[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6216658B2 - Catalyst for hydrorefining of vacuum gas oil and method for producing the same - Google Patents

Catalyst for hydrorefining of vacuum gas oil and method for producing the same Download PDF

Info

Publication number
JP6216658B2
JP6216658B2 JP2014032558A JP2014032558A JP6216658B2 JP 6216658 B2 JP6216658 B2 JP 6216658B2 JP 2014032558 A JP2014032558 A JP 2014032558A JP 2014032558 A JP2014032558 A JP 2014032558A JP 6216658 B2 JP6216658 B2 JP 6216658B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
carrier
hydrorefining
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014032558A
Other languages
Japanese (ja)
Other versions
JP2015157248A (en
Inventor
陽介 小圷
陽介 小圷
関 浩幸
浩幸 関
智 高崎
智 高崎
智靖 香川
智靖 香川
勝吾 田河
勝吾 田河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Eneos Corp
Original Assignee
Catalysts and Chemicals Industries Co Ltd
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, JXTG Nippon Oil and Energy Corp filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2014032558A priority Critical patent/JP6216658B2/en
Publication of JP2015157248A publication Critical patent/JP2015157248A/en
Application granted granted Critical
Publication of JP6216658B2 publication Critical patent/JP6216658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、水素存在下で減圧軽油中の硫黄分および窒素分を除去するための減圧軽油の水素化精製用触媒およびその製造方法に関する。   The present invention relates to a hydrorefining catalyst for vacuum gas oil for removing sulfur and nitrogen in vacuum gas oil in the presence of hydrogen and a method for producing the same.

現在、環境保護の観点から燃料油の硫黄分の品質規制が強化されている。特に、ガソリンや軽油中の硫黄分は厳しい規制となっている。このため、この規制に対応できるよう高い脱硫性能を示す触媒の開発が進んでいる。
近年、液体燃料においては、硫黄含有量をより低減させることが要求されている。その要求に対して、燃料油メーカーではガソリンにおいては硫黄分10ppm以下の規制があるため、燃料油メーカーでは触媒の改良や設備の増設等の対応策など、様々なクリーン燃料製造法を検討してきた。
水素化精製用触媒としては、アルミナ等の担体にモリブテンやコバルト等の活性金属が担持されたものが広く使用されている。なかでもチタニア担体は、アルミナ担体と比べ高脱硫性能を示すことが知られており、チタニア担体を使用した水素化精製用触媒もその要求に応えられる触媒として期待が高まっている。
しかし、チタニアは一般的に比表面積が小さく、また高温での熱安定性が低くなる傾向がある。この問題を解決する目的で、含水酸化チタンのヒドロゾル又はヒドロゲル若しくはそれらの乾燥物に、焼成時の粒子成長を抑制する粒子成長抑制剤等を添加した後、乾燥、焼成して得られる多孔質チタニアが開発されている(例えば、特許文献1)。しかしながら、この多孔質チタニアのみを担体として用いた場合には、触媒が高価となるという問題がある。
そこで、水溶性チタニア化合物をアルミナ担体に担持させて調製したアルミナ−チタニア担体を用いた水素化精製用触媒も開発されている(例えば、特許文献2)。しかしながら、この水素化精製用触媒は、価格を安くできるが、担体の吸水率分しかチタニアを担持できないため、触媒の性能が低くなる傾向がある。
また、アルミナ調製時にチタニアを混合することによりアルミナ中にチタニアを高分散させて調製したアルミナ−チタニア担体を用いた水素化精製用触媒も開発されている(例えば、特許文献3)。しかしながら、この担体は、チタニアをアルミナ中に高分散させることができるが、チタニアの含有量が増えるにつれ比表面積が低下し、チタニアが凝集するため細孔分布のシャープネスが悪くなり、触媒の性能が低下する傾向があった。
さらに、4種の元素を含む担体を用いた水素化精製用触媒として、アルミニウム−ケイ素−リン−ホウ素を含有する担体が開発されている(特許文献4)。しかしながら、細孔容積についてはより大きなものが求められている。
さらには、アルミニウム−ケイ素−チタン−リンの4種の元素を含む担体に金属成分を担持した水素化精製用触媒が開示されている(特許文献5)。しかしながら、ケイ素はゼオライト由来であり、アルミニウム、チタンおよびリンを含む水和物にゼオライトを混練した担体であり、細孔容積がより大きな担体が求められていた。
At present, the quality regulation of sulfur content in fuel oil is being strengthened from the viewpoint of environmental protection. In particular, the sulfur content in gasoline and light oil is strictly regulated. For this reason, the development of a catalyst exhibiting high desulfurization performance in order to meet this regulation is in progress.
In recent years, liquid fuels have been required to further reduce the sulfur content. In response to this requirement, fuel oil manufacturers have regulations on gasoline with a sulfur content of 10 ppm or less, so fuel oil manufacturers have studied various clean fuel production methods, such as measures to improve catalysts and increase facilities. .
As hydrorefining catalysts, catalysts in which an active metal such as molybdenum or cobalt is supported on a carrier such as alumina are widely used. Among these, titania supports are known to exhibit high desulfurization performance compared to alumina supports, and hydrorefining catalysts using titania supports are also expected to be a catalyst that can meet these requirements.
However, titania generally has a small specific surface area and tends to have low thermal stability at high temperatures. For the purpose of solving this problem, porous titania obtained by adding a particle growth inhibitor that suppresses particle growth at the time of firing to hydrous or hydrogel of hydrous titanium oxide or a dried product thereof, followed by drying and firing. Has been developed (for example, Patent Document 1). However, when only this porous titania is used as a carrier, there is a problem that the catalyst becomes expensive.
Therefore, a hydrorefining catalyst using an alumina-titania support prepared by supporting a water-soluble titania compound on an alumina support has also been developed (for example, Patent Document 2). However, although the hydrorefining catalyst can be reduced in price, since the titania can be supported only by the water absorption rate of the carrier, the catalyst performance tends to be lowered.
A hydrorefining catalyst using an alumina-titania support prepared by highly dispersing titania in alumina by mixing titania during alumina preparation has also been developed (for example, Patent Document 3). However, this carrier can highly disperse titania in alumina. However, as the titania content increases, the specific surface area decreases and the titania aggregates, so that the sharpness of the pore distribution deteriorates and the performance of the catalyst decreases. There was a tendency to decrease.
Furthermore, a carrier containing aluminum-silicon-phosphorus-boron has been developed as a hydrorefining catalyst using a carrier containing four kinds of elements (Patent Document 4). However, a larger pore volume is required.
Furthermore, a hydrorefining catalyst in which a metal component is supported on a support containing four elements of aluminum-silicon-titanium-phosphorus is disclosed (Patent Document 5). However, silicon is derived from zeolite, and is a carrier obtained by kneading zeolite into a hydrate containing aluminum, titanium and phosphorus, and a carrier having a larger pore volume has been demanded.

特開2008−304686号公報JP 2008-304686 A 特開2005−262173号公報JP 2005-262173 A 特開平10−118495号公報Japanese Patent Laid-Open No. 10-118495 特開2010−221117号公報JP 2010-221117 A 特開2013−027847号公報JP 2013-027847 A

本発明は、アルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物担体を使用した安価で高脱硫、脱窒素性能を示す減圧軽油の水素化精製用触媒およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a catalyst for hydrorefining vacuum gas oil that uses an inorganic composite oxide carrier containing aluminum, silicon, titanium, and phosphorus and that exhibits low desulfurization and denitrification performance, and a method for producing the same. And

本発明者らは前記課題について鋭意研究した結果、本発明を完成するに至った。
すなわち、本発明は、以下の構成を有する。
As a result of intensive studies on the above problems, the present inventors have completed the present invention.
That is, the present invention has the following configuration.

[1]アルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物担体と、周期表第VIA族および第VIII族から選ばれる少なくとも1種の金属成分とからなる減圧軽油の水素化精製用触媒であって、該担体は、(a)アルミニウムの含有量が、担体全量基準で、アルミニウム酸化物(Al)換算で70〜85質量%、(b)SiO/Alの重量比が0.08〜0.17、(c)P/TiOの重量比が0.3〜1.2の範囲にあることを特徴とする減圧軽油の水素化精製用触媒。 [1] A catalyst for hydrorefining vacuum gas oil comprising an inorganic composite oxide carrier containing aluminum, silicon, titanium and phosphorus, and at least one metal component selected from Group VIA and Group VIII of the periodic table The carrier has (a) aluminum content of 70 to 85% by mass in terms of aluminum oxide (Al 2 O 3 ) based on the total amount of the carrier, and (b) the weight of SiO 2 / Al 2 O 3 . A catalyst for hydrorefining of vacuum gas oil, wherein the ratio is 0.08 to 0.17, and the weight ratio of (c) P 2 O 5 / TiO 2 is 0.3 to 1.2.

[2]前記担体の水銀圧入法で測定した平均細孔径(PD)が70〜110Åの範囲にあることを特徴とする前記[1]に記載の減圧軽油の水素化精製用触媒。   [2] The catalyst for hydrorefining vacuum gas oil according to [1] above, wherein the carrier has an average pore diameter (PD) measured by a mercury intrusion method in the range of 70 to 110 mm.

[3]前記担体の水銀圧入法で測定した細孔分布において、全細孔容積(PVo)に対する平均細孔径(PD)±30%の細孔径の細孔容積(PVp)の割合(PVp/PVo)が76%以上であることを特徴とする前記[1]または[2]に記載の減圧軽油の水素化精製用触媒。   [3] In the pore distribution measured by the mercury intrusion method of the carrier, the ratio of the pore volume (PVp) of the average pore diameter (PD) ± 30% of the pore diameter (PVp) to the total pore volume (PVo) (PVp / PVo ) Is 76% or more, the catalyst for hydrorefining of vacuum gas oil according to the above [1] or [2].

[4]前記担体の比表面積が350〜500m/gの範囲にあることを特徴とする前記[1]〜[3]のいずれかに記載の減圧軽油の水素化精製用触媒。 [4] The hydrorefining catalyst for vacuum gas oil according to any one of the above [1] to [3], wherein the support has a specific surface area of 350 to 500 m 2 / g.

[5]前記担体の水のポアフィリング法で測定した細孔容積(PV)が0.70〜1.0ml/gの範囲にあることを特徴とする前記[1]〜[4]のいずれかに記載の減圧軽油の水素化精製用触媒。   [5] Any one of the above [1] to [4], wherein the pore volume (PV) measured by the pore filling method of the carrier is in the range of 0.70 to 1.0 ml / g. A catalyst for hydrorefining vacuum gas oil as described in 1.

[6]前記周期表第VIA族および第VIII族から選ばれる金属成分が、モリブデン、タングステン、コバルトおよびニッケルから選ばれることを特徴とする前記[1]〜[5]のいずれかに記載の減圧軽油の水素化精製用触媒。   [6] The reduced pressure according to any one of [1] to [5], wherein the metal component selected from Group VIA and Group VIII of the periodic table is selected from molybdenum, tungsten, cobalt, and nickel. Catalyst for hydrorefining of light oil.

[7]前記担体にモリブデン、コバルトおよびニッケルが担持された減圧軽油の水素化精製用触媒であって、(d)モリブテンの含有量が、モリブデン酸化物(MoO)換算で15〜25質量%、(e)コバルトの含有量が、コバルト酸化物(CoO)換算で2.0〜5.0質量%、(f)ニッケルの含有量が、ニッケル酸化物(NiO)換算で0.5〜3.0質量%である(ただし、水素化精製用触媒を100質量%とする。)ことを特徴とする前記[1]〜[6]のいずれかに記載の減圧軽油の水素化精製用触媒。 [7] A catalyst for hydrorefining reduced pressure gas oil in which molybdenum, cobalt and nickel are supported on the carrier, wherein (d) the content of molybdenum is 15 to 25% by mass in terms of molybdenum oxide (MoO 3 ) (E) The content of cobalt is 2.0 to 5.0 mass% in terms of cobalt oxide (CoO), and (f) the content of nickel is 0.5 to 3 in terms of nickel oxide (NiO). The hydrorefining catalyst for vacuum gas oil according to any one of the above [1] to [6], which is 0.0% by mass (provided that the hydrorefining catalyst is 100% by mass).

[8]前記[1]〜[7]のいずれかに記載の減圧軽油の水素化精製用触媒の製造方法であって、
(1)リン酸イオン及びケイ酸イオンを含む塩基性アルミニウム塩水溶液に、チタン鉱酸塩及び酸性アルミニウム塩の混合水溶液を、pHが6.5〜9.5になるように添加してアルミニウム、ケイ素、チタンおよびリンの複合酸化物の水和物を得る第1工程、
(2)前記水和物を順次洗浄、成型、乾燥及び焼成して担体を得る第2工程、
(3)周期表第VIA族及び第VIII族か選ばれる少なくとも1種の金属成分を含む含浸液を接触させ金属を担持した担体を得る第3工程、および
(4)前記含浸液と接触させて得られる金属を担持した担体を乾燥し、さらに焼成して水素化精製用触媒を得る第4工程、
を有することを特徴とする減圧軽油の水素化精製用触媒の製造方法。
[8] A method for producing a catalyst for hydrorefining vacuum gas oil according to any one of [1] to [7],
(1) A mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt is added to a basic aluminum salt aqueous solution containing phosphate ions and silicate ions so that the pH becomes 6.5 to 9.5, and aluminum, A first step of obtaining a hydrate of a composite oxide of silicon, titanium and phosphorus;
(2) a second step of obtaining a carrier by sequentially washing, molding, drying and baking the hydrate;
(3) a third step in which an impregnating solution containing at least one metal component selected from Group VIA and Group VIII of the periodic table is contacted to obtain a metal-supported carrier; and (4) contacting with the impregnating solution. A fourth step of drying the resulting metal-supported carrier and further calcining it to obtain a hydrorefining catalyst;
A process for producing a catalyst for hydrorefining vacuum gas oil, characterized by comprising:

本発明の減圧軽油の水素化精製用触媒は、脱硫および脱窒素活性に優れている。   The catalyst for hydrorefining vacuum gas oil of the present invention is excellent in desulfurization and denitrification activities.

実施例1における担体a細孔分布図である。2 is a distribution diagram of carrier a pores in Example 1. FIG.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明の減圧軽油の水素化精製用触媒は、アルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物担体(以下、単に担体ともいう。)に、周期表第VIA族および第VIII族から選ばれる少なくとも1種以上の金属成分を担持した水素化精製用触媒(以下、単に触媒ともいう。)である。   The hydrorefining catalyst for vacuum gas oil of the present invention is selected from Group VIA and Group VIII of the Periodic Table as an inorganic composite oxide support containing aluminum, silicon, titanium and phosphorus (hereinafter also simply referred to as support). The catalyst for hydrorefining (hereinafter also simply referred to as catalyst) carrying at least one metal component.

本発明に係る無機複合酸化物担体はアルミニウム、ケイ素、チタンおよびリンを含有する。担体中のアルミニウム、ケイ素、チタンおよびリンの含有量は下記のとおりである。なお、含有量はいずれも、担体全体を100質量%としたときの含有量である。   The inorganic composite oxide carrier according to the present invention contains aluminum, silicon, titanium and phosphorus. The contents of aluminum, silicon, titanium and phosphorus in the support are as follows. In addition, all content is content when the whole support | carrier is 100 mass%.

担体中のアルミニウムの含有量は、アルミニウム酸化物(Al)換算で70〜85質量%の範囲であり、好ましくは72〜83質量%の範囲である。酸化物換算のアルミニウムの含有量が70質量%未満であると、触媒が劣化しやすくなり、また85質量%を超えると、表面積が低下し、脱硫および脱窒素活性が低下する傾向にある。 The content of aluminum in the support is in the range of 70 to 85% by mass, preferably in the range of 72 to 83% by mass in terms of aluminum oxide (Al 2 O 3 ). When the oxide-equivalent aluminum content is less than 70% by mass, the catalyst tends to deteriorate, and when it exceeds 85% by mass, the surface area tends to decrease and the desulfurization and denitrification activities tend to decrease.

担体中のケイ素の含有量は、ケイ素酸化物(SiO)換算で5.6〜14.5質量%であることが好ましく、6.0〜12.0質量%がより好ましい。酸化物換算のケイ素含有量が5.6質量%未満または14.5質量%を超えると、モリブテンが凝集し、脱硫活性および脱窒素活性が低下する傾向にある。 The silicon content in the carrier is preferably 5.6 to 14.5% by mass, more preferably 6.0 to 12.0% by mass in terms of silicon oxide (SiO 2 ). If the silicon content in terms of oxide is less than 5.6% by mass or more than 14.5% by mass, molybdenum aggregates and desulfurization activity and denitrification activity tend to decrease.

担体中のチタンの含有量は、チタン酸化物(TiO)換算で4.0〜15.0質量%であることが好ましく、5.0〜12.0質量%がより好ましい。酸化物換算のチタン含有量が4.0質量%未満であると充分な脱硫および脱窒素活性が得られず、15.0質量%を超えると、チタン酸化物が凝集し、表面積が低下し脱硫活性が低下する傾向にある。 The titanium content in the carrier, titanium oxide is preferably (TiO 2) is 4.0 to 15.0 mass% in terms of, and more preferably 5.0 to 12.0 wt%. If the titanium content in terms of oxide is less than 4.0% by mass, sufficient desulfurization and denitrogenation activity cannot be obtained, and if it exceeds 15.0% by mass, the titanium oxide aggregates and the surface area decreases, thereby desulfurizing. The activity tends to decrease.

担体中のリンの含有量は、リン酸化物(P)換算で2.0〜7.0質量%であることが好ましく、3.0〜6.0質量%がより好ましい。酸化物換算のリン含有量が2.0質量%未満または7.0質量%を超えると、細孔分布がブロードになり、脱硫活性が低下する傾向にある。 The phosphorus content in the carrier is preferably 2.0 to 7.0% by mass and more preferably 3.0 to 6.0% by mass in terms of phosphorus oxide (P 2 O 5 ). If the phosphorus content in terms of oxide is less than 2.0% by mass or exceeds 7.0% by mass, the pore distribution becomes broad and the desulfurization activity tends to decrease.

担体中のアルミニウムの含有量(酸化物換算)とケイ素の含有量(酸化物換算)の重量比(SiO/Al)は0.08〜0.17であり、好ましくは0.09〜0.16である。SiO/Alが0.08未満だと担体の比表面積が低下し脱硫活性が低下し、0.17を超えると細孔分布がブロードになり、脱硫活性が低下するため、それぞれ好ましくない。 The weight ratio (SiO 2 / Al 2 O 3 ) of the aluminum content (as oxide) and silicon content (as oxide) in the support is 0.08 to 0.17, preferably 0.09. ~ 0.16. When SiO 2 / Al 2 O 3 is less than 0.08, the specific surface area of the support decreases and desulfurization activity decreases, and when it exceeds 0.17, the pore distribution becomes broad and desulfurization activity decreases. Absent.

担体中のチタンの含有量(酸化物換算)とリンの含有量(酸化物換算)の重量比(P/TiO)は0.3〜1.2であり、好ましくは0.4〜1.0、より好ましくは0.5〜0.9である。P/TiOが0.3未満又は1.2を超えると細孔分布がブロードになり、脱硫活性が低下するため、それぞれ好ましくない。 The weight ratio (P 2 O 5 / TiO 2 ) of the titanium content (as oxide) and phosphorus content (as oxide) in the support is 0.3 to 1.2, preferably 0.4. It is -1.0, More preferably, it is 0.5-0.9. When P 2 O 5 / TiO 2 is less than 0.3 or exceeds 1.2, the pore distribution becomes broad and the desulfurization activity decreases, which is not preferable.

本発明に係る無機複合酸化物担体の水銀圧入法で測定した平均細孔径(PD)は70〜110Åであることが好ましく、75〜100Åがより好ましい。平均細孔径(PD)が70Åより小さいと金属成分が含浸しにくく実用的でない。一方、110Åより大きいと触媒強度が低下する恐れがあるので好ましくない。   The average pore diameter (PD) measured by the mercury intrusion method of the inorganic composite oxide carrier according to the present invention is preferably 70 to 110 mm, more preferably 75 to 100 mm. If the average pore diameter (PD) is less than 70 mm, the metal component is difficult to impregnate and is not practical. On the other hand, if it is larger than 110 mm, the catalyst strength may be lowered, which is not preferable.

また、水銀圧入法で測定した細孔分布において、全細孔容積(PVo)に対する平均細孔径(PD)±30%の細孔径の細孔容積(PVp)の割合(PVp/PVo)は76%以上が好ましく、78%以上より好ましく、80%以上さらに好ましい。PVp/PVoが76%未満では平均細孔分布がブロードであり、比表面積の低下にもつながり脱硫活性が悪くなるおそれがある。   Moreover, in the pore distribution measured by the mercury intrusion method, the ratio (PVp / PVo) of the pore volume (PVp) of the average pore diameter (PD) ± 30% to the total pore volume (PVo) is 76%. The above is preferable, 78% or more is more preferable, and 80% or more is more preferable. When PVp / PVo is less than 76%, the average pore distribution is broad, which may lead to a decrease in specific surface area and may deteriorate the desulfurization activity.

なお、本発明においては、細孔直径および細孔分布も水銀圧入法により測定したものであり、細孔直径は水銀の表面張力480dyne/cm、接触角150°を用いて計算した値である。また、本発明における全細孔容積(PVo)は水銀圧入法により測定可能な細孔直径を有する細孔の細孔容積の合計値である。   In the present invention, the pore diameter and pore distribution are also measured by the mercury intrusion method, and the pore diameter is a value calculated using a mercury surface tension of 480 dyne / cm and a contact angle of 150 °. Further, the total pore volume (PVo) in the present invention is a total value of pore volumes of pores having a pore diameter that can be measured by a mercury intrusion method.

本発明に係る無機複合酸化物担体のBET法で測定した比表面積(SA)は350〜500m/gであることが好ましく、370〜480m/gがより好ましい。比表面積(SA)が350m/g未満では金属成分が凝集しやすくなり、脱硫性能が低下する恐れがあるため好ましくない。一方、500m/gを超えると脱硫活性が低下する傾向があるので好ましくない。 Measured specific surface area by the BET method of the inorganic composite oxide support according to the present invention (SA) is preferably from 350~500m 2 / g, 370~480m 2 / g is more preferable. If the specific surface area (SA) is less than 350 m 2 / g, the metal components are likely to aggregate and the desulfurization performance may be lowered, which is not preferable. On the other hand, if it exceeds 500 m 2 / g, desulfurization activity tends to decrease, such being undesirable.

本発明に係る無機複合酸化物担体の水のポアフィリング法で測定した細孔容積(PV)は0.70〜1.0ml/gであることが好ましく、0.75〜0.95ml/gがより好ましい。細孔容積(PV)が0.70ml/g未満では脱硫活性が低くなり、脱硫性能が低下する恐れがあるため好ましくない。一方、1.0ml/gを超えると触媒強度が低下するおそれがあるので好ましくない。   The pore volume (PV) measured by the pore filling method of the inorganic composite oxide carrier according to the present invention is preferably 0.70 to 1.0 ml / g, and preferably 0.75 to 0.95 ml / g. More preferred. When the pore volume (PV) is less than 0.70 ml / g, the desulfurization activity is lowered, and the desulfurization performance may be deteriorated. On the other hand, if it exceeds 1.0 ml / g, the catalyst strength may decrease, which is not preferable.

本発明に係る無機複合酸化物担体に担持される金属成分は、周期表第VIA族(IUPAC第6族)および第VIII族(IUPAC第8族〜第10族)から選ばれる少なくとも1種の金属である。   The metal component supported on the inorganic composite oxide support according to the present invention is at least one metal selected from Group VIA (IUPAC Group 6) and Group VIII (Group IUPAC Group 8 to Group 10) of the periodic table. It is.

周期表第VIA族の金属成分としては、モリブデン、タングステンが好ましく、モリブデンがより好ましい。
周期表第VIII族の金属成分としては、コバルト、ニッケルが好適に使用される。
As the metal component of Group VIA of the periodic table, molybdenum and tungsten are preferable, and molybdenum is more preferable.
As the metal component of Group VIII of the periodic table, cobalt and nickel are preferably used.

触媒中の周期表第VIA族の金属成分の含有量は、触媒全量基準、酸化物換算で、10〜28質量%であることが好ましく、15〜25質量%がより好ましい。
触媒中の周期表第VIII族の金属成分の含有量は、触媒全量基準、酸化物換算で、0.2〜10質量%であることが好ましく、1〜8質量%がより好ましく、2〜6質量%がさらに好ましい。
The content of the metal component of Group VIA of the periodic table in the catalyst is preferably 10 to 28% by mass, and more preferably 15 to 25% by mass in terms of oxide based on the total amount of the catalyst.
The content of the metal component of Group VIII of the periodic table in the catalyst is preferably 0.2 to 10 mass%, more preferably 1 to 8 mass%, more preferably 2 to 6 mass%, based on the total amount of the catalyst and in terms of oxide. More preferred is mass%.

触媒中の周期表第VIA族および第VIII族から選ばれる金属成分の総含有量は、触媒全量基準、酸化物換算で、1〜35質量%の範囲が好ましく、10〜33質量%の範囲がより好ましく、15〜30質量%の範囲がさらに好ましい。   The total content of the metal components selected from Group VIA and Group VIII of the periodic table in the catalyst is preferably in the range of 1 to 35% by mass, and in the range of 10 to 33% by mass in terms of oxide based on the total amount of the catalyst. More preferably, the range of 15-30 mass% is further more preferable.

モリブデンまたはタングステンを担持させる場合、触媒中のモリブテンまたはタングステン含有量は、触媒全量基準、モリブデン酸化物(MoO)またはタングステン酸化物(WO)換算で、10〜28質量%であることが好ましく、より好ましくは15〜25質量%、さらに好ましくは17〜23質量%である。酸化物換算のモリブデンまたはタングステン含有量が10質量%未満または28質量%を超えると、脱硫活性および脱窒素活性が急激に低下する傾向にあり、実用的でない。 When molybdenum or tungsten is supported, the molybdenum or tungsten content in the catalyst is preferably 10 to 28% by mass in terms of the total amount of the catalyst, in terms of molybdenum oxide (MoO 3 ) or tungsten oxide (WO 3 ). More preferably, it is 15-25 mass%, More preferably, it is 17-23 mass%. If the molybdenum or tungsten content in terms of oxide is less than 10% by mass or exceeds 28% by mass, the desulfurization activity and denitrification activity tend to decrease rapidly, which is not practical.

コバルトを担持させる場合、触媒中のコバルト含有量は、触媒全量基準、コバルト酸化物(CoO)換算で、1.0〜6.0質量%であることが好ましく、より好ましくは2.0〜5.0質量%、さらに好ましくは2.0〜4.0質量%である。酸化物換算のコバルト含有量が1.0質量%未満であると、脱硫活性の低下が大きくなる傾向にあり、6.0質量%を超えると、脱硫活性の向上が見られない。   When cobalt is supported, the cobalt content in the catalyst is preferably 1.0 to 6.0% by mass, more preferably 2.0 to 5%, based on the total amount of the catalyst, in terms of cobalt oxide (CoO). It is 0.0 mass%, More preferably, it is 2.0-4.0 mass%. If the cobalt content in terms of oxide is less than 1.0% by mass, the desulfurization activity tends to decrease, and if it exceeds 6.0% by mass, the desulfurization activity is not improved.

ニッケルを担持させる場合、触媒中のニッケル含有量は、触媒全量基準、ニッケル酸化物(NiO)換算で、0.2〜4.0質量%であることが好ましく、より好ましくは0.5〜3.0質量%である。酸化物換算のニッケル含有量が0.2質量%未満であると、脱窒素活性の低下が大きくなり、4.0質量%を超えると、脱硫活性が低下する。   When nickel is supported, the nickel content in the catalyst is preferably 0.2 to 4.0% by mass, more preferably 0.5 to 3% in terms of the total amount of the catalyst, in terms of nickel oxide (NiO). 0.0% by mass. When the nickel content in terms of oxide is less than 0.2% by mass, the denitrification activity decreases greatly, and when it exceeds 4.0% by mass, the desulfurization activity decreases.

本発明の触媒としては、前記した無機複合酸化物担体に、モリブデン、コバルトおよびニッケルを担持した水素化精製用触媒であることが最も好ましく、その際の各金属成分の担持量は、触媒全量基準で、(d)モリブテンの含有量が、モリブデン酸化物(MoO)換算で15〜25質量%、(e)コバルトの含有量が、コバルト酸化物(CoO)換算で2.0〜5.0質量%、(f)ニッケルの含有量が、ニッケル酸化物(NiO)換算で0.5〜3.0質量%であることが好ましい。 The catalyst of the present invention is most preferably a hydrorefining catalyst in which molybdenum, cobalt and nickel are supported on the inorganic composite oxide support described above, and the supported amount of each metal component at that time is based on the total amount of the catalyst. The content of (d) molybdenum is 15 to 25% by mass in terms of molybdenum oxide (MoO 3 ), and the content of (e) cobalt is 2.0 to 5.0 in terms of cobalt oxide (CoO). It is preferable that content of mass% and (f) nickel is 0.5-3.0 mass% in conversion of nickel oxide (NiO).

金属成分の原料としては、特に制限はなく、硝酸塩、炭酸塩、酸化物など広く使用できる。具体的には、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト、三酸化モリブデン、モリブデン酸アンモニウムなどが好ましく使用される。   There is no restriction | limiting in particular as a raw material of a metal component, A nitrate, carbonate, an oxide, etc. can be used widely. Specifically, nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate, molybdenum trioxide, ammonium molybdate and the like are preferably used.

本発明の水素化精製用触媒は、例えば、ガソリン、灯油、軽油、減圧軽油などに好適に使用することができる。これらの中でも、窒素分が多く、本発明の効果がとりわけ発揮される点で、減圧軽油に好適に適用される。該触媒を使用した水素化脱硫処理は、固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。
減圧軽油とは、石油精製における常圧蒸留残油を減圧蒸留装置で処理した際の、沸点が340〜550℃の留分を70質量%以上含む留分である。常圧蒸留で処理される油は特に限定されないが、石油系の原油、オイルサンド由来の合成原油、石炭液化油、ビチュメン改質油などが挙げられる。
The hydrorefining catalyst of the present invention can be suitably used for, for example, gasoline, kerosene, light oil, vacuum light oil, and the like. Among these, it is suitably applied to vacuum gas oil because it has a high nitrogen content and the effects of the present invention are particularly exerted. The hydrodesulfurization treatment using the catalyst is carried out under a high-temperature and high-pressure condition in a hydrogen atmosphere by filling the catalyst in a fixed bed reactor.
The vacuum gas oil is a fraction containing 70% by mass or more of a fraction having a boiling point of 340 to 550 ° C. when the atmospheric distillation residue in petroleum refining is treated with a vacuum distillation apparatus. The oil to be treated by atmospheric distillation is not particularly limited, and examples thereof include petroleum crude oil, synthetic crude oil derived from oil sand, coal liquefied oil, bitumen reformed oil, and the like.

次に、本発明の減圧軽油の水素化精製用触媒の製造方法について説明する。   Next, the manufacturing method of the hydrorefining catalyst of the vacuum gas oil of this invention is demonstrated.

本発明の減圧軽油の水素化精製用触媒の製造方法は、無機複合酸化物の水和物を得る第1工程と、前記水和物を順次洗浄、成型、乾燥および焼成して無機複合酸化物担体を得る第2工程と、前記無機複合酸化物担体に、周期表第VIA族および第VIII族から選ばれる少なくとも1種の金属成分含む含浸液を接触させて、金属を担持した担体を得る第3工程と、第3工程で得られた金属を担持した担体を乾燥し、さらに焼成して水素化精製用触媒を調製する第4工程とを有する。
以下、それぞれの工程について説明する。
The method for producing a hydrorefining catalyst for vacuum gas oil according to the present invention comprises a first step of obtaining a hydrate of an inorganic composite oxide, and the inorganic hydrate by sequentially washing, molding, drying and firing the hydrate. A second step of obtaining a carrier; and a step of contacting the inorganic composite oxide carrier with an impregnating solution containing at least one metal component selected from Group VIA and Group VIII of the periodic table to obtain a metal-supported carrier. 3 steps, and a fourth step of preparing the hydrorefining catalyst by drying the carrier carrying the metal obtained in the third step and further calcining it.
Hereinafter, each process will be described.

<第1工程>
第1工程は、リン酸イオンを含む塩基性アルミニウム塩水溶液(これはアルカリ性の水溶液である。)と、チタン鉱酸塩および酸性アルミニウム塩の混合水溶液(これは酸性の水溶液である。)を、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.8〜8.0になるように混合して無機複合酸化物の水和物を得る工程である。このときいずれかの水溶液がケイ酸イオンを含んでいる。
つまりこの工程では、(1)リン酸イオンおよびケイ酸イオンを含む塩基性アルミニウム塩水溶液に、チタン鉱酸塩および酸性アルミニウム塩の混合水溶液を添加する場合と、(2)リン酸イオンを含む塩基性アルミニウム塩水溶液に、ケイ酸イオンを含む、チタン鉱酸塩および酸性アルミニウム塩の混合水溶液を添加する場合とがある。
<First step>
In the first step, a basic aluminum salt aqueous solution containing phosphate ions (this is an alkaline aqueous solution) and a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt (this is an acidic aqueous solution), It is a step of obtaining an inorganic composite oxide hydrate by mixing so that the pH is 6.5 to 9.5, preferably 6.5 to 8.5, and more preferably 6.8 to 8.0. . At this time, any one of the aqueous solutions contains silicate ions.
That is, in this step, (1) a case where a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt is added to a basic aluminum salt aqueous solution containing phosphate ions and silicate ions, and (2) a base containing phosphate ions In some cases, a mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt containing a silicate ion is added to the aqueous solution of the basic aluminum salt.

本願発明のようにケイ素酸化物含有量が高い担体を調製するには、アルミニウム塩中にケイ酸イオンを混合する際、ケイ酸イオンの溶解度が低下しケイ酸イオンが凝集しやすくなることから、ケイ素が均一に分散した担体が得られ難いおそれがある。そのため、リン酸イオンおよび/またはチタン鉱酸塩を添加することでケイ酸イオンの凝集を抑制し、均一に分散状態を保つことができ、ケイ素酸化物含有量の高い担体を調製することが可能となる。   In order to prepare a carrier having a high silicon oxide content as in the present invention, when mixing silicate ions in an aluminum salt, the solubility of silicate ions decreases and the silicate ions tend to aggregate, There is a possibility that it is difficult to obtain a carrier in which silicon is uniformly dispersed. Therefore, by adding phosphate ions and / or titanium mineral salts, it is possible to suppress the aggregation of silicate ions, maintain a uniform dispersion state, and to prepare a carrier with a high silicon oxide content. It becomes.

ここで、(1)の場合、塩基性アルミニウム塩水溶液に含有されるケイ酸イオンは、塩基性又は中性のものが使用できる。塩基性のケイ酸イオン源としては、ケイ酸ナトリウム等の水中でケイ酸イオンを生じるケイ酸化合物が使用可能である。
一方、(2)の場合、チタン鉱酸塩および酸性アルミニウム塩水溶液の混合液に含有されるケイ酸イオンは、酸性又は中性のものが使用できる。酸性のケイ酸イオン源としては、ケイ酸等の水中でケイ酸イオンを生じるケイ酸化合物が使用可能である。
Here, in the case of (1), basic or neutral silicate ions contained in the basic aluminum salt aqueous solution can be used. As the basic silicate ion source, a silicate compound that generates silicate ions in water such as sodium silicate can be used.
On the other hand, in the case of (2), the silicate ion contained in the mixed solution of the titanium mineral acid salt and the acidic aluminum salt aqueous solution can be acidic or neutral. As the acidic silicate ion source, a silicate compound that generates silicate ions in water such as silicic acid can be used.

また、塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用され、チタン鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硫酸チタニル、硝酸チタンなどが例示され、特に硫酸チタン、硫酸チタニルは安価であるので好適に使用される。また、塩基性アルミニウム塩水溶液に含有されるリン酸塩源としては、亜リン酸イオンをも包含し、リン酸アンモニア、リン酸カリウム、リン酸ナトリウム、リン酸、亜リン酸などの水中でリン酸イオンを生じるリン酸化合物が使用可能である。   Further, as the basic aluminum salt, sodium aluminate, potassium aluminate or the like is preferably used. Further, as the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used, and as the titanium mineral acid salt, titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, titanium nitrate and the like are exemplified. In particular, titanium sulfate and titanyl sulfate are preferably used because they are inexpensive. Further, the phosphate source contained in the basic aluminum salt aqueous solution includes phosphite ions, and phosphorous in water such as ammonia phosphate, potassium phosphate, sodium phosphate, phosphoric acid and phosphorous acid. Phosphate compounds that generate acid ions can be used.

本願発明においては、(1)と(2)のどちらの手法により無機複合酸化物の水和物を得ても良いが、ケイ酸化合物がより希釈されるという観点から(1)の方が好ましい。   In the present invention, an inorganic composite oxide hydrate may be obtained by either of the methods (1) and (2), but (1) is preferred from the viewpoint of diluting the silicate compound. .

(1)の手法により無機複合酸化物の水和物を得る場合、まず、リン酸イオンの存在下で塩基性アルミニウム塩水溶液にケイ酸塩水溶液を混合させる。そしてこれにチタン鉱酸塩および酸性アルミニウム塩の混合水溶液を、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.8〜8.0になるように混合することで、アルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物の水和物が得られる。   When the inorganic composite oxide hydrate is obtained by the method (1), first, an aqueous silicate solution is mixed with an aqueous basic aluminum salt solution in the presence of phosphate ions. Then, a mixed aqueous solution of titanium mineral acid salt and acidic aluminum salt is added to this so that the pH becomes 6.5 to 9.5, preferably 6.5 to 8.5, more preferably 6.8 to 8.0. By mixing, an inorganic composite oxide hydrate containing aluminum, silicon, titanium and phosphorus can be obtained.

例えば、所定量のリン酸イオンを含有する塩基性アルミニウム塩水溶液を撹拌機付きタンクに張り込み、ケイ酸塩水溶液を添加し、通常40〜90℃、好ましくは50〜70℃に加温して保持し、この溶液の温度±5℃、好ましくは±2℃、より好ましくは±1℃に加温した所定量のチタン鉱酸塩および酸性アルミニウム塩水溶液の混合水溶液をpHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.5〜8.0になるように、通常5〜20分、好ましくは7〜15分で連続添加し沈殿を生成させ、水和物のスラリーを得る。
ここで、塩基性アルミニウム塩水溶液への混合水溶液の添加は、時間が長くなると擬ベーマイトの他にバイヤライトやギブサイト等の好ましくない結晶物が生成することがあるので、15分以下が望ましく、13分以下が更に望ましい。バイヤライトやギブサイトは、焼成した時に比表面積が低下するので、好ましくない。
For example, a basic aluminum salt aqueous solution containing a predetermined amount of phosphate ions is put into a tank equipped with a stirrer, a silicate aqueous solution is added, and the temperature is usually kept at 40 to 90 ° C., preferably 50 to 70 ° C. Then, the pH of the mixed aqueous solution of a predetermined amount of titanium mineral acid salt and acidic aluminum salt aqueous solution heated to a temperature of ± 5 ° C., preferably ± 2 ° C., more preferably ± 1 ° C. of this solution is 6.5-9. 5, preferably from 6.5 to 8.5, more preferably from 6.5 to 8.0, usually in 5 to 20 minutes, preferably 7 to 15 minutes, to form a precipitate and hydrate A slurry of the product is obtained.
Here, the addition of the mixed aqueous solution to the basic aluminum salt aqueous solution is preferably 15 minutes or less because undesirable crystals such as bayerite and gibbsite may be generated in addition to pseudoboehmite as time goes on. More preferably less than a minute. Bayerite and gibbsite are not preferred because their specific surface area decreases when fired.

<第2工程>
第1工程で得られた無機複合酸化物の水和物のスラリーを、所望により熟成した後、洗浄して副生塩を除き、アルミニウム、ケイ素、チタンおよびリンを含む水和物のスラリーを得る。得られた水和物のスラリーを、所望により更に加熱熟成した後、慣用の手段により、例えば、加熱捏和して成型可能な捏和物とした後、押出成型等により所望の形状に成型し、通常70〜150℃、好ましくは90〜130℃で乾燥した後、更に400〜800℃、好ましくは450〜600℃で、0.5〜10時間、好ましくは2〜5時間焼成して、アルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物担体を得る。
<Second step>
The inorganic composite oxide hydrate slurry obtained in the first step is aged if desired, and then washed to remove by-product salts to obtain a hydrate slurry containing aluminum, silicon, titanium and phosphorus. . The obtained hydrate slurry is further heat-aged if desired, and then, by conventional means, for example, heat-kneaded to obtain a moldable kneaded product, and then molded into a desired shape by extrusion molding or the like. In general, after drying at 70 to 150 ° C., preferably 90 to 130 ° C., it is further calcined at 400 to 800 ° C., preferably 450 to 600 ° C., for 0.5 to 10 hours, preferably 2 to 5 hours. An inorganic composite oxide support containing silicon, titanium and phosphorus is obtained.

<第3工程>
得られたアルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物担体に、周期表第VIA族および第VIII族から選ばれた少なくとも1種の金属成分を含む含浸液を接触させる。
<Third step>
The impregnating liquid containing at least one metal component selected from Group VIA and Group VIII of the periodic table is brought into contact with the obtained inorganic composite oxide support containing aluminum, silicon, titanium and phosphorus.

金属成分の原料としては、例えば、三酸化モリブデン、モリブデン酸アンモニウム、メタタングステン酸アンモニウム、パラタングステン酸アンモニウム、三酸化タングステン、硝酸ニッケル、炭酸ニッケル、硝酸コバルト、炭酸コバルト等が好適に使用される。
含浸液は、酸を用いてpHを4以下にして、金属成分を溶解させることが好ましい。pHが4を超えると溶解している金属成分の安定性が低下して析出する傾向にある。
As the raw material for the metal component, for example, molybdenum trioxide, ammonium molybdate, ammonium metatungstate, ammonium paratungstate, tungsten trioxide, nickel nitrate, nickel carbonate, cobalt nitrate, cobalt carbonate and the like are preferably used.
It is preferable that the impregnating solution is made to have a pH of 4 or less using an acid to dissolve the metal component. When pH exceeds 4, it exists in the tendency for the stability of the metal component which melt | dissolves to fall and to precipitate.

前記金属成分の溶媒にはリン化合物またはキレート剤のどちらか1種、もしくは両方を用いてもよい。   As the solvent for the metal component, either one or both of a phosphorus compound and a chelating agent may be used.

リン化合物としては、好ましくは、オルトリン酸(以下、単に「リン酸」とも呼ぶ)、リン酸二水素アンモニウム、リン酸水素二アンモニウム、トリメタリン酸、ピロリン酸、トリポリリン酸が用いられ、より好ましくは、オルトリン酸を用いることができる。
水素化精製用触媒において、また、リン化合物は酸化物換算で、酸化モリブデン100質量部に対して、3〜25質量部含有されることが好ましく、5〜15質量部の範囲で含有されることがより好ましい。リン化合物の含有量が酸化物換算で、酸化モリブデンに対して25質量部を超えると予備硫化済み水素化精製用触媒の性能が低下する傾向にあり、3質量部未満であると含浸液の安定性が悪くなり好ましくない。
As the phosphorus compound, orthophosphoric acid (hereinafter also simply referred to as “phosphoric acid”), ammonium dihydrogen phosphate, diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, and more preferably, Orthophosphoric acid can be used.
In the hydrorefining catalyst, the phosphorus compound is preferably contained in an amount of 3 to 25 parts by mass, and in the range of 5 to 15 parts by mass, in terms of oxide, with respect to 100 parts by mass of molybdenum oxide. Is more preferable. If the content of the phosphorus compound exceeds 25 parts by mass in terms of oxides with respect to molybdenum oxide, the performance of the presulfided hydrorefining catalyst tends to deteriorate, and if it is less than 3 parts by mass, the impregnating solution is stable. It is not preferable because the properties deteriorate.

キレート剤としては、例えば、クエン酸、リンゴ酸、酒石酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、ポリエチレングリコール(PEG)、テトラエチレングリコール(TEG)が使用でき、特に、クエン酸、リンゴ酸が好適に用いられる。
キレート剤を用いる場合は、酸化モリブデン100質量部に対して、35〜75質量部含有されることが好ましく、55〜65質量部の範囲で含有されることがより好ましい。ここで、キレート剤が、モリブデンに対し75質量部を超えると該金属成分を含有した含浸液の粘度が上がり、製造での含浸工程が困難になるため好ましくなく、35質量部未満だと含浸液の安定性が悪くなる上、触媒性能が低下する傾向にあるので好ましくない。
Examples of the chelating agent include citric acid, malic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), polyethylene glycol (PEG), and tetraethylene glycol (TEG). Malic acid is preferably used.
When using a chelating agent, it is preferable to contain 35-75 mass parts with respect to 100 mass parts of molybdenum oxides, and it is more preferable to contain in the range of 55-65 mass parts. Here, when the chelating agent exceeds 75 parts by mass with respect to molybdenum, the viscosity of the impregnating liquid containing the metal component increases, which makes the impregnation step in production difficult. This is not preferable because the stability of the catalyst tends to deteriorate and the catalyst performance tends to decrease.

なお、上記担体に、上記金属成分、リン化合物あるいは更にキレート剤を含有させる方法は、特に限定されず、含浸法(平衡吸着法、ポアフィリング法、初期湿潤法等)、イオン交換法等の公知の方法を用いることができる。ここで、含浸法とは、担体に活性金属を含む含浸液を含浸させた後、乾燥する方法である。含浸法では、金属成分を同時に担持することが好ましい。別々に金属を担持すると、脱硫活性又は脱窒素活性が不充分になることがある。   The method for incorporating the metal component, phosphorus compound or further chelating agent into the carrier is not particularly limited, and known methods such as impregnation method (equilibrium adsorption method, pore filling method, initial wetting method, etc.), ion exchange method and the like. This method can be used. Here, the impregnation method is a method in which a support is impregnated with an impregnation liquid containing an active metal and then dried. In the impregnation method, it is preferable to simultaneously carry the metal component. If the metals are separately supported, the desulfurization activity or denitrification activity may be insufficient.

<第4工程>
第3工程で金属成分を担持した担体を、110〜250℃で乾燥した後、更に400〜600℃、好ましくは450〜550℃で、0.5〜10時間、好ましくは2〜5時間焼成し、本発明の水素化脱硫触媒を製造する。ここで焼成温度が600℃を超える場合には、担体に担持された金属成分の凝集が起こり、脱硫活性の低下する傾向にあるので好ましくない。
<4th process>
The carrier carrying the metal component in the third step is dried at 110 to 250 ° C., and further calcined at 400 to 600 ° C., preferably 450 to 550 ° C., for 0.5 to 10 hours, preferably 2 to 5 hours. The hydrodesulfurization catalyst of the present invention is produced. Here, when the firing temperature exceeds 600 ° C., aggregation of the metal component supported on the carrier occurs, and the desulfurization activity tends to decrease, which is not preferable.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[触媒成分の含有量の測定方法]
測定試料3gを容量30mlの蓋付きジルコニアボールに採取し、乾燥(200℃、20分)させ、焼成(700℃、5分)した後、過酸化ナトリウム(Na)2gおよび水酸化ナトリウム(NaOH)1gを加えて15分間溶融した。さらに、硫酸(HSO)25mlと水200mlを加えて溶解したのち、純水で500mlになるよう希釈して試料とした。得られた試料について、ICP装置((株)島津製作所製、ICPS−8100、解析ソフトウェアICPS−8000)を用いて、各成分の含有量を酸化物換算基準(Al、SiO、TiO、P、MoO、NiO、CoO)で測定した。
[Measurement method of catalyst component content]
3 g of a measurement sample was collected in a zirconia ball with a lid having a capacity of 30 ml, dried (200 ° C., 20 minutes), calcined (700 ° C., 5 minutes), 2 g of sodium peroxide (Na 2 O 2 ) and sodium hydroxide 1 g of (NaOH) was added and melted for 15 minutes. Further, 25 ml of sulfuric acid (H 2 SO 4 ) and 200 ml of water were added and dissolved, and then diluted to 500 ml with pure water to prepare a sample. About the obtained sample, the content of each component was converted into an oxide conversion standard (Al 2 O 3 , SiO 2 , TiO) using an ICP device (manufactured by Shimadzu Corporation, ICPS-8100, analysis software ICPS-8000). 2 , P 2 O 5 , MoO 3 , NiO, CoO).

[実施例1:水素化脱硫触媒aの調製]
容量が100Lのスチームジャケット付のタンクに、Al濃度換算で22質量%のアルミン酸ナトリウム水溶液(日揮触媒化成(株)製)4.65kgを入れ、イオン交換水43kgで希釈後、P濃度換算で2.5質量%のリン酸三ナトリウム(米山化学(株)製;P濃度19質量%)溶液4.0kgを撹拌しながら添加する。その後、SiO濃度換算で5質量%のケイ酸ナトリウム(AGCエスアイテック(株)製;SiO濃度24質量%)溶液4.0kgを撹拌しながら添加し、60℃に加温して、塩基性アルミニウム塩水溶液を作成した。
また、Al濃度換算で7質量%の硫酸アルミニウム水溶液(日揮触媒化成(株)製)7.97kgを14kgのイオン交換水で希釈した酸性アルミニウム塩水溶液と、TiO濃度換算で33質量%の硫酸チタニル(テイカ(株)製)0.36kgを2.0kgのイオン交換水に溶解したチタン鉱酸塩水溶液とを混合し、60℃に加温して、混合水溶液を作成した。塩基性アルミニウム塩水溶液が入ったタンクに、ローラーポンプを用いて混合水溶液をpHが7.2となるまで一定速度で添加(添加時間:10分)し、アルミニウム、ケイ素、チタン、及びリンを含む水和物スラリーaを調製した。
[Example 1: Preparation of hydrodesulfurization catalyst a]
A tank with a steam jacket with a capacity of 100 L is charged with 4.65 kg of 22 mass% sodium aluminate aqueous solution (manufactured by JGC Catalysts & Chemicals Co., Ltd.) in terms of Al 2 O 3 concentration, diluted with 43 kg of ion-exchanged water, P 2 O 5 concentration of 2.5 wt% of trisodium phosphate in terms of (Yoneyama Kagaku (Co.); P 2 O 5 concentration of 19% by weight) is added with stirring a solution 4.0 kg. Thereafter, 4.0 kg of a 5 mass% sodium silicate solution (manufactured by AGC S-Tech Co., Ltd .; SiO 2 concentration 24 mass%) in terms of SiO 2 concentration was added with stirring and heated to 60 ° C. Aqueous aluminum salt solution was prepared.
Also, an aluminum aluminum salt aqueous solution obtained by diluting 7.97 kg of an aluminum sulfate aqueous solution (manufactured by JGC Catalysts and Chemicals Co., Ltd.) with 7 kg of ion-exchanged water in terms of Al 2 O 3 concentration, and 33 mass in terms of TiO 2 concentration. % Of titanyl sulfate (manufactured by Teika Co., Ltd.) (0.36 kg) was mixed with an aqueous solution of titanium mineral acid salt dissolved in 2.0 kg of ion exchange water, and heated to 60 ° C. to prepare a mixed aqueous solution. Add a mixed aqueous solution to a tank containing a basic aqueous aluminum salt solution at a constant rate using a roller pump until the pH is 7.2 (addition time: 10 minutes), and contain aluminum, silicon, titanium, and phosphorus. Hydrate slurry a was prepared.

得られた水和物スラリーaを撹拌しながら60℃で1時間熟成した後、平板フィルターを用いて脱水し、更に、0.3質量%アンモニア水溶液150Lで洗浄した。洗浄後のケーキ状のスラリーをAl濃度換算で6.0質量%となるようにイオン交換水で希釈した後、15質量%アンモニア水でpHを10.0に調整した。これを還流機付熟成タンクに移し、撹拌しながら95℃で10時間熟成した。熟成終了後のスラリーを脱水し、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押し出し成型機にて直径が1.8mmの円柱形状に成型し、110℃で乾燥した。乾燥した成型品は電気炉で550℃の温度で3時間焼成し、無機複合酸化物担体a(以下、単に担体aともいう。以下の実施例についても同様である。)を得た。 The obtained hydrate slurry a was aged at 60 ° C. for 1 hour with stirring, dehydrated using a flat plate filter, and further washed with 150 L of a 0.3 mass% aqueous ammonia solution. The cake-like slurry after washing was diluted with ion-exchanged water so as to be 6.0% by mass in terms of Al 2 O 3 concentration, and then the pH was adjusted to 10.0 with 15% by mass ammonia water. This was transferred to an aging tank equipped with a reflux machine and aged at 95 ° C. for 10 hours with stirring. The slurry after completion of aging was dehydrated and concentrated and kneaded to a predetermined moisture content while kneading with a double-arm kneader equipped with a steam jacket. The obtained kneaded material was molded into a cylindrical shape having a diameter of 1.8 mm by an extrusion molding machine and dried at 110 ° C. The dried molded product was baked in an electric furnace at a temperature of 550 ° C. for 3 hours to obtain an inorganic composite oxide carrier a (hereinafter also simply referred to as carrier a. The same applies to the following examples).

担体aは、担体全量基準で、アルミニウムをAl換算で79質量%、ケイ素をSiO換算で10質量%、チタンをTiO換算で6質量%、リンをP換算で5質量%、含有していた。
また担体aをQuantachrome(株)製の水銀圧入法による細孔分布測定装置PoreMasterにて細孔分布測定を行った(以下の実施例についても同様である)。その結果を図1に示す。担体の平均細孔分布より、全細孔容積(PVo)に対する平均細孔径(PD)の±30%の細孔直径の細孔容積(PVp)の割合(PVp/PVo)を算出すると、担体aのPVp/PVo値は86%であった。担体aの性状を表1に示す。
Carrier a is 79% by mass in terms of Al 2 O 3 , aluminum is 10% by mass in terms of SiO 2 , titanium is 6% by mass in terms of TiO 2 , and phosphorus is 5 % in terms of P 2 O 5 , based on the total amount of carrier. It was contained by mass%.
The carrier a was subjected to pore distribution measurement using a pore distribution measuring device PoleMaster by the mercury intrusion method manufactured by Quantachrome (the same applies to the following examples). The result is shown in FIG. From the average pore distribution of the carrier, the ratio (PVp / PVo) of the pore diameter (PVp) of the pore diameter of ± 30% of the average pore diameter (PD) to the total pore volume (PVo) is calculated. The PVp / PVo value was 86%. Table 1 shows the properties of the carrier a.

次に、三酸化モリブデン(Climax(株)製;MoO濃度99質量%)294gと、炭酸コバルト((株)田中化学研究所製;CoO濃度61質量%)84gと、炭酸ニッケル(正同化学工業(株)製;NiO濃度55質量%)36gとを、イオン交換水400mlに懸濁させ、この懸濁液を95℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸(関東化学(株)製;P濃度62質量%)57gと硝酸(関東化学(株)製;硝酸濃度60質量%)49gを加えて溶解させ、含浸液を作製した。この含浸液を、担体a1000gに噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して水素化脱硫触媒a(以下、単に「触媒a」ともいう。以下の実施例についても同様である。)を得た。
触媒aの金属成分の含有量は、触媒全量基準で、MoOが21.0質量%、CoOが3.6質量%、NiOが1.4質量%、Pが2.5質量%であった。触媒aの性状を表1に示す。
Next, 294 g of molybdenum trioxide (manufactured by Climax Co., Ltd .; MoO 3 concentration 99 mass%), 84 g of cobalt carbonate (manufactured by Tanaka Chemical Laboratory Co., Ltd .; CoO concentration 61 mass%), and nickel carbonate (Jodo Chemical) Kogyo Co., Ltd. (NiO concentration: 55% by mass) (36 g) was suspended in 400 ml of ion-exchanged water, and this suspension was heated at 95 ° C. for 5 hours with an appropriate refluxing device so that the liquid volume did not decrease. After that, 57 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .; P 2 O 5 concentration 62 mass%) and 49 g of nitric acid (manufactured by Kanto Chemical Co., Ltd .; nitric acid concentration 60 mass%) were added and dissolved to prepare an impregnation solution. did. The impregnating solution is spray impregnated on 1000 g of support a, dried at 250 ° C., and further calcined in an electric furnace at 550 ° C. for 1 hour to be hydrodesulfurized catalyst a (hereinafter also simply referred to as “catalyst a”. The same applies to the examples of the above.
The content of the metal component of the catalyst a is 21.0% by mass of MoO 3 , 3.6% by mass of CoO, 1.4% by mass of NiO, and 2.5% by mass of P 2 O 5 based on the total amount of the catalyst. Met. Table 1 shows the properties of the catalyst a.

[実施例2:水素化脱硫触媒bの調製]
担体調製において、アルミン酸ナトリウム水溶液4.86kg、ケイ酸ナトリウム溶液2.8kg、硫酸アルミニウム水溶液8.15kg、硫酸アルミニウムを希釈するイオン交換水15kgを用いたこと以外は担体aと同様の調製を行い、担体bを得た。
担体bは、担体全量基準で、アルミニウムをAl換算で82質量%、ケイ素をSiO換算で7質量%、チタンをTiO換算で6質量%、リンをP換算で5質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体bから触媒bを製造した。
表1に担体bおよび触媒bの性状を示す。
[Example 2: Preparation of hydrodesulfurization catalyst b]
In the carrier preparation, the same preparation as that of the carrier a was performed except that 4.86 kg of an aqueous sodium aluminate solution, 2.8 kg of a sodium silicate solution, 8.15 kg of an aqueous aluminum sulfate solution, and 15 kg of ion-exchanged water for diluting aluminum sulfate were used. A carrier b was obtained.
Carrier b is based on the total amount of carrier, aluminum is 82% by mass in terms of Al 2 O 3 , silicon is 7% by mass in terms of SiO 2 , titanium is 6% by mass in terms of TiO 2 , and phosphorus is 5 % in terms of P 2 O 5. It was contained by mass%.
Next, using the same impregnating solution as in Example 1, catalyst b was produced from carrier b.
Table 1 shows the properties of the carrier b and the catalyst b.

[実施例3:水素化脱硫触媒cの調製]
担体調製において、アルミン酸ナトリウム水溶液4.50kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水42kg、ケイ酸ナトリウム溶液4.8kg、硫酸アルミニウム水溶液7.84kgを用いたこと以外は担体aと同様の調製を行い、担体cを得た。
担体cは、担体全量基準で、アルミニウムをAl換算で77質量%、ケイ素をSiO換算で12質量%、チタンをTiO換算で6質量%、リンをP換算で5質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体cから触媒cを製造した。
表1に担体cおよび触媒cの性状を示す。
[Example 3: Preparation of hydrodesulfurization catalyst c]
In the carrier preparation, the same preparation as carrier a except that 4.50 kg of sodium aluminate aqueous solution, 42 kg of ion-exchanged water for diluting sodium aluminate aqueous solution, 4.8 kg of sodium silicate solution, and 7.84 kg of aluminum sulfate aqueous solution were used. To obtain a carrier c.
The carrier c is based on the total amount of the carrier. Aluminum is 77% by mass in terms of Al 2 O 3 , silicon is 12% by mass in terms of SiO 2 , titanium is 6% by mass in terms of TiO 2 , and phosphorus is 5 % in terms of P 2 O 5. It was contained by mass%.
Next, using the same impregnating solution as in Example 1, a catalyst c was produced from the carrier c.
Table 1 shows the properties of the carrier c and the catalyst c.

[実施例4:水素化脱硫触媒dの調製]
担体調製において、アルミン酸ナトリウム水溶液4.86kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水44kg、リン酸三ナトリウム溶液2.4kg、硫酸アルミニウム水溶液7.87kgを用いたこと以外は担体aと同様の調製を行い、担体dを得た。
担体dは、担体全量基準で、アルミニウムをAl換算で81質量%、ケイ素をSiO換算で10質量%、チタンをTiO換算で6質量%、リンをP換算で3質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体dから触媒dを製造した。
表1に担体dおよび触媒dの性状を示す。
[Example 4: Preparation of hydrodesulfurization catalyst d]
In the carrier preparation, the same as carrier a, except that 4.86 kg of sodium aluminate aqueous solution, 44 kg of ion exchange water for diluting sodium aluminate aqueous solution, 2.4 kg of trisodium phosphate solution, and 7.87 kg of aluminum sulfate aqueous solution were used. Preparation was carried out to obtain carrier d.
The carrier d is based on the total amount of the carrier. Aluminum is 81% by mass in terms of Al 2 O 3 , silicon is 10% by mass in terms of SiO 2 , titanium is 6% by mass in terms of TiO 2 , and phosphorus is 3% in terms of P 2 O 5. It was contained by mass%.
Next, the catalyst d was produced from the carrier d using the same impregnation solution as in Example 1.
Table 1 shows the properties of the carrier d and the catalyst d.

[実施例5:水素化脱硫触媒eの調製]
担体調製において、アルミン酸ナトリウム水溶液4.53kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水44kg、硫酸アルミニウム水溶液7.18kg、硫酸アルミニウムを希釈するイオン交換水13kg、硫酸チタニル0.61kg、硫酸チタニルを溶解するイオン交換水3.39kgを用いたこと以外は担体aと同様の調製を行い、担体eを得た。
担体eは、担体全量基準で、アルミニウムをAl換算で75質量%、ケイ素をSiO換算で10質量%、チタンをTiO換算で10質量%、リンをP換算で5質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体eから触媒eを製造した。
表1に担体eおよび触媒eの性状を示す。
[Example 5: Preparation of hydrodesulfurization catalyst e]
In the carrier preparation, 4.53 kg of sodium aluminate aqueous solution, 44 kg of ion exchange water for diluting sodium aluminate aqueous solution, 7.18 kg of aluminum sulfate aqueous solution, 13 kg of ion exchange water for diluting aluminum sulfate, 0.61 kg of titanyl sulfate, and titanyl sulfate A carrier e was obtained in the same manner as the carrier a except that 3.39 kg of ion-exchanged water to be dissolved was used.
Carrier e is 75% by mass in terms of Al 2 O 3 , aluminum is 10% by mass in terms of SiO 2 , titanium is 10% by mass in terms of TiO 2 , and phosphorus is 5 % in terms of P 2 O 5 , based on the total amount of carrier. It was contained by mass%.
Next, a catalyst e was produced from the carrier e using the same impregnating solution as in Example 1.
Table 1 shows the properties of the carrier e and the catalyst e.

[実施例6:水素化脱硫触媒fの調製]
担体調製において、アルミン酸ナトリウム水溶液4.75kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水44kg、ケイ酸ナトリウム溶液の代わりにSiO濃度換算で5質量%のケイ酸(日揮触媒化成(株)製;SiO濃度13質量%)1.08kg、硫酸アルミニウム水溶液7.56kg、硫酸アルミニウムを希釈するイオン交換水14kg、硫酸チタニル0.61kg、硫酸チタニルを溶解するイオン交換水3.39kgを用いたこと以外は担体aと同様の調製を行い、担体fを得た。
担体fは、担体全量基準で、アルミニウムをAl換算で78質量%、ケイ素をSiO換算で7質量%、チタンをTiO換算で10質量%、リンをP換算で5質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体fから触媒fを製造した。
表1に担体fおよび触媒fの性状を示す。
[Example 6: Preparation of hydrodesulfurization catalyst f]
In the carrier preparation, 4.75 kg of sodium aluminate aqueous solution, 44 kg of ion-exchanged water for diluting the sodium aluminate aqueous solution, 5 mass% of silicic acid in terms of SiO 2 concentration (manufactured by JGC Catalysts & Chemicals Co., Ltd.) instead of sodium silicate solution ; SiO 2 concentration of 13 mass%) 1.08 kg, an aqueous aluminum sulfate solution 7.56Kg, deionized water 14kg diluting aluminum sulfate, titanyl sulfate 0.61 kg, for the use of ion-exchange water 3.39kg dissolving titanyl sulfate A carrier f was obtained in the same manner as in the carrier a except for the above.
The carrier f is 78% by mass in terms of Al 2 O 3 , 7% by mass in terms of SiO 2 , 10% by mass in terms of TiO 2 , and 5% in terms of P 2 O 5 , based on the total amount of carrier. It was contained by mass%.
Next, using the same impregnating solution as in Example 1, a catalyst f was produced from the carrier f.
Table 1 shows the properties of the carrier f and the catalyst f.

[比較例1:水素化脱硫触媒gの調製]
担体調製において、アルミン酸ナトリウム水溶液4.83kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水39kg、リン酸三ナトリウム溶液8.0kg、ケイ酸ナトリウム溶液0.8kg、硫酸アルミニウム水溶液9.68kg、硫酸アルミニウムを希釈するイオン交換水17kg、硫酸チタニル0.06kg、硫酸チタニルを溶解するイオン交換水0.34kgを用いたこと以外は担体aと同様の調製を行い、担体gを得た。
担体gは、担体全量基準で、アルミニウムをAl換算で87質量%、ケイ素をSiO換算で2質量%、チタンをTiO換算で1質量%、リンをP換算で10質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体gから触媒gを製造した。
表1に担体gおよび触媒gの性状を示す。
[Comparative Example 1: Preparation of hydrodesulfurization catalyst g]
In the carrier preparation, 4.83 kg of sodium aluminate aqueous solution, 39 kg of ion exchange water for diluting sodium aluminate aqueous solution, 8.0 kg of trisodium phosphate solution, 0.8 kg of sodium silicate solution, 9.68 kg of aqueous aluminum sulfate solution, aluminum sulfate Was prepared in the same manner as carrier a except that 17 kg of ion-exchanged water for diluting water, 0.06 kg of titanyl sulfate, and 0.34 kg of ion-exchanged water for dissolving titanyl sulfate were used.
The carrier g is based on the total amount of the carrier, and aluminum is 87% by mass in terms of Al 2 O 3 , silicon is 2% by mass in terms of SiO 2 , titanium is 1% by mass in terms of TiO 2 , and phosphorus is 10% in terms of P 2 O 5. It was contained by mass%.
Next, catalyst g was produced from carrier g using the same impregnating solution as in Example 1.
Table 1 shows the properties of the carrier g and the catalyst g.

[比較例2:水素化脱硫触媒hの調製]
担体調製において、アルミン酸ナトリウム水溶液3.93kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水41kg、ケイ酸ナトリウム溶液8.0kg、硫酸アルミニウム水溶液7.35kg、硫酸アルミニウムを希釈するイオン交換水13kgを用いたこと以外は担体aと同様の調製を行い、担体hを得た。
担体hは、担体全量基準で、アルミニウムをAl換算で69質量%、ケイ素をSiO換算で20質量%、チタンをTiO換算で6質量%、リンをP換算で5質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体hから触媒hを製造した。
表1に担体hおよび触媒hの性状を示す。
[Comparative Example 2: Preparation of hydrodesulfurization catalyst h]
In preparing the carrier, 3.93 kg of sodium aluminate aqueous solution, 41 kg of ion exchange water for diluting the sodium aluminate aqueous solution, 8.0 kg of sodium silicate solution, 7.35 kg of aluminum sulfate aqueous solution, and 13 kg of ion exchange water for diluting aluminum sulfate are used. A carrier h was obtained in the same manner as in the carrier a except that the carrier h was prepared.
The carrier h is based on the total amount of the carrier, aluminum is 69% by mass in terms of Al 2 O 3 , silicon is 20% by mass in terms of SiO 2 , titanium is 6% by mass in terms of TiO 2 , and phosphorus is 5 % in terms of P 2 O 5. It was contained by mass%.
Next, a catalyst h was produced from the carrier h using the same impregnation liquid as in Example 1.
Table 1 shows the properties of the carrier h and the catalyst h.

[比較例3:水素化脱硫触媒iの調製]
担体調製において、アルミン酸ナトリウム水溶液3.90kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水37kg、リン酸三ナトリウム溶液9.6kg、硫酸アルミニウム水溶液8.30kg、硫酸アルミニウムを希釈するイオン交換水15kgを用いたこと以外は担体aと同様の調製を行い、担体iを得た。
担体iは、担体全量基準で、アルミニウムをAl換算で72質量%、ケイ素をSiO換算で10質量%、チタンをTiO換算で6質量%、リンをP換算で12質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体iから触媒iを製造した。
表1に担体iおよび触媒iの性状を示す。
[Comparative Example 3: Preparation of hydrodesulfurization catalyst i]
In the carrier preparation, 3.90 kg of sodium aluminate aqueous solution, 37 kg of ion exchange water for diluting sodium aluminate aqueous solution, 9.6 kg of trisodium phosphate solution, 8.30 kg of aluminum sulfate aqueous solution, and 15 kg of ion exchange water for diluting aluminum sulfate. A carrier i was obtained in the same manner as in the carrier a except that it was used.
Carrier i is based on the total amount of carrier, aluminum is 72 mass% in terms of Al 2 O 3 , silicon is 10 mass% in terms of SiO 2 , titanium is 6 mass% in terms of TiO 2 , and phosphorus is 12 mass in terms of P 2 O 5. It was contained by mass%.
Next, catalyst i was produced from carrier i using the same impregnating solution as in Example 1.
Table 1 shows the properties of the carrier i and the catalyst i.

[比較例4:水素化脱硫触媒jの調製]
担体調製において、アルミン酸ナトリウム水溶液4.65kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水41kg、ケイ酸ナトリウム溶液4.8kg、硫酸アルミニウム水溶液8.83kg、硫酸アルミニウムを希釈するイオン交換水16kg、硫酸チタニル0.06kg、硫酸チタニルを溶解するイオン交換水0.34kgを用いたこと以外は担体aと同様の調製を行い、担体jを得た。
担体jは、担体全量基準で、アルミニウムをAl換算で82質量%、ケイ素をSiO換算で12質量%、チタンをTiO換算で1質量%、リンをP換算で5質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体jから触媒jを製造した。
表1に担体jおよび触媒jの性状を示す。
[Comparative Example 4: Preparation of hydrodesulfurization catalyst j]
In the carrier preparation, 4.65 kg of sodium aluminate aqueous solution, 41 kg of ion exchange water for diluting the sodium aluminate aqueous solution, 4.8 kg of sodium silicate solution, 8.83 kg of aluminum sulfate aqueous solution, 16 kg of ion exchange water for diluting aluminum sulfate, sulfuric acid A carrier j was obtained in the same manner as the carrier a except that 0.06 kg of titanyl and 0.34 kg of ion-exchanged water in which titanyl sulfate was dissolved were used.
Carrier j is based on the total amount of carrier, aluminum is 82% by mass in terms of Al 2 O 3 , silicon is 12% by mass in terms of SiO 2 , titanium is 1% by mass in terms of TiO 2 , and phosphorus is 5 % in terms of P 2 O 5. It was contained by mass%.
Next, using the same impregnation solution as in Example 1, catalyst j was produced from carrier j.
Table 1 shows the properties of the carrier j and the catalyst j.

[比較例5:水素化脱硫触媒kの調製]
担体調製において、アルミン酸ナトリウム水溶液4.61kg、アルミン酸ナトリウム水溶液を希釈するイオン交換水39kg、リン酸三ナトリウム溶液7.2kg、ケイ酸ナトリウム溶液2.8kg、硫酸アルミニウム水溶液9.52kg、硫酸アルミニウムを希釈するイオン交換水17kgを用いたこと、硫酸チタニルおよび硫酸チタニルを溶解するイオン交換水を用いなかったこと以外は担体aと同様の調製を行い、担体kを得た。
担体kは、担体全量基準で、アルミニウムをAl換算で84質量%、ケイ素をSiO換算で7質量%、チタンをTiO換算で0質量%、リンをP換算で9質量%、含有していた。
次に、実施例1と同じ含浸液を用い、担体kから触媒kを製造した。
表1に担体kおよび触媒kの性状を示す。
[Comparative Example 5: Preparation of hydrodesulfurization catalyst k]
In preparing the carrier, 4.61 kg of sodium aluminate aqueous solution, 39 kg of ion exchange water for diluting the sodium aluminate aqueous solution, 7.2 kg of trisodium phosphate solution, 2.8 kg of sodium silicate solution, 9.52 kg of aqueous aluminum sulfate solution, aluminum sulfate The carrier k was prepared in the same manner as the carrier a, except that 17 kg of ion-exchanged water for diluting was used and no ion-exchanged water for dissolving titanyl sulfate and titanyl sulfate was used.
The carrier k is based on the total amount of the carrier. Aluminum is 84% by mass in terms of Al 2 O 3 , silicon is 7% by mass in terms of SiO 2 , titanium is 0% by mass in terms of TiO 2 , and phosphorus is 9% in terms of P 2 O 5. It was contained by mass%.
Next, a catalyst k was produced from the carrier k using the same impregnation liquid as in Example 1.
Table 1 shows the properties of the carrier k and the catalyst k.

[脱硫性および脱窒素性評価試験]
触媒a〜kを固定床反応装置に充填し、予備硫化処理した。その後、その固定床反応装置に、減圧軽油(沸点範囲343〜550℃、硫黄分2.71質量%、窒素分0.079質量%)を200ml/時間の速度で供給して水素化精製を行なった。その際の反応条件は、水素分圧6MPa、液空間速度2.0h−1、水素/油比2,500scfb、反応温度340℃または360℃とした。各反応温度における脱硫率および脱窒素率の結果を表1に示す。
ここで、脱硫率は、[水素化精製により除去された硫黄分]/[減圧軽油中の硫黄分]×100(%)の式により求められ、脱窒素率は、[水素化精製により除去された窒素分]/[減圧軽油中の窒素分]×100(%)の式により求められる。
[Desulfurization and denitrification evaluation test]
Catalysts a to k were charged into a fixed bed reactor and pre-sulfided. Then, hydrorefining is performed by supplying vacuum gas oil (boiling range: 343 to 550 ° C., sulfur content: 2.71% by mass, nitrogen content: 0.079% by mass) to the fixed bed reactor at a rate of 200 ml / hour. It was. The reaction conditions at that time were a hydrogen partial pressure of 6 MPa, a liquid space velocity of 2.0 h −1 , a hydrogen / oil ratio of 2,500 scfb, and a reaction temperature of 340 ° C. or 360 ° C. Table 1 shows the results of the desulfurization rate and denitrogenation rate at each reaction temperature.
Here, the desulfurization rate is obtained by the formula [sulfur content removed by hydrorefining] / [sulfur content in vacuum gas oil] × 100 (%), and the denitrification rate is removed by hydrorefining. Nitrogen content] / [Nitrogen content in vacuum gas oil] × 100 (%).

Figure 0006216658
Figure 0006216658

表1から明らかなように、本発明の水素化精製用触媒a〜fを用いた実施例1〜6では、減圧軽油の硫黄分及び窒素分を高度に除去することができた。
一方、比較例1の水素化精製用触媒では、担体中のシリカ量が少なくリン量が多いためにシャープネスが悪くなり脱硫率、脱窒素率共に低い。またシリカ量が請求範囲を超える比較例2では、細孔分布のシャープネスが悪くなるため表面積が低下し、特に脱硫率が低かった。両添加剤の量やバランスが請求範囲外となる比較例3及び4は、細孔分布のシャープネスが悪くなり表面積が低いため脱硫率、脱窒素率共に低かった。チタンを添加しなかった比較例5は、脱硫率が低かった。
As can be seen from Table 1, in Examples 1 to 6 using the hydrorefining catalysts a to f of the present invention, the sulfur content and nitrogen content of the vacuum gas oil could be removed to a high degree.
On the other hand, in the hydrorefining catalyst of Comparative Example 1, since the amount of silica in the carrier is small and the amount of phosphorus is large, the sharpness is deteriorated and the desulfurization rate and denitrification rate are low. Further, in Comparative Example 2 in which the amount of silica exceeded the claimed range, the sharpness of the pore distribution deteriorated, so the surface area decreased, and the desulfurization rate was particularly low. In Comparative Examples 3 and 4 in which the amount and balance of both additives are outside the scope of claims, both the desulfurization rate and the denitrification rate were low because the sharpness of the pore distribution deteriorated and the surface area was low. In Comparative Example 5 where no titanium was added, the desulfurization rate was low.

本発明の水素化精製用触媒は、減圧軽油を高度に水素化精製することができるばかりか、安価に製造できるため産業上きわめて有用である。   The hydrorefining catalyst of the present invention is extremely useful industrially because it can be highly hydrorefined under reduced pressure gas oil and can be produced at low cost.

Claims (8)

アルミニウム、ケイ素、チタンおよびリンを含有する無機複合酸化物担体と、周期表第VIA族および第VIII族から選ばれる少なくとも1種の金属成分とからなる減圧軽油の水素化精製用触媒であって、該担体は、(a)アルミニウムの含有量が、担体全量基準で、アルミニウム酸化物(Al)換算で70〜85質量%、(b)SiO/Alの重量比が0.08〜0.17、(c)チタンの含有量が、担体全量基準で、チタン酸化物(TiO )換算で4.0〜15.0質量%、リンの含有量が、担体全量基準で、リン酸化物(P )換算で2.0〜7.0質量%、かつ/TiOの重量比が0.3〜1.2の範囲にあることを特徴とする減圧軽油の水素化精製用触媒。
A hydrorefining catalyst for vacuum gas oil comprising an inorganic composite oxide support containing aluminum, silicon, titanium and phosphorus, and at least one metal component selected from Group VIA and Group VIII of the periodic table, In the support, (a) the aluminum content is 70 to 85% by mass in terms of aluminum oxide (Al 2 O 3 ) based on the total amount of the support, and (b) the weight ratio of SiO 2 / Al 2 O 3 is 0. 0.08 to 0.17, (c) Titanium content is 4.0 to 15.0 mass% in terms of titanium oxide (TiO 2 ) based on the total amount of support, and phosphorus content is based on the total amount of support. Further, it is characterized in that it is 2.0 to 7.0 mass% in terms of phosphorus oxide (P 2 O 5 ), and the weight ratio of P 2 O 5 / TiO 2 is in the range of 0.3 to 1.2. Catalyst for hydrorefining of vacuum gas oil.
前記担体の水銀圧入法で測定した平均細孔径(PD)が70〜110Åの範囲にあることを特徴とする請求項1に記載の減圧軽油の水素化精製用触媒。   2. The catalyst for hydrorefining vacuum gas oil according to claim 1, wherein the carrier has an average pore diameter (PD) measured by a mercury intrusion method in the range of 70 to 110 mm. 3. 前記担体の水銀圧入法で測定した細孔分布において、全細孔容積(PVo)に対する平均細孔径(PD)±30%の細孔径の細孔容積(PVp)の割合(PVp/PVo)が76%以上であることを特徴とする請求項1または2に記載の減圧軽油の水素化精製用触媒。   In the pore distribution measured by the mercury intrusion method of the carrier, the ratio (PVp / PVo) of the pore volume (PVp) of the average pore diameter (PD) ± 30% to the total pore volume (PVo) is 76%. The catalyst for hydrorefining of vacuum gas oil according to claim 1 or 2, wherein the catalyst is at least%. 前記担体の比表面積が350〜500m/gの範囲にあることを特徴とする請求項1〜3のいずれかに記載の減圧軽油の水素化精製用触媒。 Vacuum gas oil hydrotreating catalyst according to claim 1, specific surface area of the carrier is characterized in that in the range of 350~500m 2 / g. 前記担体の水のポアフィリング法で測定した細孔容積(PV)が0.70〜1.0ml/gの範囲にあることを特徴とする請求項1〜4のいずれかに記載の減圧軽油の水素化精製用触媒。   5. The vacuum gas oil according to claim 1, wherein the pore volume (PV) measured by a pore filling method of the carrier is in the range of 0.70 to 1.0 ml / g. Catalyst for hydrorefining. 前記周期表第VIA族および第VIII族から選ばれる金属成分が、モリブデン、タングステン、コバルトおよびニッケルから選ばれることを特徴とする請求項1〜5のいずれかに記載の減圧軽油の水素化精製用触媒。   6. The hydrorefining of vacuum gas oil according to claim 1, wherein the metal component selected from Group VIA and Group VIII of the periodic table is selected from molybdenum, tungsten, cobalt, and nickel. catalyst. 前記担体にモリブデン、コバルトおよびニッケルが担持された減圧軽油の水素化精製用触媒であって、(d)モリブテンの含有量が、モリブデン酸化物(MoO)換算で15〜25質量%、(e)コバルトの含有量が、コバルト酸化物(CoO)換算で2.0〜5.0質量%、(f)ニッケルの含有量が、ニッケル酸化物(NiO)換算で0.5〜3.0質量%である(ただし、水素化精製用触媒を100質量%とする。)ことを特徴とする請求項1〜6のいずれかに記載の減圧軽油の水素化精製用触媒。 A catalyst for hydrorefining of vacuum gas oil having molybdenum, cobalt and nickel supported on the carrier, wherein (d) the content of molybdenum is 15 to 25% by mass in terms of molybdenum oxide (MoO 3 ), (e ) Cobalt content is 2.0 to 5.0 mass% in terms of cobalt oxide (CoO), and (f) Nickel content is 0.5 to 3.0 mass in terms of nickel oxide (NiO). % (However, the hydrorefining catalyst is 100 mass%). The hydrorefining catalyst for vacuum gas oil according to any one of claims 1 to 6, wherein 請求項1〜7のいずれかに記載の減圧軽油の水素化精製用触媒の製造方法であって、
(1)リン酸イオン及びケイ酸イオンを含む塩基性アルミニウム塩水溶液に、チタン鉱酸塩及び酸性アルミニウム塩の混合水溶液を、pHが6.5〜9.5になるように添加してアルミニウム、ケイ素、チタンおよびリンの複合酸化物の水和物を得る第1工程、
(2)前記水和物を順次洗浄、成型、乾燥及び焼成して担体を得る第2工程、
(3)周期表第VIA族及び第VIII族か選ばれる少なくとも1種の金属成分を含む含浸液を接触させ金属を担持した担体を得る第3工程、および
(4)前記含浸液と接触させて得られる金属を担持した担体を乾燥し、さらに焼成して水素化精製用触媒を得る第4工程
を有することを特徴とする減圧軽油の水素化精製用触媒の製造方法。
A method for producing a catalyst for hydrorefining vacuum gas oil according to any one of claims 1 to 7,
(1) A mixed aqueous solution of a titanium mineral acid salt and an acidic aluminum salt is added to a basic aluminum salt aqueous solution containing phosphate ions and silicate ions so that the pH becomes 6.5 to 9.5, and aluminum, A first step of obtaining a hydrate of a composite oxide of silicon, titanium and phosphorus;
(2) a second step of obtaining a carrier by sequentially washing, molding, drying and baking the hydrate;
(3) a third step in which an impregnating solution containing at least one metal component selected from Group VIA and Group VIII of the periodic table is contacted to obtain a metal-supported carrier; and (4) contacting with the impregnating solution. A method for producing a hydrorefining catalyst for reduced pressure gas oil, comprising a fourth step of drying the obtained metal-supported carrier and further calcining to obtain a hydrorefining catalyst.
JP2014032558A 2014-02-24 2014-02-24 Catalyst for hydrorefining of vacuum gas oil and method for producing the same Active JP6216658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032558A JP6216658B2 (en) 2014-02-24 2014-02-24 Catalyst for hydrorefining of vacuum gas oil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032558A JP6216658B2 (en) 2014-02-24 2014-02-24 Catalyst for hydrorefining of vacuum gas oil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015157248A JP2015157248A (en) 2015-09-03
JP6216658B2 true JP6216658B2 (en) 2017-10-18

Family

ID=54181733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032558A Active JP6216658B2 (en) 2014-02-24 2014-02-24 Catalyst for hydrorefining of vacuum gas oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP6216658B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865506A (en) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 A kind of preparation and application of crosslinked polyvinylpyrrolidone application type chromatographic stationary phases
CN109092315B (en) * 2018-07-19 2021-04-27 西北大学 Catalyst for preparing tetrahydronaphthalene through naphthalene selective catalytic hydrogenation, and preparation method and application thereof
WO2020066555A1 (en) * 2018-09-28 2020-04-02 日揮触媒化成株式会社 Hydrotreating catalyst for hydrocarbon oil, production method therefor, and method for hydrotreating hydrocarbon oil
CN111822019B (en) * 2019-04-15 2022-11-11 中国石油化工股份有限公司 Preparation method of hydrofining catalyst
CN114950464B (en) * 2022-06-20 2023-06-02 黄山学院 Waste oil hydrogenation catalyst and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256135A (en) * 1986-04-07 1988-10-24 インテヴエツプ,エス.エイ. Catalyst and manufacture thereof
JPH0857322A (en) * 1994-08-19 1996-03-05 Sumitomo Metal Mining Co Ltd Catalyst for decomposition of volatile organic halogen compound and production thereof
JP2001104791A (en) * 1999-10-07 2001-04-17 Tonengeneral Sekiyu Kk Method of manufacturing catalyst for hydrogenation treatment
JP4612229B2 (en) * 2001-06-08 2011-01-12 日本ケッチェン株式会社 Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
CN101508910B (en) * 2009-03-19 2012-06-27 中国石油大学(北京) Ultra-deep desulfurization-octane value recovery hydrogenation modification method for faulty gasoline
JP5265426B2 (en) * 2009-03-23 2013-08-14 Jx日鉱日石エネルギー株式会社 Hydrorefining catalyst and method for producing the same, and hydrorefining method of hydrocarbon oil
CN102361692B (en) * 2009-03-23 2013-12-18 吉坤日矿日石能源株式会社 Hydrorefining catalyst, method for producing same, and process for hydrorefining hydrocarbon oil
JP5517541B2 (en) * 2009-09-30 2014-06-11 Jx日鉱日石エネルギー株式会社 Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
EP2484745B1 (en) * 2009-09-30 2020-11-18 JX Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method

Also Published As

Publication number Publication date
JP2015157248A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2011162228A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
WO2011040224A1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
TWI551347B (en) Hydrogenation catalyst and its manufacturing method
JP6216658B2 (en) Catalyst for hydrorefining of vacuum gas oil and method for producing the same
JP5517541B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP6489990B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2010109823A1 (en) Hydrorefining catalyst, method for producing same, and process for hydrorefining hydrocarbon oil
JP5610874B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
WO2016170995A1 (en) Hydrogenation catalyst for hydrocarbon oil, method for manufacturing same, and hydrogenation method
WO2016189982A1 (en) Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
JP6284403B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP6013259B2 (en) Hydrotreating catalyst support, method for producing the same, hydrotreating catalyst, and method for producing the same
WO2018180377A1 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing hydrodesulfurization catalyst
JP6239403B2 (en) Catalyst for hydrorefining hydrocarbon oil and method for producing the same
JP6646349B2 (en) Method for producing catalyst for hydrodesulfurization of hydrocarbon oil and method for hydrodesulfurization of hydrocarbon oil
JP5340101B2 (en) Hydrorefining method of hydrocarbon oil
JP5610875B2 (en) Hydrorefining method of hydrocarbon oil
JP2010222458A (en) Hydrorefining method for hydrocarbon oil
JP6251107B2 (en) Hydrocarbon oil hydrodesulfurization catalyst
JP5841480B2 (en) Method for hydrotreating heavy residual oil
JP6909879B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil, its production method, and hydrodesulfurization method
US20240278221A1 (en) Catalyst for Hydrotreating Heavy Hydrocarbon Oil, Method for Producing Same, and Method for Hydrotreating Heavy Hydrocarbon Oil
JP5193103B2 (en) Method for producing hydrotreating catalyst
JP2021151641A (en) Hydrocracking catalyst for hydrocarbon oil and method for producing the same
JP2014173026A (en) Hydrogenation purification method for light gas oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6216658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250