[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6202753B2 - Battery container, film packaging battery, and battery container manufacturing method - Google Patents

Battery container, film packaging battery, and battery container manufacturing method Download PDF

Info

Publication number
JP6202753B2
JP6202753B2 JP2014136053A JP2014136053A JP6202753B2 JP 6202753 B2 JP6202753 B2 JP 6202753B2 JP 2014136053 A JP2014136053 A JP 2014136053A JP 2014136053 A JP2014136053 A JP 2014136053A JP 6202753 B2 JP6202753 B2 JP 6202753B2
Authority
JP
Japan
Prior art keywords
battery
container
laminated film
wall
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014136053A
Other languages
Japanese (ja)
Other versions
JP2016015225A (en
Inventor
宏和 飯塚
宏和 飯塚
康宏 金田
康宏 金田
鈴木 潤
潤 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2014136053A priority Critical patent/JP6202753B2/en
Priority to KR1020150052213A priority patent/KR101718327B1/en
Priority to CN201510178286.7A priority patent/CN105322105B/en
Priority to TW107138302A priority patent/TWI682571B/en
Priority to TW104113357A priority patent/TWI644470B/en
Publication of JP2016015225A publication Critical patent/JP2016015225A/en
Priority to KR1020170032197A priority patent/KR101830120B1/en
Application granted granted Critical
Publication of JP6202753B2 publication Critical patent/JP6202753B2/en
Priority to KR1020180016673A priority patent/KR101858476B1/en
Priority to KR1020180053423A priority patent/KR101908922B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • H01M50/26Assemblies sealed to each other in a non-detachable manner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電池容器、フィルム包装電池及び電池容器の製造方法に関する。 The present invention relates to a battery container, a film package battery, and a method for manufacturing the battery container .

従来から、リチウムイオン二次電池や電気二重層キャパシタ等の電池素子(電解質を含む全ての充電・発電要素)を収容する電池容器として、優れた水蒸気バリア性を有する深絞り成形した金属製容器に蓋体を溶接して密閉した、溶接構造の金属製密閉容器が多用されている。しかし、溶接構造の金属製密閉容器は重く、嵩張り、溶接加工工程も複雑で生産性に欠けるという課題を有している。特に、金属製容器本体と蓋体との溶接加工は多くの工数を必要とし、生産性の観点からも問題がある。また、電気自動車用のリチウム電池等は、車載する電池容器の数量が多いので、電池容器を可能な限り軽量化してコンパクトにすることが望まれている。
これらの要望に対して、基材層と、アルミニウムなどの金属箔と、シーラント層とを順に積層した積層体を袋状にしたパウチ型容器、又は、前記積層体をプレス成型して凹部を形成し、該凹部にリチウムイオン電池本体を収納するエンボス型容器(「絞り成型容器」ともいう。)等の、フィルム包装電池が開発されている(例えば、特許文献1〜2を参照)。
絞り成型容器を用いた電池容器は、ある程度の厚みを有する電池素子でも収容でき、電池素子の充填包装が容易であること、容積効率(容積効率とは、電池容器の全体積に対する電池素子の容積の比率のことをいう)が高く、軽量化し易く、安価であるなどの優れた点を有している。
Conventionally, as a battery container that houses battery elements such as lithium ion secondary batteries and electric double layer capacitors (all charging and power generation elements including electrolytes), a deep-drawn metal container having excellent water vapor barrier properties A metal sealed container having a welded structure in which a lid is welded and sealed is often used. However, a metal sealed container with a welded structure is heavy, bulky, has a problem that the welding process is complicated and lacks productivity. In particular, the welding process between the metal container main body and the lid requires a large number of man-hours and is problematic from the viewpoint of productivity. Moreover, since lithium batteries for electric vehicles have a large number of battery containers mounted on the vehicle, it is desired to make the battery containers as light and compact as possible.
In response to these demands, a pouch-shaped container in which a laminated body in which a base material layer, a metal foil such as aluminum, and a sealant layer are laminated in order is formed into a bag shape, or a concave portion is formed by press molding the laminated body. However, film-wrapped batteries such as embossed containers (also referred to as “drawn-molded containers”) that store lithium ion battery bodies in the recesses have been developed (see, for example, Patent Documents 1 and 2).
A battery container using a draw-molded container can accommodate even a battery element having a certain thickness and is easy to fill and wrap the battery element. Volume efficiency (volume efficiency is the volume of the battery element relative to the total volume of the battery container. The ratio is high, the weight is easily reduced, and the price is low.

特開2002−216713号公報JP 2002-216713 A 特開2010−262932号公報JP 2010-262932 A

ところで、絞り成型容器を用いた電池容器は、特許文献1,2に記載されているように、脂肪酸アマイド系や流動パラフィン等の滑剤を用いると、エンボス加工の金型と積層体の表面との滑り性が増すので、絞り性を向上できる。しかし、絞り性を向上させても、金属箔を三次元形状に絞り加工するので、絞り深さには限界があり、絞り成型容器の深さとしては10mm程度が上限値であった。そのため、絞り成型容器を用いた電池容器は、大容量の厚みが厚い電池素子を収容することができないという課題があった。
また、絞り成型容器の隅部が、特に大きく引き伸ばされるので、その隅部において金属箔が薄くなり小さな亀裂が入ったり、ピンホールが発生したりする。金属箔の小さな亀裂部分やピンホールから水分が浸入すると、電解液と水分とが反応し、フッ酸等が生成する。このため、電極部材の溶着部等が腐食して劣化し、電解液が漏洩するといった問題があった。
By the way, as described in Patent Documents 1 and 2, when a battery container using a draw-molded container is used with a lubricant such as fatty acid amide or liquid paraffin, the embossing mold and the surface of the laminate are formed. Since the slipping property is increased, the squeezing property can be improved. However, even if the drawability is improved, since the metal foil is drawn into a three-dimensional shape, there is a limit to the drawing depth, and the upper limit is about 10 mm as the depth of the draw-molded container. Therefore, the battery container using the draw-molded container has a problem that it cannot accommodate a battery element having a large capacity and a large thickness.
Further, since the corner of the draw-molded container is particularly greatly stretched, the metal foil becomes thin at the corner, causing a small crack or a pinhole. When moisture enters from a small crack portion or pinhole in the metal foil, the electrolytic solution reacts with moisture to generate hydrofluoric acid or the like. For this reason, there existed a problem that the welding part of an electrode member etc. corroded and deteriorated and electrolyte solution leaked.

本発明は、上記事情に鑑みてなされたものであって、絞り成型容器を用いた電池容器と同様に、軽量で、容積効率が高く、大容量の厚みが厚い電池素子も容易に収容可能であり、且つ、生産性が高く安価に製造可能である電池容器、それを用いたフィルム包装電池及びそれらの製造方法を提供することを課題とする。
なお、本明細書において、電池容器の凹状壁のことを、説明の都合により側壁と説明している場合があるが、同一部分を指している。
The present invention has been made in view of the above circumstances, and, like a battery container using a draw-molded container, is lightweight, has high volumetric efficiency, and can easily accommodate a battery element having a large capacity and a large thickness. It is an object of the present invention to provide a battery container that has high productivity and can be manufactured at low cost, a film package battery using the battery container, and a manufacturing method thereof.
In addition, in this specification, although the concave wall of a battery container may be described as a side wall for convenience of explanation, the same part is pointed out.

本発明は、以下の電池容器を提供する。
(1)金属箔と溶着層とを有する積層フィルムから形成された容器本体と、蓋材とを有する電池容器であって、前記容器本体の周壁は、前記積層フィルムの溶着層が収納部側に凸となるように絞り成型され、且つ、外面に凹部が形成されて前記容器本体の底部から折られて立ち上がる一対の対向する凹状壁の両側端面の溶着層が、前記容器本体の底部から折られて立ち上がる一対の対向する壁面の両側縁の溶着層に溶着されて連結した電池容器。
(2)前記凹状壁の前記容器本体の底部に折り重なる折返し部の溶着層が、前記容器本体の底部の溶着層に溶着された(1)に記載の電池容器。
(3)前記凹状壁の凹部に補強樹脂が充填された(1)または(2)に記載の電池容器。
The present invention provides the following battery containers.
(1) A battery container having a container main body formed from a laminated film having a metal foil and a welded layer, and a lid member, and the peripheral wall of the container main body has a welded layer of the laminated film on the storage unit side. are squeezed molded so as to be convex, and, welding layer of both end faces of the concave wall are a pair of opposing that rises folded from the bottom of the recess is formed the container body outer surface, it is folded from the bottom of the container body A battery container that is welded and connected to the welded layers on both side edges of a pair of opposing wall surfaces that rise.
(2) the concave wall, the welding layer of the folds folded portion to the bottom portion of the container body, the battery container according to the welding (1) to the welding layer of the bottom portion of the container body.
(3) The battery container according to (1) or (2), wherein a reinforcing resin is filled in the concave portion of the concave wall.

また、本発明は、以下のフィルム包装電池を提供する。
(4)上記の(1)ないし(3)のいずれかに記載の電池容器を用いたフィルム包装電池であって、前記容器本体に電池素子を収納し、前記蓋材で封止したフィルム包装電池。
Moreover, this invention provides the following film packaging batteries.
(4) A film package battery using the battery container according to any one of (1) to (3), housing the battery element to the container body, a sealed film package battery the cover material .

また、本発明は、以下の電池容器の製造方法を提供する。
(5)金属箔と溶着層とを有する積層フィルムから形成された容器本体を有し、前記容器本体の周壁は、前記積層フィルムの溶着層が収納部側に凸となるように絞り成型され、且つ、外面に凹部が形成されて前記容器本体の底部から折られて立ち上がる一対の対向する凹状壁の両側端面の溶着層が、前記容器本体の底部から折られて立ち上がる一対の対向する壁面の両側縁の溶着層に溶着されて連結した電池容器の製造方法であって、長尺の前記積層フィルムの長手方向に、一定の間隔を介して配置された複数の前記容器本体底部となる部分同士の間に、前記積層フィルムの幅方向両側辺において、隣接する前記凹状壁同士の対向する二つの側面に溶着される部分の長さより長い間隔をあけて絞り成型して凹状壁を形成する絞り成型工程と、前記積層フィルムの幅が前記容器本体の底部の幅となり、かつ前記凹状壁が複数の自由端として外方に広がるように前記凹状壁の周囲の絞り成型されない部分の前記積層フィルムに切欠きを設けるフィルム切欠き工程と、前記積層フィルムの両側辺の前記凹状壁を、互いの溶着層同士が対向するように前記容器本体の底部となる部分に対して、折返し部の根本から折り曲げて立ち上げる凹状壁の立上工程と、前記凹状壁が存在しない部分の前記積層フィルムを、前記容器本体の底部となる部分に対して、凹状壁の端部延出部の根本から折り曲げて立ち上げる端壁の立上工程と、前記端壁の両側縁を前記凹状壁の両側端面の溶着層に重ねて溶着し、前記端壁と前記凹状壁とを連結して前記容器本体の周壁を形成する壁面の連結工程と、を有することを特徴とする電池容器の製造方法
Moreover, this invention provides the manufacturing method of the following battery containers.
(5) It has a container body formed from a laminated film having a metal foil and a welded layer, and the peripheral wall of the container body is drawn so that the welded layer of the laminated film is convex toward the storage part , Further, both sides of the pair of opposing wall surfaces, which are formed with concave portions on the outer surface and are folded from the bottom portion of the container body and rise on both side end surfaces of the opposing concave walls, are folded from the bottom portion of the container body. A method of manufacturing a battery container which is welded and connected to a welded layer at an edge, wherein the parts serving as the bottoms of a plurality of container bodies arranged at regular intervals in the longitudinal direction of the long laminated film Between the two sides of the laminated film in the width direction, the drawing film is formed by drawing at an interval longer than the length of the portion welded to the two opposite side surfaces of the adjacent recessed walls. Process and Width of the laminated film is the width of the bottom portion of the container body, and the concave wall provided a notch in the laminated film of the diaphragm molded portion not surrounding the concave wall so as to spread outwardly as a plurality of free end Concave shape that rises by bending from the root of the folded portion with respect to the bottom portion of the container body so that the welded layers face each other, the concave walls on both sides of the laminated film, and the film notch step A wall rising step and an end wall of the laminated film where the concave wall does not exist is bent and raised from the root of the end of the concave wall with respect to the bottom portion of the container body . And a step of connecting the wall surfaces forming the peripheral wall of the container main body by connecting the end walls and the concave walls by welding both side edges of the end walls on the welding layers on both side end surfaces of the concave walls. Process Method for producing a battery container, characterized in that.

本発明の電池容器及びフィルム包装電池は、絞り成型容器を用いた電池容器と同様に、電池容器における容器本体の底部と周壁とが、薄い金属箔を含む積層フィルムで構成されているので、電池容器のガスバリア性が高く、軽量で、容積効率が高い。
しかも、本発明の電池容器及びフィルム包装電池は、絞り成型容器を用いた電池容器と異なり、周壁が、底部から折られて立ち上がる一対の対向する凹状壁の両側端面の溶着層が、底部から折られて立ち上がる一対の対向する端壁の両側縁の溶着層に溶着されて連結されているので、水密な構造を形成できると共に保形性に優れる。
また、本発明の電池容器及びフィルム包装電池は、金属箔を含む積層フィルムを折り線で折り曲げることで、任意の厚さの電池素子を収納できる。これにより、大容量の厚い電池素子を収容できるため、三次元形状に深く絞るエンボス加工を施す必要がないので、金属箔の厚みが薄くても、金属箔に亀裂やピンホールが発生したりすることがない。
また、本発明の電池容器及びフィルム包装電池は、従来技術では、金属箔の厚みを薄くすると、絞り成型容器に使用できなかった、展性が小さくて絞り加工性の低い金属箔を用いた積層フィルムも使用できる。
さらに、凹状壁と蓋材とが溶着されるので、フィルム包装電池の少なくとも対向する二辺は、蓋材を凹状壁に溶着して封止できる。これにより、蓋材の溶着部が電池容器の外方に延出しないので、電池がコンパクトになり、複数の電池容器を集積して用いる場合に、集積体の体積を小さくすることができる。また、複数の電池容器の保管時や集積時の取扱性にも優れる。
また、凹状壁と蓋材とを溶着する時の、シール幅を十分に大きくできるため、溶着が容易で確実になり、ガスバリア性も高くなる。
Since the battery container and the film packaging battery of the present invention are composed of a laminated film containing a thin metal foil, the bottom of the container body and the peripheral wall of the battery container are similar to the battery container using the draw-molded container. The container has a high gas barrier property, is lightweight, and has a high volumetric efficiency.
In addition, unlike the battery container using the draw-molded container, the battery container and the film-wrapped battery of the present invention have a welded layer on both side end surfaces of a pair of opposing concave walls that rise when the peripheral wall is folded from the bottom. Since it is welded and connected to the welded layers on both side edges of the pair of opposing end walls that stand up, the watertight structure can be formed and the shape retention is excellent.
Moreover, the battery container and film packaging battery of this invention can accommodate the battery element of arbitrary thickness by bend | folding the laminated | multilayer film containing metal foil with a fold line. As a result, it is possible to accommodate a large-capacity thick battery element, so there is no need to emboss deeply into a three-dimensional shape, so even if the metal foil is thin, cracks and pinholes may occur in the metal foil. There is nothing.
In addition, the battery container and the film packaging battery of the present invention are laminated using a metal foil having low malleability and low drawability, which cannot be used for a draw-molded container when the thickness of the metal foil is reduced in the prior art. Film can also be used.
Furthermore, since the concave wall and the lid are welded, at least two opposing sides of the film-packed battery can be sealed by welding the lid to the concave wall. Thereby, since the welding part of a cover material does not extend outside a battery container, a battery becomes compact and the volume of an accumulation body can be made small when using a plurality of battery containers integrated. Moreover, it is excellent in the handleability at the time of storage and integration of a plurality of battery containers.
In addition, since the seal width can be sufficiently increased when the concave wall and the lid member are welded, the welding is easy and reliable, and the gas barrier property is also improved.

また、請求項2記載の発明によれば、凹状壁の底部に折り重なる折返し部の溶着層が、底部の溶着層に溶着されているので、水密な構造が形成されると共に保形性がより優れる。また、凹状壁の両側端面の溶着層と、底部から折られて立ち上がる壁面の両側縁の溶着層との溶着が容易で確実となる。   According to the second aspect of the present invention, the welded layer of the folded portion that folds over the bottom of the concave wall is welded to the welded layer of the bottom, so that a watertight structure is formed and shape retention is more excellent. . In addition, it is easy and reliable to weld the welded layers on the both end faces of the concave wall and the welded layers on the both side edges of the wall surface that is folded from the bottom.

また、請求項3記載の発明によれば、凹状壁の凹部に補強樹脂が充填されているので、保形性がより優れる。また、凹状壁の両側端面の溶着層と、底部から折られて立ち上がる壁面の両側縁部の溶着層との溶着が、容易で確実となる。   According to the third aspect of the invention, since the concave resin is filled with the reinforcing resin, the shape retention is more excellent. Further, it is easy and reliable to weld the welded layers on both end surfaces of the concave wall and the welded layers on both side edges of the wall surface that is folded from the bottom.

また、本発明の電池容器及びフィルム包装電池の製造方法によれば、長尺の積層フィルムを用いて、複数の電池容器本体を連続的に形成することができる。これにより、ロール、ボビン巻きやカセット巻きに巻き取られた積層フィルムや、凹状壁となる部分が絞り成型された積層フィルムを、巻き戻しながら、電池容器やフィルム包装電池を連続的に製造できる。よって、電池容器及びフィルム包装電池の生産性を高めることができる。   Moreover, according to the manufacturing method of the battery container and film packaging battery of this invention, a some battery container main body can be continuously formed using a elongate laminated film. Thereby, a battery container and a film packaging battery can be continuously manufactured, rewinding the laminated film wound up by roll, bobbin winding, and cassette winding, and the laminated film by which the part used as a concave wall was draw-molded. Therefore, productivity of a battery container and a film packaging battery can be improved.

第1形態例の電池容器の外形を示す斜視図である。It is a perspective view which shows the external shape of the battery container of a 1st form example. 第1形態例の電池容器の側面図である。(a)は図1のII−II方向の矢視側面図であり、(b)はその一部を拡大した側面図である。It is a side view of the battery container of a 1st form example. (A) is the side view of the II-II direction of FIG. 1, and (b) is the side view which expanded the part. 第1形態例の電池容器の断面図である。(a)は図1のI−I方向の矢視断面図であり、(b)はその一部を拡大した断面図である。It is sectional drawing of the battery container of a 1st form example. (A) is the arrow sectional drawing of the II direction of FIG. 1, (b) is sectional drawing to which the one part was expanded. 第1形態例の電池容器を用いたフィルム包装電池の外形図である。(a)は斜視図であり、(b)は側面図の一部を拡大した図である。It is an external view of the film packaging battery using the battery container of the 1st form example. (A) is a perspective view, (b) is the figure which expanded a part of side view. 第1形態例の電池容器の製造において、絞り成型による凹状壁の凹部の形成を示す斜視図である。In manufacture of the battery container of a 1st example, it is a perspective view which shows formation of the recessed part of the concave wall by drawing. 第1形態例の電池容器の製造において、凹状壁の凹部に形成された樹脂成型体を示す斜視図である。In manufacture of the battery container of a 1st form example, it is a perspective view which shows the resin molding formed in the recessed part of a concave wall. 第1形態例の電池容器の製造において、フィルム切欠き工程を示す斜視図である。It is a perspective view which shows a film notch process in manufacture of the battery container of a 1st form example. 第1形態例の電池容器の製造において、絞り成型加工に使用する射出成型機の金型の一例を示す模式断面図である。It is a schematic cross section which shows an example of the metal mold | die of the injection molding machine used for a drawing molding process in manufacture of the battery container of a 1st form example. 第1形態例の電池容器の製造において、絞り成型工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a drawing process in manufacturing the battery container of the first embodiment. 第1形態例の電池容器の製造において、凹状壁の凹部への樹脂成型体の形成を示す模式断面図である。In manufacture of the battery container of a 1st form example, it is a schematic cross section which shows formation of the resin molding to the recessed part of a concave wall. 第1形態例の電池容器の製造において、絞り加工した積層フィルムの金型からの離型を示す模式断面図である。In manufacture of the battery container of a 1st form example, it is a schematic cross section which shows mold release from the metal mold | die of the draw-processed laminated film. 第1形態例の電池容器の製造において、凹状壁の立上工程を示す斜視図である。It is a perspective view which shows the standing-up process of a concave wall in manufacture of the battery container of a 1st form example. 第1形態例の電池容器の製造において、壁面の連結工程を示す斜視図である。It is a perspective view which shows the connection process of a wall surface in manufacture of the battery container of a 1st form example. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、絞り成型工程を示す斜視図である。It is a perspective view which shows a draw molding process in manufacture of the battery container of the 1st form example using a elongate laminated film. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、フィルム切欠き工程を示す斜視図である。It is a perspective view which shows a film notch process in manufacture of the battery container of the 1st form example using a elongate laminated film. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、凹状壁の立上工程を示す斜視図である。In manufacture of the battery container of the 1st form example using a elongate laminated film, it is a perspective view which shows the standing-up process of a concave wall. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、フィルム切欠きの状態を説明するための平面図である。It is a top view for demonstrating the state of a film notch in manufacture of the battery container of the 1st form example using a elongate laminated film. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、凹状壁の立上工程の一部を示す斜視図である。In manufacture of the battery container of the 1st form example using a elongate laminated film, it is a perspective view which shows a part of standing-up process of a concave wall. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、壁面の連結工程の一部を示す斜視図である。It is a perspective view which shows a part of connection process of a wall surface in manufacture of the battery container of a 1st form example using a elongate laminated film. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、電池素子の収納工程を示す斜視図である。It is a perspective view which shows the storage process of a battery element in manufacture of the battery container of a 1st form example using a elongate laminated film. 長尺の積層フィルムを用いた第1形態例の電池容器の製造において、封止工程を示す斜視図である。It is a perspective view which shows a sealing process in manufacture of the battery container of the 1st form example using a elongate laminated film. 第2形態例の電池容器の外形を示す図である。(a)は斜視図であり、(b)は側面図の一部を拡大した図である。It is a figure which shows the external shape of the battery container of a 2nd form example. (A) is a perspective view, (b) is the figure which expanded a part of side view. 第3形態例の電池容器の外形を示す図である。(a)は斜視図であり、(b)は側面図である。It is a figure which shows the external shape of the battery container of a 3rd form example. (A) is a perspective view, (b) is a side view. 第4形態例の電池容器の側面図の一部を拡大した図である。It is the figure which expanded a part of side view of the battery container of a 4th form example.

以下、本発明の実施の形態について、図面を参照して説明する。
<第1形態例>
図1〜図3に示す第1形態例の電池容器10は、金属箔と溶着層とを有する積層フィルム1からなる容器本体4を有する。
第1形態例の電池容器10は、容器本体4に電池素子5が収納された後に、蓋材3が取り付けられて、図4に示す本第1形態例のフィルム包装電池20となる。第1形態例のフィルム包装電池20は、二次電池や電気二重層キャパシタ等の電池容器として好適に用いられる。
Embodiments of the present invention will be described below with reference to the drawings.
<First embodiment>
The battery container 10 of the first embodiment shown in FIGS. 1 to 3 has a container body 4 made of a laminated film 1 having a metal foil and a welded layer.
The battery container 10 of the first embodiment is a film package battery 20 of the first embodiment shown in FIG. 4 with the lid 3 attached after the battery element 5 is stored in the container body 4. The film packaging battery 20 of the first embodiment is suitably used as a battery container such as a secondary battery or an electric double layer capacitor.

第1形態例のフィルム包装電池20は、電池容器10の内側に、正極板と、負極板と、セパレータと、電解液とを有する電池素子5が収納されている。なお、電池素子5は、電解質を含む全ての充電・発電に必要な要素を全て含むものである。
第1形態例のフィルム包装電池20は、正極と負極の電極板に電気的に接続された、正極リードと負極リードとからなる電極リード47が電池容器10から互いに反対の方向へ突出している。電極リード47は、正極と負極の電極板に取り付けられて電気的に接続される。
セパレータとしては、ポリオレフィン等の熱可塑性樹脂から作られた多孔フィルム、不織布や織布など、電解液を含浸することができるシート状の部材が用いられる。
The film packaging battery 20 of the first embodiment has a battery element 5 having a positive electrode plate, a negative electrode plate, a separator, and an electrolytic solution inside the battery container 10. The battery element 5 includes all elements necessary for charging and power generation including the electrolyte.
In the film-packed battery 20 of the first embodiment, electrode leads 47 made of a positive electrode lead and a negative electrode lead, which are electrically connected to positive and negative electrode plates, protrude from the battery container 10 in opposite directions. The electrode lead 47 is attached to and electrically connected to the positive and negative electrode plates.
As the separator, a sheet-like member that can be impregnated with an electrolytic solution, such as a porous film made of a thermoplastic resin such as polyolefin, a nonwoven fabric, or a woven fabric, is used.

図1〜図3に示す第1形態例の電池容器10は、金属箔と溶着層とを有する積層フィルム1からなる容器本体4を有する。
容器本体4は、平面視矩形に形成された底部41と、底部41の端縁から立ち上がる一対の端壁42、42と、外面に凹部45が形成され、収納部側に凸となる凹状壁に絞り成型されて底部41の側縁から立ち上がる一対の凹状壁43、43と、凹状壁43の凹部45に形成された板状の樹脂成型体2と、端壁42,42の上縁部から外方に延出するリード挟持部44、44とを有する。
The battery container 10 of the first embodiment shown in FIGS. 1 to 3 has a container body 4 made of a laminated film 1 having a metal foil and a welded layer.
The container body 4 has a bottom 41 formed in a rectangular shape in plan view, a pair of end walls 42 and 42 rising from the end edge of the bottom 41, and a concave wall 45 formed on the outer surface, which is convex toward the storage side. A pair of concave walls 43, 43 that are drawn and raised from the side edge of the bottom 41, the plate-shaped resin molded body 2 formed in the concave 45 of the concave wall 43, and the outer edges of the end walls 42, 42 from the upper edge Lead sandwiching portions 44, 44 extending in the direction.

容器本体4の周壁は、端壁42,42と凹状壁43,43とが、直線からなる折り線で折られて四角形状の底部41から立ち上がり、側端部同士で連結して形成されているので水密な構造にできる。
容器本体4は、底部41から周壁が立ち上がる部分が直線からなる折り線で折られた積層フィルム1で形成されているので、底部41から立ち上がる部分に、金属箔を三次元形状に絞るエンボス加工を施す必要がない。
そのため、容器本体4の採用できる深さに、数値的な制限はない。また、容器本体4の隅部が特に大きく引き伸ばされて金属箔が薄くなり、金属箔に小さな亀裂やピンホールが発生することもない。
The peripheral wall of the container main body 4 is formed by end walls 42 and 42 and concave walls 43 and 43 being folded at a fold line made of a straight line, rising from a rectangular bottom 41, and being connected at the side ends. So it can be water-tight structure.
Since the container body 4 is formed of the laminated film 1 in which the portion where the peripheral wall rises from the bottom 41 is folded along a straight fold line, the embossing for narrowing the metal foil into a three-dimensional shape on the portion rising from the bottom 41 is performed. There is no need to apply.
Therefore, there is no numerical limitation on the depth at which the container body 4 can be adopted. In addition, the corner of the container body 4 is particularly greatly stretched to make the metal foil thinner, and no small cracks or pinholes are generated in the metal foil.

容器本体4を形成する積層フィルム1は、金属箔と、最内層に熱可塑性樹脂層を有する溶着層とが積層された積層フィルムである。
第1形態例においては、積層フィルム1は、金属箔の片面のみに溶着層を有する。積層フィルム1は、溶着層が容器本体4の最内層となる。
第1形態例に用いる積層フィルム1は、金属箔の、溶着層が積層されている側とは反対の側の面に、樹脂からなる保護層が積層されているのが好ましい。
保護層は、金属箔の外表面が水分や電解液により腐食したり、金属箔の外表面が他の物品と接触して損傷したりすることを防止する。保護層は、溶着層に比べて融点が高い熱可塑性樹脂、あるいは熱硬化性樹脂によって形成されることが好ましい。
The laminated film 1 forming the container body 4 is a laminated film in which a metal foil and a welding layer having a thermoplastic resin layer as an innermost layer are laminated.
In the first embodiment, the laminated film 1 has a welded layer only on one side of the metal foil. In the laminated film 1, the welding layer is the innermost layer of the container body 4.
In the laminated film 1 used in the first embodiment, a protective layer made of a resin is preferably laminated on the surface of the metal foil opposite to the side on which the welding layer is laminated.
The protective layer prevents the outer surface of the metal foil from being corroded by moisture or an electrolytic solution, or the outer surface of the metal foil from coming into contact with other articles and being damaged. The protective layer is preferably formed of a thermoplastic resin or a thermosetting resin having a higher melting point than the weld layer.

積層フィルム1の具体例としては、例えば、ポリエチレンテレフタレートやポリブチレンナフタレートなどのポリエステルあるいは6ナイロンや66ナイロンなどのポリアミドなどの樹脂によって形成された保護層と、ステンレススチールやアルミニウムなどの金属箔と、ポリエチレンやポリプロピレン等のポリオレフィンによって形成された溶着層とを、順に積層したものを挙げることができる。
保護層は、二軸延伸フィルムを使用するのが、耐熱性と強度が高くなるので好ましく、複数層が積層されていてもよい。
積層フィルム1を構成する各層の積層方法には、ドライラミネート、押出ラミネートや熱圧着ラミネート等の公知の方法を採用できる。
Specific examples of the laminated film 1 include, for example, a protective layer formed of a resin such as polyester such as polyethylene terephthalate or polybutylene naphthalate or polyamide such as 6 nylon or 66 nylon, and a metal foil such as stainless steel or aluminum. In addition, a laminate in which a welding layer formed of polyolefin such as polyethylene or polypropylene is laminated in order can be given.
As the protective layer, it is preferable to use a biaxially stretched film because heat resistance and strength are increased, and a plurality of layers may be laminated.
As a method of laminating each layer constituting the laminated film 1, a known method such as dry lamination, extrusion lamination, thermocompression lamination, or the like can be adopted.

積層フィルム1の金属箔は、積層フィルム1に酸素や水蒸気などの気体遮断性を付与するガスバリア層として機能する。金属箔としては、例えば、アルミニウム箔(アルミ箔)、アルミニウム合金箔(アルミ合金箔)、ステンレス箔、鉄箔、ニッケル箔、銅箔や鉛箔などを挙げることができる。
これらの金属箔のうち、比重が小さく、展延性(延びやすさ)および熱伝導性に優れることから、アルミ箔やアルミ合金箔が好ましい。熱伝導性に優れた金属箔を使用すると、電池素子が発熱した場合の放熱性が向上する。アルミ箔を使用した場合のアルミ箔の厚さは、ガスバリア性の確保や加工適性その他を考慮すると、6μm〜200μmの範囲であることが好ましい。アルミ箔の厚さが6μmに満たないと、ピンホールの発生が多くなり、ガスバリア性が低下することが懸念される。
The metal foil of the laminated film 1 functions as a gas barrier layer that gives the laminated film 1 gas barrier properties such as oxygen and water vapor. Examples of the metal foil include aluminum foil (aluminum foil), aluminum alloy foil (aluminum alloy foil), stainless steel foil, iron foil, nickel foil, copper foil and lead foil.
Among these metal foils, an aluminum foil or an aluminum alloy foil is preferable because of its small specific gravity and excellent extensibility (easiness of extension) and thermal conductivity. When a metal foil excellent in thermal conductivity is used, the heat dissipation when the battery element generates heat is improved. When aluminum foil is used, the thickness of the aluminum foil is preferably in the range of 6 μm to 200 μm in view of ensuring gas barrier properties, processability, and the like. If the thickness of the aluminum foil is less than 6 μm, there is a concern that pinholes increase and the gas barrier property is lowered.

ステンレス箔は、アルミ箔に比べて熱伝導性に劣るが、引っ張り強度と耐食性が高い点において優れている。耐食性が高い金属箔は、容器本体4における金属箔より内側の溶着層が損傷して、電池容器10内部に充填された電解液が金属箔と接触しても腐食し難く、気体遮断性を維持できる点で好ましい。ステンレス箔を用いる場合は、耐食性に優れるSUS304やSUS316などのオーステナイト系ステンレス鋼が好ましい。ステンレス箔としては、特にSUS316が好ましい。ステンレス箔の厚さは、10μm〜150μmの範囲とすることが好ましい。
ステンレス箔の厚さが10μmに満たないと、ピンホールの発生が多くなり、ガスバリア性が低下することが懸念される。また、ステンレス箔の厚さが150μmを超えると、剛性が高いことから加工し難い。
Stainless steel foil is inferior in thermal conductivity to aluminum foil, but is excellent in terms of high tensile strength and corrosion resistance. The metal foil having high corrosion resistance maintains the gas barrier property because the weld layer inside the metal foil in the container body 4 is damaged and the electrolyte filled in the battery container 10 is hardly corroded even if it contacts the metal foil. It is preferable in that it can be performed. When using a stainless steel foil, austenitic stainless steel such as SUS304 or SUS316, which is excellent in corrosion resistance, is preferable. As the stainless steel foil, SUS316 is particularly preferable. The thickness of the stainless steel foil is preferably in the range of 10 μm to 150 μm.
If the thickness of the stainless steel foil is less than 10 μm, the occurrence of pinholes is increased, and there is a concern that the gas barrier property is lowered. Moreover, when the thickness of the stainless steel foil exceeds 150 μm, it is difficult to process due to high rigidity.

積層フィルム1の溶着層に用いる樹脂としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖線状ポリエチレン、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、アイオノマー、エチレン−酢酸ビニル共重合体、カルボン酸変性ポリエチレン等のポリエチレン(PE)系樹脂;プロピレン単独重合体、プロピレン−エチレンランダム共重合体、エチレン−プロピレンブロック共重合体、プロピレン−α−オレフィンブロック共重合体、カルボン酸変性ポリプロピレン等のポリプロピレン(PP)系樹脂、などのポリオレフィンを挙げることができる。   Examples of the resin used for the welded layer of the laminated film 1 include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear linear polyethylene, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, and ethylene- Polyethylene (PE) resins such as ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ionomer, ethylene-vinyl acetate copolymer, carboxylic acid-modified polyethylene; propylene homopolymer, propylene-ethylene random copolymer, Examples thereof include polyolefins such as ethylene-propylene block copolymers, propylene-α-olefin block copolymers, and polypropylene (PP) resins such as carboxylic acid-modified polypropylene.

図4に示すように、フィルム包装電池20は、電池容器10の容器本体4に電池素子5が収納されて、蓋材3で密閉されている。蓋材3は、凹状壁43の蓋材溶着面と、リード挟持部44と、電極リード47とに溶着されている。リード挟持部44と蓋材3とは、電極リード47を挟んで溶着されている。
容器本体4のリード挟持部44は、積層フィルム1が端壁42の上端で折り曲げられて、容器本体4の外方に延出している。
蓋材3は、凹状壁43の上端面とリード挟持部44とに溶着されて、電極リード47を挟持すると共に、容器本体4の開口部を塞いでいる。
第1形態例においては、蓋材3として、容器本体4の積層フィルム1と同じ積層構成の部材を用いている。
As shown in FIG. 4, the film-packed battery 20 has a battery element 5 housed in a container body 4 of a battery container 10 and is sealed with a lid member 3. The lid member 3 is welded to the lid member welding surface of the concave wall 43, the lead holding portion 44, and the electrode lead 47. The lead holding portion 44 and the lid member 3 are welded with the electrode lead 47 interposed therebetween.
The lead sandwiching portion 44 of the container body 4 extends outward from the container body 4 by folding the laminated film 1 at the upper end of the end wall 42.
The lid member 3 is welded to the upper end surface of the concave wall 43 and the lead holding portion 44 to hold the electrode lead 47 and close the opening of the container body 4.
In the first embodiment, a member having the same laminated structure as the laminated film 1 of the container body 4 is used as the lid 3.

第1形態例においては、蓋材3は、容器本体4と同じ幅となっている。このため、容器本体4の凹状壁43の上端は蓋材3で覆われている。従って、凹状壁43に十分な厚さがあれば、容器本体4と蓋材3とは十分な溶着幅で溶着されるため、溶着強度が高く、溶着部界面のガスバリア性を高くすることができる。
蓋材3は、容器本体4の幅より広く形成し、容器本体4からはみ出した部分の蓋材3によって容器本体4の両方の側縁部を覆ってもよい。この場合、蓋材3の一部は、凹状壁43の外面に固定されることが好ましい。
In the first embodiment, the lid member 3 has the same width as the container body 4. For this reason, the upper end of the concave wall 43 of the container body 4 is covered with the lid member 3. Therefore, if the concave wall 43 has a sufficient thickness, the container body 4 and the lid member 3 are welded with a sufficient welding width, so that the welding strength is high and the gas barrier property at the interface of the welding part can be increased. .
The lid member 3 may be formed wider than the width of the container body 4, and both side edge portions of the container body 4 may be covered with the lid member 3 that protrudes from the container body 4. In this case, a part of the lid member 3 is preferably fixed to the outer surface of the concave wall 43.

蓋材3に使用している積層フィルムの構成は、容器本体4の積層フィルム1の積層構成と同じでなくてもよい。蓋材3が、金属箔と溶着層とを有する積層フィルムである場合には、フィルム包装電池20が軽量化できると共に容積率が高くなるので好ましい。ただし、蓋材3に、金属箔と同等のガスバリア性を有する厚い樹脂板を用いる場合は、金属箔を用いなくてもよい。
蓋材3が、金属箔と溶着層とを有する積層フィルムである場合は、蓋材3に、積層フィルム1と同様の保護層を積層するのが好ましい。
The structure of the laminated film used for the lid member 3 may not be the same as the laminated structure of the laminated film 1 of the container body 4. When the lid material 3 is a laminated film having a metal foil and a welded layer, the film packaging battery 20 can be reduced in weight and the volume ratio is increased, which is preferable. However, when a thick resin plate having a gas barrier property equivalent to that of the metal foil is used for the lid member 3, the metal foil need not be used.
When the lid 3 is a laminated film having a metal foil and a welded layer, it is preferable to laminate a protective layer similar to the laminated film 1 on the lid 3.

図1〜図3に示すように、容器本体4の両側の側壁43,43は、外面に凹部45が形成され、収納部側が凸となるように絞り成型されている。側壁43を構成する積層フィルム1は、溶着層が収納部側に向けられている。
図2および図3に示すように、側壁43は、積層フィルム1が底部41の側縁部で収納部側に折り返された折返し部43aと、折返し部43aの内側縁部から立ち上がる立上り部43bと、立上り部43bの上縁部から外方に延出する上部延出部43cと、立上り部43bの長さ方向の両端部からそれぞれ外方に延出する端部延出部43d(図2(b)を参照)と、を備えている。
折返し部43aは、底部41に重ねられている。折返し部43aの溶着層は、底部41の溶着層に溶着され、これによって折返し部43aが底部41に固定されていることが望ましい。
As shown in FIGS. 1 to 3, the side walls 43, 43 on both sides of the container body 4 are formed by drawing so that a concave portion 45 is formed on the outer surface and the storage portion side is convex. As for the laminated film 1 which comprises the side wall 43, the welding layer is orient | assigned to the accommodating part side.
As shown in FIGS. 2 and 3, the side wall 43 includes a folded portion 43 a in which the laminated film 1 is folded at the side edge of the bottom portion 41 toward the storage portion, and a rising portion 43 b that rises from the inner edge of the folded portion 43 a. The upper extending portion 43c extending outward from the upper edge of the rising portion 43b and the end extending portion 43d extending outward from both ends in the length direction of the rising portion 43b (FIG. 2 ( b)).
The folded portion 43 a is overlapped with the bottom portion 41. The welded layer of the folded portion 43a is preferably welded to the welded layer of the bottom portion 41 so that the folded portion 43a is fixed to the bottom portion 41.

側壁43の外面の凹部45は、折返し部43aと、立上り部43bと、上部延出部43cと、端部延出部43dとによって形成されている。
凹部45の深さは、蓋材3や端壁42との溶着部分の幅を2〜5mm程度に確保できる深さであることが好ましい。溶着部分の幅が2mm以上であると、蓋材3や端壁42との溶着強度および溶着部界面のガスバリア性が高くなる。
一方、溶着部分の幅が5mmを越えても、溶着強度やガスバリア性のさらなる向上は望めず、電池容器10の容積効率が低下する。
The concave portion 45 on the outer surface of the side wall 43 is formed by a folded portion 43a, a rising portion 43b, an upper extending portion 43c, and an end extending portion 43d.
It is preferable that the depth of the recessed part 45 is a depth which can ensure the width | variety of the welding part with the cover material 3 and the end wall 42 to about 2-5 mm. When the width of the welded portion is 2 mm or more, the welding strength with the lid member 3 and the end wall 42 and the gas barrier property at the welded portion interface are enhanced.
On the other hand, even if the width of the welded portion exceeds 5 mm, further improvement in welding strength and gas barrier property cannot be expected, and the volumetric efficiency of the battery container 10 is lowered.

凹部45の内部には、補強樹脂が充填されて積層された、板状の樹脂成型体2が設けられているのが好ましい。樹脂成型体2は、保形性を補強する観点から、側壁43の凹部45の折返し部43aと、上部延出部43cと、両側の端部延出部43dとに接する形状であることが好ましい。
第1形態例では、樹脂成型体2は、底部41側の下端面と開口部側の上端面と長さ方向の両端の側端面を有する矩形の板状とされている。そして、主面が立上り部43bに当接し、下端面が折返し部43aに当接し、長さ方向の端面である側端面が端部延出部43dに当接し、上端面が上部延出部43cに当接している。
なお、本明細書において、「主面」とは、複数の面のうち、最も広い面を意味する。
The recess 45 is preferably provided with a plate-shaped resin molded body 2 filled with a reinforcing resin and laminated. From the viewpoint of reinforcing the shape retention, the resin molded body 2 preferably has a shape in contact with the folded portion 43a of the concave portion 45 of the side wall 43, the upper extension portion 43c, and the end extension portions 43d on both sides. .
In the first embodiment, the resin molded body 2 has a rectangular plate shape having a lower end surface on the bottom 41 side, an upper end surface on the opening side, and side end surfaces on both ends in the length direction. The main surface is in contact with the rising portion 43b, the lower end surface is in contact with the folded portion 43a, the side end surface that is the end surface in the length direction is in contact with the end extension portion 43d, and the upper end surface is in the upper extension portion 43c. Abut.
In the present specification, the “main surface” means the widest surface among a plurality of surfaces.

樹脂成型体2に使用する樹脂としては、積層フィルム1の保護層に使用可能な樹脂を用いることができる。樹脂成型体2に用いる樹脂は、積層フィルム1の保護層の樹脂と同じものを用いることが好ましいが、異なるものを用いてもよい。
また、樹脂成型体2に用いる樹脂は、積層フィルム1の保護層と、必ずしも高い接着強度で接着される必要はないので、予め板状に成型した樹脂成型体2を接着剤で貼り合せてもよい。
樹脂成型体2の厚さは、所望の保形性が得られる限り薄いことが好ましい。樹脂成型体2が厚いと、電池容器10が重くなり、容積効率が低下する。
樹脂成型体2は、外面に、積層フィルム1の長さ方向に沿う凹部を形成することによって、軽量化を図ることができる。
As the resin used for the resin molded body 2, a resin that can be used for the protective layer of the laminated film 1 can be used. The resin used for the resin molded body 2 is preferably the same as the resin of the protective layer of the laminated film 1, but may be different.
Further, since the resin used for the resin molded body 2 does not necessarily have to be bonded to the protective layer of the laminated film 1 with high adhesive strength, the resin molded body 2 molded in advance into a plate shape may be bonded with an adhesive. Good.
The thickness of the resin molded body 2 is preferably thin as long as desired shape retention is obtained. If the resin molded body 2 is thick, the battery container 10 becomes heavy, and the volumetric efficiency decreases.
The resin molded body 2 can be reduced in weight by forming a recess along the length direction of the laminated film 1 on the outer surface.

第1形態例においては、図1に示す容器本体4の端壁42は、樹脂板で補強されておらず、実質的に積層フィルム1からなる。
端壁42の両端は、図2(b)に示すように、側壁43の端部延出部43dに溶着されている。これにより、端壁42は側壁43に固定されて連結し、本体容器4の周壁が形成され、水密な構造が形成される。また、端壁42が樹脂板で補強されていなくても、端部延出部43dにより端壁42の保形性が強化される。
端壁42は、十分な厚さを有する側壁43の端部延出部43dの外面(側端面)に溶着されているため、溶着部界面におけるガスバリア性の低下は小さい。
In the first embodiment, the end wall 42 of the container main body 4 shown in FIG. 1 is not reinforced with a resin plate and is substantially made of the laminated film 1.
Both ends of the end wall 42 are welded to the end extending portion 43d of the side wall 43 as shown in FIG. Thereby, the end wall 42 is fixed and connected to the side wall 43, the peripheral wall of the main body container 4 is formed, and a watertight structure is formed. Even if the end wall 42 is not reinforced with a resin plate, the shape retention of the end wall 42 is enhanced by the end extension 43d.
Since the end wall 42 is welded to the outer surface (side end surface) of the end extending portion 43d of the side wall 43 having a sufficient thickness, the deterioration of the gas barrier property at the welded portion interface is small.

第1発明の電池容器10の製造方法の一例として、独立した1つの容器本体4を製造する例を、図5〜図13を参照して説明する。第1発明に係わる電池容器10の製造は、例えば、次のとおり、(1)〜(4)の工程を順に経て行われる。
<(1)絞り成型工程>
図5に示すように、積層フィルム1の両側辺部分に、それぞれ絞り成型加工により凹部45を形成する。凹部45の形成方法としては、例えば、射出成型機の金型を使用して絞り成型を行うことにより形成することができる。
また、次に説明するような手順によれば、射出成型機の金型を使用して、絞り成型加工により凹部45を形成した後に、引き続いて、該凹部45に補強樹脂を充填して樹脂成型体2を積層することができる(図6、及び図8〜11を参照)。
図8は、絞り成型加工に使用する射出成型機の金型の一例を示す模式断面図である。
図8の金型70は、凹部45の内面形状に即したコア71aを有する雄型71と、側壁43の外面形状に即したキャビティ72aを有する雌型72と、を備えている。
雄型71には、射出成形ノズル74から供給された溶融樹脂73(図10を参照)を導く流路75(スプル、ランナー)が形成されている。
雄型71のコア71aと雌型72のキャビティ72aとの間には、成形空間76(図9を参照)が形成される。
As an example of the manufacturing method of the battery container 10 of the first invention, an example of manufacturing one independent container body 4 will be described with reference to FIGS. The battery container 10 according to the first invention is manufactured, for example, through the steps (1) to (4) in order as follows.
<(1) Drawing process>
As shown in FIG. 5, the recessed part 45 is formed in the both-sides side part of the laminated | multilayer film 1 by each drawing process. As a method of forming the recess 45, for example, it can be formed by performing drawing using a mold of an injection molding machine.
Further, according to the procedure as described below, after forming the concave portion 45 by the drawing molding process using the mold of the injection molding machine, the concave portion 45 is subsequently filled with the reinforcing resin and the resin molding is performed. The body 2 can be stacked (see FIGS. 6 and 8-11).
FIG. 8 is a schematic cross-sectional view showing an example of a mold of an injection molding machine used for drawing.
8 includes a male die 71 having a core 71a conforming to the inner surface shape of the recess 45, and a female die 72 having a cavity 72a conforming to the outer surface shape of the side wall 43.
A flow path 75 (sprue, runner) for guiding the molten resin 73 (see FIG. 10) supplied from the injection molding nozzle 74 is formed in the male mold 71.
A molding space 76 (see FIG. 9) is formed between the core 71a of the male mold 71 and the cavity 72a of the female mold 72.

雄型71のコア71aより外側の周縁部78には、押圧部60を摺動可能に収容する摺動穴62が形成されている。型締め時には、押圧部60は、図9に示すように、押圧手段61により付勢されて、雄型71と雌型72との間に挿入される積層フィルム1を、雌型72側の周縁部79に対して押圧することができる。
押圧部60の積層フィルム1と接する当接面60aは、積層フィルム1との摩擦を低減するため、平滑面とされていることが好ましい。
雄型71のコア71aは、型締め時に積層フィルム1を押圧して賦形することができるようになっている。
A sliding hole 62 that slidably accommodates the pressing portion 60 is formed in the peripheral edge 78 outside the core 71a of the male mold 71. At the time of mold clamping, as shown in FIG. 9, the pressing portion 60 is urged by the pressing means 61 to insert the laminated film 1 inserted between the male mold 71 and the female mold 72 into the peripheral edge on the female mold 72 side. The portion 79 can be pressed.
The contact surface 60 a in contact with the laminated film 1 of the pressing portion 60 is preferably a smooth surface in order to reduce friction with the laminated film 1.
The core 71a of the male mold 71 can be shaped by pressing the laminated film 1 during mold clamping.

押圧手段61は、摺動穴62と連通して形成された押圧手段収容空間63に収容されており、成形時に積層フィルム1が雄型71と雌型72の向き合う方向(図8〜図11における上下方向)に移動するのを抑制する。
押圧部60によって押圧された状態の積層フィルム1は、雄型71や樹脂73などから受ける力により成形空間76側に移動することが許容される。つまり、押圧部60による押圧力は、積層フィルム1の引っ張り強度の限界内とされており、この押圧力より強い力が積層フィルム1に加えられた場合、積層フィルム1が押圧部60に対して摺動できる。
押圧手段61は、積層フィルム1に対して弾性的な押圧力を付与することができるものが好ましく、スプリングやエアシリンダーなどが使用できる。
The pressing means 61 is accommodated in a pressing means accommodating space 63 formed in communication with the sliding hole 62, and the direction in which the laminated film 1 faces the male mold 71 and the female mold 72 during molding (in FIGS. 8 to 11). (Up and down direction) is suppressed.
The laminated film 1 in a state of being pressed by the pressing portion 60 is allowed to move to the molding space 76 side by a force received from the male mold 71, the resin 73, and the like. That is, the pressing force by the pressing portion 60 is within the limit of the tensile strength of the laminated film 1, and when a force stronger than this pressing force is applied to the laminated film 1, the laminated film 1 is against the pressing portion 60. Can slide.
The pressing means 61 is preferably capable of applying an elastic pressing force to the laminated film 1, and a spring, an air cylinder, or the like can be used.

摺動穴62の底面62aは、図9および図10に示すように、型締め時に押圧部60の受け座となり、押圧部60の後退(図9および図10における上方への移動)を規制する。   As shown in FIGS. 9 and 10, the bottom surface 62 a of the sliding hole 62 serves as a receiving seat for the pressing portion 60 during mold clamping, and restricts the retreating of the pressing portion 60 (upward movement in FIGS. 9 and 10). .

金型70を用いて積層フィルム1を成型するには、まず、図8に示すように、互いに離間した雄型71と雌型72との間に積層フィルム1を配置する。
次いで、図9に示すように、雄型71と雌型72との間に積層フィルム1を挟み込む。これにより、積層フィルム1の一部はコア71aに押圧され、成形空間76内で、コア71aの形状に沿って凹状に変形する。
In order to mold the laminated film 1 using the mold 70, first, as shown in FIG. 8, the laminated film 1 is disposed between a male mold 71 and a female mold 72 that are separated from each other.
Next, as shown in FIG. 9, the laminated film 1 is sandwiched between the male mold 71 and the female mold 72. Thereby, a part of the laminated film 1 is pressed against the core 71a and is deformed into a concave shape along the shape of the core 71a in the molding space 76.

図10に示すように、雄型71のコア71aと雌型72のキャビティ72aとの間に形成された成形空間76に、射出成形ノズル74から溶融した樹脂73を射出する。溶融樹脂73の射出圧により、積層フィルム1は雌型72のキャビティ72aの表面に向かって押され、キャビティ72aの表面に沿って賦形され、凹部45が形成される。溶融樹脂73は、凹部45の内面に充填される(射出成形)。本形態例では、溶融樹脂73はコア71aに沿う凹部を有する。   As shown in FIG. 10, molten resin 73 is injected from an injection molding nozzle 74 into a molding space 76 formed between the core 71 a of the male mold 71 and the cavity 72 a of the female mold 72. Due to the injection pressure of the molten resin 73, the laminated film 1 is pushed toward the surface of the cavity 72 a of the female mold 72 and is shaped along the surface of the cavity 72 a, thereby forming the recess 45. The molten resin 73 is filled in the inner surface of the recess 45 (injection molding). In this embodiment, the molten resin 73 has a recess along the core 71a.

押圧部60の押圧力は、積層フィルム1を変形させる力に比較すれば十分に小さいため、溶融樹脂73の圧力を受けた積層フィルム1は押圧部60と雌型72の周縁部79との間で摺動し、成形空間76側に引き込まれる。
溶融樹脂73を冷却すると、溶融樹脂73は硬化し、樹脂成型体2となる。樹脂成型体2は積層フィルム1と一体化される。
Since the pressing force of the pressing portion 60 is sufficiently smaller than the force that deforms the laminated film 1, the laminated film 1 that has received the pressure of the molten resin 73 is between the pressing portion 60 and the peripheral portion 79 of the female die 72. And is drawn to the molding space 76 side.
When the molten resin 73 is cooled, the molten resin 73 is cured and becomes the resin molded body 2. The resin molded body 2 is integrated with the laminated film 1.

図11に示すように、雌型72を雄型71から離れる方向に移動させると、押圧部60により、積層フィルム1が雄型71から押し離されるため、積層フィルム1を容易に離型することができる。   As shown in FIG. 11, when the female mold 72 is moved in a direction away from the male mold 71, the laminated film 1 is pushed away from the male mold 71 by the pressing portion 60, so that the laminated film 1 can be easily released. Can do.

<(2)フィルム切欠き工程>
図6に示す、絞り成型された凹部45,45に樹脂成型体2が形成された積層フィルム1の、凹部45,45が形成された部分を残して、積層フィルム1の四隅を含む側辺部分(図6の不要な側辺部分48)を、図7に示すように、端部延出部43dまで切除して側壁43,43を切り出す。
積層フィルム1の側辺部分を切除する方法としては、例えば、打抜き金型を用いて打ち抜く方法、レーザー光線を用いた切断等の公知の方法を採用できる。不要な側辺部分48を切り欠くことによって、積層フィルム1は、図7に示すように、側壁43,43と、凹部45,45に挟まれて底部41となる中央部分46と、中央部分46から外方に広がり端壁42およびリード挟持部44となる自由端53,53と、を有する形状となる。
自由端53は、積層フィルム1の長さ方向に関して、側壁43がない部分である。
なお、本明細書において、「自由端」とは、自由に動くことができる端部を意味する。
<(2) Film notch process>
The side part including the four corners of the laminated film 1 of the laminated film 1 in which the resin molded body 2 is formed in the drawn concave parts 45 and 45 shown in FIG. As shown in FIG. 7, the side portions 43 and 43 are cut out by cutting out the unnecessary side portion 48 of FIG. 6 to the end extension portion 43d.
As a method of excising the side part of the laminated film 1, for example, a known method such as a method of punching using a punching die or a cutting using a laser beam can be employed. As shown in FIG. 7, the laminated film 1 has a side wall 43, 43, a central portion 46 that is sandwiched between the concave portions 45, 45 to become the bottom 41, and a central portion 46, by cutting away unnecessary side portions 48. And has a shape having an end wall 42 and free ends 53 and 53 to be the lead holding portion 44.
The free end 53 is a portion without the side wall 43 in the length direction of the laminated film 1.
In the present specification, the “free end” means an end that can move freely.

<(3)凹状壁、端壁の立上工程>
図12に示すように、積層フィルム1を、凹部45の開口が下を向く姿勢として、絞り成型されて凹部45,45が形成された積層フィルム1を折返し部43aの根本(中央部分46の根本)から折り曲げる。これにより、図13に示すように、凹状壁(側壁)43が、底部41となる中央部分46の上に立ち上がる。
そして、凹部45,45が形成された積層フィルム1の折返し部43aの溶着層と中央部分46の積層フィルム1の溶着層とを、底部41側から加熱して溶着する。
その結果、積層フィルム1の一対の凹部45,45を含む部分は、凸となる溶着層同士が対向するように立設された凹状壁(側壁)43,43となる(図3を参照)。
また、図13に示す側壁43が、底部41となる中央部分46の上に立ち上がった状態で、自由端53,53を、側壁43の端部延出部43dの根本から折り曲げて立ち上げ、端壁42,42が形成される(図1,2を参照)。
<(3) Concave wall and end wall rising process>
As shown in FIG. 12, the laminated film 1 is placed in a posture in which the opening of the concave portion 45 faces downward, and the laminated film 1 formed by drawing and forming the concave portions 45, 45 is the root of the folded portion 43a (the root of the central portion 46). ) Accordingly, as shown in FIG. 13, the concave wall (side wall) 43 rises on the central portion 46 that becomes the bottom 41.
And the welding layer of the folding | returning part 43a of the laminated | multilayer film 1 in which the recessed parts 45 and 45 were formed and the welding layer of the laminated | multilayer film 1 of the center part 46 are heated and welded from the bottom 41 side.
As a result, the portion including the pair of concave portions 45, 45 of the laminated film 1 becomes concave walls (side walls) 43, 43 erected so that the convex welding layers face each other (see FIG. 3).
Further, in a state where the side wall 43 shown in FIG. 13 rises on the central portion 46 that becomes the bottom 41, the free ends 53 and 53 are bent up from the root of the end extending portion 43d of the side wall 43, and are raised. Walls 42 and 42 are formed (see FIGS. 1 and 2).

<(4)壁面の連結工程>
形成された端壁42,42の両側縁を凹状壁(側壁)43,43のそれぞれの端部延出部43dに重ね、端壁42の溶着層と端部延出部43dの溶着層とを、端壁42側から加熱して互いに溶着させる。
自由端53,53のうち、中央部分46から立ち上げられて側壁43と同じ高さとなる部分は端壁42,42となり、残余の部分はリード挟持部44,44となる。端壁42,42は、溶着層同士が対向するように立設される(図2を参照)。
<(4) Wall surface connection process>
The side edges of the formed end walls 42, 42 are overlapped with the respective end extension portions 43d of the concave walls (side walls) 43, 43, and the weld layer of the end wall 42 and the weld layer of the end extension portion 43d are joined together. Then, they are heated from the end wall 42 side and welded together.
Of the free ends 53, 53, the portions raised from the central portion 46 and having the same height as the side walls 43 become the end walls 42, 42, and the remaining portions become the lead clamping portions 44, 44. The end walls 42 and 42 are erected so that the welding layers face each other (see FIG. 2).

そして、端壁42から延出する、自由端53の残余の部分を、外側に水平に折り曲げてリード挟持部44を形成し、端壁42の壁面と側壁43とを、溶着により互いに連結して容器本体4の周壁として、図1に示す第1形態例の電池容器10が得られる。
なお、リード挟持部44の形成は、端壁42の形成と同時に行なってもよい。
Then, the remaining portion of the free end 53 that extends from the end wall 42 is horizontally bent outward to form a lead clamping portion 44, and the wall surface of the end wall 42 and the side wall 43 are connected to each other by welding. As the peripheral wall of the container body 4, the battery container 10 of the first embodiment shown in FIG. 1 is obtained.
The formation of the lead holding portion 44 may be performed simultaneously with the formation of the end wall 42.

得られた電池容器10に電池素子5を入れ、開口部に蓋材3を載置し、電池容器10の樹脂成型体2の上端面と、リード挟持部44と、電極リード47に蓋材3を溶着する。このようにして、蓋材3とリード挟持部44とで電極リード47を挟持すると共に、電池容器10の開口部を塞ぐと、図4に示す第1形態例のフィルム包装電池20が得られる。   The battery element 5 is placed in the obtained battery container 10, the lid member 3 is placed in the opening, and the upper end surface of the resin molded body 2 of the battery container 10, the lead holding portion 44, and the electrode lead 47 are covered with the lid member 3. To weld. In this way, when the electrode lead 47 is sandwiched between the lid member 3 and the lead sandwiching section 44 and the opening of the battery container 10 is closed, the film package battery 20 of the first embodiment shown in FIG. 4 is obtained.

本発明に係わる電池容器およびフィルム包装電池の製造方法によれば、第1形態例の電池容器10およびフィルム包装電池20は、長尺の積層フィルム1を用いて、連続的に効率よく製造することが可能である。なお、本発明において長尺とは、長さが1mから10,000mのことをいう。
以下、その製造方法の一例を、図14〜図21を参照して説明する。
長尺の積層フィルム1を用いておこなう第1形態例の電池容器10の製造方法は、概ね、上述した独立した1つの容器本体4の製造方法と同じである。
以下、個々の工程について、独立した1つの容器本体4の製造方法と異なる点のみを説明する。
長尺の積層フィルム1を使用した場合の、第1形態例の電池容器10の製造方法は、次のとおり、(a)〜(g)の工程を経て行われる。
According to the battery container and the film packaging battery manufacturing method according to the present invention, the battery container 10 and the film packaging battery 20 of the first embodiment are manufactured continuously and efficiently using the long laminated film 1. Is possible. In the present invention, the term “long” means that the length is from 1 m to 10,000 m.
Hereinafter, an example of the manufacturing method will be described with reference to FIGS.
The manufacturing method of the battery container 10 of the first embodiment performed using the long laminated film 1 is generally the same as the manufacturing method of the single independent container body 4 described above.
Hereinafter, only points different from the manufacturing method of one independent container main body 4 will be described for each process.
The manufacturing method of the battery case 10 of the first embodiment when the long laminated film 1 is used is performed through the steps (a) to (g) as follows.

<(a)絞り成型工程>
図14に示すように、長尺の積層フィルム1の両側辺部分に、絞り成型により凹部45を形成するとともに、凹部45内に補強樹脂を充填して樹脂成型体2を積層する。
凹部45の形成方法は、独立した1つの容器本体4の製造方法における凹部45の形成方法と同様である。樹脂成型体2の積層方法も、独立した1つの容器本体4の製造方法における樹脂成型体2の積層方法と同様である(図5〜図11を参照)。
凹部45は、底部41となる部分(中央部分46)同士の間に、長尺の積層フィルム1の長さ方向に隣り合う凹状壁43,43(図15等を参照)に溶着される部分(端壁42の側縁)の長さより、長い間隔を空けて形成される。
<(A) Drawing process>
As shown in FIG. 14, the concave portions 45 are formed by drawing at both sides of the long laminated film 1, and the resin molded body 2 is laminated by filling the concave portions 45 with a reinforcing resin.
The formation method of the recessed part 45 is the same as the formation method of the recessed part 45 in the manufacturing method of one independent container main body 4. FIG. The method for laminating the resin molded body 2 is also the same as the method for laminating the resin molded body 2 in the independent manufacturing method of the container body 4 (see FIGS. 5 to 11).
The recessed part 45 is a part (see FIG. 15 etc.) welded to the recessed walls 43 and 43 (refer FIG. 15 etc.) adjacent to the length direction of the elongate laminated film 1 between the parts (center part 46) used as the bottom part 41. It is formed with a longer interval than the length of the side edge of the end wall 42.

<(b)電極用開口工程>
長尺の積層フィルム1には、電極となる電極リード47を露出させるための開口50(電極引出部)が形成されている。
開口50は、後述する壁面の連結工程で得られる容器本体4の帯を、そのままフィルム包装電池20の製造方法に適用するためのものである。
開口50を形成する方法としては、例えば、打抜き金型を用いて打ち抜く方法やレーザー光線を用いた切断等を採用できる。
なお、長尺の積層フィルム1に形成された容器本体4の帯から、独立した1つの容器本体4を複数切り出してフィルム包装電池20を製造する場合は、開口50はなくともよい。
開口50は、容器本体4の製造工程のどの段階で形成してもよいが、後述するフィルム切欠き工程で開口50を形成すると、フィルムの切欠きと開口50の位置が正確となる。また、フィルム切欠き工程で開口50を形成すると、長尺の積層フィルム1の切欠きと開口50の形成とは、いずれもフィルムを切除する作業なので、作業が効率的となり、好ましい。
<(B) Electrode opening step>
The long laminated film 1 is formed with an opening 50 (electrode lead portion) for exposing the electrode lead 47 serving as an electrode.
The opening 50 is for applying the band of the container main body 4 obtained in the wall surface connecting step, which will be described later, to the manufacturing method of the film-packed battery 20 as it is.
As a method of forming the opening 50, for example, a method of punching using a punching die or a cutting using a laser beam can be employed.
In addition, when manufacturing the film packaging battery 20 by cutting out several independent container main bodies 4 from the belt | band | zone of the container main body 4 formed in the elongate laminated film 1, the opening 50 does not need to be.
The opening 50 may be formed at any stage of the manufacturing process of the container body 4, but when the opening 50 is formed in a film notch process described later, the position of the film notch and the opening 50 becomes accurate. In addition, when the opening 50 is formed in the film notching step, the notch of the long laminated film 1 and the formation of the opening 50 are both work for cutting the film, and therefore the work becomes efficient, which is preferable.

<(c)フィルム切欠き工程>
図15に示すように、独立した1つの容器本体4の製造方法におけるフィルム切欠き工程と同様に、絞り成型されて複数対の凹部45,45が形成された、長尺の積層フィルム1の複数対の凹部45,45を自由端となるように残して、長尺の積層フィルム1の側辺の一部(図14の不要な側辺部分48)を切除する。
不要な側辺部分48が切除された長尺の積層フィルム1は、図17に示すように、複数対の側壁43,43と、複数対の凹部45,45に挟まれて底部41となる中央部分46と、中央部分46から外方に広がり端壁42およびリード挟持部44となる部分49と、を有する形状となる。
<(C) Film notch process>
As shown in FIG. 15, in the same manner as the film notch process in the method of manufacturing one independent container body 4, a plurality of long laminated films 1 formed by drawing and forming a plurality of pairs of recesses 45, 45. A part of the side of the long laminated film 1 (unnecessary side portion 48 in FIG. 14) is cut away, leaving the pair of concave portions 45, 45 to be free ends.
As shown in FIG. 17, the long laminated film 1 from which the unnecessary side portion 48 has been cut is a center that is sandwiched between a plurality of pairs of side walls 43 and 43 and a plurality of pairs of recesses 45 and 45 to form the bottom 41. It has a shape having a portion 46 and a portion 49 that extends outward from the central portion 46 and becomes the end wall 42 and the lead clamping portion 44.

図17に示すように、端壁42およびリード挟持部44となる部分49は、開口50を有する連結部51と、リード挟持部44、44および端壁42、42となる端壁予定部52と、からなる。
従って、複数の容器本体4の底部41となる部分同士の間の長さ、すなわち、端壁42,42およびリード挟持部44,44となる部分49の長さは、端壁42、42となる部分の長さよりリード挟持部44,44と開口50の分だけ長い。
連結部51および端壁予定部52の幅は、底部41の幅に等しいことが望ましい。
As shown in FIG. 17, a portion 49 that becomes the end wall 42 and the lead clamping portion 44 includes a connecting portion 51 having an opening 50, a lead clamping portion 44, 44, and an end wall planned portion 52 that becomes the end walls 42, 42. It consists of
Therefore, the length between the portions that become the bottom portions 41 of the plurality of container main bodies 4, that is, the lengths of the portions 49 that become the end walls 42 and 42 and the lead clamping portions 44 and 44 become the end walls 42 and 42. It is longer than the length of the portion by the length of the lead holding portions 44 and 44 and the opening 50.
The width of the connecting portion 51 and the planned end wall portion 52 is preferably equal to the width of the bottom portion 41.

図17を参照して、電極リード用開口の開口工程(電極用開口工程)と、フィルム切欠き工程とを経た長尺の積層フィルム1の形状を詳しく説明する。
長尺の積層フィルム1の、開口50の端縁から外方に延びる二本の二点鎖線1a、1aは、連結部51を切断除去するための仮想の切断予定線である。この切断予定線1a、1aは、完成した容器本体4またはフィルム包装電池20が複数連結された帯を、二組の切断予定線1a、1aに挟まれる連結部51を切断除去して分断する。二組の切断予定線1a、1aの幅は、連結部51を切断除去できれば、開口50の幅より狭くてもよい。
また、端部延出部43d同士を結ぶ二点鎖線1bは、底部41となる中央部分46と端壁予定部52の境界線である。この境界線1bは、端壁予定部52の積層フィルム1を側壁43に溶着して端壁42を形成する際に、谷折りされる。
また、この境界線1bと切断予定線1a、1aとの間にある二点鎖線1cは、端壁予定部52の端壁42となる部分とリード挟持部44となる部分の境界線である。この境界線1cは、端壁42を形成する際に、山折りされる。
なお、図14〜図21には、長尺の積層フィルム1に、連続した2つの電池容器10が形成される例が図示されているが、通常は、3つ以上の電池容器10が形成される。
なお、第1形態例では、端壁予定部52,52の間の部分だけでなく、長尺の積層フィルム1のもっとも端部側に位置する端壁予定部52より、さらに端部側の部分も連結部51と呼ぶ。
With reference to FIG. 17, the shape of the elongate laminated film 1 which passed through the opening process of the electrode lead opening (electrode opening process) and the film notch process will be described in detail.
Two two-dot chain lines 1 a and 1 a extending outward from the edge of the opening 50 of the long laminated film 1 are virtual cut lines for cutting and removing the connecting portion 51. The planned cutting lines 1a and 1a divide the band in which a plurality of completed container bodies 4 or film packaging batteries 20 are connected by cutting and removing the connecting portions 51 sandwiched between the two sets of planned cutting lines 1a and 1a. The widths of the two sets of cutting lines 1a and 1a may be narrower than the width of the opening 50 as long as the connecting portion 51 can be cut and removed.
The two-dot chain line 1 b connecting the end extension portions 43 d is a boundary line between the central portion 46 that becomes the bottom portion 41 and the end wall planned portion 52. The boundary line 1 b is folded when the laminated film 1 of the planned end wall portion 52 is welded to the side wall 43 to form the end wall 42.
Further, a two-dot chain line 1c between the boundary line 1b and the planned cutting lines 1a and 1a is a boundary line between a portion to be the end wall 42 of the end wall planned portion 52 and a portion to be the lead holding portion 44. This boundary line 1c is mountain-folded when the end wall 42 is formed.
14 to 21 illustrate an example in which two continuous battery containers 10 are formed on the long laminated film 1, but usually three or more battery containers 10 are formed. The
In the first embodiment, not only the portion between the end wall planned portions 52, 52 but also the portion on the end portion side from the end wall planned portion 52 located closest to the end portion of the long laminated film 1. Is also referred to as a connecting portion 51.

<(d)凹状壁、端壁の立上工程>
図16に示すように、独立した1つの容器本体4の製造方法における凹状壁、端壁の立上工程と同様に、長尺の積層フィルム1を、凹部45の開口が下を向く姿勢とし、絞り成型されて複数対の凹部45,45が形成された長尺の積層フィルム1を、折返し部43aの根本から中央部分46の上に立つように折り曲げて、図18に示すように凹状壁を立上げる。
複数対の凹部45,45が形成された長尺の積層フィルム1の折返し部43aと中央部分46とを、中央部分46側から加熱して溶着する。これによって、複数の凹状壁(側壁)43が形成される。
また、図17に示す二点鎖線1bに沿って垂直に谷折りし、二点鎖線1cに沿って水平に山折りして、連結部51と、端壁予定部52と、を持ち上げ、長尺の積層フィルム1の端壁42となる部分を、凹状壁(側壁)43の端部延出部43dに密着させ端壁42が形成される(図19を参照)。
<(D) Rising process of concave wall and end wall>
As shown in FIG. 16, in the same manner as the step of raising the concave wall and the end wall in the independent manufacturing method of the container body 4, the long laminated film 1 is set in a posture in which the opening of the concave portion 45 faces downward. The long laminated film 1 formed by drawing and forming a plurality of pairs of concave portions 45, 45 is bent so as to stand on the central portion 46 from the root of the folded portion 43a, thereby forming a concave wall as shown in FIG. Start up.
The folded portion 43a and the central portion 46 of the long laminated film 1 in which a plurality of pairs of concave portions 45, 45 are formed are heated and welded from the central portion 46 side. Thereby, a plurality of concave walls (side walls) 43 are formed.
In addition, the valley is vertically folded along the alternate long and two short dashes line 1b shown in FIG. 17, and the mountain is horizontally folded along the alternate long and two short dashes line 1c. The part which becomes the end wall 42 of the laminated film 1 is brought into close contact with the end extension part 43d of the concave wall (side wall) 43 to form the end wall 42 (see FIG. 19).

<(e)壁面の連結工程> 独立した1つの容器本体4の製造方法における壁面の連結工程と同様に、長尺の積層フィルム1の両側縁を凹状壁(側壁)43の端部延出部43d,43dの外面(両側端面)の溶着層に重ねて溶着すると、図19に示す、長尺の積層フィルム1に複数の容器本体4が形成されて連結部51で連結された電池容器10の帯が得られる。
また、長尺の積層フィルム1に形成された電池容器10の帯の連結部51を切断除去して分断すると、図1に示す第1形態例の電池容器10が得られる。
また、長尺の積層フィルム1に形成された電池容器10の帯は、分断せずにフィルム包装電池20の製造用として用いることもできる。
<(E) Wall surface connecting step> Similar to the wall surface connecting step in the independent manufacturing method of one container body 4, both side edges of the long laminated film 1 are connected to the end extending portion of the concave wall (side wall) 43. When the battery container 10 is formed by overlapping the welding layers 43d and 43d on the outer surface (both end faces) and forming a plurality of container main bodies 4 on the long laminated film 1 shown in FIG. A belt is obtained.
Moreover, if the connection part 51 of the strip | belt of the battery container 10 formed in the elongate laminated film 1 is cut off and divided, the battery container 10 of the 1st form example shown in FIG. 1 will be obtained.
Moreover, the band of the battery container 10 formed in the elongate laminated film 1 can also be used for manufacture of the film packaging battery 20 without dividing.

次に、長尺の積層フィルム1に形成された電池容器10の帯を分断せずに行う、フィルム包装電池20の製造方法について説明する。
第1形態例のフィルム包装電池20の製造方法は、本発明の電池容器10の製造方法に、電池素子の収納工程と封止工程を付加したものである。以下、電池素子の収納工程と、封止工程について説明する。
Next, the manufacturing method of the film packaging battery 20 performed without dividing the strip | belt of the battery container 10 formed in the elongate laminated film 1 is demonstrated.
The manufacturing method of the film packaging battery 20 of the first embodiment is obtained by adding a battery element storing step and a sealing step to the manufacturing method of the battery container 10 of the present invention. Hereinafter, the battery element storage step and the sealing step will be described.

<(f)電池素子の収納工程>
第1形態例のフィルム包装電池20の製造方法は、まず、図20に示すように、長尺の積層フィルム1に形成された電池容器10の帯の、それぞれの電池容器10の容器本体4に電池素子5を収納する。
容器本体4に電池素子5を収納する際には、電池容器10の容器本体4から互いに反対の方向へ突出する正極リードと負極リードのそれぞれの端部が、連結部51の開口50内に位置するように収納する。
<(F) Battery element storing step>
First, as shown in FIG. 20, the manufacturing method of the film packaging battery 20 of the first embodiment is applied to the container body 4 of each battery container 10 in the band of the battery container 10 formed on the long laminated film 1. The battery element 5 is accommodated.
When the battery element 5 is stored in the container body 4, the ends of the positive electrode lead and the negative electrode lead that protrude in opposite directions from the container body 4 of the battery container 10 are positioned in the opening 50 of the connecting portion 51. Storing as you do.

<(g)封止工程>
図21に示すように、第1形態例においては、複数の蓋材3が連結した長尺の蓋材3を用いる。この蓋材3は、長尺の積層フィルム1に形成された電池容器10の帯の連結部51と同様に、開口30を有する連結部31を有する。開口30の大きさは、長尺の積層フィルム1に形成された電池容器10の帯の連結部51と異なっていてもよいが、同じであることが好ましい。なお、独立した複数の蓋材3を用いることもできる。
第1形態例において用いる長尺の蓋材3の連結部31は、長尺の積層フィルム1に形成された容器本体4の帯の連結部51と幅と長さが同じで、開口50と同一形状の開口30が、開口50の間隔と同一の間隔で形成されている。なお、通常は帯同士の長さは一致していなくてもよい。
<(G) Sealing process>
As shown in FIG. 21, in the first embodiment, a long lid member 3 in which a plurality of lid members 3 are connected is used. This lid member 3 has a connecting portion 31 having an opening 30, similarly to the connecting portion 51 of the band of the battery container 10 formed on the long laminated film 1. The size of the opening 30 may be different from the connecting portion 51 of the band of the battery container 10 formed in the long laminated film 1, but is preferably the same. A plurality of independent lid members 3 can also be used.
The connecting portion 31 of the long lid 3 used in the first embodiment has the same width and length as the connecting portion 51 of the band of the container body 4 formed on the long laminated film 1 and is the same as the opening 50. Shaped openings 30 are formed at the same intervals as the openings 50. Normally, the lengths of the bands do not have to match.

電池素子5が収納された、長尺の積層フィルム1に形成された電池容器10の帯の開口50と、長尺の蓋材3の開口30とが一致するように蓋材3を重ね、蓋材3側から、それぞれの容器本体4の側壁43の上部延出部43cの溶着層とリード挟持部44の溶着層との両方にそれぞれの蓋材3の溶着層を溶着する。
このようにして、それぞれの蓋材3と、それぞれの電池容器10のリード挟持部44との間に、リードを挟持すると共に、それぞれの電池容器10の開口部を塞ぐと、図21に示すように、長尺の積層フィルム1に複数の包装電池20が形成された帯が得られる。
また、長尺の積層フィルム1に複数のフィルム包装電池20が形成された帯の、連結部31,51を切断除去すると、図4に示すフィルム包装電池20が完成する。
また、長尺の積層フィルム1に複数のフィルム包装電池20が形成された帯は、そのまま完成品としてもよい。
The lid 3 is overlapped so that the opening 50 of the band of the battery container 10 formed in the long laminated film 1 in which the battery element 5 is housed is aligned with the opening 30 of the long lid 3. From the material 3 side, the welding layer of each lid material 3 is welded to both the welding layer of the upper extension portion 43 c of the side wall 43 of each container body 4 and the welding layer of the lead holding portion 44.
In this way, when the leads are sandwiched between the respective lid members 3 and the lead sandwiching portions 44 of the respective battery containers 10 and the openings of the respective battery containers 10 are closed, as shown in FIG. In addition, a band in which a plurality of packaging batteries 20 are formed on the long laminated film 1 is obtained.
Moreover, if the connection parts 31 and 51 of the belt | band | zone in which the several film packaging battery 20 was formed in the elongate laminated film 1 are cut and removed, the film packaging battery 20 shown in FIG. 4 will be completed.
Moreover, the belt | band | zone in which the several film packaging battery 20 was formed in the elongate laminated film 1 is good also as a finished product as it is.

このようにして製造された本発明に係わる電池容器10は、絞り成型容器を用いた電池容器と同様に、容器本体4の底部41と周壁が、薄い金属箔を含む積層フィルム1で構成されるので、電池容器10のガスバリア性が高く、軽量で、容積効率が高い。しかも、絞り成型容器を用いた電池容器と異なり、容器本体の周壁を構成する凹状壁43が、端壁42に溶着されて連結されているので、容器本体4が深くても、水密な構造が形成でき保形性に優れる。また、電池容器10は、金属箔を含む積層フィルム1を折り線で折り曲げることにより、任意の深さの電池容器を製造することができる。
これにより、本発明に係わる電池容器10は、大容量の厚い電池素子5を収容する場合であっても、三次元形状に深く絞る必要がないので、金属箔が薄くても、金属箔に亀裂やピンホールが発生しない。
また、本発明に係わる電池容器10は、今まで金属箔の厚みを薄くすると絞り成型容器に使用できなかった、絞り加工性の低い金属箔や、伸びが小さいため絞り加工に適さない金属箔を用いた積層フィルムも使用できる。
さらに、本発明に係わる電池容器10は、凹状壁43に蓋材3が溶着されるので、フィルム包装電池20の少なくとも対向する二辺は、蓋材3を凹状壁43の上部延出部43cに溶着して封止できる。これにより、蓋材3の溶着部が電池容器10の外方に延出しないので、電池がコンパクトになり、複数の電池容器を集積して用いる場合に、集積体の体積を小さくすることができる。そのため、複数の電池容器の保管時や集積時の、取扱性にも優れる。
また、本発明に係わる電池容器10は、凹状壁43が凹状構造を有するため、蓋材3の溶着時のシール幅を十分に大きくできる。このため、溶着が容易で確実になり、溶着部界面のガスバリア性も高くなる。
The battery container 10 according to the present invention manufactured as described above is composed of the laminated film 1 in which the bottom 41 and the peripheral wall of the container body 4 include a thin metal foil, similarly to the battery container using the draw-molded container. Therefore, the battery container 10 has a high gas barrier property, is lightweight, and has a high volumetric efficiency. Moreover, unlike the battery container using the draw-molded container, the concave wall 43 constituting the peripheral wall of the container body is welded and connected to the end wall 42, so that even if the container body 4 is deep, a watertight structure is obtained. Can be formed and has excellent shape retention. Moreover, the battery container 10 can manufacture the battery container of arbitrary depths by bend | folding the laminated | multilayer film 1 containing metal foil with a fold line.
As a result, the battery container 10 according to the present invention does not need to be deeply squeezed into a three-dimensional shape even when accommodating a large-capacity thick battery element 5, so that even if the metal foil is thin, the metal foil is cracked. And pinholes do not occur.
In addition, the battery container 10 according to the present invention is a metal foil that has not been used for a draw-molded container when the thickness of the metal foil is reduced so far, or a metal foil that is not suitable for drawing because of low elongation. The laminated film used can also be used.
Further, in the battery container 10 according to the present invention, since the lid member 3 is welded to the concave wall 43, at least two opposite sides of the film-packed battery 20 are attached to the upper extending portion 43 c of the concave wall 43. Can be sealed by welding. Thereby, since the welding part of the lid | cover material 3 does not extend outside the battery container 10, a battery becomes compact and the volume of an integrated body can be made small when using several battery containers integrated. . Therefore, it is excellent in handleability when storing or accumulating a plurality of battery containers.
Moreover, since the concave wall 43 has a concave structure, the battery container 10 concerning this invention can fully enlarge the seal width at the time of welding of the cover material 3. FIG. For this reason, welding is easy and reliable, and the gas barrier property at the welded portion interface is also improved.

また、本発明に係わる電池容器10では、凹状壁43の折返し部43aの溶着層が、底部41の溶着層に溶着されているので、保形性がより優れている。また、凹状壁43の端部延出部43dの溶着層と、端壁42の両側縁の溶着層との溶着が容易で確実となる。また、電池容器10では、凹状壁43の凹部45に補強樹脂が充填されて樹脂成型体2が積層されているので、保形性がより優れる。   Further, in the battery case 10 according to the present invention, the welded layer of the folded portion 43a of the concave wall 43 is welded to the welded layer of the bottom portion 41, so that the shape retaining property is more excellent. Further, the welded layer of the end extending portion 43d of the concave wall 43 and the welded layer on both side edges of the end wall 42 can be easily and reliably welded. Further, in the battery container 10, the concave shape 45 of the concave wall 43 is filled with the reinforcing resin and the resin molded body 2 is laminated.

また、本発明に係わる電池容器10の製造方法によれば、長尺の積層フィルム1を用いて、複数の容器本体4を連続的に形成することができる。これにより、ロール、ボビン巻きやカセ巻きに巻き取られた長尺の積層フィルム1や、凹部45が絞り成型された長尺の積層フィルム1を、巻き戻しながら、電池容器やフィルム包装電池を連続的に製造できる。よって、本発明に係わる電池容器10の製造方法は、生産効率を高めることができる。   Moreover, according to the manufacturing method of the battery container 10 concerning this invention, the some container main body 4 can be formed continuously using the elongate laminated film 1. FIG. Thereby, while rewinding the long laminated film 1 wound up in a roll, bobbin winding or casket winding, or the long laminated film 1 in which the concave portion 45 is drawn, the battery container and the film packaging battery are continuously connected. Can be manufactured. Therefore, the manufacturing method of the battery container 10 according to the present invention can increase the production efficiency.

<第2形態例>
図22は、第2形態例の電池容器110を示す。
第2形態例の電池容器110が、第1形態例の電池容器10と異なる点は、樹脂成型体2の中央部がくり抜かれた枠体を用いている点のみである。
第2形態例の電池容器110は、樹脂成型体2を、例えば射出成型によって、枠体となるように形成すること以外は、第1形態例と同様にして作製することができる。
第2形態例の電池容器110は、樹脂成型体2が枠体であるため、軽量化を図ることができる。
<Second embodiment>
FIG. 22 shows the battery case 110 of the second embodiment.
The battery container 110 of the second embodiment is different from the battery container 10 of the first embodiment only in that a frame body in which the central portion of the resin molded body 2 is cut out is used.
The battery container 110 according to the second embodiment can be manufactured in the same manner as the first embodiment except that the resin molded body 2 is formed to be a frame body by, for example, injection molding.
The battery container 110 of the second embodiment can be reduced in weight because the resin molded body 2 is a frame.

<第3形態例>
図23は、第3形態例の電池容器120を示す。
第3形態例の電池容器120が、第1形態例の電池容器10と異なる点は、凹状壁43の下端面の長さが上端面の長さに比べて短く形成されている点のみである。
第3形態例の電池容器120は、凹状壁43の端部延出部43d,43dが、上部延出部43cに対して鋭角に傾斜して形成されている。これによって、凹状壁43は台形となっている。
第3形態例の電池容器120は、凹状壁43を、折返し部43aの長さが上部延出部43cの長さに比べて短くなるように形成すること以外は、第1形態例と同様にして作製することができる。
<Third embodiment>
FIG. 23 shows the battery case 120 of the third embodiment.
The battery container 120 of the third embodiment differs from the battery container 10 of the first embodiment only in that the length of the lower end surface of the concave wall 43 is shorter than the length of the upper end surface. .
The battery case 120 of the third embodiment is formed such that the end extension parts 43d and 43d of the concave wall 43 are inclined at an acute angle with respect to the upper extension part 43c. Thereby, the concave wall 43 is trapezoidal.
The battery case 120 of the third embodiment is the same as the first embodiment except that the concave wall 43 is formed so that the length of the folded portion 43a is shorter than the length of the upper extension portion 43c. Can be produced.

第3形態例においては、凹状壁43の端部延出部43dが、上部延出部43cに対して鋭角に傾斜しているので、第1形態例に比べて、端壁42の、底部41やリード挟持部44に対する屈曲角度が小さい。
そのため、積層フィルム1の剛性が高い場合でも、凹状壁43および蓋材3からの端壁42の剥離が起こり難い。よって、第3形態例の電池容器120は、積層フィルム1や蓋材3にガスバリア層として剛性の高いステンレス箔を用いる場合に好適である。
また、容器本体4の開口部が底部41に比べて広いので、電池素子5を収納する際に作業性がよい。
また、凹状壁43の上部延出部43cと端部延出部43dとで形成される先端の角度が小さくなるため、蓋材3を気密に溶着するうえで有利となる。
In the third embodiment, the end extending portion 43d of the concave wall 43 is inclined at an acute angle with respect to the upper extending portion 43c. Therefore, the bottom 41 of the end wall 42 is compared with the first embodiment. And the bending angle with respect to the lead clamping portion 44 is small.
Therefore, even when the rigidity of the laminated film 1 is high, peeling of the concave wall 43 and the end wall 42 from the lid member 3 hardly occurs. Therefore, the battery case 120 of the third embodiment is suitable when a highly rigid stainless steel foil is used as the gas barrier layer for the laminated film 1 and the lid material 3.
Moreover, since the opening part of the container main body 4 is wider than the bottom part 41, workability | operativity is good when accommodating the battery element 5. FIG.
In addition, since the angle of the tip formed by the upper extension portion 43c and the end extension portion 43d of the concave wall 43 is reduced, it is advantageous in sealing the lid member 3 in an airtight manner.

<第4形態例>
図24は、第4形態例の電池容器130を示す。
第4形態例の電池容器130においては、凹状壁43の端部延出部43dは、傾斜角(上部延出部43cに対する傾斜角)が上部延出部43cから折返し部43aに向かうにしたがって90度に近くなるように湾曲している。
この場合は、凹状壁43の上部延出部43cと端部延出部43dとで形成される先端の角度が小さくなるため、蓋材3を気密に溶着するうえで有利となる。また、電池容器130の下部では端部延出部43dの傾斜角が大きいため、高い容積率を確保することができる。
<Fourth embodiment>
FIG. 24 shows the battery case 130 of the fourth embodiment.
In the battery case 130 of the fourth embodiment, the end extension part 43d of the concave wall 43 has an inclination angle (inclination angle with respect to the upper extension part 43c) that is 90 as it goes from the upper extension part 43c toward the folded part 43a. Curved to be close to degrees.
In this case, since the angle of the tip formed by the upper extension portion 43c and the end extension portion 43d of the concave wall 43 is reduced, it is advantageous in sealing the lid member 3 in an airtight manner. Moreover, since the inclination angle of the end extension 43d is large at the lower part of the battery case 130, a high volume ratio can be ensured.

あるいは、逆に、凹状壁43の端部延出部43dが、折返し部43aから上部延出部43cに向かうにしたがって傾斜角が90度に近くなるように湾曲していてもよい。
また、凹状壁43は、必ずしも、両方の端部延出部43d,43dが傾斜して形成される必要はなく、端部延出部43d,43dの一方が上部延出部43cに対して鋭角に傾斜し、他方が第1形態例のように上部延出部43cに対して垂直に形成されていてもよい。
Or conversely, the end extension part 43d of the concave wall 43 may be curved so that the inclination angle approaches 90 degrees as it goes from the folded part 43a to the upper extension part 43c.
In addition, the concave wall 43 does not necessarily need to be formed so that both end extension parts 43d and 43d are inclined, and one of the end extension parts 43d and 43d has an acute angle with respect to the upper extension part 43c. The other may be formed perpendicular to the upper extension 43c as in the first embodiment.

以上、本発明の実施の形態について図面を参照して説明したが、本発明は、これらの形態例に限定されることなく、本発明の要旨を変更しない範囲において、種々の変更が可能である。
上記のとおり、例示した第1形態例〜第4形態例における電池容器10、110、120、130では、凹状壁43の凹部45に樹脂成型体2が積層されているが、所望の保形性が確保できれば、凹部45内に樹脂成型体2が積層されていない構成も可能である。
また、樹脂成型体2の形状は、上述の例に限らず、橋梁の構造に用いられている、2本または3本以上の橋脚と床盤のような橋渡し形状であってもよい。
さらに、正負の電極リードが互いに反対方向に延出する態様を示したが、正負の電極リードが一つの辺から同じ方向に延出するようにしてもよい。
As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to these form examples, In the range which does not change the summary of this invention, a various change is possible. .
As described above, in the battery containers 10, 110, 120, and 130 in the first to fourth exemplary embodiments illustrated, the resin molded body 2 is laminated on the concave portion 45 of the concave wall 43. Can be ensured, a configuration in which the resin molded body 2 is not laminated in the recess 45 is also possible.
Moreover, the shape of the resin molded body 2 is not limited to the above example, and may be a bridge shape such as two or three or more bridge piers and floor boards used in the structure of the bridge.
Furthermore, although the mode in which the positive and negative electrode leads extend in opposite directions is shown, the positive and negative electrode leads may extend from one side in the same direction.

1…積層フィルム、2…樹脂成型体、3…蓋材、4…容器本体、41…(容器本体の)底部、42…(容器本体の)端壁、43…(容器本体の)凹状壁(側壁)、44…(容器本体の)リード挟持部、45…凹部、47…電極リード、5…電池素子、10,110,120,130…電池容器、20…フィルム包装電池、50…開口、70…金型。 DESCRIPTION OF SYMBOLS 1 ... Laminated film, 2 ... Resin molded object, 3 ... Cover material, 4 ... Container main body, 41 ... Bottom of (container main body), 42 ... End wall of (container main body), 43 ... Concave wall (of main body of container) (Side wall), 44 ... (the container body) lead sandwiching part, 45 ... recess, 47 ... electrode lead, 5 ... battery element, 10, 110, 120, 130 ... battery container, 20 ... film packaging battery, 50 ... opening, 70 …Mold.

Claims (5)

金属箔と溶着層とを有する積層フィルムから形成された容器本体と、蓋材とを有する電池容器であって、
前記容器本体の周壁は、前記積層フィルムの溶着層が収納部側に凸となるように絞り成型され、且つ、外面に凹部が形成されて前記容器本体の底部から折られて立ち上がる一対の対向する凹状壁の両側端面の溶着層が、前記容器本体の底部から折られて立ち上がる一対の対向する壁面の両側縁の溶着層に溶着されて連結したことを特徴とする電池容器。
A battery container having a container body formed from a laminated film having a metal foil and a welding layer, and a lid ,
The peripheral wall of the container main body is formed by drawing so that the welded layer of the laminated film protrudes toward the storage portion , and has a pair of opposing surfaces that are formed with a concave portion on the outer surface and folded from the bottom of the container main body. A battery container characterized in that weld layers on both side end surfaces of the concave wall are welded and connected to weld layers on both side edges of a pair of opposing wall surfaces that are folded and raised from the bottom of the container body .
前記凹状壁の前記容器本体の底部に折り重なる折返し部の溶着層が、前記容器本体の底部の溶着層に溶着された請求項1に記載の電池容器。 Wherein the concave wall, the welding layer of the folds folded portion to the bottom portion of the container body, the battery container according to claim 1 which is welded to the welding layer of the bottom portion of the container body. 前記凹状壁の凹部に補強樹脂が充填された請求項1または2に記載の電池容器。   The battery container according to claim 1, wherein the concave portion of the concave wall is filled with a reinforcing resin. 請求項1ないし3のいずれかに記載の電池容器を用いたフィルム包装電池であって、
前記容器本体に電池素子を収納し、前記蓋材で封止したフィルム包装電池。
A film packaging battery using the battery container according to claim 1,
Accommodating the battery element to the container body, a sealed film package battery the cover material.
金属箔と溶着層とを有する積層フィルムから形成された容器本体を有し、前記容器本体の周壁は、前記積層フィルムの溶着層が収納部側に凸となるように絞り成型され、且つ、外面に凹部が形成されて前記容器本体の底部から折られて立ち上がる一対の対向する凹状壁の両側端面の溶着層が、前記容器本体の底部から折られて立ち上がる一対の対向する壁面の両側縁の溶着層に溶着されて連結した電池容器の製造方法であって、
長尺の前記積層フィルムの長手方向に、一定の間隔を介して配置された複数の前記容器本体底部となる部分同士の間に、前記積層フィルムの幅方向両側辺において、隣接する前記凹状壁同士の対向する二つの側面に溶着される部分の長さより長い間隔をあけて絞り成型して凹状壁を形成する絞り成型工程と、
前記積層フィルムの幅が前記容器本体の底部の幅となり、かつ前記凹状壁が複数の自由端として外方に広がるように前記凹状壁の周囲の絞り成型されない部分の前記積層フィルムに切欠きを設けるフィルム切欠き工程と、
前記積層フィルムの両側辺の前記凹状壁を、互いの溶着層同士が対向するように前記容器本体の底部となる部分に対して、折返し部の根本から折り曲げて立ち上げる凹状壁の立上工程と、
前記凹状壁が存在しない部分の前記積層フィルムを、前記容器本体の底部となる部分に対して、凹状壁の端部延出部の根本から折り曲げて立ち上げる端壁の立上工程と、
前記端壁の両側縁を前記凹状壁の両側端面の溶着層に重ねて溶着し、前記端壁と前記凹状壁とを連結して前記容器本体の周壁を形成する壁面の連結工程と、を有することを特徴とする電池容器の製造方法。
A container body formed of a laminated film having a metal foil and a weld layer, and the peripheral wall of the container body is drawn so that the weld layer of the laminate film protrudes toward the storage section , and the outer surface Welding layers on both side edges of a pair of opposing concave walls that rise from the bottom of the container body and have recesses formed on the opposite sides of the pair of opposing walls that rise from the bottom of the container body A method of manufacturing a battery container welded and connected to a layer,
The concave walls that are adjacent to each other on both sides in the width direction of the laminated film between the portions that become the bottoms of the plurality of container main bodies that are arranged at regular intervals in the longitudinal direction of the long laminated film. A draw molding process in which a concave wall is formed by drawing a gap longer than the length of the portion welded to two opposing side surfaces;
A cutout is provided in the laminated film around the concave wall so that the width of the laminated film becomes the width of the bottom of the container body and the concave wall spreads outward as a plurality of free ends. Film notch process,
A step of raising the concave wall on the both sides of the laminated film by bending from the base of the folded portion and rising up with respect to the bottom portion of the container main body so that the respective welding layers face each other. ,
The step of standing up the end wall of the portion of the laminated film where the concave wall does not exist is bent and raised from the root of the end extension portion of the concave wall with respect to the bottom portion of the container body, and
A wall surface connecting step of overlapping both side edges of the end wall on the weld layers on both side end surfaces of the concave wall and connecting the end wall and the concave wall to form a peripheral wall of the container body. A method for producing a battery container.
JP2014136053A 2014-07-01 2014-07-01 Battery container, film packaging battery, and battery container manufacturing method Active JP6202753B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014136053A JP6202753B2 (en) 2014-07-01 2014-07-01 Battery container, film packaging battery, and battery container manufacturing method
KR1020150052213A KR101718327B1 (en) 2014-07-01 2015-04-14 Battery casing, film packaging battery, and methods for manufacture thereof
CN201510178286.7A CN105322105B (en) 2014-07-01 2015-04-15 Battery container, film-packaged battery, and methods for producing them
TW104113357A TWI644470B (en) 2014-07-01 2015-04-27 Battery casing, film packaging battery, and methods for manufacture thereof
TW107138302A TWI682571B (en) 2014-07-01 2015-04-27 Battery casing, film packaging battery, and methods for manufacture thereof
KR1020170032197A KR101830120B1 (en) 2014-07-01 2017-03-15 Battery casing, film packaging battery
KR1020180016673A KR101858476B1 (en) 2014-07-01 2018-02-12 Battery casing, film packaging battery
KR1020180053423A KR101908922B1 (en) 2014-07-01 2018-05-10 Battery casing, film packaging battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136053A JP6202753B2 (en) 2014-07-01 2014-07-01 Battery container, film packaging battery, and battery container manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017162665A Division JP6415007B2 (en) 2017-08-25 2017-08-25 Battery container and film packaging battery

Publications (2)

Publication Number Publication Date
JP2016015225A JP2016015225A (en) 2016-01-28
JP6202753B2 true JP6202753B2 (en) 2017-09-27

Family

ID=55169665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136053A Active JP6202753B2 (en) 2014-07-01 2014-07-01 Battery container, film packaging battery, and battery container manufacturing method

Country Status (4)

Country Link
JP (1) JP6202753B2 (en)
KR (4) KR101718327B1 (en)
CN (1) CN105322105B (en)
TW (2) TWI682571B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018824A (en) * 2017-08-25 2018-02-01 藤森工業株式会社 Battery container and film packaging battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102201167B1 (en) 2017-04-06 2021-01-11 주식회사 엘지화학 Battery Cell Having Recess Portion formed at Connection Portion Between Two Receiving parts
KR102527981B1 (en) 2018-08-31 2023-05-03 주식회사 엘지에너지솔루션 Pouch, secondary battery comprising the same and manufacturing method of secondary battery
JP7135905B2 (en) * 2019-02-01 2022-09-13 トヨタ自動車株式会社 Method for manufacturing electrode sheath
WO2022024661A1 (en) * 2020-07-31 2022-02-03 京セラ株式会社 Film capacitor, interlinked capacitor, inverter, and electric vehicle
CN112467263B (en) * 2020-09-29 2023-03-31 昆山兴能能源科技有限公司 Plastic battery and production method thereof
KR20230097597A (en) * 2021-12-24 2023-07-03 주식회사 엘지에너지솔루션 Pouch film laminate and battery case prepared by using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251855A (en) * 1999-02-25 2000-09-14 Mitsubishi Chemicals Corp Nonaqueous secondary battery
JP4736188B2 (en) 2001-01-18 2011-07-27 大日本印刷株式会社 Lithium ion battery packaging material and manufacturing method thereof
JP2003077426A (en) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp Battery
JP4053802B2 (en) * 2002-03-28 2008-02-27 Tdk株式会社 Electrochemical devices
JP2005038613A (en) * 2003-07-15 2005-02-10 Ngk Spark Plug Co Ltd Plate-shaped battery
KR100819977B1 (en) * 2003-10-07 2008-04-08 닛본 덴끼 가부시끼가이샤 Film-clad battery and method of producing film-clad battery
KR100870461B1 (en) * 2005-03-09 2008-11-25 주식회사 엘지화학 Secondary Battery of Improved Stability Containing Adhesive Resin of Low Melting Point
JP4979465B2 (en) * 2007-05-31 2012-07-18 Fdk株式会社 Non-aqueous power storage device, manufacturing method thereof, and assembled battery
JP5278380B2 (en) 2010-06-18 2013-09-04 大日本印刷株式会社 Polymer battery packaging materials
KR101252981B1 (en) * 2010-08-05 2013-04-15 주식회사 엘지화학 Pouch of improved safety for secondary battery and secondary battery, battery pack using the same
JP5374531B2 (en) * 2011-03-18 2013-12-25 三菱重工業株式会社 battery
JP6109058B2 (en) * 2013-12-17 2017-04-05 新日鉄住金マテリアルズ株式会社 Seal case and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018824A (en) * 2017-08-25 2018-02-01 藤森工業株式会社 Battery container and film packaging battery

Also Published As

Publication number Publication date
JP2016015225A (en) 2016-01-28
TWI682571B (en) 2020-01-11
KR101908922B1 (en) 2018-10-17
TW201907601A (en) 2019-02-16
KR101830120B1 (en) 2018-02-20
KR101858476B1 (en) 2018-05-16
KR101718327B1 (en) 2017-03-21
TWI644470B (en) 2018-12-11
KR20160003548A (en) 2016-01-11
CN105322105A (en) 2016-02-10
KR20180055777A (en) 2018-05-25
KR20180019626A (en) 2018-02-26
TW201605100A (en) 2016-02-01
KR20170032268A (en) 2017-03-22
CN105322105B (en) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6202753B2 (en) Battery container, film packaging battery, and battery container manufacturing method
KR102109926B1 (en) Pouch case for secondary battery, pouch type secondary battery and manufacturing method thereof using the same
JP7046158B2 (en) Battery cell
KR102087614B1 (en) Battery casing, film packaging battery, and methods for manufacture thereof
JP7240824B2 (en) Deep-drawn molded case for exterior of power storage device and power storage device
JP5758267B2 (en) Sealing member, method for manufacturing sealing member, and container for power storage device
CN112736288B (en) Battery packaging method, battery and electronic equipment
JP6415007B2 (en) Battery container and film packaging battery
JP6537198B2 (en) Battery container and film packaging battery
JP2015185416A (en) lithium ion secondary battery
JP2015232957A (en) Jacket member with cooling fin for electrochemical device, and electrochemical device
JP5565358B2 (en) battery
JP4894668B2 (en) Battery manufacturing method
JP2023550896A (en) Battery cell including a sealing part with an embossed pattern and a sealing block for manufacturing the same
CN105098274B (en) The discrimination method and structure of battery packaging
JP2024009956A (en) Power storage device and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6202753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250