JP6200861B2 - 複合体形成用樹脂発泡体および繊維強化複合体の製造方法 - Google Patents
複合体形成用樹脂発泡体および繊維強化複合体の製造方法 Download PDFInfo
- Publication number
- JP6200861B2 JP6200861B2 JP2014134958A JP2014134958A JP6200861B2 JP 6200861 B2 JP6200861 B2 JP 6200861B2 JP 2014134958 A JP2014134958 A JP 2014134958A JP 2014134958 A JP2014134958 A JP 2014134958A JP 6200861 B2 JP6200861 B2 JP 6200861B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resin foam
- fiber reinforced
- fiber
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
- Molding Of Porous Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
Description
このようなことを背景として、樹脂発泡体からなる芯材の表面に繊維強化樹脂材を積層一体化させてなる繊維強化複合体が前記のような用途に利用されるようになってきている。
即ち、繊維強化複合体を形成するための樹脂発泡体(複合体形成用樹脂発泡体)が繊維強化樹脂材に比べて低密度で緩衝性に優れているため、繊維強化複合体からなる部材は全体が繊維強化樹脂材で形成されたものに比べて軽量性と緩衝性とに優れたものとなる。
即ち、下記特許文献1においては、複合サンドイッチコア成形部材の成形法であって、熱弾性硬質フォームコア(発泡コア)を所望形状に成形し、予備成形フォームコアを織布で包んだ後、型内に予備成形フォームコアを置いた後、予備成形フォームコアの周りに包まれた織布を包囲しかつ湿潤化するように、液状熱硬化性樹脂を注入し、しかる後、硬質フォームコアを膨張させフォームコアの織布包囲面を型の内部制約面に対して押しつけた後、硬質フォームコアの加熱を終了させる方法が提案されている。
しかしながら、熱硬化性樹脂製の繊維強化樹脂材を使用した繊維強化複合体の製造方法においては、この熱硬化性樹脂が硬化するまでに比較的長い時間を要し、繊維強化複合体の生産効率を十分に向上させることが難しいという問題を有している。
このような問題を解決すべく反応性の高い熱硬化性樹脂を使用することも考え得るが、反応性の高い熱硬化性樹脂は、一般に常温でも硬化反応が進行するために作製から一定以上の期間を経たプリプレグシートなどでは十分な接着性が発揮されないおそれがある。
また、繊維強化複合体の製造時に繊維材に液状の熱硬化性樹脂を含浸させるような場合においては、2液タイプの熱硬化性樹脂を採用することで硬化反応の進行による接着不足に係る問題は回避可能であるが、反応性の高い2液タイプの熱硬化性樹脂は、一般に硬化収縮が激しく、所望の形状を有する繊維強化複合体が得られ難いという問題を発生させるおそれが有る。
即ち、樹脂発泡体や繊維強化樹脂材に含有される熱可塑性樹脂を軟化させた状態で樹脂発泡体と繊維強化樹脂材との間にプレスによる圧力を作用させ、この圧力によって前記熱融着を実施することで樹脂発泡体と繊維強化樹脂材との積層一体化に要する時間を熱硬化性樹脂を利用する場合に比べて短縮させ得る。
本実施形態の繊維強化複合体は、角柱状の芯材と該芯材を覆うシート状の被覆材とによって構成されている。
前記繊維強化複合体は、前記芯材が樹脂発泡体からなり、前記被覆材が繊維強化樹脂材からなるものである。
即ち、本実施形態における複合体形成用樹脂発泡体(以下、単に「樹脂発泡体」ともいう)は、前記芯材となって繊維強化複合体の形成に利用されるものである。
そして、本実施形態の繊維強化複合体は、表層部に繊維強化樹脂材からなる繊維強化樹脂層を有している。
前記繊維強化複合体は、前記樹脂発泡体と前記繊維強化樹脂材との両方に熱可塑性樹脂を含んでおり、前記樹脂発泡体と前記繊維強化樹脂材とがこれらの接触界面において熱融着されている。
前記樹脂発泡体は、熱可塑性樹脂を含むものであれば特に限定されず、該熱可塑性樹脂としては、例えば、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリメタクリルイミド系樹脂、ポリオレフィン系樹脂などが挙げられる。
前記樹脂発泡体に含有させる熱可塑性樹脂は、1種単独である必要はなく、2種類以上であっても良い。
また、樹脂発泡体は、1種以上の熱可塑性樹脂のみによって構成される必要はなく、要すれば、少量のゴムや熱硬化性樹脂など含んでいても良い。
前記樹脂発泡体の主となる熱可塑性樹脂は、作製する繊維強化複合体に優れた機械的強度及び衝撃吸収性を発揮させる上においてポリエステル樹脂又はアクリル樹脂であることが好ましい。
なかでも樹脂発泡体に含まれる熱可塑性樹脂は、成形工程において、樹脂発泡体の結晶化度を上昇させて耐熱性を有する芯材とすることができるので、結晶性熱可塑性ポリエステル樹脂がより好ましい。
なお、ここで「主となる樹脂」とは、樹脂発泡体に最も高い質量割合で含まれる樹脂を意味する。
該ポリエステル樹脂としては、例えば、芳香族ポリエステル樹脂、ポリ乳酸系樹脂などの脂肪族ポリエステル樹脂が挙げられる。
本実施形態の樹脂発泡体に含有させる芳香族ポリエステル樹脂は、ポリエチレンテレフタレート樹脂であることが好ましい。
なお、芳香族ポリエステル樹脂は、単独で用いられても二種以上が併用されてもよい。
ポリエチレンテレフタレート樹脂などの芳香族ポリエステル樹脂を架橋するための架橋剤としては、例えば、無水ピロメリット酸などの酸二無水物、多官能エポキシ化合物、オキサゾリン化合物、オキサジン化合物などが挙げられる。
なお、架橋剤は、単独で用いられても二種以上が併用されてもよい。
押出機に供給する架橋剤の量は、少なすぎると、ポリエチレンテレフタレート樹脂の溶融粘度を不足させるおそれがある。
即ち、架橋剤の量が少なすぎると架橋後のポリエチレンテレフタレート樹脂の溶融粘度が低すぎて樹脂発泡体の形成時において破泡が生じ易くなるおそれがある。
一方で、架橋剤の量が多すぎると、ポリエチレンテレフタレート樹脂の溶融粘度が高くなりすぎて、樹脂発泡体を押出発泡によって製造する場合などにおいて押出発泡が困難となるおそれがある。
従って、前記芯材を構成するための樹脂発泡体のベース樹脂を架橋ポリエチレンテレフタレート樹脂とする場合、前記ポリエチレンテレフタレート樹脂100質量部に対して架橋剤を0.01〜5質量部の割合で用いて架橋させたものを採用することが好ましい。
また、前記割合は、0.1〜1質量部であることがより好ましい。
樹脂発泡体に含有させる熱可塑性樹脂をポリ乳酸系樹脂とする場合、商業的な入手容易性及び発泡性付与の容易性の観点から、該ポリ乳酸系樹脂は、D−乳酸(D体)及びL−乳酸(L体)の共重合体、D−乳酸又はL−乳酸のいずれか一方の単独重合体、D−ラクチド、L−ラクチド及びDL−ラクチドからなる群から選択される1又は2以上のラクチドの開環重合体が好ましい。
なお、ポリ乳酸系樹脂は、単独で用いられても二種以上が併用されてもよい。
該単量体成分としては、例えば、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸などの脂肪族ヒドロキシカルボン酸;コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジカルボン酸、無水コハク酸、無水アジピン酸、トリメシン酸、プロパントリカルボン酸、ピロメリット酸、無水ピロメリット酸などの脂肪族多価カルボン酸;エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、デカメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリトリットなどが挙げられる。
ポリ乳酸系樹脂は、イソシアネート系架橋剤などによって架橋されていてもよく、エステル結合以外の結合を主鎖や側鎖に備えていてもよい。
なお、「(メタ)アクリル」とは、ここでは、「アクリル」と「メタクリル」との双方を意味する用語として用いている。
このようなモノマーとしては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、クロトン酸、マレイン酸アミド、マレイン酸イミドなどが挙げられる。
このようなことから、樹脂発泡体は、熱融着時に加熱されることによって再発泡可能であることが好ましい。
より具体的には、樹脂発泡体は、加熱することで+20%以上の寸法変化(体積増加)を示す状態となっていることが好ましい。
このように樹脂発泡体に備わっていることが好ましい寸法変化に係る能力は、当該樹脂発泡体が繊維強化樹脂材に熱融着される前において備わっていればよく、繊維強化複合体となった後の樹脂発泡体にまで備わっている必要はない。
樹脂発泡体をこのような体積変化を示す状態とするには、例えば、後述する発泡剤を当該樹脂発泡体中に0.1〜5.0質量%残存させるようにすればよい。
そして、前記のように芯材として用いる際に繊維強化樹脂材との間に高い圧力を作用させるためには、前記樹脂発泡体は、+20%の寸法変化を示す再加熱温度において0.1〜20mN/mm3の膨張圧力を示すことが好ましい。
該樹脂発泡体は、この再発泡条件(20%の寸法変化を示す温度)において、その発泡力(膨張圧力)が0.1〜10mN/mm3であることがより好ましく、該発泡力が0.2〜5mN/mm3であることが特に好ましい。
樹脂発泡体は、その発泡力が低すぎると、繊維強化樹脂材との熱融着を行うべく、例えば、繊維強化樹脂材とともに金型内に仕込まれた際に十分な圧力でもって繊維強化樹脂材を金型に向けて押圧できなくなるおそれがある。
即ち、樹脂発泡体の発泡力が低すぎると、得られる繊維強化複合体の繊維強化樹脂材の表面平滑性が低下する、繊維強化樹脂材を所望形状に成形できない、芯材(樹脂発泡体)と被覆材(繊維強化樹脂材)との一体化が不十分となって得られる繊維強化複合体の機械的強度が十分なものにならないなどといったおそれを生じさせ得る。
一方、樹脂発泡体の発泡力が必要以上に高すぎると、樹脂発泡体による繊維強化樹脂材の金型内面への押圧力が大きくなりすぎて、繊維強化樹脂材に含まれている熱可塑性樹脂が必要以上に金型外に流出してしまい、繊維強化樹脂材を構成している繊維が外部に露出し易くなる。
即ち、樹脂発泡体の発泡力が必要以上に高すぎると、得られる繊維強化複合体の表面平滑性が低下する、繊維強化樹脂材を所望形状に成形できない、芯材と繊維強化樹脂材との一体化が不十分となって得られる繊維強化複合体の機械的強度が不十分になるなどのおそれがある。
例えば、樹脂発泡体は、通常、その表面層の結晶化度を上昇させることによって発泡力を低くすることができる一方で表面層の結晶化度を低下させることによって発泡力を高くすることができる。
<発泡力(膨張圧力)の求め方>
樹脂発泡体の中心部に近い位置から一辺が50mmの立方体形状の試験片を切り出す。
樹脂発泡体の厚みが50mmに満たない場合などにおいては、樹脂発泡体の中心部に近い位置から採取した50mm角の板状試料を複数枚積層して立方体形状の試験片を作製する。
測定は、試験片を温度23±2℃、湿度50±5%の環境下で24時間以上に亘って放置した後に実施する。測定は、万能試験機、テンシロン付帯高低温度恒温槽及び万能試験機データ処理ソフトを用いて行う。
樹脂発泡体の再発泡条件の温度(20%の寸法変化を示す温度)に設定した恒温槽内で、上部圧縮板と下部圧縮板との間に挟み込まれた試験片が50mmから膨張(発泡)することにより発生する荷重を測定する。
測定は、1800秒間に亘って連続して行い、測定開始から600秒経過した時点から1800秒経過した時点までの間に測定された最小荷重F(mN)を試験片体積で除した値を発泡力とする。
なお、万能試験機は、例えば、オリエンテック社から商品名「UCT−10T」にて市販されている装置を用いることができる。
テンシロン付帯高低温度恒温槽としては、例えば、T.S.E.社から市販されているものを用いることができる。
万能試験機データ処理ソフトは、UTPS−STDソフトブレーン社から市販されているものを用いることができる。
この立方体形状の試験片のタテ、ヨコ、高さの3方向について加熱時の膨張に伴って発生する最小荷重を下記のようにして求め、3方向の最小荷重値の内の最も低い値を試料体積で除して樹脂発泡体の発泡力(膨張圧力)を求めることができる。
発泡力(mN/mm3)=最小荷重F(mN)/試験片の体積(mm3)
樹脂発泡体の厚みが50mmに満たない場合などにおいては、樹脂発泡体の中心部に近い位置から採取した50mm角の板状試料を複数枚積層して立方体形状の試験片を作製する。
測定は、試験片を温度23±2℃、湿度50±5%の環境下で24時間以上に亘って放置した後に行うこととし、この放置後の試験片を寸法変化0%とする。
測定は、万能試験機、テンシロン付帯高低温度恒温槽及び万能試験機データ処理ソフトを用いて行う。
なお、「20%の寸法変化を示す温度」とは、前記のように一辺が50mmの立方体形状の試験片を内部まで均一な温度になるように加熱した際に、一辺が60mmの立方体となるような体積膨張を示す温度を意味する。
このときの加熱は、通常、5分間にわたって実施する。
また、寸法変化を示す温度は、一の位が4以下であれば切り捨て、5以上であれば切り上げとする。
ここで試験片が縦、横、高さのそれぞれの方向に均等に膨張しないような場合においては、試験片の体積が1.23(1.728)倍に膨張する温度を「加熱寸法変化率が20%となる温度」としてみなすことができる。
また、樹脂発泡体が20%の寸法変化を示す温度において0.1〜20mN/mm3の発泡力を示すかどうかを確認する際には、必ずしも、樹脂発泡体が20%の寸法変化を示す温度を厳密に求めて測定を行う必要はなく、樹脂発泡体が20%よりも僅かに低い寸法変化を示す温度と、樹脂発泡体が20%よりも僅かに高い寸法変化を示す温度とを求め、この両方の温度で前記のようにして発泡力を測定し、これらがいずれも0.1〜20mN/mm3の範囲内であれば、当該樹脂発泡体は、20%の寸法変化を示す温度においても0.1〜20mN/mm3の発泡力を示すものであるとみなすことができる。
前記樹脂発泡体の圧縮強度は、低すぎると、繊維強化複合体の破壊応力が減少し、その結果、繊維強化複合体の衝撃吸収性が低下するおそれを有する。
例えば、前記樹脂発泡体の表面層の結晶化度を上昇させることによって樹脂発泡体の圧縮強度を高くすることができる一方、樹脂発泡体の表面層の結晶化度を低下させることによって樹脂発泡体の圧縮強度を低くすることができる。
例えば、圧縮強度は、以下のようにして求めることができる。
<圧縮強度の求め方>
樹脂発泡体から縦50mm×横50mm×厚み25mmの直方体形状の試験片を切り出す。
樹脂発泡体の厚みが25mmに満たない場合などにおいては、樹脂発泡体の中心部に近い位置から採取した25mm角の板状試料を複数枚積層して扁平な直方体形状の試験片を作製する。
前記圧縮強度は、圧縮速度10mm/分の条件下にて5%圧縮時の試験片の圧縮強度を測定することによって求めることができる。
従って、樹脂発泡体の表面層の結晶化度は、24%未満が好ましく、23%未満がより好ましく、10%以下が特に好ましい。
このことから、樹脂発泡体の内層の結晶化度は、24%未満が好ましく、低すぎると、樹脂発泡体が柔軟になりすぎて再発泡によって繊維強化樹脂材を金型内面に十分な圧力でもって押圧できない場合があるので、5〜23%が好ましい。
また、樹脂発泡体の内層とは、樹脂発泡体の表面層を除いた部分の全てをいう。
なお、樹脂発泡体の内層から試料を切り出す場合、原則的には、樹脂発泡体の重心を含むように試料を切り出すものとする。
示差走査熱量計装置(エスアイアイナノテクノロジー社製 商品名「DSC6220型」)を用い、アルミニウム製の測定容器の底に前記試料を隙間のないように、充填して、試料を窒素ガス流量30mL/分の条件下にて30℃で2分間に亘って保持する。
しかる後、試料を速度10℃/分で30℃から290℃まで昇温した時のDSC曲線を得る。
その時の基準物質はアルミナを用いる。
樹脂発泡体の表面層及び内層の結晶化度は、融解ピークの面積から求められる融解熱量(mJ/mg)と結晶化ピークの面積から求められる結晶化熱量(mJ/mg)の差を結晶性熱可塑性樹脂の完全結晶の理論融解熱量ΔH0で徐して求められる。
例えば、ポリエチレンテレフタレートのΔH0は140.1mJ/mgである。
樹脂発泡体の測定対象となる層の結晶化度は下記式に基づいて算出される。
樹脂発泡体の測定対象となる層の結晶化度(%)
=100×(│融解熱量(mJ/mg)│−│結晶化熱量(mJ/mg)│)/ΔH0(mJ/mg)
一方、型内発泡成形によって樹脂発泡体を製造する時に熱媒体の金型内への流入圧力を低下させて、金型の内部に充填した合成樹脂発泡粒子の加熱を抑制することによって樹脂発泡体の内層の結晶化度を低くすることができる。
樹脂発泡体の加熱寸法変化率は、高すぎると、樹脂発泡体による繊維強化樹脂材の金型内面への押圧力が大きくなりすぎて、繊維強化樹脂材に含浸させている熱硬化性樹脂又は熱可塑性樹脂が必要以上に金型外に流出してしまい、繊維強化樹脂材を構成している繊維が外部に露出し易くなり、得られる繊維強化複合体の表面平滑性及び機械的強度が低下する虞れを生じさせ得る。
即ち、樹脂発泡体に含まれている残存発泡剤量を多くすることによって樹脂発泡体の加熱寸法変化率を高くすることができる。
なお、樹脂発泡体の密度は、JIS K7222:2005「発泡プラスチック及びゴム−見掛け密度の測定」に準拠して測定される値をいう。
言い換えると、樹脂発泡体は、その連続気泡率が高すぎると、得られる繊維強化複合体の表面において繊維強化樹脂材の繊維を露出させ易くなって繊維強化複合体の表面平滑性を不十分なものとするおそれがある。
従って、樹脂発泡体の連続気泡率は、30%未満であることが好ましく、20%以下であることがより好ましく、10%以下であることが特に好ましい。
なお、樹脂発泡体の連続気泡率の調整は、当該樹脂発泡体を発泡性の合成樹脂粒子を型内発泡成形法によって製造する場合、合成樹脂粒子を製造する際の押出発泡温度や押出機に供給する発泡剤量を調整することによって行うことができる。
先ず、樹脂発泡体の見掛け上の体積を測って見掛け体積V1(cm3)とする。
次に、樹脂発泡体の実際試料体積V2(cm3)を体積測定空気比較式比重計を用いて1−1/2−1気圧法により測定する。
なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されているものを用いることができる。
連続気泡率(%)=100×(V1−V2)/V1
具体的には、前記樹脂発泡体が、ポリエステル系樹脂、アクリル系樹脂を主成分とする場合、残存させる発泡剤は、ノルマルブタン、イソブタン、二酸化炭素などが好ましい。
樹脂発泡体中の残存発泡剤量は、少なすぎると、樹脂発泡体の再発泡によって繊維強化樹脂材を金型内面に十分な圧力でもって押圧できないので、得られる繊維強化複合体の繊維強化樹脂材表面における平滑性が不十分になる、繊維強化樹脂材を所望形状に成形できない、樹脂発泡体と繊維強化樹脂材との一体化が不十分となって得られる繊維強化複合体の機械的強度が不十分になるといった虞れを生じさせ得る。
このことから、樹脂発泡体中の残存発泡剤量は、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。
ただし、樹脂発泡体中の残存発泡剤量は、多すぎると、樹脂発泡体による繊維強化樹脂材の金型内面への押圧力が大きくなりすぎて、繊維強化樹脂材に含まれている熱可塑性樹脂が必要以上に金型外に流出してしまい、繊維強化樹脂材を構成している繊維が外部に露出し易くなり、得られる繊維強化複合体の表面平滑性が低下することがあるので、0.1〜5質量%であることが好ましく、0.5〜3質量%であることがより好ましい。
具体的には、残存発泡剤量は、例えば発泡剤がブタンなどの炭化水素であるような場合には、以下のようにして測定することができる。
<発泡剤残存量の測定方法>
樹脂発泡体から採取した試料10〜20mgを精秤し、熱分解炉PYR−1A(島津製作所製)の分解炉入口にセットして15秒ほどキャリアーガス(ヘリウムガス)でパージを行ない、試料セット時の混合ガスを排出する。
その後、試料を炉心まで挿入して加熱することによりガスを放出させ、この放出ガスを島津製作所製ガスクロマトグラフを用いて測定し、得られたクロマトチャートのピーク面積からそれぞれの標準ガス検量線を使用して試料中の残存発泡剤を定量する。
〔ガスクロマトグラフ条件〕
測定装置:ガスクロマトグラフ GC−14B(島津製作所製)
カラム:ポラパックQ(80/100)3mmφ×1.5m(ジーエルサイエンス社製)
データ処理装置:C−R3A
検出器:TCD
カラム温度:100℃
注入口温度:120℃
検出器温度:120℃
キャリアーガス:ヘリウム
キャリアーガス流量:1mL/min
〔加熱炉条件〕
測定装置:熱分解炉PYR−1A(島津製作所製)
加熱炉温度:240℃
〔算出条件〕
検量線標準ガス:i−ブタン、n−ペンタン
算出方法:絶対検量線法により、i−ブタン、n−ペンタンの検量線を予め作成し、得られた試料の残存発泡剤量を標準ガス毎の検量線により算出した。結果において、n−ブタンガス量はi−ブタン換算量、i−ペンタンガス量はn−ペンタン換算量とした。
具体的には、樹脂発泡体の製造方法としては、例えば、(1)熱可塑性樹脂発泡粒子を金型内に充填し、熱水や水蒸気などの熱媒体によって熱可塑性樹脂発泡粒子を加熱して発泡させ、熱可塑性樹脂発泡粒子の発泡圧によって発泡粒子どうしを融着一体化させて所望形状を有する樹脂発泡体を製造する方法(型内発泡成形法)、(2)熱可塑性樹脂を押出機に供給して化学発泡剤又は物理発泡剤などの発泡剤の存在下にて溶融混練し押出機から押出発泡させて樹脂発泡体を製造する方法(押出発泡法)、(3)熱可塑性樹脂及び化学発泡剤を押出機に供給して化学発泡剤の分解温度未満にて溶融混練し押出機から発泡性樹脂成形体を製造し、この発泡性樹脂成形体を発泡させて樹脂発泡体を製造する方法、(4)化学発泡剤を含有した塊状重合体を製造した後、加熱発泡させて樹脂発泡体を製造する方法(バルク発泡法)、(5)ミキシングヘッドなどで単量体と発泡剤を混ぜて混合物を作製した後、混合物を吐出し重合させながら発泡を行い、型内に混合物を注入し発泡体を製造し、重合反応、発泡工程が終了した後、型から取出して樹脂発泡体を製造する方法などが挙げられる。
これらのなかでも樹脂発泡体の製造方法は、所望形状のものを容易に製造することができることから、上記(1)の型内発泡成形法が好ましい。
先ず、熱可塑性樹脂発泡粒子を押出発泡で製造する場合に用いられる製造装置の一例について図を参照しつつ説明する。
ここで、図1は、発泡材を含むポリエステル系樹脂粒子などの熱可塑性樹脂発泡粒子を押出機と、該押出機の前端に取り付けられたノズル金型1とを用いて作製する様子を示したものである。
図2に示したように、ノズル金型1の前端面10には、ノズルの出口部11、11・・・が複数個、同一仮想円A上に等間隔毎に形成されている。
なお、回転軸2に複数枚の回転刃5、5・・・が一体的に設けられている場合には、複数枚の回転刃5、5・・・は回転軸2の周方向に等間隔毎に配列されている。
又、図2では、一例として、四個の回転刃5、5・・・を回転軸2の外周面に一体的に設けた場合を示した。
この冷却部材4は、ノズル金型1よりも大径な正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設された円筒状の周壁部41bとを有する有底円筒状の冷却ドラム41とを備えている。
冷却ドラム41の供給口41cの外側開口部には冷却液42を冷却ドラム41内に供給するための供給管41dが接続されている。
そして、冷却液42は、供給管41dから冷却ドラム41の周壁部41bの内周面に供給される際の流速に伴う遠心力によって、冷却ドラム41の周壁部41b内周面に沿って螺旋状を描くように前方に向かって進む。
そして、冷却液42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、その結果、冷却ドラム41の供給口41cより前方の周壁部41bの内周面は冷却液42によって全面的に被覆された状態となるように構成されている。
排出口41eの外側開口部には排出管41fが接続されている。
ポリエステル系樹脂発泡粒子及び冷却液42を連続的に排出口41eを通じて排出できるように構成されている。
なお、化学発泡剤は、単独で用いられても二種以上が併用されてもよい。
なお、物理発泡剤は、単独で用いられても二種以上が併用されてもよい。
なかでも繊維強化樹脂材の繊維は、優れた機械的強度及び耐熱性を有していることから、炭素繊維、ガラス繊維、アラミド繊維が好ましく、炭素繊維がより好ましい。
強化繊維基材としては、繊維を用いてなる織物、編物、不織布、及び強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材などが挙げられる。
織物の織り方としては、平織、綾織、朱子織などが挙げられる。
複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材などが用いられる。
なお、糸としては、ポリアミド樹脂糸やポリエステル樹脂糸などの合成樹脂糸、及びガラス繊維糸などのステッチ糸が挙げられる。
具体的には、図3及び図4に示したように、各織物を構成している経糸(緯糸)の長さ方向をそれぞれ1a、1b・・・としたとき、これら経糸(緯糸)の長さ方向1a、1b・・・が放射状に配列されていることが好ましく、経糸(緯糸)の長さ方向1a、1b・・・のうちの任意の経糸(緯糸)の長さ方向1aを特定したとき、特定の経糸(緯糸)の長さ方向1aを中心にして他の経糸(緯糸)の長さ方向1b、1c・・・が線対称となるように配列していることがより好ましい。
具体的には、図3及び図4に示したように、各繊維基材を構成している繊維束の繊維の長さ方向をそれぞれ1a、1b・・・としたとき、これら繊維の長さ方向1a、1b・・・が放射状に配列されていることが好ましく、繊維の長さ方向1a、1b・・・のうちの任意の長さ方向1aを特定したとき、特定の長さ方向1aを中心にして線対称となるように他の長さ方向1b、1c・・・が配列していることがより好ましい。
熱可塑性樹脂を含浸させることによって、強化繊維どうしが接着一体化され、繊維強化樹脂材は、通常、強化繊維基材単体や、樹脂単体によりも優れた強度を有している。
強化繊維に含浸させる熱可塑性樹脂としては、特に限定されず、オレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、アミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル樹脂などが挙げられる。
前記樹脂発泡体との接着性又は繊維強化樹脂材を構成している強化繊維どうしの接着性に優れていることから、ポリエステル樹脂、熱可塑性エポキシ樹脂が好ましい。
また、繊維強化樹脂材の主たる樹脂は、後述するような理由から、熱可塑性ポリウレタン樹脂などの熱可塑性エラストマーであってもよい。
ここで繊維強化樹脂材の「主となる樹脂」とは、強化繊維を除いた部分において最も高い質量割合で含まれている樹脂を意味する。
なお、熱可塑性樹脂は、単独で用いられても二種以上が併用されてもよい。
具体的には、熱可塑性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられ、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。
なお、熱可塑性エポキシ樹脂は、単独で用いられても二種以上が併用されてもよい。
ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオールなどが挙げられる。
ジオールは、単独で用いられても二種以上が併用されてもよい。
ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネートが挙げられる。ジイソシアネートは、単独で用いられても二種以上が併用されてもよい。なお、熱可塑性ポリウレタン樹脂は、単独で用いられても二種以上が併用されてもよい。
具体的にはポリカプラミド(ポリアミド6)、ポリドデカノアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド6・6)、ポリヘキサメチレンアゼラアミド(ポリアミド6・9)、ポリヘキサメチレンセバカミド(ポリアミド6・10)、ポリヘキサメチレンドデカノアミド(ポリアミド6・12)、ポリキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリフェニレンフタラミド、ポリアミド6/6・6、ポリ(キシリレンアジパミド/ヘキサメチレンアジパミド)等が挙げられる。
熱硬化性樹脂としては、特に限定されず、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂などが挙げられ、耐熱性、弾性率及び耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。
なお、熱硬化性樹脂は、単独で用いられても二種以上が併用されてもよい。
強化用樹脂の含有量が少なすぎると、強化繊維どうしの接着性や、繊維強化樹脂層と芯材との接着性が不十分となり、繊維強化プラスチック層の機械的強度や、繊維強化複合体の機械的強度又は衝撃吸収性を十分に向上させることができない虞れがある。
又、強化用樹脂の含有量が多すぎると、繊維強化樹脂層の機械的強度が低下して、繊維強化複合体の機械的強度を十分に向上させることができない虞れがある。
厚みが上記範囲内である熱可塑性樹脂繊維強化材は、軽量であるにも関わらず機械的強度に優れている。
繊維強化樹脂材の目付が上記範囲内であることで、繊維強化複合体は、繊維強化樹脂層が軽量で強度に優れた状態とされ得る。
前記繊維基材は、例えば、三菱レイヨン社から商品名「パイロフィル」にて市販されているものなどが挙げられる。
前記繊維強化樹脂材は、例えば、長瀬ケムテック社から商品名「NNGF60−03s」にて市販されているものなどが挙げられる。
該積層工程においては、樹脂発泡体の表層部のみを選択的に加熱し、樹脂発泡体の表面を該樹脂発泡体の中心部よりも高温に加熱する発泡体加熱工程と、繊維強化樹脂材を加熱する繊維強化材加熱工程とを実施した後に、樹脂発泡体の加熱面と繊維強化樹脂材の加熱面とを所定の圧力で当接させてこれらを熱融着させる融着工程を実施する。
該繊維強化材加熱工程や前記発泡体加熱工程に用いられる加熱装置としては、例えば、
赤外線ヒーター、カーボンヒーター、熱風乾燥機、加熱板などが使用できる。
ここで発泡体加熱工程で樹脂発泡体の表面のみを選択的に加熱するためには加熱板を使用することが好ましい。
なお、加熱された繊維強化樹脂材を加熱板として使用し、該繊維強化樹脂材を樹脂発泡体に積層し、該繊維強化樹脂材からの熱伝達によって樹脂発泡体の表面のみを選択的に加熱させるようにしてもよい。
また、この場合、繊維強化樹脂材を樹脂発泡体との熱融着が可能な温度以上に加熱しておいて、繊維強化樹脂材と樹脂発泡体との間に所定以上の圧力を作用させることで前記融着工程を発泡体加熱工程と同時並行的に実施することができる。
従って、繊維強化樹脂材を加熱板として使用する場合、繊維強化複合体の製造に要する装置が大掛かりになることを防止できるとともに繊維強化複合体の製造工程を簡略化させ得る。
このことにより、当該融着工程では、前記型によって賦形された繊維強化複合体が作製されることになる。
なお、型内での熱融着に際しては、樹脂発泡体を所定の温度以上に加熱して該樹脂発泡体に体積膨張を生じさせ、この体積膨張による圧力を樹脂発泡体と繊維強化樹脂材との熱融着に利用することが好ましい。
この好ましい態様においては、型形状が忠実に反映された繊維強化複合体が得られ易いという利点が発揮され得る。
樹脂発泡体は、型内での熱融着前に過度な熱が加えられると、この時点で膨張力が消費されてしまい、型内での熱融着に際して十分な圧力を生じさせにくくなる場合がある。
このようなことから前記樹脂発泡体の加熱寸法変化率が+5%となる温度をT5(℃)、前記樹脂発泡体の加熱寸法変化率が+20%となる温度をT20(℃)としたときに、前記予備積層体は、樹脂発泡体の少なくとも中心部の温度「Tc(℃)」が「T5(℃)」よりも10(℃)以上低温(Tc≦(T5−10))となるように前記樹脂発泡体の温度を調整して作製することが好ましい。
また、型内における繊維強化樹脂材と樹脂発泡体との熱融着に際しては、樹脂発泡体の中心部の温度「Tc(℃)」が「T20(℃)」以上(Tc≧T20)となるように前記樹脂発泡体の温度を調整して、該樹脂発泡体に十分な膨張圧力を発揮させることが好ましい。
該加圧装置としては、一般的な熱プレスを採用することができる。
即ち、前記融着工程は、例えば、図6に示すような熱プレス装置を用いて実施することができる。
図6に示すような熱プレス装置を用いた成形工程では、例えば、シート状の繊維強化樹脂材を角柱状の樹脂発泡体の周囲に巻き付ける形で積層した積層体Mを用意し、積層体Mよりも僅かに大きな内部空間を有する雌型Bxに積層体Mを配設した後に前記雌型Bxの内部空間の上方開口を雄型Byで閉止し、これらの金型Bを熱プレスの上下熱板P1,P2間に挟み込み、該金型を介して積層体Mに圧力を加え繊維強化複合体を作製することができる。
なお、樹脂発泡体の主となる樹脂のガラス転移点以下の温度における樹脂発泡体の圧縮応力を「A(MPa)」とした場合、繊維強化複合体は、「A±1(MPa)」の範囲にて積層体Mをプレス成形し、繊維強化樹脂材の積層界面から中心部に向けて深さ2mmまでの範囲の見掛け密度が0.1〜1.5g/cm3となるように熱プレスして作製されることが好ましい。
繊維強化樹脂材と樹脂発泡体との積層体Mをプレス成形する際の圧力については、樹脂発泡体の主たる樹脂のガラス転移点温度以下での樹脂発泡体の圧縮応力を参考にして決定することが好ましい。
樹脂発泡体の主たる樹脂のガラス転移点温度は、低すぎると繊維強化樹脂材が急激に冷却されて表面性が低下してしまい、高すぎると繊維強化樹脂材の冷却に時間がかかり生産サイクルが低下することから、40〜150℃であることが好ましく、50〜100℃がより好ましい。
プレス成形時の圧力は、低すぎると繊維強化樹脂材と樹脂発泡体との一体性が低くなり、高すぎると、樹脂発泡体が圧縮されてしまい、所望の成形品を得ることが出来なくなるおそれを有する。
そのため、プレス成形圧力は、前記圧縮応力(A)に対して所定の範囲内であることが好ましく、具体的には、0.1MPa〜(A+1MPa)の範囲内であることが好ましく、0.2MPa〜(A+0.8MPa)の範囲内であることが特に好ましい。
なお、このような熱プレスを利用する方法に代えて、例えば、図7に示すようなオートクレーブ式の加圧装置を用いて実施することができる。
図7に示すような成形工程では、例えば、シート状の繊維強化樹脂材を角柱状の樹脂発泡体の周囲に巻き付ける形で積層した積層体Mを用意し、積層体Mよりも僅かに大きなキャビティB1を有する金型Bに積層体Mを配設した後にキャビティB1を閉止し、更に金型Bを包囲するようにリリースフィルムCを金型Bの外面に巻き付けるなどして積層した上で、リリースフィルムC上に更にブリーザークロスDを巻き付け、これを袋状にしたバギングフィルムEに収容し、該バギングフィルム内の空間部Hを減圧するとともに該バギングフィルム外のオートクレーブ内の空間を加圧状態にすることで、繊維強化複合体を角柱状に成形することができる。
このとき、例えば、繊維強化樹脂材をあらかじめ加熱された状態にしておけば、この成形工程と前記融着工程とは、並行実施させることができる。
このとき樹脂発泡体を形成しているポリエチレンテレフタレート樹脂の融点を超えた表面温度を有する繊維強化樹脂材が樹脂発泡体に当接され、しかも、繊維強化樹脂材と樹脂発泡体との間に圧力が加えられることでこれらの熱融着が行われる。
前記熱融着に際しては、繊維強化樹脂材との当接によって樹脂発泡体全体が圧縮されてしまうことを防止するとともに繊維強化樹脂材と樹脂発泡体との接触面に強い圧力を作用させることが好ましい。
このことから樹脂発泡体の中心部は、樹脂発泡体の中心部の温度「Tc(℃)」が「T20(℃)」以上(Tc≧T20)となるように前記樹脂発泡体の温度を調整して、該樹脂発泡体に十分な膨張圧力を発揮させることが好ましい。
また、前記樹脂発泡体がアクリル樹脂製で、該アクリル樹脂のガラス転移温度を「Tg2(℃)」とした場合、前記熱融着は、前記樹脂発泡体の前記表面の温度を(Tg2+50)℃〜(Tg2+150)℃として実施することが好ましい。
但し、サンプリング方法及び温度条件に関しては以下のように行う。
示差走査熱量計装置を用いアルミニウム製測定容器の底にすきまのないよう試料を約6mg充てんして、窒素ガス流量20mL/分のもと、試料を30℃から−40℃まで降温した後に10分間に亘って保持した後、試料を−40℃から290℃まで昇温(1st Heating)し290℃に10分間に亘って保持した後に290℃から−40℃まで降温(Cooling)、10分間に亘って保持した後に−40℃から290℃まで昇温(2nd Heating)しDSC曲線を得る。
なお、全ての昇温速度及び降温速度は10℃/分で行い、基準物質としてアルミナを用いる。
得られた曲線の変曲点をガラス転移温度とし、発熱ピークトップの温度を発熱ピーク温度(融点)とする。
なお、示差走査熱量分析計としては、例えば、エスアイアイナノテクノロジー社から商品名「DSC6220型」にて市販されている示差走査熱量分析計を用いることができる。
繊維強化樹脂材に含有させる熱可塑性樹脂として前記温度において過度に低粘度となる樹脂を選択すると融着工程に際して繊維強化樹脂材の繊維を表面露出させたりしてしまうおそれがある。
例えば、図6に示したような方法で繊維強化樹脂材と樹脂発泡体との融着を実施した場合、繊維強化樹脂材に含まれている熱可塑性樹脂が低粘度である場合、この熱可塑性樹脂の多くが繊維強化樹脂材の外部に排出されてしまい熱融着後の繊維強化樹脂層に熱可塑性樹脂が不足する状態となり得る。
このようなことから、繊維強化樹脂材に含有させる熱可塑性樹脂は、ポリエステル樹脂製やアクリル樹脂製の樹脂発泡体の表面を前記のような温度に加熱するために必要な温度条件においてある程度以上の粘度を有することが好ましい。
このような高い温度域で一般的なポリエステル樹脂やアクリル樹脂に比べて高い粘度を発揮する点において、繊維強化樹脂材に含有させる熱可塑性樹脂は、熱可塑性エラストマーが好ましい。
なかでも、繊維強化樹脂材に含有させる熱可塑性エラストマーは、樹脂発泡体をポリエステル樹脂製やアクリル樹脂製とする場合を考慮し、これらの樹脂への親和性を考慮すると熱可塑性ポリウレタン樹脂が好ましい。
即ち、熱可塑性ポリウレタン樹脂を含む繊維強化樹脂材は、気泡を内在させ易い。
この繊維強化樹脂材内の気泡は、オートクレーブによる成形時において、繊維強化樹脂材と金型Bとの界面などに空気溜まりを形成させる原因となり得る。
この空気溜まりは、得られる繊維強化複合体に対して、外観不良や強度不足などの問題を生じさせるおそれがあることから、成形時に際しては樹脂発泡体側からの押圧力を繊維強化樹脂材に対して十分に作用させることが好ましい。
このことから、繊維強化複合体の製造に用いる樹脂発泡体は、少なくとも初期状態において所定の割合で膨張する能力を有していることが好ましく、型内での熱融着の直前において所定の割合で膨張する能力を有していることが好ましい。
即ち、樹脂発泡体は、加熱されることによって5体積%/min以上の割合で体積増加を示す状態であることが好ましく、10体積%/min以上の割合で体積増加を示す状態であることがより好ましい。
前記試験片は、例えば、樹脂発泡体の中心部から切り出した一辺の長さが20mmの立方体とすることができる。
該試験片の加熱時間は、例えば、2分間とすることができ、加熱装置は、ヤマト科学社から商品名「DN44」にて市販されている恒温乾燥機などとすることができる。
なお、加熱前後の試験片の体積は、測定条件の影響を排除すべく、それぞれ当該試験片を23℃、相対湿度60%の環境下にて24時間静置した後に測定することが好ましい。
言い換えれば、樹脂発泡体に圧力などが加わらないようにして樹脂発泡体を加熱した際に、当該樹脂発泡体が膨張して20%以上の寸法変化を示す温度を「T20(℃)」とした場合、前記熱プレスなどによる成形時には、繊維強化樹脂材が熱融着される樹脂発泡体の表面を「T20(℃)」以上に加熱することが好ましい。
熱可塑性繊維強化複合体は、取り出し温度が高すぎると、取り出し後にさらなる発泡や収縮が生じて所定の形状を付与することが困難になる場合がある。
従って、熱可塑性繊維強化複合体内発泡成形体のガラス転移温度をTgx(℃)とした際に、繊維強化複合体の冷却は、金型温度が(Tgx−10℃)以下となるように実施することが好ましい。
即ち、熱融着後の繊維強化複合体は、少なくとも表面が(Tgx−10℃)以下の温度に冷却された状態で金型から取り出すことが好ましい。
該繊維強化複合体の金型からからの取り出し時における表面温度については、接触式温度計の測定プローブを取り出し直後の繊維強化複合体の表面に当てて測定することができ、繊維強化複合体の表面の複数箇所(例えば、10箇所程度)において得た測定値の平均値として求めることができる。
そのため、得られる繊維強化複合体の芯材は、その中心部から繊維強化樹脂層との積層界面に向かう方向において、気泡の形状がある程度の領域までは比較的安定しており、前記積層界面付近において急に横広がり状態へと変化する状態となる。
即ち、中心部まで十分な加熱がなされた状態で樹脂発泡体と繊維強化樹脂材との熱融着を実施すると、この熱融着時の圧力が樹脂発泡体の中心近くにまで作用し易く、得られる繊維強化複合体の芯材は、中心部から繊維強化樹脂層との積層界面に向かう方向において、気泡の形状を早い段階で横広がりに変化させることになる。
これに対して本実施形態の繊維強化複合体は、上記のように積層界面の近傍までは気泡形状が比較的安定し、前記積層界面近傍において大きくその形状を異ならせることになる。
このため本実施形態の繊維強化複合体は、強度などにおいて優れた特性が発揮されることになる。
(実施例1)
まず、図1及び図2に示した製造装置を用い樹脂発泡粒子を作製した。
即ち、1,4−シクロヘキサンジメタノール変性ポリエチレンテレフタレート樹脂(イーストマン社製、商品名「EN099」、融点:238.5℃)100質量部、ポリエチレンテレフタレート樹脂にタルクを含有させてなるマスターバッチ(ポリエチレンテレフタレート樹脂含有量:60質量%、タルク含有量:40質量%)1.8質量部及び無水ピロメリット酸0.26質量部を含む1,4−シクロヘキサンジメタノール変性ポリエチレンテレフタレート樹脂組成物を口径が65mmで且つL/D比が35の単軸押出機に供給して290℃にて溶融混練した。
そして、供給管41d及び冷却ドラム41の供給口41cを通じて冷却ドラム41内に20℃の冷却水42を供給して前記樹脂発泡粒子を作製した。
なお、冷却ドラム41内の容積は17684cm3であった。
このとき変性ポリエチレンテレフタレート押出物は、マルチノズル金型1のノズルから押出された直後の状態を維持している未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなっていた。
そして、変性ポリエチレンテレフタレート押出物は、ノズルの出口部11の開口端において切断されており、変性ポリエチレンテレフタレート押出物の切断は未発泡部において行われていた。
この状態で、押出機から変性ポリエチレンテレフタレート押出物を押出発泡させ、変性ポリエチレンテレフタレート押出物が、マルチノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなることを確認した。
次に、マルチノズル金型1に回転軸2を取り付け且つ冷却部材4を所定位置に配設した後、回転軸2を回転させ、変性ポリエチレンテレフタレート押出物をノズルの出口部11の開口端において回転刃5で切断して変性ポリエチレンテレフタレート発泡粒子を製造した。
雄金型と雌金型とを型締めした状態において、雌雄金型間には内法寸法が縦300mm×横400mm×高さ50mmの直方体形状のキャビティが形成されていた。
しかる後、水蒸気を一方の金型からキャビティ内に導入し、他方の金型に通過させる一方加熱工程において0.03MPaのゲージ圧力の水蒸気にて変性ポリエチレンテレフタレート発泡粒子を30秒間に亘って加熱し、次に、水蒸気を両方の金型からキャビティ内に導入し、キャビティ内に供給した水蒸気を排出しない両面加熱工程において変性ポリエチレンテレフタレート発泡粒子を0.03MPaのゲージ圧力の水蒸気にて30秒間に亘って加熱して変性ポリエチレンテレフタレート発泡粒子を二次発泡させ、変性ポリエチレンテレフタレート発泡粒子を二次発泡させて得られた発泡粒子どうしをこれらの発泡圧力によって、発泡粒子同士の一部を熱融着させた後に水蒸気の供給だけを止めて金型を大気放冷させる3秒間の保熱工程を経て、縦300mm×横400mm×厚み50mmの直方体形状の発泡体を得た。
繊維強化樹脂材には、熱可塑性樹脂としてTPU樹脂が45質量%含有されていた。
この繊維強化樹脂材を構成している強化繊維基材は、経糸の長さ方向が順次0°、90°となるようにあらかじめ重ね合わせて厚み0.5mmとしている。
この加熱状態の2枚の繊維強化樹脂材で、樹脂発泡体を厚み方向上下から挟み、下から順に、繊維強化樹脂層/芯材/繊維強化樹脂層の積層順となる予備積層体を作製した。
なお、加熱された繊維強化樹脂材を樹脂発泡体に積層することにより、上記樹脂発泡体の表面のみが熱伝導によって加熱されることになる。
繊維強化樹脂材を積層した面を主表面をとした樹脂発泡体は、繊維強化樹脂材からの熱伝導により柔軟になっているので、発泡体密度が0.25g/cm3となるように発泡体表面を1分間圧縮し、金型温度が樹脂発泡体のガラス転移点以下の60℃になるまで冷却し、熱可塑性繊維強化複合体を取り出した。
繊維強化複合体内の樹脂発泡体における任意の10カ所から試験片を採取した。
採取した試験片質量を測定し、その後、水の充填されたメスシリンダー内に試験片を入れ、体積を測定した。
そして、各試験片密度の相加平均値を「平均芯材密度」とし、その密度が「平均芯材密度」より20%以上差異のある試験片の数に基づいて密度バラツキを評価した。
○・・・2個未満であった。
△・・・2個以上で且つ5個未満であった。
×・・・6%以上であった。
得られた熱可塑性繊維強化複合体は、成形により発泡体を圧縮しているので、熱可塑性繊維強化複合体の軽量化効果を下記の基準に基づいて評価した。
軽量化効果(%)=100×(可塑性繊維強化複合体成形後発泡体厚み/発泡体厚み)
○・・・80%以上であった。
△・・・60%以上で且つ80%未満であった。
×・・・60%未満であった。
繊維強化複合体において、繊維強化樹脂層の総表面積(S0)、及び、その内の表面に強化繊維が露出している部分の合計面積(S1)とを算出し、下記式に基づいて、繊維の露出度を算出した。
繊維の露出度に基づいて下記基準にて判断した。
なお、繊維強化複合体が得られなかった場合は「×」とした。
繊維の露出度(%)=100×S1/S0
○・・・繊維の露出度が10%未満であった。
△・・・繊維の露出度が10%以上で且つ20%未満であった。
×・・・繊維の露出度が20%以上であった。
その他の実施例、比較例については、実施例1と同様に表のように実施した。
なお、実施例5、9においては、樹脂発泡体の作製を以下のように実施した。
変性ポリエチレンテレフタレート樹脂組成物の代わりに、スチレン−メタクリル酸メチル−無水マレイン酸共重合体(スチレン単位:45.9質量%、メタクリル酸メチル単位:21.5質量%、無水マレイン酸単位:32.6質量%、電気化学工業社製、商品名「レジスファイR200」、ガラス転移温度Tg:140.7℃)100質量部、スチレン−メタクリル酸メチル−無水マレイン酸共重合体(スチレン単位:45.9質量%、メタクリル酸メチル単位:21.5質量%、無水マレイン酸単位:32.6質量%、電気化学工業社製 商品名「レジスファイR200」、ガラス転移温度Tg:140.7℃)にタルクを含有させてなるマスターバッチ(スチレン−メタクリル酸メチル−無水マレイン酸共重合体含有量:60質量%、タルク含有量:40質量%)1.8質量部及び無水ピロメリット酸0.26質量部を含むスチレン−メタクリル酸メチル−無水マレイン酸共重合体樹脂組成物を単軸押出機に供給して発泡粒子を作製し、樹脂発泡体を作製した。
それ以外は表の通りに、繊維強化複合体を製造した。
なお、表において、スチレン−メタクリル酸メチル−無水マレイン酸共重合体は、「アクリル」と表記した。
7:繊維強化樹脂材
B:金型
C:リリースフィルム
D:ブリーザークロス
E:バギングフィルム
F:封止材
G:バックバルブ
H:空間部
M:積層体
P1,P2:熱板
Claims (7)
- 繊維強化樹脂材と樹脂発泡体とが積層一体化されてなる繊維強化複合体の形成に用いられ、該樹脂発泡体と前記繊維強化樹脂材とが熱可塑性樹脂を含み、前記樹脂発泡体と前記繊維強化樹脂材とが熱融着によって積層一体化されてなる繊維強化複合体の形成に用いられる複合体形成用樹脂発泡体であって、
発泡剤を0.1質量%以上5.0質量%以下含有し、加熱寸法変化率が+20%となる温度での膨張圧力が0.1mN/mm3以上20mN/mm3以下である複合体形成用樹脂発泡体。 - 複数の熱可塑性樹脂発泡粒子どうしが熱融着されてなる樹脂発泡体である請求項1記載の複合体形成用樹脂発泡体。
- 加熱されることによって5体積%/min以上の割合での体積増加を示す請求項1又は2記載の複合体形成用樹脂発泡体。
- アクリル系樹脂、又は、ポリエステル系樹脂を主たる樹脂として含有する請求項1乃至3の何れか1項に記載の複合体形成用樹脂発泡体。
- 熱可塑性樹脂を含む樹脂発泡体と熱可塑性樹脂を含む繊維強化樹脂材とを熱融着によって積層一体化させて繊維強化複合体を形成させる積層工程が実施され、
該積層工程における前記樹脂発泡体と前記繊維強化樹脂材との積層一体化には、作製する繊維強化複合体の製品形状に対応した型が用いられ、
該積層工程では、前記型によって賦形された繊維強化複合体が作製される繊維強化複合体の製造方法であって、
前記樹脂発泡体として請求項1乃至4の何れか1項に記載の複合体形成用樹脂発泡体を用いる繊維強化複合体の製造方法。 - 前記積層工程では、
加熱状態の前記繊維強化樹脂材を前記樹脂発泡体に積層して予備積層体を作製し、
前記型によって前記予備積層体に圧力を加え、繊維強化樹脂材と樹脂発泡体とを加圧条件下において熱融着させ、
前記樹脂発泡体の加熱寸法変化率が+5%となる温度をT5(℃)、前記樹脂発泡体の加熱寸法変化率が+20%となる温度をT20(℃)としたときに、
前記予備積層体は、樹脂発泡体の少なくとも中心部がT5(℃)よりも10(℃)以上低温となるように前記樹脂発泡体の温度を調整して作製し、
前記熱融着に際しては、樹脂発泡体の中心部がT20(℃)以上の温度となるように前記樹脂発泡体の温度を調整して、該樹脂発泡体の膨張圧力を繊維強化樹脂材と樹脂発泡体との熱融着に利用する請求項5記載の繊維強化複合体の製造方法。 - 作製する前記繊維強化複合体が、移動体構成用部材、電子機器筺体、又は、風車翼の何れかである請求項5又は6記載の繊維強化複合体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014134958A JP6200861B2 (ja) | 2014-06-30 | 2014-06-30 | 複合体形成用樹脂発泡体および繊維強化複合体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014134958A JP6200861B2 (ja) | 2014-06-30 | 2014-06-30 | 複合体形成用樹脂発泡体および繊維強化複合体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016010953A JP2016010953A (ja) | 2016-01-21 |
JP6200861B2 true JP6200861B2 (ja) | 2017-09-20 |
Family
ID=55227975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014134958A Active JP6200861B2 (ja) | 2014-06-30 | 2014-06-30 | 複合体形成用樹脂発泡体および繊維強化複合体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6200861B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6938022B2 (ja) * | 2017-11-14 | 2021-09-22 | 東京R&Dコンポジット工業株式会社 | ブリーザークロス |
US11426951B2 (en) * | 2019-01-02 | 2022-08-30 | The Boeing Company | Expandable bladders as tooling for composite parts |
JP7374458B2 (ja) * | 2019-09-12 | 2023-11-07 | 株式会社 Monopost | 繊維強化樹脂シートと樹脂発泡シートから成る積層複合シートの成形方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2135322C (en) * | 1993-11-10 | 2001-02-06 | Hiroshi Sugahara | Method for producing a fiber-reinforced thermoplastic resin foamed product |
JP5890717B2 (ja) * | 2012-03-28 | 2016-03-22 | 積水化成品工業株式会社 | 複合体用発泡体及びその製造方法 |
JP6043677B2 (ja) * | 2012-06-29 | 2016-12-14 | 積水化成品工業株式会社 | 熱可塑性ポリエステル系樹脂押出発泡シート及びこれを用いた成形品、熱可塑性ポリエステル系樹脂押出発泡シートの製造方法並びに繊維強化複合体 |
JP5907847B2 (ja) * | 2012-09-28 | 2016-04-26 | 積水化成品工業株式会社 | 熱可塑性ポリエステル系樹脂発泡粒子の製造方法、熱可塑性ポリエステル系樹脂発泡粒子、熱可塑性ポリエステル系樹脂発泡粒子を用いた発泡成形体の製造方法、発泡成形体及び複合発泡体 |
JP6129037B2 (ja) * | 2012-09-28 | 2017-05-17 | 積水化成品工業株式会社 | 複合体用発泡体、複合体及び輸送機器構成用部材 |
-
2014
- 2014-06-30 JP JP2014134958A patent/JP6200861B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016010953A (ja) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6468972B2 (ja) | 繊維強化複合発泡体の製造方法 | |
JP6043678B2 (ja) | 繊維強化複合体の製造方法及び繊維強化複合体 | |
JP6009399B2 (ja) | 繊維強化複合体及びその製造方法 | |
JP5810238B1 (ja) | 樹脂複合体、及び、樹脂複合体の製造方法 | |
CN106604818A (zh) | 树脂复合体 | |
JP6161563B2 (ja) | 繊維強化複合体 | |
TW201942183A (zh) | 發泡粒子、發泡成形體、其製造方法及樹脂複合體 | |
JP6244265B2 (ja) | 繊維強化複合体の製造方法及び繊維強化複合体 | |
TWI615434B (zh) | 發泡粒子、發泡成形體、纖維強化複合體及汽車用零件 | |
JP6200861B2 (ja) | 複合体形成用樹脂発泡体および繊維強化複合体の製造方法 | |
JP5890717B2 (ja) | 複合体用発泡体及びその製造方法 | |
JP6078671B2 (ja) | 複合体 | |
JP6140064B2 (ja) | 繊維強化複合体の製造方法、繊維強化複合体及び輸送機器構成用部材 | |
JP6395896B2 (ja) | 型内発泡成形用発泡粒子、型内発泡成形体及び繊維強化複合体 | |
JP6050730B2 (ja) | 型内発泡成形体、繊維強化複合体及び型内発泡成形体の製造方法 | |
JP2019044105A (ja) | 発泡粒子、発泡成形体、繊維強化複合体、その製造方法及び自動車用部品 | |
JP2016159520A (ja) | 繊維強化複合体及びその製造方法 | |
JP6026942B2 (ja) | 繊維強化成形体の製造方法及び繊維強化成形体 | |
JP6404197B2 (ja) | 繊維強化発泡体、その製造方法及び繊維強化発泡体を芯材とする繊維強化複合体 | |
JP2020033484A (ja) | 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品 | |
JP6077363B2 (ja) | 繊維強化複合体の製造方法 | |
TWI663199B (zh) | 纖維強化複合體製造用之發泡粒子及發泡成形體、纖維強化複合體及汽車用構件 | |
WO2019188052A1 (ja) | 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品 | |
JP2020050786A (ja) | 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品 | |
JP2020050785A (ja) | 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6200861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |