JP6206905B2 - 3D fiber structure - Google Patents
3D fiber structure Download PDFInfo
- Publication number
- JP6206905B2 JP6206905B2 JP2013122402A JP2013122402A JP6206905B2 JP 6206905 B2 JP6206905 B2 JP 6206905B2 JP 2013122402 A JP2013122402 A JP 2013122402A JP 2013122402 A JP2013122402 A JP 2013122402A JP 6206905 B2 JP6206905 B2 JP 6206905B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- fiber
- short
- fiber structure
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 78
- 239000000463 material Substances 0.000 claims description 37
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 238000005507 spraying Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 239000007921 spray Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000012159 carrier gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000004745 nonwoven fabric Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Nonwoven Fabrics (AREA)
- Inert Electrodes (AREA)
Description
本発明は、基材の表面に短繊維を吹き付けることにより、基材に対して垂直な3次元構造を有した3次元繊維構造体に関するものである。 The present invention relates to a three-dimensional fiber structure having a three-dimensional structure perpendicular to a base material by spraying short fibers on the surface of the base material.
従来、短繊維に結着成分を付与して、この短繊維を基材に結着固定した繊維構造体が知られている。このような繊維構造体は、電気・電子・化学用途、土木・建築用途、自動車・航空機用途等に用いることができる可能性を有しているが、その多孔質繊維構造の表面積または密度が低い点において大きな課題とされてきた。 Conventionally, a fiber structure is known in which a binding component is added to a short fiber, and the short fiber is bonded and fixed to a base material. Such fiber structures have the potential to be used for electrical / electronic / chemical applications, civil engineering / architecture applications, automobile / aircraft applications, etc., but the surface area or density of the porous fiber structure is low. This has been a major issue.
繊維構造体の製作方法としては、加熱加圧方法、機械式加工植毛方法、静電電気植毛方法などが利用されている。 As a manufacturing method of the fiber structure, a heating and pressurizing method, a mechanical processing flocking method, an electrostatic electric flocking method and the like are used.
加熱加圧方法として、例えば、炭素長繊維または短繊維を抄造後、有機高分子で結着させ、これを高温で焼成することにより有機高分子を炭素化させたシート状の多孔質基材とすることが提案されている(例えば、特許文献1参照。)。 As a heating and pressing method, for example, a sheet-like porous substrate obtained by carbonizing an organic polymer by making a carbon long fiber or a short fiber, binding with the organic polymer, and firing this at a high temperature; (For example, refer to Patent Document 1).
静電電気植毛方法として、例えば、接着剤層を有する網状または格子状基材に、静電気力を利用してパイルを植え付けるフロック加工が知られており(例えば、特許文献2参照。)、より具体的には、独立発泡プラスチックの片面または両面に接着剤を塗布して炭素繊維の短繊維を連続式電気植毛することが提案されている(例えば、特許文献3参照。)。 As an electrostatic electro-flocking method, for example, a flocking process in which a pile is planted on a net-like or lattice-like substrate having an adhesive layer by using electrostatic force is known (for example, see Patent Document 2), and more specifically. Specifically, it has been proposed to apply continuous electrical flocking of carbon fiber short fibers by applying an adhesive to one or both sides of an independently foamed plastic (see, for example, Patent Document 3).
また、植毛用パイルの散布装置として、粉体塗料と同様に、植毛用パイルを散布ガンによって接着剤層を設けた被植毛物に対して散布する方法が提案されている(例えば、特許文献4参照。)。 Moreover, as a spraying device for flocking piles, a method has been proposed in which a flocking pile is sprayed on a planted object provided with an adhesive layer with a spraying gun, as in the case of powder coating (for example, Patent Document 4). reference.).
従来の加熱加圧方法、機械式加工植毛方法、静電電気植毛方法などを利用して作成した繊維構造体は、植毛する短繊維の高密度化及び多表面積化が困難であった。本発明者らはこのような現状に鑑み、短繊維をより高密度で植毛した3次元繊維構造体を開発すべく研究を行って、本発明を成すに至ったものである。 In the fiber structure prepared by using the conventional heating and pressing method, mechanical processing flocking method, electrostatic electric flocking method and the like, it is difficult to increase the density and the surface area of the short fibers to be flocked. In view of such a current situation, the present inventors have conducted research to develop a three-dimensional fiber structure in which short fibers are implanted at a higher density, and have achieved the present invention.
本発明の3次元繊維構造体は、基材に短繊維を吹き付けることにより同短繊維を基材に結合させて成る3次元繊維構造体であって、基材は、ゲル状の固体または空隙を有する多孔質体であって、固体の表面または空隙部分に短繊維を刺し込ませることにより、短繊維を基材に結合させて成るものである。 The three-dimensional fiber structure of the present invention is a three-dimensional fiber structure obtained by bonding short fibers to a base material by spraying the short fibers on the base material, and the base material is a gel-like solid or void. A porous body having short fibers bonded to a base material by inserting the short fibers into a solid surface or void portion.
また、本発明の3次元繊維構造体は、以下の点にも特徴を有するものである。
(1)多孔質体が不織布であること。
(2)不織布と、基材に短繊維を吹き付ける吹付装置を1000Pa以下の減圧環境下として、不織布に短繊維を20〜300m/secの速度で吹き付けること。
(3)吹付装置による短繊維の吹き付け方向を、不織布の面方向と直交する方向とすること。
The three-dimensional fiber structure of the present invention is also characterized by the following points.
(1) The porous body is a nonwoven fabric.
(2) The non-woven fabric and the spray device for spraying the short fibers on the substrate are placed under a reduced pressure environment of 1000 Pa or less, and the short fibers are sprayed on the non-woven fabric at a speed of 20 to 300 m / sec.
(3) The direction in which the short fibers are sprayed by the spraying device is a direction orthogonal to the surface direction of the nonwoven fabric.
本発明によれば、基材に短繊維を高密度で吹き付けた3次元繊維構造体とすることができ、高密度で多表面積の3次元繊維構造体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can be set as the three-dimensional fiber structure which sprayed the short fiber on the base material with high density, and can provide the three-dimensional fiber structure with high density and many surface areas.
本発明の3次元繊維構造体は、基材に短繊維を吹き付けることにより同短繊維を基材に結合させて成る3次元繊維構造体である。 The three-dimensional fiber structure of the present invention is a three-dimensional fiber structure formed by bonding short fibers to a base material by spraying the short fibers on the base material.
基材としては、ゲル状の固体または空隙を有する多孔質体であることが望ましく、空隙を有する多孔質体としては、具体的には、繊維ウェブ、シート、ペーパー、多孔状発泡体、不織布などの多孔状、網状または格子状の物体であることが望ましい。 The base material is preferably a gel-like solid or a porous body having voids. Specific examples of the porous body having voids include fiber webs, sheets, papers, porous foams, and nonwoven fabrics. A porous, net-like or lattice-like object is desirable.
短繊維は、繊維状としたセラミックス、炭素、金属、ガラス、樹脂などであればよい。短繊維の「短」とは基材のサイズと比較して短いということであり、基材における最大長の寸法よりも短い繊維体を「短繊維」と呼ぶこととするが、現実的には、長くても2〜3cm以下であり、望ましくは1cm以下である。 The short fiber may be a fibrous ceramic, carbon, metal, glass, resin, or the like. “Short” of short fiber means that it is short compared to the size of the base material, and a fiber body shorter than the maximum length dimension in the base material is called “short fiber”. It is 2 to 3 cm or less at the longest, preferably 1 cm or less.
短繊維は、吹付装置を用いて基材に吹き付けられており、吹付装置は、噴射ノズルとキャリヤガスとともに短繊維を噴射ノズルから吹き出し可能としている。基材と吹付装置とは、1000Pa以下に減圧可能としたチャンバ内で、吹付装置の噴射ノズルを基材に向けて配置し、チャンバ内を1000Pa以下に減圧した減圧環境下として、基材への短繊維の吹き付けを行っている。 The short fiber is sprayed on the base material using a spraying device, and the spraying device can blow the short fiber from the spray nozzle together with the spray nozzle and the carrier gas. The base material and the spraying device are arranged in a chamber that can be depressurized to 1000 Pa or less, the spray nozzle of the spraying device is arranged facing the base material, and the inside of the chamber is depressurized to 1000 Pa or less, We are spraying short fibers.
特に、噴射ノズルは、短繊維の吹き付け方向を基材の面方向と直交する方向としており、基材はX−Yテーブルなどの移動手段によって、繊維の吹き付け方向と直交する方向に移動可能とすることによってスキャニングを行い、面状に吹き付け可能としている。なお、基材ではなく噴射ノズルを移動させてスキャニングを行い、短繊維を基材に面状に吹き付け可能としてもよい。 In particular, the spray nozzle has the short fiber blowing direction orthogonal to the substrate surface direction, and the substrate can be moved in a direction orthogonal to the fiber blowing direction by moving means such as an XY table. By doing so, it can be sprayed in a planar shape. It should be noted that scanning may be performed by moving the spray nozzle instead of the base material so that the short fibers can be sprayed onto the base material in a planar shape.
特に、基材がフェルトなどの不織布で、短繊維がカーボン繊維であって、吹き付けを行った場合、吹き付けられたカーボン繊維は、不織布の空隙部分に刺し込まれるとともに不織布の繊維と短繊維とが絡み合って強固に結合し、基材に対して垂直に植毛した3次元構造をもつ多孔質繊維構造体となった3次元繊維構造体とすることができる。 In particular, when the base material is a nonwoven fabric such as felt and the short fibers are carbon fibers and sprayed, the sprayed carbon fibers are pierced into the voids of the nonwoven fabric and the nonwoven fabric fibers and short fibers are The three-dimensional fiber structure can be made into a porous fiber structure having a three-dimensional structure in which the fibers are entangled and firmly bonded to each other and flocked perpendicularly to the base material.
また、基材がゲル状の固体のように空隙を有していない場合であっても、ゲルに短繊維を刺し込んで植毛またはコーティングするこができる。 Further, even when the substrate does not have voids like a gel-like solid, the short fibers can be inserted into the gel for flocking or coating.
なお、短繊維を基材に吹き付ける速度としては、20〜300m/secであることが好ましく、望ましくは、50〜150m/secである。 In addition, as a speed | rate which sprays a short fiber on a base material, it is preferable that it is 20-300 m / sec, and it is 50-150 m / sec desirably.
このように、ゲル状の固体の表面または多孔質体の空隙部分に短繊維を刺し込ませることにより短繊維を基材に結合させて3次元繊維構造体とすることにより、短繊維の高密度化及び多表面積化を図ることができる。 In this way, the short fiber is bonded to the base material by inserting the short fiber into the surface of the gel-like solid or the void portion of the porous body to obtain a high density of the short fiber. And a large surface area can be achieved.
基材としては、厚み2mmのカーボンフェルト(商品名:TMIL 2F)を使用し、短繊維としては、東レ株式会社の炭素ミルドファイバー 直径7μm、長さ:150μm(商品名:トレカMLD-1000)を使用した。 The base material is 2mm thick carbon felt (trade name: TMIL 2F), and the short fiber is Toray's carbon milled fiber diameter 7μm, length: 150μm (trade name: Trading Card MLD-1000). used.
吹付装置は、N2ガスをキャリヤガスとし、キャリヤガスと短繊維と混合するとともにキャリヤガスを5L/minで幅0.4mm、長さ10mmのリット型ノズルから吹き出し可能とし、10pa程度までに真空を引いたチャンバ内の基材に対してスキャンしながら吹き付けた。吹付装置の噴射ノズルの先端から基材までの距離は15mmとし、噴射ノズルは基材に対して垂直で位置させた。ノズルのスキャン速度は1秒間で1mm、スキャン数は往復1回とした。 The spraying device uses N 2 gas as the carrier gas, mixes the carrier gas and short fibers, and allows the carrier gas to be blown out from a lit nozzle with a width of 0.4 mm and a length of 10 mm at 5 L / min. The substrate in the drawn chamber was sprayed while scanning. The distance from the tip of the spray nozzle of the spraying device to the substrate was 15 mm, and the spray nozzle was positioned perpendicular to the substrate. The nozzle scanning speed was 1 mm per second, and the number of scans was one round trip.
本発明で形成した3次元繊維構造体の断面を図1に示す。3次元繊維構造体は、下層側からカーボンフェルトの基材層、短繊維がカーボンフェルト基材層の中まで打ち込まれることで形成された複合層、そして、カーボンフェルトの基材上で短繊維同士が摩擦力で絡み合って結合して積み上がった短繊維層で構成した3層構造となっている。中間の複合層は約0.6mmの厚みで、上層の積み上がった短繊維層は、0.6mmであった。吹き付けた短繊維は、基材に対して垂直方向に打ち込まれた3次元構造を有していることを分かる。 A cross section of the three-dimensional fiber structure formed in the present invention is shown in FIG. The three-dimensional fiber structure consists of a carbon felt base layer from the lower layer side, a composite layer formed by driving short fibers into the carbon felt base layer, and short fibers on the carbon felt base. Has a three-layer structure composed of short fiber layers that are intertwined and joined by frictional force. The intermediate composite layer was about 0.6 mm thick, and the upper short fiber layer was 0.6 mm. It can be seen that the sprayed short fibers have a three-dimensional structure driven in a direction perpendicular to the substrate.
3次元繊維構造体では、基材であるカーボンフェルトの炭素繊維間の距離が30〜150μm程度であることに比べ、中間の複合層での炭素繊維間の距離は5〜50μmとなり、約3倍以上短くなっている。即ち、単位体積当に対して、3倍以上の高い密度や超多表面積が実現している。 In the three-dimensional fiber structure, the distance between the carbon fibers of the carbon felt substrate is about 30 to 150 μm, and the distance between the carbon fibers in the intermediate composite layer is 5 to 50 μm, which is about 3 times as much. It is shorter. That is, the density and the super-multi-surface area are more than 3 times as high as the unit volume.
噴射ノズルのスキャン速度、スキャン数、キャリヤガスの量などを制御することで、3次元繊維構造体では、基材で構成される基材層と、その基材に打ち込まれることで形成された複合層の2層構造とすることもできる。さらに、基材の厚みや形状を選択することで、複合層のみで構成した3次元繊維構造体とすることもできる。 By controlling the scanning speed of the injection nozzle, the number of scans, the amount of carrier gas, etc., in a three-dimensional fiber structure, a composite layer formed by being driven into the base material layer composed of the base material A two-layer structure of layers can also be used. Furthermore, it can also be set as the three-dimensional fiber structure comprised only by the composite layer by selecting the thickness and shape of a base material.
基材としては、厚み2mmのカーボンフェルト(商品名:TMIL 2F)を使用し、短繊維としては、東レ株式会社の炭素ミルドファイバー 直径7μm、長さ:150μm(商品名:トレカMLD-1000)を使用した。 The base material is 2mm thick carbon felt (trade name: TMIL 2F), and the short fiber is Toray's carbon milled fiber diameter 7μm, length: 150μm (trade name: Trading Card MLD-1000). used.
吹付装置は、0.4MPaの高圧N2ガスをキャリヤガスとし、キャリヤガスと短繊維と混合するとともにキャリヤガスを5L/minで幅0.4mm、長さ10mmのリット型ノズルから吹き出し可能とし、10pa程度までに真空を引いたチャンバ内の基材に対してスキャンしながら吹き付けた。 Spray devices, the high-pressure N 2 gas 0.4MPa and a carrier gas, the carrier gas width 0.4mm at 5L / min, and can blowoff from slit type nozzle length 10mm while mixed with a carrier gas and the short fibers, about 10pa The substrate was sprayed while scanning with respect to the substrate in the chamber to which a vacuum was applied.
本実施例では、吹付装置の噴射ノズルの先端から基材までの距離は30mmとし、噴射ノズルは基材に対して垂直で位置させた。ノズルのスキャン速度は1秒間で1〜2mm、スキャン数は往復2回とした。 In this example, the distance from the tip of the spray nozzle of the spraying device to the substrate was 30 mm, and the spray nozzle was positioned perpendicular to the substrate. The nozzle scanning speed was 1 to 2 mm per second, and the number of scans was 2 reciprocations.
実施例1と同一の構造体の3次元繊維構造体を実現した。 A three-dimensional fiber structure having the same structure as in Example 1 was realized.
本発明の3次元繊維構造体は、電極材、断熱材、耐熱材、消臭材・抗菌材・防黴材、電磁波シールド材、繊維強化プラスチックのバース基材などの用途に用いることができる。 The three-dimensional fiber structure of the present invention can be used for applications such as electrode materials, heat insulating materials, heat-resistant materials, deodorant materials / antibacterial materials / antifungal materials, electromagnetic wave shielding materials, and fiber reinforced plastic berth base materials.
Claims (2)
前記基材層の中まで炭素繊維が打ち込まれて形成された複合層と、A composite layer formed by carbon fiber being driven into the base material layer;
前記基材層上で炭素繊維同士が摩擦力で絡み合って結合して積み上がった炭素繊維層と、 A carbon fiber layer stacked on the base material layer in which carbon fibers are entangled and bonded with each other by friction force; and
を備える3次元繊維構造体。A three-dimensional fiber structure comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013122402A JP6206905B2 (en) | 2013-06-11 | 2013-06-11 | 3D fiber structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013122402A JP6206905B2 (en) | 2013-06-11 | 2013-06-11 | 3D fiber structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014240123A JP2014240123A (en) | 2014-12-25 |
JP6206905B2 true JP6206905B2 (en) | 2017-10-04 |
Family
ID=52139660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013122402A Active JP6206905B2 (en) | 2013-06-11 | 2013-06-11 | 3D fiber structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6206905B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101880178B1 (en) * | 2016-09-07 | 2018-07-23 | 한국생산기술연구원 | Multi-layered composite containing carbon-based wet-laid nonwoven fabric, manufacturing method thereof and heat releasing and emi shielding materials usingg the same |
JP6931826B2 (en) * | 2017-03-24 | 2021-09-08 | 直 池田 | Carbon fiber three-dimensional structure and its manufacturing method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5679750A (en) * | 1979-11-22 | 1981-06-30 | Tokyo Seni Kogyo Kk | Fiber laminated nonwoven fabric using different kind of fiber material and method |
JPS58132157A (en) * | 1982-01-31 | 1983-08-06 | ユニ・チヤ−ム株式会社 | Flocked nonwoven fabric and production thereof |
JPS599671B2 (en) * | 1982-02-10 | 1984-03-03 | 丸喜化学工業株式会社 | Sponge leather manufacturing method |
JP3437862B2 (en) * | 1993-11-15 | 2003-08-18 | 三菱レイヨン株式会社 | Porous electrode substrate and method for producing the same |
JPH08117646A (en) * | 1994-10-27 | 1996-05-14 | Matsuo Sangyo Kk | Spray device for flocking pile |
JP3692486B2 (en) * | 1997-12-12 | 2005-09-07 | 味の素株式会社 | Superabsorbent sheet and method for producing the same |
JP4452963B2 (en) * | 2000-07-28 | 2010-04-21 | ミカサペイント株式会社 | Pile coating method and pile coating apparatus |
-
2013
- 2013-06-11 JP JP2013122402A patent/JP6206905B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014240123A (en) | 2014-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102294371B1 (en) | A molded object and a manufacturing method thereof | |
JP2015502271A5 (en) | Composite material for deep drawing and manufacturing method using the same | |
KR970706771A (en) | SHEET TYPE HEATING ELEMENT AND METHOD OF MANUFACTURING THE SAME | |
AU2007236956A1 (en) | Molded object having nonwoven fibrous structure | |
CN104321122A (en) | Nonwoven fiber sheet, method for producing same, and filter | |
CN108778664A (en) | Acoustics prepreg, core and composite product and its application method | |
JP6206905B2 (en) | 3D fiber structure | |
KR20190023049A (en) | Sound-absorbing panel | |
CA2480689C (en) | Arrangement and methods for the manufacture of composite layer structures | |
US4386676A (en) | Sound-damping mat or drape | |
CN102218866B (en) | Manufacturing method of vehicular interior decorating material | |
WO2020100067A1 (en) | Flame-resistant nonwoven fiber assembly | |
KR101520276B1 (en) | High heat-resistant sound absorbing material for vehicle interior and manufacturing method thereof | |
US20050126676A1 (en) | Arrangement and methods for the manufacture of composite layer structures | |
JP2015196933A (en) | Sound absorbing material structure | |
KR102207655B1 (en) | Sandwich panel and manufacturing method of sandwich panel | |
JP6148615B2 (en) | Interlaced laminate of fiber structure with metal fibers | |
EP3990274B1 (en) | Nonwoven fibrous web | |
JP2004027466A (en) | Upholstery material for car interior material, and car interior material | |
JP2012167412A (en) | Water-liftable fiber structure | |
US20220242089A1 (en) | Flame-resistant foam and nonwoven fiberous web thereof | |
JP7142189B1 (en) | SOUND ABSORBING MATERIAL AND METHOD FOR MANUFACTURING SOUND ABSORBING MATERIAL | |
JP2006283207A (en) | Surface-treated nonwoven fabric and method for producing the same | |
JP2023058148A (en) | Skin material for interior | |
KR101011648B1 (en) | bearing power of fiber reinforced plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170228 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170425 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170830 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6206905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |