[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6200814B2 - Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus - Google Patents

Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus Download PDF

Info

Publication number
JP6200814B2
JP6200814B2 JP2014003491A JP2014003491A JP6200814B2 JP 6200814 B2 JP6200814 B2 JP 6200814B2 JP 2014003491 A JP2014003491 A JP 2014003491A JP 2014003491 A JP2014003491 A JP 2014003491A JP 6200814 B2 JP6200814 B2 JP 6200814B2
Authority
JP
Japan
Prior art keywords
tin oxide
phosphorus
pto
particles
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014003491A
Other languages
Japanese (ja)
Other versions
JP2014169218A (en
Inventor
昭浩 奈良
昭浩 奈良
浩一 瓦谷
浩一 瓦谷
坂上 貴彦
貴彦 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2014003491A priority Critical patent/JP6200814B2/en
Publication of JP2014169218A publication Critical patent/JP2014169218A/en
Application granted granted Critical
Publication of JP6200814B2 publication Critical patent/JP6200814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、リンを含む酸化スズ粒子に関する。本発明のリンを含む酸化スズ粒子は、例えば樹脂やプラスチックに導電性粒子を混合して構成された透明導電膜の原料として好適に用いられる。また本発明は、リンを含む酸化スズゾルの製造方法に関する。   The present invention relates to tin oxide particles containing phosphorus. The tin oxide particles containing phosphorus according to the present invention are suitably used as a raw material for a transparent conductive film formed by mixing conductive particles with resin or plastic, for example. The present invention also relates to a method for producing a tin oxide sol containing phosphorus.

樹脂を用いた導電性薄膜を製造する場合や、プラスチック等の非導電性材料に導電性を付与する場合に、導電性粉末を用いることがしばしば行われている。導電性粉末としては、例えば、金属粉末、カーボンブラック、アンチモン等を含む酸化スズ等が知られている。しかし、導電性薄膜は工程内の製品位置を確認する必要や異常を検知する目的から光透過率の高いものが求められることが多いところ、金属粉末やカーボンブラックを用いた場合には、透明な導電性薄膜を得ることはできない。またプラスチックにカーボンブラックを添加すると、得られるプラスチックそのものが黒色になり、導電性プラスチックの用途が限定されてしまう。アンチモン等をドープした酸化スズをプラスチックに添加した場合もプラスチックが青黒色になり、カーボンブラック等と同様にプラスチックの用途が限定される。またアンチモンは人体に有害な物質なので、使用に起因する環境負荷の問題も生じる。そこで、アンチモン等の環境負荷の大きい元素ドーパントとして用いない酸化スズについての検討が種々行われている。   In the case of producing a conductive thin film using a resin, or in the case of imparting conductivity to a non-conductive material such as plastic, it is often performed to use conductive powder. As the conductive powder, for example, tin powder containing metal powder, carbon black, antimony, and the like are known. However, the conductive thin film is often required to have a high light transmittance for the purpose of confirming the position of the product in the process and for detecting abnormalities. When metal powder or carbon black is used, it is transparent. A conductive thin film cannot be obtained. Moreover, when carbon black is added to plastic, the resulting plastic itself becomes black, and the use of conductive plastic is limited. When tin oxide doped with antimony or the like is added to the plastic, the plastic becomes blue-black, and the use of the plastic is limited in the same manner as carbon black. Moreover, since antimony is a harmful substance to the human body, there is also a problem of environmental load caused by use. Therefore, various studies have been made on tin oxide not used as an element dopant having a large environmental load such as antimony.

このドーパント元素として、環境負荷の小さい元素であるリンを用いた酸化スズが提案されている(特許文献1参照)。同文献においては、原料である酸化スズゾルに、リン化合物及びジイソプロピルアミン等のアルキルアミンを混合した後、水熱処理を行うことでリンを含む酸化スズ(以下「PTO」とも言う。)のゾルを得ている。得られたPTOのゾルには、ジイソブチルアミンが添加混合されて、目的とするゾルが得られる。   As this dopant element, tin oxide using phosphorus, which is an element with a small environmental load, has been proposed (see Patent Document 1). In this document, a tin oxide sol (hereinafter also referred to as “PTO”) containing phosphorus is obtained by mixing a phosphorus compound and an alkylamine such as diisopropylamine with a tin oxide sol that is a raw material, and then performing hydrothermal treatment. ing. To the obtained PTO sol, diisobutylamine is added and mixed to obtain the desired sol.

特開2008−50253号公報JP 2008-50253 A

しかし、特許文献1に記載のゾルを用いて透明導電膜を形成した場合、該導電膜用の導電性粉末として用いるのに電気抵抗は十分に低いものとは言えず、目標の1.0×1010Ωcmに達しておらず改良の余地のあるものであった。 However, when the transparent conductive film is formed using the sol described in Patent Document 1, it cannot be said that the electric resistance is sufficiently low to be used as the conductive powder for the conductive film, and the target 1.0 × It did not reach 10 10 Ωcm, and there was room for improvement.

本発明の課題は、前述した従来技術が有する種々の欠点を解消し得るリンを含む酸化スズ粒子及びリンを含む酸化スズゾルの製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the tin oxide sol containing phosphorus and the tin oxide particle | grains containing phosphorus which can eliminate the various fault which the prior art mentioned above has.

本発明は、リンを含む酸化スズ粒子において、動的光散乱方式で測定された該粒子の累積体積50容量%における体積累積粒径D50をX(nm)とし、該粒子に含まれる炭素の割合をY(質量%)としたとき、X/Yの値が3〜50であるリンを含む酸化スズ粒子を提供するものである。 In the present invention, tin oxide particles containing phosphorus, X (nm) is a volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume measured by a dynamic light scattering method, and the carbon contained in the particles. When the ratio is Y (mass%), tin oxide particles containing phosphorus having an X / Y value of 3 to 50 are provided.

また本発明は、リン源を含む塩基性水溶液中に、二価又は四価のスズ源を含む水溶液を添加して、リンを含む酸化スズのゾルを調製し、
アルキルアミン又はアンモニアの共存下に、前記ゾルをオートクレーブ中で水熱処理して、リンを含む酸化スズ粒子を生成させる、リンを含む酸化スズゾルの製造方法を提供するものである。
In the present invention, a basic aqueous solution containing a phosphorus source is added with an aqueous solution containing a divalent or tetravalent tin source to prepare a tin oxide sol containing phosphorus,
The present invention provides a method for producing a tin oxide sol containing phosphorus, wherein the sol is hydrothermally treated in an autoclave in the presence of an alkylamine or ammonia to produce tin oxide particles containing phosphorus.

本発明によれば、導電性が従来よりも高い導電性薄膜を形成し得るリンを含む酸化スズ粒子が提供される。また本発明によれば、そのようなリンを含む酸化スズ粒子のゾルを好適に製造し得る方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the tin oxide particle containing the phosphorus which can form the electroconductive thin film whose electroconductivity is higher than before is provided. Moreover, according to this invention, the method which can manufacture suitably the sol of the tin oxide particle containing such phosphorus is provided.

図1(a)及び(b)は、実施例1で得られた酸化スズ粒子の透過型電子顕微鏡像である。1A and 1B are transmission electron microscopic images of tin oxide particles obtained in Example 1. FIG. 図2(a)及び(b)は、比較例1で得られた酸化スズ粒子の透過型電子顕微鏡像である。2A and 2B are transmission electron microscope images of the tin oxide particles obtained in Comparative Example 1. FIG.

以下本発明を、その好ましい実施形態に基づき説明する。本発明のPTO粒子は、その具体的な用途に応じ、該粒子の集合体である粉末の形態であり得る。あるいは、該粉末が水や有機溶媒等の媒体に分散した状態になっているゾル(分散液)の形態でもあり得る。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The PTO particles of the present invention can be in the form of a powder that is an aggregate of the particles, depending on the specific application. Alternatively, it may be in the form of a sol (dispersion) in which the powder is dispersed in a medium such as water or an organic solvent.

本発明のPTO粒子には、該粒子の導電性を高める目的でリンが含まれている。本発明のPTO粒子は、酸化スズの結晶中において酸素原子の位置がリン原子で置換された構造を有していると考えられる。後述するPTO粒子の製造方法から明らかなように、本発明のPTO粒子においては、ドープ元素であるリンは、粒子の径方向にわたり均一に分布していると考えられる。このようなリンの分布状態が、本発明のPTO粒子の導電性の向上に寄与しているのではないかと、本発明者は考えている。すなわちPTO粒子全体としての抵抗値は、リンの少ない導電性の低い部分の比率が支配的な因子であるため、導電性を高めるリンの濃度が均一でない場合には、抵抗の高い部分の比率が上昇してしまう。このためリン濃度を粒子内の径方向に対して均一にしておく必要がある。これに対して、先に背景技術の項で述べた特許文献1に記載のPTO粒子は、その製造方法から見て、粒子の表面及びその近傍にリンが偏在していると考えられる。そのため、粒子内部の抵抗値が低下しないので、同文献に記載のPTO粒子は導電性が十分に高くならないと、本発明者は考えている。   The PTO particles of the present invention contain phosphorus for the purpose of increasing the conductivity of the particles. The PTO particles of the present invention are considered to have a structure in which the position of an oxygen atom is substituted with a phosphorus atom in a tin oxide crystal. As is clear from the method for producing PTO particles described later, in the PTO particles of the present invention, it is considered that phosphorus as a doping element is uniformly distributed over the radial direction of the particles. The present inventor believes that such a phosphorus distribution state contributes to the improvement of the conductivity of the PTO particles of the present invention. That is, the resistance value of the PTO particles as a whole is governed by the ratio of the low-conductivity low-phosphorus part. Therefore, when the concentration of phosphorus that increases conductivity is not uniform, the high-resistance part ratio is It will rise. For this reason, it is necessary to make the phosphorus concentration uniform in the radial direction in the particles. On the other hand, in the PTO particles described in Patent Document 1 described in the background art section above, it is considered that phosphorus is unevenly distributed on the surface of the particles and in the vicinity thereof as viewed from the production method. For this reason, since the resistance value inside the particles does not decrease, the inventor believes that the PTO particles described in the document do not have sufficiently high conductivity.

ところで、二価のスズのみからなる酸化物は、導電性は有するものの黒色となり、透明性が要求される用途、例えば電子部品の搬送工程に用いられる透明導電膜等に利用することができない。一方、四価のスズのみからなる酸化物は、二価のスズのみからなる酸化物に比べて導電性を高くすることができない。これに対して、本発明のPTO粒子は白色系であって、透明導電膜等に利用することができ、かつ四価のスズからなるため導電性が高いので、樹脂に混入させた透明導電膜としての導電性を高めることが可能となる。なお、本発明のPTO粒子は、これを粉末X線回折測定すると、四価のSnO2と同様の回折ピークのみを呈する。したがって、本発明のPTO粒子におけるスズの価数は大部分が導電性の高い四価の状態であると考えられる。 By the way, although the oxide which consists only of bivalent tin turns into black, although it has electroconductivity, it cannot utilize for the use as which a transparency is requested | required, for example, the transparent conductive film used for the conveyance process of an electronic component, etc. On the other hand, an oxide made of only tetravalent tin cannot have higher conductivity than an oxide made of only divalent tin. On the other hand, the PTO particles of the present invention are white and can be used for a transparent conductive film and the like, and since they are made of tetravalent tin, the conductivity is high. As a result, it is possible to increase the conductivity. The PTO particles of the present invention exhibit only the same diffraction peak as that of tetravalent SnO 2 when measured by powder X-ray diffraction. Therefore, most of the valence of tin in the PTO particles of the present invention is considered to be a tetravalent state with high conductivity.

本発明のPTO粒子は、ドーパントとしてリンを含有し、他の公知のドーパント元素、例えばアンチモン、タンタル、ニオブ、タングステン等に関しては、含有割合が低いことが、導電性の向上の点から有利である。環境負荷や製造経費の観点からは、本発明のPTO粒子は、ドーパントとしてリンのみを含有し、他の公知のドーパントは含有していないことが好ましい。   The PTO particles of the present invention contain phosphorus as a dopant, and with respect to other known dopant elements such as antimony, tantalum, niobium, tungsten, etc., it is advantageous from the viewpoint of improving conductivity that the content ratio is low. . From the viewpoint of environmental load and manufacturing cost, the PTO particles of the present invention preferably contain only phosphorus as a dopant and no other known dopants.

更に本発明のPTO粒子は、前記の公知のドーパント以外の他の不純物元素の含有量が少ないことが、導電性の向上の点から好ましい。特に、導電性の低下に及ぼす影響が大きい元素である炭素の含有割合が低いことが好ましい。尤も、PTOゾルの分散性を高める観点からは、該ゾルに分散剤の添加が必要であり、分散剤としてはアルキルアミン等の含炭素化合物が分散性の確保からより望ましい。このため、PTO粒子中には不可避的に炭素が混入する。したがって、PTO粒子中に含まれる炭素の割合を低くすることには限界がある。このように、炭素の含有割合について、PTO粒子の導電性と当該PTO粒子を含有したPTOゾルの分散性とは二律背反の関係にある。このような状況のもと、本発明者は鋭意検討した結果、意外にも、PTO粒子の粒径と炭素の含有割合との比率を特定の範囲に設定することで、PTO粒子の導電性と分散性とを両立させ得ることを見いだした。具体的には、動的光散乱方式で測定されたPTO粒子の累積体積50容量%における体積累積粒径D50をX(nm)とし、該PTO粒子に含まれる炭素の割合をY(質量%)としたとき、X/Yの値が3〜50であると、PTO粒子の導電性と分散性とが両立したものとなる。この有利な効果を一層顕著なものとする観点から、X/Yの値は3〜30であることが好ましく、3〜20であることが一層好ましい。PTO粒子の粒径であるXの値及び炭素の含有割合であるYの値は、例えば後述する方法に従いPTO粒子を製造することでコントロールすることができる。 Further, the PTO particles of the present invention preferably have a small content of impurity elements other than the above-mentioned known dopants from the viewpoint of improving the conductivity. In particular, it is preferable that the content ratio of carbon which is an element having a large influence on the decrease in conductivity is low. However, from the viewpoint of improving the dispersibility of the PTO sol, it is necessary to add a dispersant to the sol, and as the dispersant, a carbon-containing compound such as an alkylamine is more preferable from the viewpoint of ensuring dispersibility. For this reason, carbon is inevitably mixed in the PTO particles. Therefore, there is a limit to reducing the proportion of carbon contained in the PTO particles. Thus, regarding the carbon content, the conductivity of the PTO particles and the dispersibility of the PTO sol containing the PTO particles are in a trade-off relationship. Under such circumstances, as a result of intensive studies, the present inventors surprisingly set the ratio between the particle size of the PTO particles and the carbon content ratio to a specific range, thereby improving the conductivity of the PTO particles. It was found that both dispersibility and compatibility can be achieved. Specifically, the volume cumulative particle diameter D 50 in the cumulative volume 50% by volume of the PTO particles measured by dynamic light scattering method and X (nm), the proportion of carbon contained in the PTO particles Y (mass% When the X / Y value is 3 to 50, the conductivity and dispersibility of the PTO particles are compatible. From the viewpoint of making this advantageous effect more remarkable, the value of X / Y is preferably 3 to 30, and more preferably 3 to 20. The value of X, which is the particle size of the PTO particles, and the value of Y, which is the carbon content, can be controlled, for example, by producing PTO particles according to the method described later.

X/Yの値によってPTO粒子の導電性と分散性とのバランスを図ることができることは、PTO粒子に含まれる炭素の割合が同じであっても、その粒径が異なることで、導電性の程度が異なることを意味している。具体的には、PTO粒子に含まれる炭素の割合が同じであっても、その粒径が小さいほど、該粒子の導電性が高くなる。このような知見はこれまで知られておらず、本発明者が初めて見いだした事項である。   The balance between the conductivity and dispersibility of the PTO particles can be achieved by the value of X / Y because the particle size is different even if the proportion of carbon contained in the PTO particles is the same. It means that the degree is different. Specifically, even if the proportion of carbon contained in the PTO particles is the same, the smaller the particle size, the higher the conductivity of the particles. Such knowledge has not been known so far, and is the first finding of the present inventors.

X及びYそれぞれの値については、以下のとおりであることが好ましい。Xの値は、X/Yの値が上述の範囲内であることを条件として、1〜50nm、中でも1〜20nm、特に1〜15nm、とりわけ1〜10nmであることが好ましい。つまり、本発明のPTO粒子は非常に微小なものである。一方、Yの値は、X/Yの値が上述の範囲内であることを条件として、5.0質量%、中でも4.0質量%以下、特に3.0質量%以下、とりわけ2.1質量%以下であることが好ましい。Yの値は0に近づくほど好ましいが、上述したX/Yの範囲との関係で、Yの下限値は1.3質量%であることが好ましく、1.5質量%であることが更に好ましい。X及びYの値の測定方法は、後述する実施例において詳述する。   The values of X and Y are preferably as follows. The value of X is preferably 1 to 50 nm, more preferably 1 to 20 nm, particularly 1 to 15 nm, especially 1 to 10 nm, provided that the value of X / Y is within the above-mentioned range. That is, the PTO particles of the present invention are very fine. On the other hand, the value of Y is 5.0% by mass, particularly 4.0% by mass or less, especially 3.0% by mass or less, especially 2.1%, provided that the value of X / Y is within the above-mentioned range. It is preferable that it is below mass%. Although the value of Y is preferably closer to 0, the lower limit of Y is preferably 1.3% by mass and more preferably 1.5% by mass in relation to the above-mentioned X / Y range. . The measuring method of the value of X and Y is explained in full detail in the Example mentioned later.

上述のXの値の好ましい範囲から明らかなように、本発明のPTO粒子は非常に微小なものであり、このことは該PTO粒子が高い比表面積を有するものであることを意味する。すなわち該PTO粒子は微粒で高分散であるため、粒子どうしの接触点が多くなり、電気抵抗が低下する。詳細には、本発明のPTO粒子のBET比表面積は、好ましくは100〜300m2/g、更に好ましくは120〜250m2/g、一層好ましくは150〜200m2/gである。 As apparent from the preferable range of the value of X described above, the PTO particles of the present invention are very fine, which means that the PTO particles have a high specific surface area. That is, since the PTO particles are fine and highly dispersed, the number of contact points between the particles increases, and the electrical resistance decreases. Specifically, BET specific surface area of the PTO particles of the present invention is preferably 100 to 300 m 2 / g, more preferably 120~250m 2 / g, more preferably 150 to 200 m 2 / g.

本発明のPTO粒子は、上述のとおり、不純物としての炭素の割合Yが低いものであるところ、その他の不純物元素の割合も低いことが、導電性の向上の点から有利である。具体的には、本発明のPTO粒子においては、リン、スズ、酸素及び炭素以外に含まれる元素の割合の総和が、好ましくは0.001〜1.0質量%であり、更に好ましくは0.001〜0.5質量%という低レベルのものになっている。   As described above, the PTO particles of the present invention have a low ratio Y of carbon as an impurity, but it is advantageous from the viewpoint of improving conductivity that the ratio of other impurity elements is also low. Specifically, in the PTO particles of the present invention, the sum of the proportions of elements contained other than phosphorus, tin, oxygen and carbon is preferably 0.001 to 1.0% by mass, more preferably 0.8. The level is as low as 001 to 0.5 mass%.

本発明のPTO粒子には、リンが含まれているところ、該PTO粒子におけるリンと炭素との割合も、該PTO粒子の導電性に影響を及ぼすことが、本発明者の検討の結果判明した。詳細には、PTO粒子に含まれるリンの割合をZ(質量%)としたとき、このZと、PTO粒子に含まれる炭素の割合Y(質量%)との割合Z/Yが、好ましくは0.3〜0.7、更に好ましくは0.4〜0.6が好ましく、PTO粒子の導電性が一層高くなる。このZの値の測定方法は、後述する実施例において詳述する。   As a result of examination by the present inventors, the PTO particles of the present invention contain phosphorus, and the ratio of phosphorus and carbon in the PTO particles also affects the conductivity of the PTO particles. . Specifically, when the ratio of phosphorus contained in the PTO particles is Z (mass%), the ratio Z / Y of this Z and the ratio Y (mass%) of carbon contained in the PTO particles is preferably 0. .3-0.7, more preferably 0.4-0.6, and the conductivity of the PTO particles is further increased. The method for measuring the value of Z will be described in detail in the examples described later.

PTO粒子に含まれるリンの割合Zの値は、Z/Yの値が上述の範囲内であることを条件として、好ましくは0.9〜5.0質量%、更に好ましくは0.9〜2.5質量%、一層好ましくは0.9〜2.0質量%、特に好ましくは0.9〜1.2質量%である。リンの割合Zをこの範囲、特に後述する実施例4と比較例5との対比から明らかな通り2.5質量%以下に設定することで、PTO粒子の導電性を更に一層高めることができ、また、透明性を更に一層高めることができる。Zの値は、後述するPTO粒子の製造方法において、反応系に添加するリン源の量や反応条件の調整によってコントロールすることができる。   The value of the proportion Z of phosphorus contained in the PTO particles is preferably 0.9 to 5.0% by mass, more preferably 0.9 to 2 on the condition that the value of Z / Y is within the above range. 0.5% by mass, more preferably 0.9-2.0% by mass, and particularly preferably 0.9-1.2% by mass. By setting the ratio Z of phosphorus to 2.5% by mass or less as apparent from the comparison between Example 4 and Comparative Example 5, which will be described later, the conductivity of the PTO particles can be further enhanced. Further, the transparency can be further enhanced. The value of Z can be controlled by adjusting the amount of phosphorus source added to the reaction system and the reaction conditions in the PTO particle production method described later.

本発明のPTO粒子は、その形状が球状ないし角のとれた粒状のものであることが好ましい(後述する図1参照)。このような形状を有することで、該PTO粒子を原料として導電膜を形成すると、該導電膜中でのPTO粒子の充填性が良好になり、該導電膜の導電性を高めることができる。これに対して、背景技術の項で述べた特許文献1に記載のPTO粒子は、本発明者の追試験によれば、角を有するごつごつとした形状のものであり(後述する図2参照)、その形状に起因して粒子間の接触面積が小さく、導電膜の導電性を十分に高められないことが判明した。   The PTO particles of the present invention are preferably in the form of particles having a spherical shape or a rounded shape (see FIG. 1 described later). By having such a shape, when a conductive film is formed using the PTO particles as a raw material, the filling property of the PTO particles in the conductive film is improved, and the conductivity of the conductive film can be increased. On the other hand, the PTO particles described in Patent Document 1 described in the section of the background art have a rugged shape having corners according to the follow-up test of the present inventor (see FIG. 2 described later). It was found that the contact area between the particles was small due to the shape, and the conductivity of the conductive film could not be sufficiently increased.

本発明のPTO粒子は、これを膜状に成形した場合に、透明性及び導電性の高いものである。例えば厚さ0.1〜1.0μmで、PTO粒子の含有量が95〜99質量%である樹脂による導電膜を製造した場合、この膜の可視光の全光線透過率は85%以上、特に90%以上という透明性の高いものとなる。ヘイズ値は好ましくは3以下、更に好ましくは1以下である。また、この条件で膜を製造した場合、表面抵抗値は、25℃、50%RHの測定条件で、2×108〜8×109Ωcmを示す。 The PTO particles of the present invention are highly transparent and conductive when formed into a film. For example, when a conductive film made of a resin having a thickness of 0.1 to 1.0 μm and a PTO particle content of 95 to 99% by mass is produced, the visible light has a total light transmittance of 85% or more, particularly It becomes a highly transparent material of 90% or more. The haze value is preferably 3 or less, more preferably 1 or less. When a film is produced under these conditions, the surface resistance value is 2 × 10 8 to 8 × 10 9 Ωcm under the measurement conditions of 25 ° C. and 50% RH.

先に述べたとおり、本発明のPTO粒子は、ゾル(分散液)の形態でもあり得る。該ゾルの分散媒としては、水又は水溶性有機溶媒を含む水性液や、有機溶媒を用いることができる。かかるゾルは、例えば透明導電膜の製造に有用なものである。該ゾルにおけるPTO粒子の割合は、5〜45質量%、特に5〜30質量%であることが好ましい。   As mentioned above, the PTO particles of the present invention can also be in the form of a sol (dispersion). As the dispersion medium of the sol, water or an aqueous liquid containing a water-soluble organic solvent or an organic solvent can be used. Such a sol is useful for producing a transparent conductive film, for example. The proportion of PTO particles in the sol is preferably 5 to 45% by mass, particularly 5 to 30% by mass.

本発明のPTO粒子を含むゾル(以下、「PTOゾル」とも言う。)は、分散質であるPTO粒子及び分散媒のみを含むものであってもよく、あるいは該分散媒に溶解可能な第三成分を含むものであってもよい。そのような第三成分としては、分散質であるPTO粒子の分散剤、スズ塩などの金属塩、リン含有化合物、アルカリなどが挙げられる。PTOゾルにおいて、該分散剤を含む第三成分の割合の総和は0〜1.0質量%であることが好ましく、0〜0.5質量%であることが更に好ましい。   The sol containing the PTO particles of the present invention (hereinafter also referred to as “PTO sol”) may contain only PTO particles as a dispersoid and a dispersion medium, or may be a third soluble in the dispersion medium. A component may be included. Examples of such a third component include a dispersant for PTO particles as a dispersoid, a metal salt such as a tin salt, a phosphorus-containing compound, and an alkali. In the PTO sol, the total of the proportions of the third component including the dispersant is preferably 0 to 1.0% by mass, and more preferably 0 to 0.5% by mass.

本発明のPTO粒子の粉末は、白色ないし透明なものなので、該粉末を含むゾルであるPTOゾルは、可視光の波長領域(400〜800nm)において透明性の高いものである。特に透明性の高い水性分散液を用いて塗膜を形成すると、乾燥後の塗膜の透明性が極めて高くなる。   Since the powder of the PTO particles of the present invention is white or transparent, the PTO sol that is a sol containing the powder is highly transparent in the wavelength region of visible light (400 to 800 nm). In particular, when a coating film is formed using an aqueous dispersion having high transparency, the transparency of the coating film after drying becomes extremely high.

次に、本発明のPTO粒子を含むPTOゾルの好適な製造方法について説明する。本製造方法は、(1)リンを含む酸化スズゾルの調製工程、及び(2)水熱処理によるPTO粒子の生成工程に大別される。更に必要に応じ(3)PTO粒子の分散処理工程が行われる。以下、各工程について詳述する。   Next, the suitable manufacturing method of PTO sol containing the PTO particle | grains of this invention is demonstrated. This manufacturing method is roughly divided into (1) a preparation process of tin oxide sol containing phosphorus, and (2) a process of generating PTO particles by hydrothermal treatment. Further, (3) a PTO particle dispersion treatment step is performed as necessary. Hereinafter, each process is explained in full detail.

(1)の工程においては、リン源を含む塩基性水溶液中に、二価又は四価のスズ源を含む水溶液を添加して、リンを含む酸化スズのゾルを調製する。リン源としては、水溶性のリン化合物を用いることができる。そのようなリン化合物の例としては、オルトリン酸及びそのアルカリ金属塩、リン酸化物などが挙げられるが、塩の方がより好ましい。塩基性水溶液に含まれるリン源の割合は、水に対して0.01〜1.0mol/L、特に0.02〜0.5mol/Lとすることが好ましい。   In the step (1), an aqueous solution containing a divalent or tetravalent tin source is added to a basic aqueous solution containing a phosphorus source to prepare a tin oxide sol containing phosphorus. As the phosphorus source, a water-soluble phosphorus compound can be used. Examples of such phosphorus compounds include orthophosphoric acid and its alkali metal salts, phosphorus oxides and the like, with salts being more preferred. The ratio of the phosphorus source contained in the basic aqueous solution is preferably 0.01 to 1.0 mol / L, particularly 0.02 to 0.5 mol / L, relative to water.

塩基性水溶液としては、水酸化ナトリウム等のアルカリ金属の水溶液、アルカリ土類金属の水溶液、アンモニアなどを用いることができる。塩基性水溶液は、そのpHが、リン源を含んだ状態で、11以上、特に12以上であることが好ましい。この塩基性水溶液は、含炭素化合物を含有していないことが好ましい。   As the basic aqueous solution, an aqueous solution of an alkali metal such as sodium hydroxide, an aqueous solution of an alkaline earth metal, ammonia or the like can be used. The basic aqueous solution preferably has a pH of 11 or more, particularly 12 or more in a state containing a phosphorus source. This basic aqueous solution preferably does not contain a carbon-containing compound.

リン源を含む塩基性水溶液に添加されるスズ源を含む水溶液においては、該スズ源として二価のスズ化合物又は四価のスズ化合物が用いられる。これらのスズ化合物としては、炭素非含有の化合物を用いることが好ましい。例えば第一塩化スズや第二塩化スズなどのスズのハロゲン化物、硫酸スズなどを用いることが好ましい。二価のスズ源と四価のスズ源とを比較すると、四価のスズ源を用いることが、着色されていないPTO粒子が容易に得られる点から好ましい。この観点から、スズ源として特に好ましく用いられる化合物は塩化第二スズである。スズ源を含む水溶液に含まれるスズ源の割合は、塩化第二スズとして15〜60質量%、特に20〜40質量%とすることが好ましい。スズ源を含む水溶液は、含炭素化合物を含有していないことが好ましい。   In an aqueous solution containing a tin source added to a basic aqueous solution containing a phosphorus source, a divalent tin compound or a tetravalent tin compound is used as the tin source. As these tin compounds, it is preferable to use compounds not containing carbon. For example, it is preferable to use a tin halide such as stannous chloride or stannous chloride, or tin sulfate. When a divalent tin source is compared with a tetravalent tin source, it is preferable to use a tetravalent tin source from the viewpoint of easily obtaining uncolored PTO particles. From this viewpoint, a compound that is particularly preferably used as a tin source is stannic chloride. The ratio of the tin source contained in the aqueous solution containing the tin source is preferably 15 to 60% by mass, particularly 20 to 40% by mass as stannic chloride. It is preferable that the aqueous solution containing a tin source does not contain a carbon-containing compound.

本製造方法においては、リン源を含む塩基性水溶液に、スズ源を含む水溶液を添加することが重要である。この添加態様を採用することで、PTO粒子の生成の当初からリン源を反応系に存在させることができるので、得られるPTO粒子においては、その径方向にわたりリンの分布が均一なものとなる。なお、リン源を含む塩基性水溶液に、スズ源を含む水溶液を添加するのではなく、その逆にスズ源を含む水溶液に、リン源を含む塩基性水溶液を添加した場合や、リン源を含む水溶液、スズ源を含む水溶液、及び塩基性水溶液を、水に一括添加した場合には、反応当初からリン源が存在するものの、本発明の導電性を有するPTO粒子を得ることはできない。   In this production method, it is important to add an aqueous solution containing a tin source to a basic aqueous solution containing a phosphorus source. By adopting this addition mode, a phosphorus source can be present in the reaction system from the beginning of the production of PTO particles, so that the obtained PTO particles have a uniform phosphorus distribution over the radial direction. In addition, instead of adding an aqueous solution containing a tin source to a basic aqueous solution containing a phosphorus source, conversely, a basic aqueous solution containing a phosphorus source is added to an aqueous solution containing a tin source, or a phosphorus source is included. When an aqueous solution, an aqueous solution containing a tin source, and a basic aqueous solution are added to water all at once, a PTO particle having electrical conductivity of the present invention cannot be obtained although a phosphorus source is present from the beginning of the reaction.

本製造方法に従いリン源を含む塩基性水溶液に、スズ源を含む水溶液を添加する場合、塩基性水溶液中に、局所的にスズ源を含む水溶液の高濃度部分が生じないようにするため、逐次添加を行うことが好ましい。添加を室温(20〜25℃)で行っても反応は速やかに進行するが、必要に応じてリン源を含む塩基性水溶液及び/又はスズ源を含む水溶液を加熱した状態下に添加を行ってもよい。   When adding an aqueous solution containing a tin source to a basic aqueous solution containing a phosphorus source according to this production method, in order to prevent a high-concentration portion of the aqueous solution containing a tin source from occurring locally in the basic aqueous solution, It is preferable to add. The reaction proceeds rapidly even when the addition is performed at room temperature (20 to 25 ° C.), but if necessary, the basic aqueous solution containing a phosphorus source and / or the aqueous solution containing a tin source is added under a heated condition. Also good.

リン源を含む塩基性水溶液に、スズ源を含む水溶液を添加することで、リンを含む酸化スズのゾルが得られる。この酸化スズは、組成分析の結果、四価のスズの酸化物を主成分とすることが確認された。また、X線回折測定の結果、ブロードな回折ピークを有する結晶性の低いものであることも確認された。   By adding an aqueous solution containing a tin source to a basic aqueous solution containing a phosphorus source, a sol of tin oxide containing phosphorus can be obtained. As a result of the composition analysis, it was confirmed that the tin oxide was mainly composed of tetravalent tin oxide. Further, as a result of X-ray diffraction measurement, it was confirmed that the crystal had a broad diffraction peak and low crystallinity.

このようにして得られたゾルを遠心分離や固液分離装置などによって水洗し、不純物を除去した後、(2)の工程を行う。本工程においては、ゾルにアルキルアミン又はアンモニアを添加し、これらの共存下に該ゾルをオートクレーブ中で自生圧力下に水熱処理する。アルキルアミンやアンモニアは、粒子の凝集を防止する目的で添加される。アルキルアミンとアンモニアは、いずれか一方を用いてもよく、あるいは両者を併用してもよい。最終的に得られるPTO粒子中の炭素の割合を低減させる観点からは、アンモニアを用いることが好ましい。アルキルアミンを用いる場合には、PTO粒子中の炭素の割合を低減させる観点から、第二級アミンや第三級アミンよりも、第一級アミンを用いることが好ましい。また、低級アルキル基のアミンを用いることも好ましい。これらを総合的に判断すると、炭素数が好ましくは1〜12、より好ましくは1〜10、更に好ましくは2〜6である第一級アミンを用いることが好ましい。   The sol thus obtained is washed with water using a centrifugal separator or a solid-liquid separator to remove impurities, and then the step (2) is performed. In this step, alkylamine or ammonia is added to the sol, and the sol is hydrothermally treated in an autoclave under an autogenous pressure in the presence of these. Alkylamine and ammonia are added for the purpose of preventing particle aggregation. Either one of alkylamine and ammonia may be used, or both may be used in combination. From the viewpoint of reducing the proportion of carbon in the finally obtained PTO particles, it is preferable to use ammonia. When using an alkylamine, it is preferable to use a primary amine rather than a secondary amine or a tertiary amine from the viewpoint of reducing the carbon ratio in the PTO particles. It is also preferable to use a lower alkyl amine. If these are judged comprehensively, it is preferable to use a primary amine having a carbon number of preferably 1 to 12, more preferably 1 to 10, and still more preferably 2 to 6.

アンモニアやアルキルアミンの添加量は、酸化スズに対して5〜50質量%とすることが好ましく、10〜30質量%とすることが更に好ましい。   The addition amount of ammonia or alkylamine is preferably 5 to 50% by mass, and more preferably 10 to 30% by mass with respect to tin oxide.

水熱処理においては、ゾルに含まれる固形分の割合を5〜30質量%、特に7〜20質量%にすることが好ましい。また水熱処理の温度は130〜200℃、特に150〜180℃に設定することが好ましい。処理時間は、温度がこの範囲内であることを条件として、2〜20時間、特に2〜10時間に設定することが好ましい。   In the hydrothermal treatment, it is preferable that the ratio of the solid content contained in the sol is 5 to 30% by mass, particularly 7 to 20% by mass. The temperature of the hydrothermal treatment is preferably set to 130 to 200 ° C, particularly 150 to 180 ° C. The treatment time is preferably set to 2 to 20 hours, particularly 2 to 10 hours, provided that the temperature is within this range.

以上の水熱処理によってPTO粒子を含むゾルが得られる。次に必要に応じて(3)の分散処理工程を行う。本工程においては、(2)で得られたゾルを、必要に応じて水及び/又は水溶性有機溶剤によって希釈した後、分散処理に付すことが好ましい。分散処理に際しては分散剤を添加してもよい。分散剤としては炭素非含有化合物を用いることが好ましい。こうすることで、PTO粒子に炭素が混入することを防止することができる。これに対して、先に背景技術の項で述べた特許文献1に記載の方法では分散剤としてアルキルアミンを用いているので、得られるPTO粒子中に炭素が混入して炭素の割合が高くなる傾向にある。分散剤として用いられる炭素非含有化合物としては、例えばアンモニアが挙げられる。   A sol containing PTO particles is obtained by the above hydrothermal treatment. Next, the dispersion processing step (3) is performed as necessary. In this step, the sol obtained in (2) is preferably subjected to a dispersion treatment after being diluted with water and / or a water-soluble organic solvent as necessary. A dispersing agent may be added during the dispersion treatment. It is preferable to use a carbon-free compound as the dispersant. By doing so, it is possible to prevent carbon from being mixed into the PTO particles. On the other hand, in the method described in Patent Document 1 described above in the background art section, since alkylamine is used as a dispersant, carbon is mixed in the obtained PTO particles and the ratio of carbon is increased. There is a tendency. Examples of the carbon-free compound used as the dispersant include ammonia.

分散処理は、例えばホモジナイザーや攪拌機などによって行うことができる。このようにして得られたPTOゾルは、透明なものであり、しかも長期間保存しても沈殿が観察されない安定性の高いものとなる。このPTOゾルに、例えば水溶性透明樹脂を添加して塗料を調製し、該塗料を基材に塗布することで、透明導電膜を形成することができる。   The dispersion treatment can be performed using, for example, a homogenizer or a stirrer. The PTO sol obtained in this way is transparent and has high stability with no precipitation observed even after storage for a long period of time. A transparent conductive film can be formed by adding a water-soluble transparent resin to the PTO sol to prepare a paint and applying the paint to a substrate.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.

〔実施例1〕
(1)リンを含む酸化スズゾルの調製工程
リン源としてリン酸三ナトリウム・十二水和物(26.8g)を用いた。これを水酸化ナトリウム溶液(25%溶液を500mL)に溶解し水を加えて9000mLの塩基性水溶液を得た。この塩基性水溶液のpHは12であった。これとは別に、スズ源として塩化第二スズ(50%溶液を800g)を用い、これを水に溶解して、1000mLの水溶液を得た。この水溶液を、室温下で、塩基性水溶液中に1時間にわたり滴下した。この間、塩基性水溶液を撹拌しておいた。この反応によってリンを含む酸化スズのゾルが得られた。元素分析の結果、その酸化スズは組成式SnO2で表されるものであることが確認された。またX線回折測定の結果、この酸化スズは非晶質のものであることが確認された。
[Example 1]
(1) Preparation process of tin oxide sol containing phosphorus Trisodium phosphate dodecahydrate (26.8 g) was used as a phosphorus source. This was dissolved in sodium hydroxide solution (25% solution in 500 mL), and water was added to obtain 9000 mL of a basic aqueous solution. The pH of this basic aqueous solution was 12. Separately, stannic chloride (800 g of a 50% solution) was used as a tin source and dissolved in water to obtain 1000 mL of an aqueous solution. This aqueous solution was dropped into a basic aqueous solution over 1 hour at room temperature. During this time, the basic aqueous solution was stirred. By this reaction, a sol of tin oxide containing phosphorus was obtained. As a result of elemental analysis, it was confirmed that the tin oxide was represented by the composition formula SnO 2 . As a result of X-ray diffraction measurement, it was confirmed that the tin oxide was amorphous.

(2)水熱処理によるPTO粒子の生成工程
(1)の工程で得られたゾルを電気伝導度が300μS/cm以下となるまで洗浄し、遠心分離機で濃縮して固形分を13.4%にした後、n−プロピルアミンを固形分に対して2.4%添加した。そして、オートクレーブ中で、180℃の加熱下に3時間水熱処理を行った。この処理によって、PTO粒子ゾルが得られた。
(2) Step of producing PTO particles by hydrothermal treatment The sol obtained in the step (1) is washed until the electric conductivity becomes 300 μS / cm or less, and concentrated by a centrifuge to obtain a solid content of 13.4%. After that, n-propylamine was added by 2.4% based on the solid content. Then, hydrothermal treatment was performed in an autoclave for 3 hours under heating at 180 ° C. By this treatment, a PTO particle sol was obtained.

(3)PTO粒子の分散処理工程
(2)の工程で得られた100mLのPTOゾル(固形分13.4%)に、メタノール100mLを加え、混合処理を行い、目的とするPTOゾルを得た。
(3) Dispersion treatment step of PTO particles 100 mL of methanol was added to 100 mL of PTO sol (solid content: 13.4%) obtained in the step of (2), and a mixing treatment was performed to obtain a target PTO sol. .

(4)分析及び評価
得られたPTOゾルについて、動的光散乱方式によるPTO粒子の粒径D50、並びにPTO粒子のBET比表面積、炭素の含有割合及びリンの含有割合を以下の方法で測定した。また、該PTOゾルを用いて作製した透明導電膜の抵抗及びヘイズを以下の方法で測定した。それらの結果を以下の表1に示す。更に、得られたPTO粒子のTEM像を図1(a)及び(b)に示す。更に、得られたPTO粒子のX線回折測定を行ったところ、四価のSnO2と同様の回折ピークが観察された。
(4) Analysis and Evaluation About the obtained PTO sol, the particle size D 50 of the PTO particles by the dynamic light scattering method, the BET specific surface area of the PTO particles, the carbon content, and the phosphorus content are measured by the following methods. did. Moreover, the resistance and haze of the transparent conductive film produced using the PTO sol were measured by the following methods. The results are shown in Table 1 below. Furthermore, the TEM image of the obtained PTO particle | grains is shown to Fig.1 (a) and (b). Further, when X-ray diffraction measurement was performed on the obtained PTO particles, the same diffraction peak as that of tetravalent SnO 2 was observed.

(a)粒径D50
測定装置として日機装(株)の粒子径・粒度分布測定装置であるナノトラックUPAを用い測定を行った。
(A) Particle size D 50
Measurement was performed using Nanotrac UPA, which is a particle size / particle size distribution measuring device of Nikkiso Co., Ltd. as a measuring device.

(b)BET比表面積
PTO粒子0.5gを、105℃で10分間の脱気処理を行った後、モノソーブ(カンタクロム社製)を用いてBET1点法で測定した。
(B) BET specific surface area 0.5 g of PTO particles were subjected to deaeration treatment at 105 ° C. for 10 minutes, and then measured by a BET one-point method using monosorb (manufactured by Kantachrome).

(c)炭素の含有割合
炭素含有量を、炭素分析装置(堀場製作所社製 EMIA−320V)を用いて測定した。
(C) Carbon content ratio The carbon content was measured using a carbon analyzer (EMIA-320V manufactured by Horiba, Ltd.).

(d)リンの含有割合
粉体をアルカリ溶融させ、HCl酸性にし、ICP(SII SPS5100)で測定した。
(D) Content ratio of phosphorus The powder was alkali-melted, made acidic with HCl, and measured with ICP (SII SPS5100).

(e)透明導電膜の抵抗
合成されたPTOゾル(固形分13%)にメタノールを加え(PTOゾルとメタノールは体積比で表して1:1で調整した)分散液を調整した。得られた分散液を用い、PETフィルム上にバーコーターで塗布し、80℃で乾燥させ塗膜を形成した。塗膜の表面抵抗を、2重リングプローブ法(三菱化学アナリテック製ハイレスタUP)を用いて測定した。
(E) Resistance of transparent conductive film Methanol was added to the synthesized PTO sol (solid content 13%) (PTO sol and methanol were expressed by volume ratio and adjusted at 1: 1) to prepare a dispersion. Using the obtained dispersion, it was coated on a PET film with a bar coater and dried at 80 ° C. to form a coating film. The surface resistance of the coating film was measured using a double ring probe method (Hiresta UP manufactured by Mitsubishi Chemical Analytech).

(f)透明導電膜のヘイズ
塗膜のヘイズを、日本電色工業(株)製のヘイズメータであるNDH4000によって、積分球式測定法により行った。ヘイズは(散乱光/全光線透過光)×100から算出される。
(F) Haze of transparent conductive film The haze of the coating film was measured by an integrating sphere measurement method using NDH4000, a haze meter manufactured by Nippon Denshoku Industries Co., Ltd. The haze is calculated from (scattered light / total light transmitted light) × 100.

〔実施例2及び3〕
水熱処理時に添加するn−プロピルアミンの量を3.0%(実施例2)及び6.0%(実施例3)とする以外は、実施例1と同様にしてPTOゾルを得た。得られたPTOゾルについて、実施例1と同様の測定及び評価を行った。それらの結果を表1に示す。
[Examples 2 and 3]
A PTO sol was obtained in the same manner as in Example 1 except that the amount of n-propylamine added during hydrothermal treatment was 3.0% (Example 2) and 6.0% (Example 3). About the obtained PTO sol, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.

〔実施例4〕
リンを含む酸化スズゾル作製時に添加するリン酸三ナトリウム・十二水和物の添加量を85.1gとし、水熱処理時に添加するn−プロピルアミンの量を8.0%とする以外は、実施例1と同様にしてPTOゾルを得た。得られたPTOゾルについて、実施例1と同様の測定及び評価を行った。それらの結果を表1に示す。
Example 4
Implemented except that the amount of trisodium phosphate dodecahydrate added during preparation of tin oxide sol containing phosphorus was 85.1 g and the amount of n-propylamine added during hydrothermal treatment was 8.0%. A PTO sol was obtained in the same manner as in Example 1. About the obtained PTO sol, the same measurement and evaluation as Example 1 were performed. The results are shown in Table 1.

〔比較例1〕
本比較例は、特許文献1の実施例1に相当するものである。5Lのビーカーに、1.92Lの純水及び187.5gのシュウ酸を添加してシュウ酸水溶液を得た。このシュウ酸水溶液を70℃に加熱した状態下に、50gの過酸化水素をと25gの金属スズを添加した。過酸化水素と金属スズとの添加は交互に行った。反応が終了するのを待って(10分)、この操作を15回繰り返して、合計750gの過酸化水素と375gの金属スズを添加した。その後、50gの過酸化水素を添加し、更に260mLの純水と1155gの過酸化水素とを添加して、95℃に加熱した状態下に5時間熟成して、液中に残存するシュウ酸を炭酸ガスと水とに分解した。このようにして得られた500gの酸化スズゾル(固形分10.2%)に、1.35gのジイソプロピルアミンと1.18gのオルトリン酸とを添加し、オートクレーブ中で150℃、8時間にわたり水熱処理を行い、目的とするゾルを得た。このゾルについて、実施例1と同様の測定及び評価を行った。それらの結果を表1に示す。更に、得られた粒子のTEM像を図2(a)及び(b)に示す。
[Comparative Example 1]
This comparative example corresponds to Example 1 of Patent Document 1. To a 5 L beaker, 1.92 L of pure water and 187.5 g of oxalic acid were added to obtain an aqueous oxalic acid solution. Under a state where this oxalic acid aqueous solution was heated to 70 ° C., 50 g of hydrogen peroxide and 25 g of metallic tin were added. Hydrogen peroxide and metallic tin were added alternately. Waiting for the reaction to finish (10 minutes), this operation was repeated 15 times to add a total of 750 g of hydrogen peroxide and 375 g of metallic tin. Thereafter, 50 g of hydrogen peroxide was added, and 260 mL of pure water and 1155 g of hydrogen peroxide were added, and the mixture was aged for 5 hours while being heated to 95 ° C., and the oxalic acid remaining in the liquid was removed. Decomposed into carbon dioxide and water. 1.35 g of diisopropylamine and 1.18 g of orthophosphoric acid are added to 500 g of the tin oxide sol thus obtained (solid content: 10.2%), and hydrothermal treatment is carried out in an autoclave at 150 ° C. for 8 hours. To obtain the desired sol. This sol was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1. Furthermore, the TEM image of the obtained particle | grains is shown to Fig.2 (a) and (b).

〔比較例2ないし4〕
実施例1において、酸化スズゾル作製時に添加するリン酸三ナトリウム・十二水和物の添加量を150g(比較例2)、16g(比較例3)及び150g(比較例4)とし、かつ水熱処理時に添加するn−プロピルアミンの量を0.7%(比較例2)、4.0%(比較例3)及び3.0%(比較例4)とする以外は、実施例1と同様にしてPTOゾルを得た。
[Comparative Examples 2 to 4]
In Example 1, the amount of trisodium phosphate dodecahydrate added at the time of preparing tin oxide sol was 150 g (Comparative Example 2), 16 g (Comparative Example 3), and 150 g (Comparative Example 4), and hydrothermal treatment Same as Example 1 except that the amount of n-propylamine sometimes added is 0.7% (Comparative Example 2), 4.0% (Comparative Example 3) and 3.0% (Comparative Example 4). Thus, a PTO sol was obtained.

〔比較例5〕
実施例4において、酸化スズゾル作製時に添加するリン酸三ナトリウム・十二水和物の添加量を127.8gとする以外は、実施例4と同様にしてPTOゾルを得た。
[Comparative Example 5]
In Example 4, a PTO sol was obtained in the same manner as in Example 4 except that the amount of trisodium phosphate dodecahydrate added at the time of preparing the tin oxide sol was 127.8 g.


表1に示す結果から明らかなように、各実施例で得られたPTOゾルから得られた導電膜は、各比較例で得られたゾルから得られた導電膜に比べて導電性が高く、かつ比較例1〜3、5で得られたゾルから得られた導電膜に比べて透明性も高いものであることが判る。また、図1と図2との対比から明らかなように、実施例1で得られたPTO粒子は、比較例1で得られた粒子に比べて微粒のものであることが判る。この比較例1はD50が大きいためにX/Yも126と大きく、このことに起因して透明性が低くヘイズ値が高いものであり、塗膜抵抗も高い。またn−プロピルアミンの添加量が多く、X/Yが50を超える比較例3も、透明性が高いものの高抵抗である。
一方、D50が0.85μmと小さく、X/Yが0.53である比較例4は、透明性が高いものの、粒子の分散性が高すぎるため高抵抗となっている。
以上のようにX/Yの値が3〜50であるときに、PTO粒子の導電性と分散性とが両立したものとなることが判る。
As is clear from the results shown in Table 1, the conductive film obtained from the PTO sol obtained in each example has higher conductivity than the conductive film obtained from the sol obtained in each comparative example. And it turns out that transparency is also high compared with the electrically conductive film obtained from the sol obtained in Comparative Examples 1-3. Further, as is clear from the comparison between FIG. 1 and FIG. 2, it can be seen that the PTO particles obtained in Example 1 are finer than the particles obtained in Comparative Example 1. Comparative Example 1 is as large as X / Y is also 126 because of the large D 50, is intended haze value is high low transparency due to this fact, higher coating resistance. Further, Comparative Example 3 in which the amount of n-propylamine added is large and X / Y exceeds 50 is high in resistance but high in transparency.
On the other hand, Comparative Example 4 in which D 50 is as small as 0.85 μm and X / Y is 0.53 has high transparency but has high resistance because the dispersibility of the particles is too high.
As described above, when the value of X / Y is 3 to 50, it can be seen that the conductivity and dispersibility of the PTO particles are compatible.

Claims (9)

リンを含む酸化スズ粒子において、動的光散乱方式で測定された該粒子の累積体積50容量%における体積累積粒径D50をX(nm)とし、該粒子に含まれる炭素の割合をY(質量%)としたとき、X/Yの値が3〜50であるリンを含む酸化スズ粒子。 In the tin oxide particles containing phosphorus, the volume cumulative particle diameter D 50 in the cumulative volume of 50% by volume of the particles measured by the dynamic light scattering method is X (nm), and the ratio of carbon contained in the particles is Y ( %), Tin oxide particles containing phosphorus having a value of X / Y of 3 to 50. 前記酸化スズ粒子に含まれるリンの割合をZ(質量%)としたとき、Z/Yの値が0.3〜0.7である請求項1に記載のリンを含む酸化スズ粒子。   2. The tin oxide particles containing phosphorus according to claim 1, wherein the value of Z / Y is 0.3 to 0.7 when the ratio of phosphorus contained in the tin oxide particles is Z (mass%). Xが1〜50(nm)である請求項1又は2に記載のリンを含む酸化スズ粒子。   X is 1-50 (nm), The tin oxide particle containing the phosphorus of Claim 1 or 2. Yが1.3〜5.0(質量%)である請求項1ないし3のいずれか一項に記載のリンを含む酸化スズ粒子。   Y is 1.3-5.0 (mass%), The tin oxide particle containing the phosphorus as described in any one of Claim 1 thru | or 3. Zが0.9〜5.0(質量%)である請求項2ないし4のいずれか一項に記載のリンを含む酸化スズ粒子。   Z is 0.9-5.0 (mass%), The tin oxide particle containing the phosphorus as described in any one of Claim 2 thru | or 4. BET比表面積が100〜300m2/gである請求項1ないし5のいずれか一項に記載のリンを含む酸化スズ粒子。 The tin oxide particles containing phosphorus according to any one of claims 1 to 5, having a BET specific surface area of 100 to 300 m 2 / g. リン源を含む塩基性水溶液中に、二価又は四価のスズ源を含む水溶液を添加して、リンを含む酸化スズのゾルを調製し、
アルキルアミン又はアンモニアの共存下に、前記ゾルをオートクレーブ中で水熱処理して、リンを含む酸化スズ粒子を生成させる、リンを含む酸化スズゾルの製造方法。
In a basic aqueous solution containing a phosphorus source, an aqueous solution containing a divalent or tetravalent tin source is added to prepare a tin oxide sol containing phosphorus,
A method for producing a tin oxide sol containing phosphorus, wherein the sol is hydrothermally treated in an autoclave in the presence of an alkylamine or ammonia to produce tin oxide particles containing phosphorus.
前記スズ源として塩化スズ又は硫酸スズを用いる請求項7に記載の製造方法。   The production method according to claim 7, wherein tin chloride or tin sulfate is used as the tin source. 前記アルキルアミンとして、炭素数1〜12の第一級アミンを用いる請求項7又は8に記載の製造方法。   The production method according to claim 7 or 8, wherein a primary amine having 1 to 12 carbon atoms is used as the alkylamine.
JP2014003491A 2013-02-05 2014-01-10 Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus Active JP6200814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003491A JP6200814B2 (en) 2013-02-05 2014-01-10 Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013020809 2013-02-05
JP2013020809 2013-02-05
JP2014003491A JP6200814B2 (en) 2013-02-05 2014-01-10 Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus

Publications (2)

Publication Number Publication Date
JP2014169218A JP2014169218A (en) 2014-09-18
JP6200814B2 true JP6200814B2 (en) 2017-09-20

Family

ID=51691915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003491A Active JP6200814B2 (en) 2013-02-05 2014-01-10 Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus

Country Status (1)

Country Link
JP (1) JP6200814B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223019A (en) * 1986-03-19 1987-10-01 Taki Chem Co Ltd Crystalline tin-antimony oxide sol and production thereof
JPH0931238A (en) * 1995-07-20 1997-02-04 Mitsubishi Materials Corp Electroconductive dispersion, electroconductive coating material and their production
JP3980523B2 (en) * 2003-06-02 2007-09-26 多木化学株式会社 Alkali-stable tin oxide sol and method for producing the same
JP5158537B2 (en) * 2007-07-13 2013-03-06 三菱マテリアル株式会社 Conductive tin oxide powder, production method and use thereof
US8491822B2 (en) * 2009-07-21 2013-07-23 Mitsui Mining & Smelting Co., Ltd. Tin oxide particles and process for producing the same
JP5711981B2 (en) * 2011-01-19 2015-05-07 三井金属鉱業株式会社 Tin oxide particles and method for producing the same

Also Published As

Publication number Publication date
JP2014169218A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5330918B2 (en) Method for producing tin oxide particles and tin oxide sol
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
EP2960283B1 (en) Flame retardant agent, flame-retardant composition, and molded article
CN108367927A (en) The coating graphite particle of silver, the coating graphite mixed powder of silver and its manufacturing method and electrocondution slurry
JP2012251222A (en) Method for producing silver nanoparticle, and ink
TW202017867A (en) Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
KR20230163356A (en) Dispersion of conductive particles and method for producing the same, coating solution for forming a conductive film, and base material with a conductive film
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
JP6200814B2 (en) Tin oxide particles containing phosphorus and method for producing tin oxide sol containing phosphorus
JP2013011014A (en) Method for producing silver nanoparticle, ink and method for producing conductive film
JP4193036B2 (en) Method for producing conductive tin oxide
US9245662B2 (en) Electroconductive particles
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
TWI568676B (en) ITO powder and its manufacturing method
JP2014010903A (en) White conductive powder, fluid dispersion of the same, coating material, and film composition
TW201246228A (en) Chlorine-doped tin-oxide particles and manufacturing method therefor
JP5644877B2 (en) Method for producing dispersion of photocatalyst particles
JP5562174B2 (en) Transparent conductive tin oxide powder, method for producing the same, and film composition using the same
TW200530131A (en) Electroconductive tin oxide powder and method for production thereof
Downs et al. Transition metal doping of amorphous silica particles
JP2011054508A (en) White conductive powder
JP5991049B2 (en) Method for producing phosphorus-doped tin oxide nanosheet and method for producing phosphorus-doped tin oxide nanoparticles
JP6557556B2 (en) Conductive particles and conductive composition containing the same
TW202019816A (en) Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6200814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250