JP6211784B2 - Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method - Google Patents
Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method Download PDFInfo
- Publication number
- JP6211784B2 JP6211784B2 JP2013071332A JP2013071332A JP6211784B2 JP 6211784 B2 JP6211784 B2 JP 6211784B2 JP 2013071332 A JP2013071332 A JP 2013071332A JP 2013071332 A JP2013071332 A JP 2013071332A JP 6211784 B2 JP6211784 B2 JP 6211784B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- automotive
- machine part
- machine parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 title description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 53
- 239000010959 steel Substances 0.000 claims description 53
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000005255 carburizing Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 13
- 239000002244 precipitate Substances 0.000 claims description 8
- 229910001566 austenite Inorganic materials 0.000 claims description 7
- 238000010273 cold forging Methods 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 5
- 238000005496 tempering Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 description 16
- 239000013078 crystal Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000005482 strain hardening Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000002436 steel type Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 239000005539 carbonized material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Landscapes
- Gears, Cams (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、自動車のデファレンシャルギヤを構成するピニオンおよびサイドギヤなどの自動車用機械部品の製造方法およびその方法による自動車用機械部品に関するものである。 The present invention relates to a method for manufacturing automotive machine parts such as pinions and side gears constituting a differential gear of an automobile, and an automotive machine part by the method.
冷間鍛造その他の冷間加工といった冷間工法は自動車駆動系部品などの部品の製造コストダウンに対して有利な工法である。しかし、冷間加工後に直接的に浸炭処理を施して部品を製造する場合、冷間加工により浸炭初期に微細なオーステナイト粒が形成される影響により、浸炭時にかえって結晶粒が粗大化しやすいという問題を有する。結晶粒が粗大化すると部品強度が低下する場合があるので、結晶粒粗大化の抑制が不可欠である。この課題があるために、冷間工法のコストメリットを十分に活かすことができていないのが現状である。部品を冷間加工した後に浸炭温度まで加熱する過程で、冷間加工時のひずみの影響により、いったんフェライトが微細に再結晶する段階を経てからオーステナイトに変態することが浸炭初期の微細なオーステナイト粒形成を促している。 Cold methods such as cold forging and other cold working methods are advantageous for reducing the manufacturing cost of parts such as automobile drive system parts. However, when manufacturing parts by carburizing directly after cold working, the problem is that fine austenite grains are formed at the initial stage of carburizing due to cold working, so that the crystal grains tend to be coarsened instead of during carburizing. Have. Since the strength of parts may decrease when the crystal grains become coarse, it is essential to suppress the coarsening of the crystal grains. Due to this problem, the cost merit of the cold work method cannot be fully utilized. In the process of heating the parts to the carburizing temperature after cold working, the fine austenite grains in the initial stage of carburizing may be transformed to austenite once after the stage of fine recrystallization of ferrite due to the influence of strain during cold working. Encourage formation.
そこで、従来技術として冷間加工後に熱処理を行い、前述のフェライトが再結晶する段階における、フェライト再結晶の駆動力となるひずみエネルギーを解放させることを通じて、浸炭時の結晶粒粗大化を抑制する方法がある(例えば、非特許文献1参照)。しかし、この方法により新たな工程が追加されるため、部品コストダウンの観点からは利用しにくい。 Therefore, as a prior art, a method of suppressing grain coarsening during carburization by releasing heat and strain energy that becomes the driving force of ferrite recrystallization at the stage where the ferrite is recrystallized by performing heat treatment after cold working. (For example, refer nonpatent literature 1). However, since a new process is added by this method, it is difficult to use from the viewpoint of cost reduction of parts.
ところで、化学成分の限定、球状化焼なまし後のラメラーパーライト面積率の制限、球状化焼なまし条件の限定を加えることにより、冷間鍛造もしくは冷間加工を行い、さらに必要に応じた切削加工を行って、所定の形状に加工してから浸炭処理を行った場合、結晶粒粗大化を起こしにくい機械構造用鋼、およびその製造方法が提案されている(例えば、特許文献1参照。)。 By the way, by limiting the chemical composition, limiting the area ratio of lamellar pearlite after spheroidizing annealing, limiting spheroidizing annealing conditions, cold forging or cold working is performed, and further cutting is performed as necessary When a carburizing process is performed after processing and processing into a predetermined shape, a steel for mechanical structures that hardly causes crystal grain coarsening and a manufacturing method thereof have been proposed (for example, see Patent Document 1). .
さらに、マトリックス中に第2相の析出物を制御することで結晶粒の粗大化防止を目指した技術が数多く開発されて、多数の提案がある(例えば、特許文献2〜14参照)。しかし、上記提案のように、冷間鍛造もしくは他の冷間加工をした後に高温での直接浸炭を行った場合、浸炭後に整細粒を安定的に維持することは困難である。したがって、それらの条件を限定する必要がある。 Furthermore, many techniques aiming at preventing coarsening of crystal grains by controlling the precipitates of the second phase in the matrix have been developed, and many proposals have been made (for example, see Patent Documents 2 to 14). However, when the direct carburization at high temperature is performed after cold forging or other cold working as proposed above, it is difficult to stably maintain the fine grain after carburizing. Therefore, it is necessary to limit those conditions.
本発明が解決しようとする課題は、冷間鍛造した後、焼ならしや焼なましを施すことなく、950℃以上での浸炭焼入れする浸炭用部品であって、浸炭処理時に安定して結晶粒の粗大化を防止することのできる自動車用機械部品の製造方法およびこの製造方法による自動車用機械部品を提供することである。 The problem to be solved by the present invention is a carburizing part that is carburized and quenched at 950 ° C. or higher without cold-forging and then performing normalizing and annealing, and stably crystallizing during carburizing treatment. An object of the present invention is to provide a method for manufacturing a machine part for an automobile capable of preventing the coarsening of the grains and a machine part for an automobile by this production method.
上記の課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.13〜0.20%、Si:0.30〜0.70%、Mn:0.20〜0.50%、P:0.030%以下、S:0.030%以下、Cr:2.00〜2.50%、Al:0.010〜0.050%、Ti:0.02〜0.08%、Nb:0.02〜0.08%、B:0.0005〜0.0035%、N:0.020%以下を含有し、残部がFeおよび不可避不純物からなる鋼を鋳造後1250℃以上に加熱して鋼片に圧延した後、室温に冷却し、ついで、この鋼片を800〜1050℃の温度域に加熱した後、さらに鋼材に圧延し、次いで該鋼材を軟化熱処理した後、冷間鍛造にて自動車用機械部品の形状体に成形し、次いで焼ならしあるいは焼なましを行うことなく該形状体に950℃以上で浸炭を行った後、焼入焼戻しを施し、JIS G 0551に規定するオーステナイト結晶粒度番号7以上とすることを特徴とする自動車用機械部品の製造方法である。 The means of the present invention for solving the above-mentioned problems is, in the first means, in mass%, C: 0.13 to 0.20%, Si: 0.30 to 0.70%, Mn: 0.00. 20 to 0.50%, P: 0.030% or less, S: 0.030% or less, Cr: 2.00 to 2.50%, Al: 0.010 to 0.050%, Ti: 0.02 -0.08%, Nb: 0.02-0.08%, B: 0.0005-0.0035%, N: 0.020% or less, with the balance being Fe and inevitable impurities After heating to 1250 ° C. or higher and rolling into steel slabs, cooling to room temperature, heating the steel slabs to a temperature range of 800 to 1050 ° C., further rolling into steel materials, and then softening heat treatment of the steel materials After that, it is formed into the shape of a machine part for automobiles by cold forging, and then normalization or annealing is performed. Without carburizing at 950 ° C. or higher without subjecting the shaped body to quenching and tempering, the austenite grain size number specified in JIS G 0551 is 7 or more. .
そして第1の手段における軟化熱処理は、鋼材の最高温度を750〜800℃の温度域で保持した後、この最高温度から650℃までの温度域を毎時50℃以下の冷却速度で冷却することを特徴とする。 The softening heat treatment in the first means is to maintain the maximum temperature of the steel material in a temperature range of 750 to 800 ° C., and then cool the temperature range from this maximum temperature to 650 ° C. at a cooling rate of 50 ° C. or less per hour. Features.
削除 Delete
第2の手段では、質量%で、C:0.13〜0.20%、Si:0.30〜0.70%、Mn:0.20〜0.50%、P:0.030%以下、S:0.030%以下、Cr:2.00〜2.50%、Al:0.010〜0.050%、Ti:0.02〜0.08%、Nb:0.02〜0.08%、B:0.0005〜0.0035%、N:0.020%以下を含有し、残部がFeおよび不可避不純物からなる鋼であって、JIS G 0551に規定するオーステナイト結晶粒度番号7.0以上であり、該鋼からなる自動車用機械部品は、該鋼中に存在する析出物の組成がNbを含む炭化物であり、直径が100nm以上である析出物は1μm2当り0.05個未満であることを特徴とする自動車用機械部品である。 In the second means, by mass%, C: 0.13 to 0.20%, Si: 0.30 to 0.70%, Mn: 0.20 to 0.50%, P: 0.030% or less , S: 0.030% or less, Cr: 2.00-2.50%, Al: 0.010-0.050%, Ti: 0.02-0.08%, Nb: 0.02-0. Austenite grain size number defined in JIS G 0551, which is 08%, B: 0.0005 to 0.0035%, N: 0.020% or less, the balance being Fe and inevitable impurities. The automotive machine part made of the steel, which is 0 or more, is a carbide containing Nb in the composition of precipitates present in the steel, and less than 0.05 precipitates having a diameter of 100 nm or more per 1 μm 2. This is a machine part for automobiles.
第3の手段では、前述した第2の手段による自動車用機械部品であって、この部品はデファレンシャルギヤを構成するピニオンギヤおよびサイドギヤであることを特徴とする第2の手段の自動車用機械部品である。 In the third means, a motor vehicle mechanical parts of the second means mentioned above, this part is the second means automotive mechanical components, characterized in that the pinion gears and the side gears constituting the differential gear .
上記の手段とすることで、本発明の機械構造用鋼は、結晶粒度特性に優れ、疲労強度も高く優れており、自動車のデファレンシャルギヤを構成するピニオンおよびサイドギヤなどの自動車用機械部品として極めて優れた部品を製造することができる。 By adopting the above means, the steel for machine structural use of the present invention has excellent crystal grain size characteristics, excellent fatigue strength, and is extremely excellent as a machine part for automobiles such as pinions and side gears constituting an automobile differential gear. Parts can be manufactured.
本発明を実施するための形態について説明するにあたり、まず、上記の各請求項の手段における鋼の化学成分の限定理由について説明する。なお、化学成分における各元素の%は質量%で示す。 In describing the mode for carrying out the present invention, first, the reasons for limiting the chemical components of steel in the means of the above claims will be described. In addition,% of each element in a chemical component is shown by mass%.
C:0.13〜0.20%
Cは、自動車用機械部品として鋼材の焼入焼戻し後の強度もしくは浸炭焼入焼戻し後の芯部強度を確保するために必要な元素である。Cは0.13%未満では強度を確保できず、0.20%を超えると素材の硬度が上昇して加工性が低下する。そこで、Cは0.13〜0.20%とする。
C: 0.13-0.20%
C is an element necessary for securing the strength after quenching and tempering of a steel material or the core strength after carburizing, quenching and tempering as a machine part for automobiles. If C is less than 0.13%, the strength cannot be secured, and if it exceeds 0.20%, the hardness of the material increases and the workability decreases. Therefore, C is set to 0.13 to 0.20%.
Si:0.30〜0.70%
Siは、脱酸に必要な元素であるとともに、鋼に必要な強度、焼入性を付与し、また一定量以上の添加で浸炭異常層深さを浅くする効果がある。Siは、その効果を得るために、0.30%以上の添加が必要である。一方、Siは0.70%を超えると素材の硬度を高めるため、加工性を低下させる。そこで、Siは0.30〜0.70%とする。
Si: 0.30 to 0.70%
Si is an element necessary for deoxidation, imparts necessary strength and hardenability to steel, and has an effect of shallowing the carburizing abnormal layer depth by addition of a certain amount or more. In order to obtain the effect of Si, addition of 0.30% or more is necessary. On the other hand, if Si exceeds 0.70%, the hardness of the material is increased, so that the workability is lowered. Therefore, Si is 0.30 to 0.70%.
Mn:0.20〜0.50%
Mnは、焼入性を確保するために必要な元素である。しかし、Mnが0.20%未満では焼入性への効果は十分に得られない。一方、Mnは0.50%を超えると機械加工性を低下させると同時に、浸炭時の結晶粒の粗大化が発生し易くなる。そこで、Mnは0.20〜0.50%とする。
Mn: 0.20 to 0.50%
Mn is an element necessary for ensuring hardenability. However, if Mn is less than 0.20%, the effect on hardenability cannot be sufficiently obtained. On the other hand, if Mn exceeds 0.50%, the machinability deteriorates and at the same time coarsening of crystal grains during carburization tends to occur. Therefore, Mn is set to 0.20 to 0.50%.
P:0.030%以下
Pは、スクラップから含有される不可避な元素であるが、粒界に偏析して衝撃強度や曲げ強度などの特性を低下させる。そこで、Pは0.030%以下とする。
P: 0.030% or less P is an unavoidable element contained in scrap, but segregates at the grain boundary and lowers properties such as impact strength and bending strength. Therefore, P is set to 0.030% or less.
S:0.030%以下
Sは、被削性を向上させる元素であるが、非金属介在物であるMnSを生成して横方向の靱性および疲労強度を低下する。そこで、Sは0.030%以下とする。
S: 0.030% or less S is an element that improves machinability, but produces MnS that is a non-metallic inclusion and lowers the toughness and fatigue strength in the transverse direction. Therefore, S is set to 0.030% or less.
Cr:2.00〜2.50%
Crは、焼入性を確保するためと浸炭時の結晶粒の粗大化を防止するために必要な元素である。しかし、Crが2.00%未満ではこれらの効果を十分に得られない。一方、Crは2.50%を超えると浸炭を阻害し、また素材硬度を上昇させて機械加工性を低下させる。そこで、Crは2.00〜2.50%とする。
Cr: 2.00 to 2.50%
Cr is an element necessary for ensuring hardenability and preventing coarsening of crystal grains during carburizing. However, when Cr is less than 2.00%, these effects cannot be obtained sufficiently. On the other hand, when Cr exceeds 2.50%, carburization is inhibited, and the material hardness is increased to lower the machinability. Therefore, Cr is set to 2.00 to 2.50%.
Al:0.010〜0.050%
Alは、脱酸材として使用される元素である。この効果を得るため、Alは0.010%以上の添加が必要である。一方、Alは0.050%を超えて添加されると大型のアルミナ系介在物を形成し、疲労特性および加工性を低下する。そこで、Alは0.010〜0.050%とする。
Al: 0.010 to 0.050%
Al is an element used as a deoxidizing material. In order to obtain this effect, Al needs to be added in an amount of 0.010% or more. On the other hand, if Al is added in an amount exceeding 0.050%, large alumina inclusions are formed, and fatigue characteristics and workability are deteriorated. Therefore, Al is made 0.010 to 0.050%.
Ti:0.02〜0.08%
Tiは、炭化物を形成し、結晶粒粗大化を防止する効果をもたらす。さらに、TiはNと結合することにより、BがNと結合してBNとなることを防ぐ。その効果を得る場合には、Tiは0.020%以上添加される必要がある。一方、Tiは0.08%を超えて添加されると機械加工性を損なう。そこで、Tiは0.02〜0.08%とする。
Ti: 0.02 to 0.08%
Ti forms carbides and has the effect of preventing crystal grain coarsening. Further, Ti bonds to N, thereby preventing B from binding to N and becoming BN. In order to obtain the effect, Ti needs to be added by 0.020% or more. On the other hand, if Ti is added over 0.08%, the machinability is impaired. Therefore, Ti is made 0.02 to 0.08%.
Nb:0.02〜0.08%
Nbは、炭化物を形成し、結晶粒粗大化防止効果をもたらし、特に鋼中に微細に分散したナノオーダーサイズのNbCまたはNbTiCが結晶粒の成長を抑制する。しかし、Nbは0.02%未満では、その効果は得られない。一方、Nbは0.20%を超えると析出物の量が過剰となり加工性を低下する。そこで、Nbは0.02〜0.08%とする。
Nb: 0.02 to 0.08%
Nb forms carbides and has an effect of preventing grain coarsening, and particularly nano-order-sized NbC or NbTiC finely dispersed in steel suppresses the growth of crystal grains. However, if Nb is less than 0.02%, the effect cannot be obtained. On the other hand, if Nb exceeds 0.20%, the amount of precipitates becomes excessive and workability is lowered. Therefore, Nb is made 0.02 to 0.08%.
B:0.0005〜0.0035%
Bは、極く少量の含有によって鋼の焼入性を著しく向上させる元素であり、添加することによって他の合金元素の添加量を減らすことができるため、鋼材コストを下げるのに有効な元素である。しかし、Bは0.0005%未満では焼入性の向上効果が小さい。一方、Bは0.0035%を超えると強度を低下させる。そこで、Bは0.0005〜0.0035%とする。
B: 0.0005 to 0.0035%
B is an element that significantly improves the hardenability of steel when contained in a very small amount, and since it can reduce the amount of other alloy elements added, it is an element effective in reducing the cost of steel materials. is there. However, if B is less than 0.0005%, the effect of improving hardenability is small. On the other hand, when B exceeds 0.0035%, the strength is lowered. Therefore, B is set to 0.0005 to 0.0035%.
N:0.020%以下
Bは、鋼中に固溶することによって上記した効果を発揮するが、Bの添加時にfree−Nが存在すると、BNを生成してしまい、上記効果を発揮できなくなるため、Bの添加前にTiを添加し、鋼中のfree−NをTiNの形で固定する必要がある。しかし、Nは多すぎるとTiN量が多くなり、疲労強度、衝撃強度、加工性を低下する。そこで、Nは0.020%以下とする。
N: 0.020% or less B exhibits the effect described above by dissolving in steel, but if free-N is present when B is added, BN is generated and the effect cannot be exhibited. Therefore, it is necessary to add Ti before addition of B and fix the free-N in the steel in the form of TiN. However, when N is too much, the amount of TiN increases, and fatigue strength, impact strength, and workability deteriorate. Therefore, N is set to 0.020% or less.
鋼の鋳造材を1250℃以上に加熱後、鋼片に圧延して冷却し、ついでこの鋼片を800℃〜1050℃の温度域に加熱する理由
鋼の鋳造材を1250℃以上に加熱することにより、Nb炭化物やNbTi炭化物を固溶させて、ついで冷却した鋼片を800℃〜1050℃の温度域に加熱することで、950℃の浸炭処理に供する段階ではナノオーダーから数十ナノオーダーと微細なNb炭化物、NbTi炭化物を多数分散させている。1250℃未満ではNb炭化物、NbTi炭化物が充分に固溶せず、鋳造時に析出した100nm以上の粗大なNb系炭化物が残留する。この100nm以上の粗大なNb系炭化物が残留すると、結晶粒粗大化防止に有効なNb系炭化物が少なくなるのと同時に、800℃〜1050℃の加熱時や浸炭時にオストワルド成長して、周辺の微細Nb系炭化物を減少させることで、分散状態が不均一となり、結晶粒度特性は劣化する。そこで、加熱温度は1250℃以上とし、好ましくは、1270℃以上とする。さらに、鋼片圧延後に1050℃以上の温度域に加熱した場合、Nb系炭化物は成長して、結晶粒の粗大化防止効果が小さくなる。一方、鋼片圧延後に800℃以下に加熱後に圧延した場合は、圧延後の結晶粒が小さくなり、浸炭時の結晶粒度特性を劣化させる。そこで、鋼片を800℃〜1050℃の温度域に加熱する。
The reason why the steel cast material is heated to 1250 ° C or higher, rolled into a steel slab, cooled, and then heated to a temperature range of 800 ° C to 1050 ° C. The steel cast material is heated to 1250 ° C or higher. By heating Nb carbide and NbTi carbide to a solid solution, and then heating the cooled steel piece to a temperature range of 800 ° C. to 1050 ° C., in the stage where it is subjected to carburizing treatment at 950 ° C. Many fine Nb carbides and NbTi carbides are dispersed. If it is less than 1250 degreeC, Nb carbide | carbonized_material and NbTi carbide | carbonized_material will not fully dissolve, but coarse Nb type carbide | carbonized_material of 100 nm or more which precipitated at the time of casting will remain. When coarse Nb carbide of 100 nm or more remains, Nb carbide effective for preventing grain coarsening decreases, and at the same time, Ostwald growth occurs during heating at 800 ° C. to 1050 ° C. or carburization, and the surrounding fine particles By reducing Nb-based carbides, the dispersion state becomes non-uniform and the crystal grain size characteristics deteriorate. Therefore, the heating temperature is 1250 ° C. or higher, preferably 1270 ° C. or higher. Furthermore, when heated to a temperature range of 1050 ° C. or higher after steel slab rolling, the Nb-based carbide grows and the effect of preventing the coarsening of crystal grains is reduced. On the other hand, when rolling after heating to 800 ° C. or less after steel slab rolling, the crystal grains after rolling become smaller and the grain size characteristics at the time of carburizing are deteriorated. Therefore, the steel slab is heated to a temperature range of 800 ° C to 1050 ° C.
750℃〜800℃の温度域で保持した後、最高温度から650℃までの温度域を毎時50℃以下の速度で冷却する理由
結晶粒度特性を向上させるには、軟化熱処理後のミクロ組織を均一な球状化組織にする必要がある。均一な球状化組織を得るためには、750℃〜800℃の温度域から650℃の温度域までを毎時50℃以下の速度で冷却する必要がある。750℃未満および800℃を超える温度域から冷却すると均一な球状化組織は得られない。毎時50℃を超える速度で冷却しても、均一な球状化組織は得られないからである。
The reason why the temperature range from the maximum temperature to 650 ° C is cooled at a rate of 50 ° C or less after being held in the temperature range of 750 ° C to 800 ° C. To improve the grain size characteristics, the microstructure after the softening heat treatment should be uniform. It is necessary to make a spheroidized structure. In order to obtain a uniform spheroidized structure, it is necessary to cool from a temperature range of 750 ° C. to 800 ° C. to a temperature range of 650 ° C. at a rate of 50 ° C. or less per hour. When cooled from a temperature range below 750 ° C. and above 800 ° C., a uniform spheroidized structure cannot be obtained. This is because a uniform spheroidized structure cannot be obtained even when cooled at a rate exceeding 50 ° C per hour.
Nbを含む炭化物の直径が100nm以上であるこれらの析出物が1μm2当り0.05個未満とする理由
100nm以上の析出物が1μm2当り0.05個以上の場合は、結晶粒粗大化防止に有効なNb系炭化物が不足し、かつ、800℃〜1050℃の加熱時や浸炭時にオストワルド成長して、周辺の微細Nb系炭化物を減少させることで、分散状態が不均一となり、結晶粒度特性は劣化する。一方、100nm以上の析出物が1μm2当り0.05個未満の場合は、結晶粒粗大化防止に有効なNb系炭化物を確保できるのと同時に、均一に分散させることが出来るために優れた結晶粒度特性が得られるからである。
The reason why the diameter of carbides containing Nb is 100 nm or more is less than 0.05 per 1 μm 2 When the number of precipitates of 100 nm or more is 0.05 or more per 1 μm 2 , prevention of grain coarsening The Nb-based carbides that are effective for carbon dioxide are insufficient, and Ostwald growth is performed during heating or carburizing at 800 ° C. to 1050 ° C. to reduce the surrounding fine Nb-based carbides. Deteriorates. On the other hand, when the number of precipitates of 100 nm or more is less than 0.05 per 1 μm 2, Nb-based carbide effective for preventing grain coarsening can be secured, and at the same time, excellent crystals can be dispersed. This is because particle size characteristics can be obtained.
表1に示す比較鋼のNo.A〜No.Hの8種および発明鋼のNo.I〜No.Mの5種のそれぞれの化学成分を含有し、残部Feおよび不可避不純物からなる鋼を電気炉にて溶解し、精錬後に鋳造を行い、鋼塊またはブルームに製造した。 No. of comparative steel shown in Table 1. A-No. 8 types of H and No. of invention steel. I-No. Steels containing each of the five chemical components of M and consisting of the remainder Fe and inevitable impurities were melted in an electric furnace, cast after refining, and manufactured into a steel ingot or bloom.
上記で製造した鋼塊又はブルームを、表2に示す各鋼片圧延の圧延温度の範囲に加熱した後、熱間圧延により鋼片に圧延を行って、そのまま室温まで冷却した。ついで、表2に示す棒鋼圧延の加熱温度の範囲に加熱して棒鋼圧延を行って棒鋼に製造した。さらに、これらの棒鋼を切断後、表2に示す軟化熱処理の最高温度に加熱して、この温度から650℃まで表2に示す冷却速度で軟化熱処理を施した。さらに冷間鍛造にてピニオンおよびサイドギヤに成形した後、これらに焼ならしや焼なましを行うことなく950℃にて浸炭焼入焼戻しを実施した。これらにより製造したピニオンおよびサイドギヤについて、ギヤの歯元部の結晶粒度の観察を実施し、これらの粒度No.および100nm以上のNb分散粒子数を1μm2当たりの個数を表2に示した。さらに、ピニオンおよびサイドギヤの疲労試験を実施し、104サイクルと105サイクルでの強度比(ピニオンはNo.1との比較、サイドギヤはNo.2との比較)を調査して同じく表2に示した。 The steel ingot or bloom produced above was heated to the range of rolling temperature of each steel slab rolling shown in Table 2, and then the steel slab was rolled by hot rolling and cooled to room temperature as it was. Subsequently, it heated to the range of the heating temperature of steel bar rolling shown in Table 2, and bar steel rolling was performed, and it manufactured to the steel bar. Furthermore, after cutting these steel bars, they were heated to the maximum softening heat treatment temperature shown in Table 2, and softening heat treatment was performed from this temperature to 650 ° C. at the cooling rate shown in Table 2. Further, after forming into pinions and side gears by cold forging, carburizing and quenching and tempering were performed at 950 ° C. without performing normalization or annealing. With respect to the pinion and the side gear manufactured by these, the crystal grain size of the tooth root part of the gear was observed. Table 2 shows the number of Nb dispersed particles of 100 nm or more per 1 μm 2 . Further, a fatigue test of the pinion and the side gear was conducted, and the strength ratio between the 10 4 cycle and the 10 5 cycle (comparison with the No. 1 for the pinion and the No. 2 for the side gear) was investigated, and Table 2 also shows Indicated.
表2において、No.12は発明鋼の鋼種Iであり、No.13およびNo.16は発明鋼のJであり、No.20は発明鋼の鋼種Kであり、No.24は発明鋼の鋼種Lであり、No.26は発明鋼の鋼種Mである。これらは本願発明の全ての請求項に係る条件、すなわち表2に示す条件である、鋼片圧延、棒鋼圧延、軟化熱処理温度、粒度No.とNb分散粒子数の全てを満足するものである。これに対し、No.14、No.15、No.17、No.18、No.19、No.21、No.22、No.23、No.25は、本願の発明鋼の表1に示す成分組成を示す鋼種であっても、本願発明の全ての請求項に係る条件、すなわち表2に示す、鋼片圧延、棒鋼圧延、軟化熱処理温度、粒度No.とNb分散粒子数の、いずれかの条件を満足しないものであり、これらの満足しない条件は網かけで示している。 In Table 2, no. No. 12 is steel type I of the invention steel. 13 and no. 16 is J of the invention steel. No. 20 is the steel type K of the invented steel. 24 is a steel type L of the invention steel. 26 is a steel type M of the invention steel. These are the conditions according to all claims of the present invention, that is, the conditions shown in Table 2, steel slab rolling, bar rolling, softening heat treatment temperature, grain size No. And Nb dispersed particles are all satisfied. In contrast, no. 14, no. 15, no. 17, no. 18, no. 19, no. 21, no. 22, no. 23, no. 25 is a steel type showing the component composition shown in Table 1 of the invention steel of the present application, the conditions according to all claims of the present invention, that is, the steel slab rolling, bar rolling, softening heat treatment temperature shown in Table 2, Particle size No. And the number of Nb dispersed particles do not satisfy any of the conditions, and these unsatisfied conditions are indicated by shading.
これらに対し、表2のNo.1〜11の鋼種A〜Hは、本発明鋼の表1に示す化学成分において、表1に網かけで示すように、いずれかの化学成分の範囲が外れるものであり、その結果、表2に示す、鋼片圧延、棒鋼圧延、軟化熱処理温度、粒度No.とNb分散粒子数のいずれかが本願発明の条件から外れるものであり、特に表2のNo.1〜11の鋼種A〜Hは粒度No.が7.0未満で十分に微細化されていない。 On the other hand, in Table 2, No. Steel types A to H of Nos. 1 to 11 are the chemical components shown in Table 1 of the steel of the present invention, as shown by the shaded area in Table 1. Steel slab rolling, steel bar rolling, softening heat treatment temperature, grain size No. Or the number of dispersed Nb particles is out of the conditions of the present invention. Steel types A to H of Nos. 1 to 11 have a particle size No. Is less than 7.0 and is not sufficiently miniaturized.
以上のように、本発明の実施例の各鋼は、結晶粒度特性に優れ、ギヤの疲労試験において、表2に見られるように、疲労強度が高く優れており、疲労強度に優れた自動車のデファレンシャルギヤを構成するピニオンおよびサイドギヤなどの自動車用機械部品であることが確認された。 As described above, each steel of the examples of the present invention is excellent in grain size characteristics, and in the gear fatigue test, as shown in Table 2, the fatigue strength is high and excellent. It was confirmed that these were machine parts for automobiles such as pinions and side gears constituting the differential gear.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013071332A JP6211784B2 (en) | 2013-03-29 | 2013-03-29 | Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013071332A JP6211784B2 (en) | 2013-03-29 | 2013-03-29 | Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014194060A JP2014194060A (en) | 2014-10-09 |
JP6211784B2 true JP6211784B2 (en) | 2017-10-11 |
Family
ID=51839486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013071332A Active JP6211784B2 (en) | 2013-03-29 | 2013-03-29 | Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6211784B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6192519B2 (en) * | 2013-12-05 | 2017-09-06 | 山陽特殊製鋼株式会社 | Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method |
CN104831022A (en) * | 2015-05-11 | 2015-08-12 | 吴芳吉 | Gear carburizing process |
CN105296718A (en) * | 2015-11-20 | 2016-02-03 | 沈阳黎明航空发动机(集团)有限责任公司 | Heat treatment method for improving hardness of core after carburizing of 16Cr3NiWMoVNbE steel |
CN107663613A (en) * | 2016-07-27 | 2018-02-06 | 株式会社日本制钢所 | The manufacture method of NiCrMo steel and NiCrMo steel |
CN106755773B (en) * | 2016-12-02 | 2021-02-12 | 哈尔滨东安发动机(集团)有限公司 | Softening method for carburized region of CSS-42L gear steel after carburization |
JP7015181B2 (en) * | 2018-02-01 | 2022-02-02 | 日立Astemo株式会社 | Sliding member |
CN109609893B (en) * | 2019-01-22 | 2020-12-29 | 北京机电研究所有限公司 | Method for refining tissue after vacuum carburization |
CN110804690A (en) * | 2019-12-09 | 2020-02-18 | 伊莱特能源装备股份有限公司 | Manufacturing process for improving ultrasonic detection qualification rate of 42CrMo forge piece |
CN112981236B (en) * | 2021-01-27 | 2022-10-25 | 江阴兴澄特种钢铁有限公司 | Steel for inner raceway of constant velocity universal joint and production method thereof |
CN113512628B (en) * | 2021-04-09 | 2022-09-27 | 河南中原特钢装备制造有限公司 | Annealing process for improving grain size of 20Cr13 forging stock |
CN114032462B (en) * | 2021-11-09 | 2023-02-24 | 河北工业大学 | High-strength and high-toughness low-alloy cast steel and preparation method thereof |
CN115976425A (en) * | 2023-01-04 | 2023-04-18 | 上海纳铁福传动系统有限公司 | Low alloy steel and carburizing and quenching process thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3915710B2 (en) * | 2003-02-07 | 2007-05-16 | 住友金属工業株式会社 | Carburized differential gear with excellent low cycle impact fatigue resistance |
JP4507851B2 (en) * | 2003-12-05 | 2010-07-21 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet and manufacturing method thereof |
JP5495648B2 (en) * | 2009-03-17 | 2014-05-21 | 山陽特殊製鋼株式会社 | Machine structural steel with excellent grain coarsening resistance and method for producing the same |
JP5503170B2 (en) * | 2009-03-23 | 2014-05-28 | 株式会社神戸製鋼所 | Case-hardened steel with excellent maximum grain reduction characteristics |
-
2013
- 2013-03-29 JP JP2013071332A patent/JP6211784B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014194060A (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6211784B2 (en) | Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method | |
JP5771609B2 (en) | High toughness non-tempered rolled steel and method for producing the same | |
JP4808828B2 (en) | Induction hardening steel and method of manufacturing induction hardening steel parts | |
KR101965520B1 (en) | Rolled steel bar or rolled wire material for cold-forged component | |
WO2017039012A1 (en) | Steel wire for springs, and spring | |
JP6432932B2 (en) | High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same | |
JP6226085B2 (en) | Rolled steel bar or wire rod for cold forging parts | |
JP6794012B2 (en) | Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance | |
JP5495648B2 (en) | Machine structural steel with excellent grain coarsening resistance and method for producing the same | |
JP2010144226A (en) | Rolled steel material to be induction-hardened and method for manufacturing the same | |
WO2017115842A1 (en) | Case-hardened steel, carburized component, and process for producing case-hardened steel | |
JP6064047B2 (en) | Steel wire rod excellent in strength and ductility and manufacturing method thereof | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
TW201538745A (en) | High carbon hot-rolled steel sheet and manufacturing method thereof | |
JP5871085B2 (en) | Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening | |
JP5459064B2 (en) | Rolled steel for induction hardening and method for producing the same | |
JP2015183265A (en) | Method for producing steel material excellent in cold workability or machinability | |
JP6100676B2 (en) | Spheroidizing heat treatment method for alloy steel | |
JP4600196B2 (en) | High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof | |
JP6192519B2 (en) | Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method | |
WO2012011598A1 (en) | High-carbon hot-rolled steel sheet having excellent fine blanking properties and process for production thereof | |
JP5965117B2 (en) | Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness | |
JP2015134945A (en) | Carburizing steel | |
TWI510647B (en) | High carbon hot-rolled steel sheet and method for producing the same | |
JP6322973B2 (en) | High-strength steel with excellent shock absorption characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170914 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6211784 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |