate inter-vehicle space to interfere with each other;
A lane change availability determination unit that determines whether or not the host vehicle can change lanes to the candidate inter-vehicle space based on the interference prediction time and the setting threshold value calculated by the interference prediction time calculation unit;
If the lane change possibility determination unit determines that the own vehicle cannot change the lane to the candidate inter-vehicle space, the inter-vehicle distance between the vehicle ahead of the own lane and the own vehicle becomes a set distance larger than the current inter-vehicle distance. An inter-vehicle distance control unit for controlling the braking driving force of the host vehicle,
When the inter-vehicle distance control unit controls the braking / driving force of the host vehicle, and the difference between the inter-vehicle distance between the vehicle ahead of the host vehicle and the host vehicle and the set distance is equal to or less than a set value, the host vehicle A braking / driving force control unit for controlling the braking / driving force of the host vehicle to accelerate,
The braking / driving force control unit controls the braking / driving force of the host vehicle, and when the host vehicle accelerates, the host vehicle controls the driver and the driver so that the host vehicle starts a lane change to an adjacent lane. A lane change support unit that performs at least one of the notifications;
An inter-vehicle distance detection unit that detects an inter-vehicle distance between a vehicle ahead of the host lane and the host vehicle;
Based on the inter-vehicle distance detected by the inter-vehicle distance detection unit, the vehicle speed detected by the adjacent vehicle speed detection unit, a predetermined setting margin, and the setting threshold, a target vehicle speed for changing the host vehicle to an adjacent lane is determined. A target vehicle speed calculation unit to calculate,
A distance calculation unit that calculates a necessary distance for the host vehicle to accelerate to the target vehicle speed based on the vehicle speed detected by the host vehicle speed detection unit and the target vehicle speed calculated by the target vehicle speed calculation unit;
A distance setting unit that calculates the set distance based on the inter-vehicle distance detected by the inter-vehicle distance detection unit, and the necessary distance calculated by the distance calculation unit;
A driving support apparatus comprising:
前記隣接車速検出部が検出した車速が低いほど前記設定マージンを小さい値に設定する設定マージン設定部を備えることを特徴とする請求項1に記載の運転支援装置。 The target vehicle speed calculation unit divides the addition result obtained by adding the set margin to the inter-vehicle distance detected by the adjacent inter-vehicle distance detection unit by the set threshold value , and subtracts the division result from the vehicle speed detected by the adjacent vehicle speed detection unit. The subtraction result as the target vehicle speed,
The driving support device according to claim 1 , further comprising a setting margin setting unit that sets the setting margin to a smaller value as the vehicle speed detected by the adjacent vehicle speed detection unit is lower.
前記自車両が合流車線を走行している場合に前記自車両から合流車線終点までの距離を検出する終点距離検出部と、
前記終点距離検出部が検出した距離が短いほど前記設定マージンを小さい値に設定する設定マージン設定部と、を備えることを特徴とする請求項1に記載の運転支援装置。 The target vehicle speed calculation unit divides the addition result obtained by adding the set margin to the inter-vehicle distance detected by the adjacent inter-vehicle distance detection unit by the set threshold value , and subtracts the division result from the vehicle speed detected by the adjacent vehicle speed detection unit. The subtraction result as the target vehicle speed,
An end point distance detection unit for detecting a distance from the own vehicle to the end point of the merged lane when the own vehicle is traveling in the merged lane;
The driving support apparatus according to claim 1 , further comprising: a setting margin setting unit that sets the setting margin to a smaller value as the distance detected by the end point distance detection unit is shorter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013200011A JP6221569B2 (en) | 2013-09-26 | 2013-09-26 | Driving assistance device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013200011A JP6221569B2 (en) | 2013-09-26 | 2013-09-26 | Driving assistance device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015066963A JP2015066963A (en) | 2015-04-13 |
JP6221569B2 true JP6221569B2 (en) | 2017-11-01 |
Family
ID=52834165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013200011A Active JP6221569B2 (en) | 2013-09-26 | 2013-09-26 | Driving assistance device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6221569B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2763445C1 (en) * | 2018-09-21 | 2021-12-29 | Ниссан Мотор Ко., Лтд. | Method for vehicle control and vehicle control device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9475491B1 (en) * | 2015-06-08 | 2016-10-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Lane changing for autonomous vehicles |
JP6447468B2 (en) | 2015-11-17 | 2019-01-09 | 株式会社デンソー | Driving assistance device |
CN108778880B (en) | 2016-03-14 | 2021-06-25 | 本田技研工业株式会社 | Vehicle control device, vehicle control method, and storage medium |
CN108698598A (en) * | 2016-03-15 | 2018-10-23 | 本田技研工业株式会社 | Vehicle control system, control method for vehicle and vehicle control program |
JP6485399B2 (en) | 2016-04-15 | 2019-03-20 | 株式会社デンソー | Support device |
JP6614018B2 (en) * | 2016-04-28 | 2019-12-04 | 株式会社デンソー | Driving support device and program |
US11423783B2 (en) | 2016-08-30 | 2022-08-23 | Hyundai Motor Company | Apparatus and method for implementing LCDAS |
JP6490044B2 (en) | 2016-12-09 | 2019-03-27 | 本田技研工業株式会社 | Vehicle control device |
JP6880747B2 (en) * | 2017-01-10 | 2021-06-02 | いすゞ自動車株式会社 | Driving support control device |
KR102368604B1 (en) | 2017-07-03 | 2022-03-02 | 현대자동차주식회사 | Ecu, autonomous vehicle including the ecu, and method of controlling lane change for the same |
JP2019151179A (en) * | 2018-03-01 | 2019-09-12 | 株式会社デンソー | Travel support device |
KR102485352B1 (en) * | 2018-04-11 | 2023-01-05 | 현대자동차주식회사 | Vehicle apparatus, system having the same and method for changing automatically operable range thereof |
JP2019011055A (en) * | 2018-10-01 | 2019-01-24 | 株式会社デンソー | Driving support device |
KR20200075915A (en) * | 2018-12-07 | 2020-06-29 | 현대자동차주식회사 | Apparatus and method for controlling running of vehicle |
JP7483419B2 (en) * | 2020-03-11 | 2024-05-15 | 日産自動車株式会社 | Driving support method and driving support device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003025868A (en) * | 2001-07-16 | 2003-01-29 | Nissan Motor Co Ltd | Lane-change supporting device for vehicle |
JP4366419B2 (en) * | 2007-09-27 | 2009-11-18 | 株式会社日立製作所 | Driving support device |
JP2012073925A (en) * | 2010-09-29 | 2012-04-12 | Fuji Heavy Ind Ltd | Driving support device for vehicle |
-
2013
- 2013-09-26 JP JP2013200011A patent/JP6221569B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2763445C1 (en) * | 2018-09-21 | 2021-12-29 | Ниссан Мотор Ко., Лтд. | Method for vehicle control and vehicle control device |
Also Published As
Publication number | Publication date |
---|---|
JP2015066963A (en) | 2015-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6221569B2 (en) | Driving assistance device | |
JP6337435B2 (en) | Driving assistance device | |
US11059482B2 (en) | Travelling support apparatus | |
US10665108B2 (en) | Information processing apparatus and non-transitory computer-readable recording medium | |
US9643602B2 (en) | Parking support device | |
JP6380920B2 (en) | Vehicle control device | |
JP7113383B2 (en) | Driving support system, driving support device, driving support method | |
JP5899664B2 (en) | Vehicle acceleration suppression device and vehicle acceleration suppression method | |
JP6611085B2 (en) | Vehicle control device | |
JP6409744B2 (en) | Vehicle travel support device | |
JP6443403B2 (en) | Vehicle control device | |
US10576980B2 (en) | Travel control device and travel control method | |
JP2017001597A (en) | Automatic driving device | |
JP2014041556A (en) | Driving support device | |
JP2016007954A (en) | Lane merging assist system | |
JPWO2019008647A1 (en) | Driving assistance vehicle target vehicle speed generation method and target vehicle speed generation device | |
JP2016004425A (en) | Lane change assist system and program | |
JP6814706B2 (en) | Driving support device and driving support method | |
JP2016018495A (en) | Travel support device and travel support method | |
JP2007168788A (en) | Traveling controller for automobile | |
JPWO2018047232A1 (en) | Vehicle control device | |
JP2023101547A (en) | Vehicle control device | |
JP6221568B2 (en) | Driving assistance device | |
JP6331858B2 (en) | Advance vehicle overtaking support system | |
JP2016045636A (en) | Moving object route prediction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170918 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6221569 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |