JP6292920B2 - Air filter medium manufacturing method, air filter medium and air filter pack - Google Patents
Air filter medium manufacturing method, air filter medium and air filter pack Download PDFInfo
- Publication number
- JP6292920B2 JP6292920B2 JP2014027524A JP2014027524A JP6292920B2 JP 6292920 B2 JP6292920 B2 JP 6292920B2 JP 2014027524 A JP2014027524 A JP 2014027524A JP 2014027524 A JP2014027524 A JP 2014027524A JP 6292920 B2 JP6292920 B2 JP 6292920B2
- Authority
- JP
- Japan
- Prior art keywords
- air filter
- nonwoven fabric
- porous membrane
- filter medium
- ptfe porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000004745 nonwoven fabric Substances 0.000 claims description 111
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 90
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 90
- 239000012528 membrane Substances 0.000 claims description 84
- 238000010438 heat treatment Methods 0.000 claims description 36
- 238000004049 embossing Methods 0.000 claims description 32
- -1 polytetrafluoroethylene Polymers 0.000 claims description 24
- 238000003825 pressing Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000000835 fiber Substances 0.000 description 10
- 238000003475 lamination Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000009823 thermal lamination Methods 0.000 description 3
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/36—Polytetrafluoroethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0668—The layers being joined by heat or melt-bonding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Materials (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、ポリテトラフルオロエチレン(PTFE)多孔質膜を備えるエアフィルタ濾材の製造方法、エアフィルタ濾材及びエアフィルタパックに関する。 The present invention relates to a method for producing an air filter medium including a polytetrafluoroethylene (PTFE) porous membrane, an air filter medium, and an air filter pack.
従来、空気清浄装置やクリーンルーム用などに用いられるエアフィルタ濾材には、ポリテトラフルオロエチレン(PTFE)多孔質膜等のフッ素樹脂多孔質膜を備える濾材、ガラス繊維にバインダーを加えて抄紙した濾材(ガラス濾材)、メロトブローン不織布をエレクトレット化した濾材(エレクトレット濾材)などが用いられている。 Conventionally, air filter media used for air purifiers and clean rooms include filter media comprising a fluororesin porous membrane such as polytetrafluoroethylene (PTFE) porous membrane, filter media made by adding a binder to glass fibers ( Glass filter media), filter media obtained by electretizing merotoblon nonwoven fabric (electret filter media), and the like are used.
なかでも、PTFE多孔質膜を備えるエアフィルタ濾材は、微小繊維の発生や自己発塵といった問題が少なく、使用に伴う圧力損失の上昇が少ないなどの特徴を有している。また、フッ素樹脂の性質として、摩擦係数が小さく滑り性が良好であり、捕集した塵を、多孔質膜に衝撃を与えることにより容易に除塵することができるといった性質なども有している。 Especially, the air filter medium provided with the PTFE porous membrane has the characteristics that there are few problems such as generation of fine fibers and self-dusting, and there is little increase in pressure loss due to use. Further, as a property of the fluororesin, there is a property that the friction coefficient is small and the slip property is good, and the collected dust can be easily removed by giving an impact to the porous film.
PTFE多孔質膜は、一般に柔軟性に富む極めて薄い材料である。一方で、大きな風量が透過するエアフィルタユニットにおいては、その風量によってエアフィルタ濾材が大きく変形しないように、エアフィルタ濾材にある程度の剛性が要求される。また、PTFE多孔質膜は、柔軟性に富む極めて薄い材料であるがゆえに、ハンドリング性が非常に難しい。このため、PTFE多孔質膜を備えるフィルタ濾材は、例えば、特許文献1に記載されているように、通気部材としてのPTFE多孔質膜に、補強材としての通気性支持材が、一般に加熱により積層(熱ラミネート)される。 The PTFE porous membrane is generally an extremely thin material rich in flexibility. On the other hand, in an air filter unit through which a large air volume permeates, the air filter medium is required to have a certain degree of rigidity so that the air filter medium is not greatly deformed by the air volume. Moreover, since the PTFE porous membrane is an extremely thin material rich in flexibility, it is very difficult to handle. For this reason, as described in, for example, Patent Document 1, a filter medium including a PTFE porous membrane is generally laminated with a breathable support material as a reinforcing material on a PTFE porous membrane as a ventilation member by heating. (Thermal lamination).
上記従来の技術の熱ラミネート法の一例を、図5を用いて説明する。 An example of the conventional heat laminating method will be described with reference to FIG.
帯状の通気性支持材21と、同じく帯状のPTFE多孔質膜22とを、通気性支持材21がPTFE多孔質膜22を挟み込むように、ガイドロールを通して重ね、続けて全体を加熱ロール24に接触させて所定の温度にまで加熱する。そのまま加熱ロール24上で通気性支持材21とPTFE多孔質膜22を接着、積層させ、その後、得られた積層体をロール25に引き取ることで、加熱ロール24から分離し、エアフィルタ濾材を得ることができる。 The belt-like breathable support material 21 and the belt-like PTFE porous membrane 22 are overlapped through the guide roll so that the breathable support material 21 sandwiches the PTFE porous membrane 22, and then the whole contacts the heating roll 24. And heated to a predetermined temperature. The breathable support material 21 and the PTFE porous membrane 22 are bonded and laminated on the heating roll 24 as they are, and then the obtained laminate is taken up by the roll 25 to be separated from the heating roll 24 to obtain an air filter medium. be able to.
上述の通り、通気性支持材を、PTFE多孔質膜の両面側に重ねた場合には、エアフィルタ濾材の剛性およびハンドリング性を向上させる。しかしながら、熱ラミネートによる通気性支持材のPTFE多孔質膜への積層を行うと、積層前のPTFE多孔質膜そのものの性能に比べて、積層後に得られるエアフィルタ濾材の性能が低下する不具合が生じる。 As described above, when the breathable support material is stacked on both sides of the PTFE porous membrane, the rigidity and handling properties of the air filter medium are improved. However, when the breathable support material is laminated on the PTFE porous membrane by thermal lamination, there is a problem that the performance of the air filter medium obtained after the lamination is lower than the performance of the PTFE porous membrane itself before lamination. .
本発明は、上記事情を鑑みてなされたものであり、良好な濾材の剛性およびハンドリング性を保ちつつ、加熱による積層後に得られるエアフィルタ濾材の性能低下を抑制することを課題とする。 This invention is made | formed in view of the said situation, and makes it a subject to suppress the performance fall of the air filter filter medium obtained after lamination | stacking by heating, maintaining the rigidity and handling property of favorable filter medium.
すなわち、本発明は、
ポリテトラフルオロエチレン多孔質膜の一面側に第1不織布を重ね、前記ポリテトラフルオロエチレン多孔質膜の他面側に第2不織布を重ねる工程(a)と、
前記ポリテトラフルオロエチレン多孔質膜、前記第1不織布および前記第2不織布を重ねた状態で、前記第2不織布に加熱ロールを接触させ、前記ポリテトラフルオロエチレン多孔質膜、前記第1不織布および前記第2不織布に前記加熱ロールを押圧する工程(b)と、を含むエアフィルタ濾材の製造方法であって、
前記第1不織布として前記一面側に接する面のエンボス比率が12%以上18%以下である不織布を用い、
前記第2不織布として前記他面側に接する面のエンボス比率が18%よりも大きい不織布を用いるエアフィルタ濾材の製造方法を提供する。
That is, the present invention
A step (a) of superposing a first non-woven fabric on one side of the polytetrafluoroethylene porous membrane and superposing a second non-woven fabric on the other side of the polytetrafluoroethylene porous membrane;
In a state where the polytetrafluoroethylene porous membrane, the first nonwoven fabric and the second nonwoven fabric are stacked, a heating roll is brought into contact with the second nonwoven fabric, the polytetrafluoroethylene porous membrane, the first nonwoven fabric and the A step (b) of pressing the heating roll against the second nonwoven fabric, and a method for producing an air filter medium,
Using a non-woven fabric having an embossing ratio of 12% or more and 18% or less as the first non-woven fabric in contact with the one surface side,
Provided is a method for producing an air filter medium using a nonwoven fabric having an embossing ratio of a surface in contact with the other surface as the second nonwoven fabric that is greater than 18%.
本発明において、前記第2不織布の前記他面側に接する面のエンボス比率が19%以上50%以下であってもよい。 In this invention, 19% or more and 50% or less may be sufficient as the embossing ratio of the surface which contact | connects the said other surface side of a said 2nd nonwoven fabric.
本発明にかかるエアフィルタ濾材は、ポリテトラフルオロエチレン多孔質膜と、該ポリテトラフルオロエチレン多孔質膜を挟むように、前記ポリテトラフルオロエチレン多孔質膜の両面に直接設けられた第1不織布および第2不織布とを含み、前記第1不織布の前記ポリテトラフルオロエチレン多孔質膜に接する面のエンボス比率が12%以上18%以下であり、前記第2不織布の前記ポリテトラフルオロエチレン多孔質膜に接する面のエンボス比率が18%よりも大きく、前記第2不織布側からの加熱によりラミネートされた。
An air filter medium according to the present invention includes a polytetrafluoroethylene porous membrane, a first nonwoven fabric directly provided on both sides of the polytetrafluoroethylene porous membrane so as to sandwich the polytetrafluoroethylene porous membrane, and An embossing ratio of a surface of the first nonwoven fabric that is in contact with the polytetrafluoroethylene porous membrane is 12% or more and 18% or less, and the polytetrafluoroethylene porous membrane of the second nonwoven fabric The embossing ratio of the contact surface was larger than 18%, and lamination was performed by heating from the second nonwoven fabric side .
本発明にかかるエアフィルタパックは、前記エアフィルタ濾材が所定の形状あるいは大きさに形成されてなる。 In the air filter pack according to the present invention, the air filter medium is formed in a predetermined shape or size .
本発明によれば、良好な濾材の剛性およびハンドリング性を保ちつつ、加熱による積層後の性能低下が抑制されたエアフィルタ濾材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the air filter medium by which the performance fall after the lamination | stacking by heating was suppressed can be provided, maintaining the rigidity and handling property of favorable filter medium.
以下、本発明の好ましい実施形態について、図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
本発明のエアフィルタ濾材の製造方法は、ポリテトラフルオロエチレン多孔質膜(以下、PTFE多孔質膜ともいう。)の一面側に第1不織布を重ね、前記PTFE多孔質膜の他面側に第2不織布を重ねる工程(a)と、前記PTFE多孔質膜、前記第1不織布および前記第2不織布を重ねた状態で、前記第2不織布に加熱ロールを接触させ、前記PTFE多孔質膜、前記第1不織布および前記第2不織布に前記加熱ロールを押圧する工程(b)と、を含むエアフィルタ濾材の製造方法であって、前記第1不織布として前記一面に接する面のエンボス比率が12%以上18%以下である不織布を用い、前記第2不織布の前記他面に接する面のエンボス比率が18%よりも大きい不織布を用いる方法である。 In the method for producing an air filter medium of the present invention, a first non-woven fabric is stacked on one side of a polytetrafluoroethylene porous membrane (hereinafter also referred to as PTFE porous membrane), and the first non-woven fabric is placed on the other side of the PTFE porous membrane. (2) stacking the nonwoven fabric (a), in a state where the PTFE porous membrane, the first nonwoven fabric and the second nonwoven fabric are stacked, a heating roll is brought into contact with the second nonwoven fabric, the PTFE porous membrane, And a step (b) of pressing the heating roll against one nonwoven fabric and the second nonwoven fabric, wherein the embossing ratio of the surface in contact with the one surface as the first nonwoven fabric is 12% or more 18 % Is a method using a non-woven fabric having an embossing ratio greater than 18% on the surface contacting the other surface of the second non-woven fabric.
より具体的には、図1に示すように、まず、帯状の不織布1aおよび1bがPTFE多孔質膜2を挟み込むように、不織布1aおよび1bとPTFE多孔質膜とを重ねる。すなわち、PTFE多孔質膜の一面側2aに第1不織布を重ね、前記PTFE多孔質膜の他面側2bに第2不織布をガイドロール3を通して重ねる(工程a)。
続けて、前記PTFE多孔質膜、前記第1不織布および前記第2不織布を重ねた状態で前記第2不織布に加熱ロールを接触させ、全体を加熱ロール4に沿わせて押圧する(工程b)。加熱ロール4に沿わせた状態でPTFE多孔質膜2、不織布1aおよび1bを含む全体を加熱ロール4により所定の温度にまで加熱し、不織布1aおよび1bとPTFE多孔質膜2とを接着、積層させ、得られた積層体をロール5に引き取ることで、加熱ロール4から分離し、エアフィルタ濾材Aを得ることができる。
More specifically, as shown in FIG. 1, first, the nonwoven fabrics 1a and 1b and the PTFE porous membrane are overlapped so that the strip-like nonwoven fabrics 1a and 1b sandwich the PTFE porous membrane 2. That is, the first nonwoven fabric is overlaid on one side 2a of the PTFE porous membrane, and the second nonwoven fabric is overlaid on the other surface side 2b of the PTFE porous membrane through the guide roll 3 (step a).
Subsequently, a heating roll is brought into contact with the second nonwoven fabric in a state where the PTFE porous membrane, the first nonwoven fabric and the second nonwoven fabric are stacked, and the whole is pressed along the heating roll 4 (step b). The entire structure including the PTFE porous membrane 2 and the nonwoven fabrics 1a and 1b along the heating roll 4 is heated to a predetermined temperature by the heating roll 4, and the nonwoven fabrics 1a and 1b and the PTFE porous membrane 2 are bonded and laminated. Then, the resulting laminate is taken up by the roll 5 to be separated from the heating roll 4 to obtain the air filter medium A.
図1の例において、不織布1aおよび1bの加熱温度は、加熱ロール4の温度設定や、ライン速度を調節することで制御することができる。このとき、不織布1aおよび1bの加熱の温度は、不織布1aに含まれる最も低融点な材料と、不織布1bに含まれる最も低融点な材料とのうち、高い方の融点以上とする。 In the example of FIG. 1, the heating temperature of the nonwoven fabrics 1a and 1b can be controlled by adjusting the temperature setting of the heating roll 4 and the line speed. At this time, the heating temperature of the nonwoven fabrics 1a and 1b is set to be equal to or higher than the higher melting point of the lowest melting point material contained in the nonwoven fabric 1a and the lowest melting point material contained in the nonwoven fabric 1b.
また、加熱ロール4の直後に設置されているガイドロール6により、加熱された不織布1aおよび1bとPTFE多孔質膜2との積層体をさらに加圧することで各層の接着力を向上させることができる。 Moreover, the adhesive force of each layer can be improved by further pressing the laminated body of the heated nonwoven fabrics 1a and 1b and the PTFE porous membrane 2 by the guide roll 6 installed immediately after the heating roll 4. .
本発明のエアフィルタ用濾材の製造方法において、不織布1aおよび1bは、それぞれ少なくとも片面にエンボスが設けられており、それぞれのエンボス加工が施された面が、PTFE多孔質膜2との積層する際に、PTFE多孔質膜2と接するように配置される。 In the method for producing a filter medium for an air filter of the present invention, each of the nonwoven fabrics 1a and 1b is provided with an emboss on at least one surface, and each embossed surface is laminated with the PTFE porous membrane 2 The PTFE porous membrane 2 is disposed in contact therewith.
また、不織布1aおよび1bは、PTFE多孔質膜2に接する面のエンボス比率が異なるものを用いる。具体的には、不織布1aとしてPTFE多孔質膜2に接する面のエンボス比率が12%以上18%以下である不織布を用い、不織布1bとしてPTFE多孔質膜2に接する面のエンボス比率が18%よりも大きい不織布を用いる。
特に、不織布1aとしてエンボス比率が12%以上18%以下である不織布を用い、不織布1bとしてエンボス比率が19%以上50%以下である不織布をそれぞれ用いることが好ましい。
Nonwoven fabrics 1a and 1b are different in the embossing ratio of the surface in contact with the PTFE porous membrane 2. Specifically, a non-woven fabric having an embossing ratio of 12% or more and 18% or less on the surface in contact with the PTFE porous membrane 2 as the non-woven fabric 1a, and an embossing ratio of the surface in contact with the PTFE porous membrane 2 as the non-woven fabric 1b is from 18%. Also use a large nonwoven fabric.
In particular, it is preferable to use a nonwoven fabric with an embossing ratio of 12% or more and 18% or less as the nonwoven fabric 1a, and use a nonwoven fabric with an embossing ratio of 19% or more and 50% or less as the nonwoven fabric 1b.
本発明において、「エンボス比率」とは、単位面積当たりの不織布の凹部の面積の割合を意味する。なお、算出方法は、後述する実施例で詳細に述べる。 In the present invention, the “embossing ratio” means the ratio of the area of the concave portion of the nonwoven fabric per unit area. The calculation method will be described in detail in an example described later.
上記のように不織布1aおよび1bを、前記PTFE多孔質膜2の一面側2aおよび他面側2bに配置すると、エンボス比率が小さい、すなわち、単位面積当たりの凹部の面積が小さい不織布1aとPTFE多孔質膜2の一面側2aとの間では、接触点数が不織布1bとPTFE多孔質膜2の他面側2bとの間に比べて多くなる。図1に示す加熱ロール4によるラミネートでは、PTFE多孔質膜2の一面側2aにある不織布1aは、加熱ロール4に接触しない側に位置する。このような配置では、不織布1aには加熱ロール4からの熱が不織布1bに比べて伝わりにくいため、十分なラミネート後の接着力を得るために、ガイドロール6などにより、不織布1aには、不織布1bに比べて張力を大きく掛ける必要がある。
このため、不織布1aが加熱ロール4に向かって、加熱された状態で押し付けられる圧力は、不織布1bが加熱ロール4に向かって押し付けられる圧力よりも高くなる。
When the non-woven fabrics 1a and 1b are arranged on the one side 2a and the other side 2b of the PTFE porous membrane 2 as described above, the embossing ratio is small, that is, the non-woven fabric 1a and the PTFE porous structure have a small area per unit area. Between the one surface side 2a of the membrane 2, the number of contact points is larger than between the nonwoven fabric 1b and the other surface 2b of the PTFE porous membrane 2. In the laminate using the heating roll 4 shown in FIG. 1, the nonwoven fabric 1 a on the one surface side 2 a of the PTFE porous membrane 2 is located on the side not in contact with the heating roll 4. In such an arrangement, since the heat from the heating roll 4 is less likely to be transmitted to the nonwoven fabric 1a compared to the nonwoven fabric 1b, the nonwoven fabric 1a is provided with the nonwoven fabric 1a by a guide roll 6 or the like in order to obtain sufficient adhesive strength after lamination. It is necessary to apply a greater tension than 1b.
For this reason, the pressure with which the nonwoven fabric 1 a is pressed toward the heating roll 4 in a heated state is higher than the pressure with which the nonwoven fabric 1 b is pressed toward the heating roll 4.
従って、圧力がかかる不織布1aとPTFE多孔質膜2との間の接触点数が多くなると、接触点にかかる圧力が分散され、不織布1aの繊維の食い込みによるPTFE多孔質膜2の破壊が抑制される。このため、本発明の製造方法により得られるエアフィルタ濾材の捕集効率の低下が抑制されることとなる。
特に、PTFE多孔質膜2として、HEPA、ULPA等のエアフィルタ濾材を構成する、より捕集効率は高いが、非常に損傷しやすいPTFE多孔質膜を用いる場合に、本発明の効果は顕著である。
HEPA、ULPA等のエアフィルタ濾材用のPTFE多孔質膜は、PTFE多孔質膜2の繊維へのダメージが、エアフィルタ濾材の捕集効率の低下に反映されやすいからである。
Therefore, when the number of contact points between the nonwoven fabric 1a and the PTFE porous membrane 2 to which pressure is applied increases, the pressure applied to the contact points is dispersed, and the destruction of the PTFE porous membrane 2 due to the biting of the fibers of the nonwoven fabric 1a is suppressed. . For this reason, the fall of the collection efficiency of the air filter medium obtained by the manufacturing method of this invention will be suppressed.
In particular, when the PTFE porous membrane 2 is used as a PTFE porous membrane constituting an air filter medium such as HEPA or ULPA, which has a higher collection efficiency but is very easily damaged, the effect of the present invention is remarkable. is there.
This is because in the PTFE porous membrane for air filter media such as HEPA and ULPA, damage to the fibers of the PTFE porous membrane 2 is easily reflected in the decrease in the collection efficiency of the air filter media.
また、さらに本発明者らは、不織布1bのエンボス比率を大きくすると、加熱ロール4上への不織布溶融成分の付着(いわゆる「糸引き」と呼ばれる不具合)が抑制されることを見出した。これは、エンボス比率を大きくすると不織布1bを構成する繊維同士の接着点が増え、溶融した繊維がロールに取られにくくなるからである。「糸引き」の発生が抑制されることにより、製造ラインにおける、後続のエアフィルタ濾材への溶融繊維の付着などの不具合も抑制され、加熱ロール4の清掃回数を減らすこともできるため、エアフィルタ濾材の量産において歩留まり向上に寄与する。 Further, the present inventors have found that when the embossing ratio of the nonwoven fabric 1b is increased, adhesion of the nonwoven fabric melt component onto the heating roll 4 (a so-called “stringing”) is suppressed. This is because when the embossing ratio is increased, the adhesion points between the fibers constituting the nonwoven fabric 1b are increased, and the melted fibers are difficult to be taken by the roll. By suppressing the occurrence of “string drawing”, problems such as adhesion of molten fiber to the subsequent air filter medium in the production line can be suppressed, and the number of cleanings of the heating roll 4 can be reduced. Contributes to yield improvement in mass production of filter media.
以上のように説明した本実施形態の製造方法によって得られるエアフィルタ濾材Aは、図2に示すようにPTFE多孔質膜2と、当該PTFE多孔質膜を挟むように、当該PTFE多孔質膜の両面に直接設けられた不織布1aおよび1bとを含む積層体である。 As shown in FIG. 2, the air filter medium A obtained by the manufacturing method of the present embodiment as described above has the PTFE porous membrane 2 and the PTFE porous membrane so as to sandwich the PTFE porous membrane. It is a laminate including nonwoven fabrics 1a and 1b provided directly on both sides.
このエアフィルタ濾材Aを用いて、エアフィルタパックおよびエアフィルタユニットを製造する。一般に、エアフィルタユニットは、エアフィルタ濾材をひだ状にプリーツ加工してエアフィルタパックを得、これをフレームに組み込んで製造することができる。 Using this air filter medium A, an air filter pack and an air filter unit are manufactured. In general, the air filter unit can be manufactured by pleating an air filter medium into a pleated shape to obtain an air filter pack, which is incorporated into a frame.
本実施形態のエアパックは、本実施形態の製造方法によって得られるエアフィルタ濾材が所定の形状あるいは大きさに形成されてなる。
本実施形態のエアパックとしては、例えば、エアフィルタ濾材が複数箇所で屈曲されてひだ状に形成されてなるエアパック等が挙げられる。
かかるエアパックは、例えば、前記エアフィルタ濾材が一方向に沿って屈曲されて形成される屈曲部と、前記屈曲部以外の領域が板状に形成されてなる平板部と、エアフィルタ濾材の一方の面側および他方の面側における各平板部の間に形成されて隣り合う屈曲部同士の間隔を保持する複数の間隔保持部とを備えてなるものであってもよい。
The air pack of this embodiment is formed by forming an air filter medium obtained by the manufacturing method of this embodiment into a predetermined shape or size.
Examples of the air pack of the present embodiment include an air pack in which an air filter medium is bent at a plurality of locations and formed into a pleat shape.
Such an air pack includes, for example, a bent portion formed by bending the air filter medium along one direction, a flat plate formed by forming a region other than the bent portion in a plate shape, and one of the air filter medium. It may be provided with a plurality of interval holding portions that are formed between the flat plate portions on the surface side and the other surface side and hold intervals between adjacent bent portions.
かかるエアパックの製造方法は、例えば、次のような方法が挙げられる。
まず、エアフィルタ濾材がプリーツ加工される。具体的には、帯状のエアフィルタ濾材が長手方向に直交する幅方向に沿って複数箇所で屈曲されてひだ状に形成される。これにより、エアフィルタ濾材には複数の屈曲部と複数の平板部とが形成される(プリーツ加工する工程)。
次に、ひだ状にプリーツ加工したエアフィルタ濾材が、プリーツ加工前の平らな状態に伸ばされ、エアフィルタ濾材の両面に接着剤等のスペーサー樹脂(一般に「ビード」と呼ばれる)が塗布されて間隔保持部が形成される(スペーサー樹脂を塗布する工程)。
間隔保持部は、隣り合う平板部におけるひだ状に形成された際に対向する一対の対向面の間に配置される。
さらに、エアフィルタ濾材が再度屈曲されてひだ状に形成される(再度プリーツ加工する工程)。
必要に応じて、プリーツ加工されたエアフィルタ濾材が所定の大きさに切断されてもよい(切断工程)。
Examples of a method for manufacturing such an air pack include the following methods.
First, the air filter medium is pleated. Specifically, the band-shaped air filter medium is bent at a plurality of locations along the width direction orthogonal to the longitudinal direction to form a pleat. As a result, a plurality of bent portions and a plurality of flat plate portions are formed in the air filter medium (step of pleating).
Next, the air filter medium that has been pleated into a pleat is stretched to a flat state before pleating, and a spacer resin (generally called “bead”) such as adhesive is applied to both sides of the air filter medium. A holding part is formed (step of applying spacer resin).
The interval holding portion is disposed between a pair of opposing surfaces that face each other when formed in a pleat shape in adjacent flat plate portions.
Further, the air filter medium is bent again to form a pleat (step of pleating again).
If necessary, the pleated air filter medium may be cut into a predetermined size (cutting step).
前記エアフィルタパックは、フレームに取り付けエアフィルタユニットとして形成されてもよい。
エアフィルタユニットは、前記エアフィルタパックの四方を囲むようなフレームとエアフィルタパックとをシールすることで製造される。
このように製造されたエアフィルタユニットは、空気清浄装置やクリーンルームの空調設備などに用いられる。
The air filter pack may be attached to a frame and formed as an air filter unit.
The air filter unit is manufactured by sealing a frame surrounding the four sides of the air filter pack and the air filter pack.
The air filter unit manufactured in this way is used for an air purifier or an air conditioning facility in a clean room.
本実施形態で用いるPTFE多孔質膜2は、例えば、シート状のPTFE成形体を作製し、これを2軸延伸して多孔質化する方法、および日本国特開平7−196831号公報などに記載)などの公知の方法により製造することができる。 The PTFE porous membrane 2 used in the present embodiment is described in, for example, a method of producing a sheet-like PTFE molded body and biaxially stretching it to make it porous, and Japanese Patent Application Laid-Open No. 7-196831. ) And the like.
また必要に応じて、PTFE多孔質膜2として、複数のPTFE多孔質膜が積層した構造を持つPTFE複層多孔質膜を用いても構わない。PTFE複層多孔質膜の製法としては特に限定されないが、次に示すような幾つかの方法が提案されている。
例えば、
(1)液状潤滑剤の混合された分子量の異なるPTFEファインパウダーを、層状に分布させたのちに、層構造を保ったまま押出して圧延し、さらに延伸することでPTFE複層多孔質膜を得る方法(日本国特開平3−179038号公報に記載)、
(2)液状潤滑剤を含んだ複数のPTFE圧延シートを重ねて圧延し、さらに延伸することでPTFE複層多孔質膜を得る方法(日本国特開昭59−49935号)公報に記載)、
(3)孔径の異なる未焼成のPTFE多孔質膜を圧着することにより積層化し、PTFEの融点以上の温度で焼成することでPTFE複層多孔質膜を得る方法(日本国特開昭54−97686号公報に記載)、
などが挙げられる。
Further, if necessary, the PTFE porous membrane 2 may be a PTFE multilayer porous membrane having a structure in which a plurality of PTFE porous membranes are laminated. Although it does not specifically limit as a manufacturing method of a PTFE multilayer porous membrane, Several methods as shown below are proposed.
For example,
(1) A PTFE fine powder mixed with a liquid lubricant and having different molecular weights is distributed in layers, then extruded and rolled while maintaining the layer structure, and further stretched to obtain a PTFE multilayer porous membrane. Method (described in Japanese Patent Application Laid-Open No. 3-17938),
(2) A method of obtaining a PTFE multilayer porous film by rolling a plurality of rolled PTFE sheets containing a liquid lubricant, and further stretching (described in JP-A-59-49935),
(3) A method of obtaining a PTFE multilayer porous membrane by stacking unfired PTFE porous membranes having different pore diameters by pressure bonding and firing at a temperature equal to or higher than the melting point of PTFE (Japanese Patent Laid-Open No. 54-97686). ),
Etc.
本実施形態で用いる不織布1aおよび1bは、互いにエンボス比率が異なるものを用いる。具体的には、不織布1aは、エンボス比率が12%以上18%以下であり、不織布1bは、エンボス比率が18%よりも大きい。特に、不織布1aは、エンボス比率が12%以上18%以下であり、不織布1bは、エンボス比率が19%以上50%以下であることが好ましい。尚、これら不織布のエンボスは、少なくともPTFE多孔質膜2と接する面に設けられている必要がある。
この条件を満たすものであれば、不織布1aおよび1bは、特に限定されるものではないが、PTFE多孔質膜より通気性に優れているものが好ましい。
また、PTFE多孔質膜との接着が容易であることなどから、不織布を構成する一部あるいは全部の繊維が芯鞘構造の複合繊維であり、芯成分が鞘成分より相対的に融点が高い合成繊維であることがより好ましい。
Nonwoven fabrics 1a and 1b used in the present embodiment have different embossing ratios. Specifically, the nonwoven fabric 1a has an embossing ratio of 12% or more and 18% or less, and the nonwoven fabric 1b has an embossing ratio of more than 18%. In particular, the nonwoven fabric 1a preferably has an embossing ratio of 12% to 18%, and the nonwoven fabric 1b preferably has an embossing ratio of 19% to 50%. The embossing of these nonwoven fabrics must be provided at least on the surface in contact with the PTFE porous membrane 2.
As long as this condition is satisfied, the nonwoven fabrics 1a and 1b are not particularly limited, but are preferably superior in breathability to the PTFE porous membrane.
In addition, because it is easy to adhere to the PTFE porous membrane, some or all of the fibers constituting the nonwoven fabric are composite fibers having a core-sheath structure, and the core component has a relatively higher melting point than the sheath component. More preferably, it is a fiber.
なお、不織布の材料としては、特に限定されるものではないが、例えば、ポリオレフィン(ポリエチレン(PE)、ポリプロピレン(PP)など)、ポリアミド、ポリエステル(ポリエチレンテレフタレート(PET)など)、芳香族ポリアミド、またはこれらの複合材を含むものなどを用いることができる。 The material of the non-woven fabric is not particularly limited. For example, polyolefin (polyethylene (PE), polypropylene (PP), etc.), polyamide, polyester (polyethylene terephthalate (PET), etc.), aromatic polyamide, or Those containing these composite materials can be used.
本実施形態によれば、良好な濾材の剛性およびハンドリング性を保ちつつ、加熱による積層後の性能低下が抑制されたエアフィルタ濾材を提供することができる。 According to this embodiment, it is possible to provide an air filter medium in which deterioration in performance after lamination due to heating is suppressed while maintaining good rigidity and handling properties of the filter medium.
本実施形態にかかるエアフィルタ濾材の製造方法、エアフィルタ濾材及びエアフィルタパックは以上のとおりであるが、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The manufacturing method of the air filter medium, the air filter medium and the air filter pack according to the present embodiment are as described above. However, the embodiment disclosed this time is illustrative in all respects and is not restrictive. Should be done. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明は、これら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited to these Examples.
PTFEファインパウダー(ダイキン工業(株)製、製品名:F104)80重量部に対して液状潤滑剤(ドデカン)20重量部を加えたペースト状の混和物を予備成形し、ペースト押し出しにより丸棒状に成形した。次に、一対の金属製圧延ロール間に通して、成形物を圧延したシート状成形体(厚さ:0.2mm)を得た。次に、このシート状成形体を150℃に加熱して乾燥させることにより、シート状成形体から液状潤滑剤を除去した。このシート状成形体を、その長手方向に300℃の温度で15倍延伸し、更に150℃の温度で30倍延伸して、厚さ4μm、気孔率95%のPTFE多孔質膜を得た。得られたPTFE多孔質膜は、透過流速5.3cm/秒の条件で圧力損失は140Paであり、透過流速5.3cm/秒の条件で、粒子径0.1〜0.2μmの粒子を対象とした捕集効率は99.9995%であった。 PTFE fine powder (manufactured by Daikin Industries, Ltd., product name: F104) is preliminarily molded into a paste-like mixture in which 20 parts by weight of a liquid lubricant (dodecane) is added to 80 parts by weight. Molded. Next, the sheet-like formed body (thickness: 0.2 mm) obtained by rolling the formed product was obtained by passing between a pair of metal rolling rolls. Next, the liquid lubricant was removed from the sheet-like molded body by heating the sheet-like molded body to 150 ° C. and drying. This sheet-like molded body was stretched 15 times at a temperature of 300 ° C. in the longitudinal direction and further stretched 30 times at a temperature of 150 ° C. to obtain a PTFE porous membrane having a thickness of 4 μm and a porosity of 95%. The obtained PTFE porous membrane has a pressure loss of 140 Pa under the condition of a permeation flow rate of 5.3 cm / sec, and targets particles with a particle diameter of 0.1 to 0.2 μm under the permeation flow rate of 5.3 cm / sec. The collection efficiency was 99.9995%.
このPTFE多孔質膜と、PET/PE芯鞘複合繊維からなる不織布とを図1に示す装置を用いて熱ラミネートにより積層し、3層構造のエアフィルタ濾材を得た。なお、このとき加熱ロール4には、ロール表面にフッ素樹脂の表面コートを施したものを用い、加熱ロール4上での不織布1aおよび1bの温度が130℃以上となるように設定した。 This PTFE porous membrane and a nonwoven fabric composed of a PET / PE core-sheath composite fiber were laminated by thermal lamination using the apparatus shown in FIG. 1 to obtain an air filter medium having a three-layer structure. At this time, as the heating roll 4, a roll surface coated with a fluororesin was used, and the temperature of the nonwoven fabrics 1a and 1b on the heating roll 4 was set to 130 ° C. or higher.
本実施例および比較例で用いた不織布の特性、および作製したエアフィルタ濾材の特性を表1および表2に示す。 Tables 1 and 2 show the characteristics of the non-woven fabric used in this example and the comparative example, and the characteristics of the produced air filter medium.
なお、本実施例における不織布のエンボス比率、圧力損失および捕集効率の測定、ならびにエアフィルタ濾材のPF値の算出は以下に示す方法で行った。 In addition, the measurement of the embossing ratio of the nonwoven fabric in this Example, pressure loss, and collection efficiency, and calculation of PF value of an air filter medium were performed by the method shown below.
(不織布のエンボス比率)
不織布のエンボス比率は、単位面積当たりの不織布の凹部の面積の割合として求めた。算出方法は、倍率5倍で不織布表面(例えば、図3および図4を参照)の光学顕微鏡写真を撮影して、この写真を印刷し、印刷された写真全体の重量を測定した後、印刷された写真から凹部を切り抜き、切り抜かれた紙片の重量を測定することで計算する。なお、図3は実施例1の不織布1a、図4は実施例1の不織布1bの表面の光学顕微鏡写真である。
(Non-woven embossing ratio)
The embossing ratio of the nonwoven fabric was determined as a ratio of the area of the concave portion of the nonwoven fabric per unit area. The calculation method is to take an optical micrograph of the surface of the nonwoven fabric (for example, see FIGS. 3 and 4) at a magnification of 5 times, print this photo, measure the weight of the entire printed photo, and then print it. The calculation is performed by cutting out the concave portion from the photograph and measuring the weight of the cut paper piece. 3 is an optical micrograph of the surface of the nonwoven fabric 1a of Example 1, and FIG. 4 is the surface of the nonwoven fabric 1b of Example 1.
(PTFE多孔質膜およびエアフィルタ濾材の圧力損失の測定)
圧力損失(Pa)の測定は、JIS K 0901の「気体中のダスト試料補集用濾過材」に準じ、PTFE多孔質膜およびエアフィルタ濾材の測定サンプルを、面積100mm2のホルダーにセットし、コンプレッサーで入口側を加圧し、流量計で空気の透過する流量を5.3cm/秒に調整した。この時の圧力損失をマノメーターで測定した。結果を表1及び2に示す。
(Measurement of pressure loss of PTFE porous membrane and air filter medium)
The pressure loss (Pa) is measured in accordance with JIS K 0901 “filtering material for collecting dust sample in gas”, and a PTFE porous membrane and a measuring sample of air filter medium are set in a holder having an area of 100 mm 2 . The inlet side was pressurized with a compressor, and the flow rate of air through the flow meter was adjusted to 5.3 cm / sec. The pressure loss at this time was measured with a manometer. The results are shown in Tables 1 and 2.
(PTFE多孔質膜およびエアフィルタ濾材の捕集効率の測定)
捕集効率は、JIS K 3803の「除菌用空気濾過デプスフィルタのエアロゾル捕集性能試験方法」により、粒子径0.3〜0.5μmのDOP(ジオクチルフタレート)の粒子を、粒子の濃度が約108個/リットルとなるように混入して測定し、次式(1)で計算した。なお、式(1)中の、NLは下流側の粒子数(個/L)、NUは上流側の粒子数(個/L)、Pは粒子捕集効率(%)を表す。結果を表1及び2に示す。
P=(1−NL/NU)×100 ・・・(1)
(Measurement of collection efficiency of PTFE porous membrane and air filter medium)
The collection efficiency is determined according to JIS K 3803 “Aerosol Collection Performance Test Method for Air Filtration Depth Filter for Disinfection” with DOP (dioctyl phthalate) particles having a particle size of 0.3 to 0.5 μm. It mixed and measured so that it might become about 10 < 8 > piece / liter, and it calculated by following Formula (1). In the formula (1), NL represents the number of particles on the downstream side (number / L), NU represents the number of particles on the upstream side (number / L), and P represents the particle collection efficiency (%). The results are shown in Tables 1 and 2.
P = (1-NL / NU) × 100 (1)
(エアフィルタ濾材のPF値)
エアフィルタ濾材の性能を表すPF値は、次式(2)により算出した。結果を表1及び2に示す。
PF値=−Log(1−捕集効率(%)/100)/圧力損失(mmH2O)×100・・・(2)
(PF value of air filter media)
The PF value representing the performance of the air filter medium was calculated by the following formula (2). The results are shown in Tables 1 and 2.
PF value = −Log (1−capturing efficiency (%) / 100) / pressure loss (mmH 2 O) × 100 (2)
表1および表2の結果から、図1に示すラミネート工程において、不織布1aおよび1bが、それぞれのエンボス加工が施された面が、PTFE多孔質膜2との積層する際に、PTFE多孔質膜2と接するように配置され、且つ、不織布1aのエンボス比率が12%以上18%以下である不織布を、不織布1bのエンボス比率が19%以上50%以下である不織布をそれぞれ使用することにより、PTFE多孔質膜の捕集効率に比べて、得られるエアフィルタ濾材の捕集効率(もしくはPF値)の低下を抑制しつつ、加熱ロール4上への不織布溶融成分の付着(糸引き)も抑制されることがわかる。 From the results shown in Table 1 and Table 2, in the laminating process shown in FIG. 1, when the nonwoven fabrics 1 a and 1 b are laminated with the PTFE porous membrane 2 on the respective embossed surfaces, the PTFE porous membrane is used. 2 and the nonwoven fabric 1a having an embossing ratio of 12% or more and 18% or less, and the nonwoven fabric 1b having an embossing ratio of 19% or more and 50% or less, respectively. Compared to the collection efficiency of the porous membrane, the decrease in the collection efficiency (or PF value) of the obtained air filter medium is suppressed, and the adhesion (string drawing) of the non-woven fabric melt component onto the heating roll 4 is also suppressed. I understand that
本発明によって提供されたエアフィルタ濾材及びエアフィルタパック、は、空気清浄装置やクリーンルームの空調設備などに用いられるエアフィルタユニットの濾材及びエアフィルタパックとして好適に使用できる。 The air filter medium and the air filter pack provided by the present invention can be suitably used as a filter medium and an air filter pack for an air filter unit used in an air cleaning device, an air conditioner in a clean room, and the like.
1a、1b 不織布
2 PTFE多孔質膜
3 ガイドロール
4 加熱ロール
5 巻取ロール
6 ガイドロール
A エアフィルタ濾材
1a, 1b Nonwoven fabric 2 PTFE porous membrane 3 Guide roll 4 Heating roll 5 Winding roll 6 Guide roll A Air filter medium
Claims (4)
前記ポリテトラフルオロエチレン多孔質膜、前記第1不織布および前記第2不織布を重ねた状態で、前記第2不織布に加熱ロールを接触させ、前記ポリテトラフルオロエチレン多孔質膜、前記第1不織布および前記第2不織布に前記加熱ロールを押圧する工程(b)と、を含むエアフィルタ濾材の製造方法であって、
前記第1不織布として前記一面側に接する面のエンボス比率が12%以上18%以下である不織布を用い、
前記第2不織布として前記他面側に接する面のエンボス比率が18%よりも大きい不織布を用いるエアフィルタ濾材の製造方法。 A step (a) of superposing a first non-woven fabric on one side of the polytetrafluoroethylene porous membrane and superposing a second non-woven fabric on the other side of the polytetrafluoroethylene porous membrane;
In a state where the polytetrafluoroethylene porous membrane, the first nonwoven fabric and the second nonwoven fabric are stacked, a heating roll is brought into contact with the second nonwoven fabric, the polytetrafluoroethylene porous membrane, the first nonwoven fabric and the A step (b) of pressing the heating roll against the second nonwoven fabric, and a method for producing an air filter medium,
Using a non-woven fabric having an embossing ratio of 12% or more and 18% or less as the first non-woven fabric in contact with the one surface side,
The manufacturing method of the air filter medium which uses the nonwoven fabric whose embossing ratio of the surface which contact | connects the said other surface side as said 2nd nonwoven fabric is larger than 18%.
前記第1不織布の前記ポリテトラフルオロエチレン多孔質膜に接する面のエンボス比率が12%以上18%以下であり、
前記第2不織布の前記ポリテトラフルオロエチレン多孔質膜に接する面のエンボス比率が18%よりも大きく、
前記第2不織布側からの加熱によりラミネートされた、エアフィルタ濾材。 A polytetrafluoroethylene porous membrane, and a first nonwoven fabric and a second nonwoven fabric provided directly on both sides of the polytetrafluoroethylene porous membrane so as to sandwich the polytetrafluoroethylene porous membrane,
The embossing ratio of the surface in contact with the polytetrafluoroethylene porous membrane of the first nonwoven fabric is 12% or more and 18% or less,
The embossing ratio of the surface in contact with the polytetrafluoroethylene porous membrane of the second nonwoven fabric is greater than 18%,
An air filter medium laminated by heating from the second nonwoven fabric side .
An air filter pack in which the air filter medium according to claim 3 is formed in a predetermined shape or size .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014027524A JP6292920B2 (en) | 2013-03-29 | 2014-02-17 | Air filter medium manufacturing method, air filter medium and air filter pack |
CN201480014084.2A CN105188878B (en) | 2013-03-29 | 2014-02-21 | The manufacture method of air filter filter medium, air filter filter medium and air filter element |
KR1020157025428A KR102255737B1 (en) | 2013-03-29 | 2014-02-21 | Method for producing air filter material, air filter material, and air filter pack |
PCT/JP2014/054118 WO2014156398A1 (en) | 2013-03-29 | 2014-02-21 | Method for producing air filter material, air filter material, and air filter pack |
TW103107479A TWI618572B (en) | 2013-03-29 | 2014-03-05 | Manufacturing method for air filter medium, air filter medium, and air filter pack |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013072805 | 2013-03-29 | ||
JP2013072805 | 2013-03-29 | ||
JP2014027524A JP6292920B2 (en) | 2013-03-29 | 2014-02-17 | Air filter medium manufacturing method, air filter medium and air filter pack |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014208326A JP2014208326A (en) | 2014-11-06 |
JP6292920B2 true JP6292920B2 (en) | 2018-03-14 |
Family
ID=51623399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014027524A Active JP6292920B2 (en) | 2013-03-29 | 2014-02-17 | Air filter medium manufacturing method, air filter medium and air filter pack |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6292920B2 (en) |
KR (1) | KR102255737B1 (en) |
CN (1) | CN105188878B (en) |
TW (1) | TWI618572B (en) |
WO (1) | WO2014156398A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104436858A (en) * | 2014-12-17 | 2015-03-25 | 上海海凡滤材有限公司 | Three-layer composite filter cloth and manufacturing method thereof |
EP3275531B1 (en) * | 2015-05-07 | 2020-07-08 | Nitto Denko Corporation | Filter material and filter unit |
JP6725311B2 (en) | 2015-05-07 | 2020-07-15 | 日東電工株式会社 | Filter media and filter unit |
KR102683099B1 (en) * | 2015-09-30 | 2024-07-10 | 닛토덴코 가부시키가이샤 | Air filter media, air filter packs and air filter units |
CN105879826B (en) * | 2016-06-08 | 2018-03-13 | 河南科高辐射化工科技有限公司 | One kind is used for radiation grafted rear heating solid-liquid reaction device |
KR102390248B1 (en) * | 2017-09-22 | 2022-04-22 | 닛토덴코 가부시키가이샤 | Air filter media, filter pleat packs and air filter units |
TWI668046B (en) * | 2018-07-18 | 2019-08-11 | 國立臺北科技大學 | Method and device for fabricating a filter, and filter fabricated from the same |
KR102326322B1 (en) * | 2018-10-30 | 2021-11-12 | 주식회사 엘지화학 | Multi-layer film for air purification filter |
CN109621749A (en) * | 2019-01-07 | 2019-04-16 | 浙江净膜环保有限责任公司 | The double-deck overlay film non-woven cloth air filting material |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09206568A (en) * | 1996-02-01 | 1997-08-12 | Nitto Denko Corp | Material for air filter |
GB9811082D0 (en) * | 1998-05-23 | 1998-07-22 | Scapa Group Plc | Improvements in phase-separation etc.members |
JP3584855B2 (en) * | 1999-10-07 | 2004-11-04 | ダイキン工業株式会社 | Air filter media |
JP3362730B2 (en) * | 2000-08-24 | 2003-01-07 | ダイキン工業株式会社 | Air filter medium, air filter pack and air filter unit using the same, and method of manufacturing air filter medium |
KR100570036B1 (en) * | 2001-04-05 | 2006-04-10 | 다이킨 고교 가부시키가이샤 | Fitering Material, Filter Pack and Air Filter Unit Using the Same and Method of Manufacturing Fitering Material |
JP2003336159A (en) * | 2002-05-13 | 2003-11-28 | Toyobo Co Ltd | Filament nonwoven fabric and filter using the same |
JP4519674B2 (en) * | 2005-02-18 | 2010-08-04 | 日本バイリーン株式会社 | Filter material and cylindrical filter using the same |
EP1750493B1 (en) * | 2005-07-14 | 2011-03-16 | W.L.Gore & Associates Gmbh | Fan cooling unit for cooling electronic components |
US20100180558A1 (en) * | 2007-05-31 | 2010-07-22 | Toray Industries, Inc | Nonwoven fabric for cylindrical bag filter, process for producing the same, and cylindrical bag filter therefrom |
JP2010142746A (en) * | 2008-12-19 | 2010-07-01 | Toyobo Co Ltd | Filter support and filter using the same |
JP2011005455A (en) * | 2009-06-29 | 2011-01-13 | Toray Ind Inc | Separation membrane support, separation membrane using the same, and membrane separation element |
CN201436061U (en) * | 2009-07-08 | 2010-04-07 | 上海威滤净化设备有限公司 | Bactericidal filter element |
CN101927133B (en) * | 2010-04-23 | 2012-10-03 | 威海云龙复合纺织材料有限公司 | High-flux filter material, preparation method thereof and self-inhalation medical mask made of high-flux filter material |
WO2011158324A1 (en) * | 2010-06-15 | 2011-12-22 | 東洋紡績株式会社 | Filter support body and filter using same |
KR101918204B1 (en) * | 2011-07-05 | 2018-11-14 | 닛토덴코 가부시키가이샤 | Porous polytetrafluoroethylene film and air filter filtration material |
JP5333550B2 (en) * | 2011-08-31 | 2013-11-06 | ダイキン工業株式会社 | Air filter media and air filter unit |
-
2014
- 2014-02-17 JP JP2014027524A patent/JP6292920B2/en active Active
- 2014-02-21 WO PCT/JP2014/054118 patent/WO2014156398A1/en active Application Filing
- 2014-02-21 KR KR1020157025428A patent/KR102255737B1/en active IP Right Grant
- 2014-02-21 CN CN201480014084.2A patent/CN105188878B/en active Active
- 2014-03-05 TW TW103107479A patent/TWI618572B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI618572B (en) | 2018-03-21 |
KR20150138845A (en) | 2015-12-10 |
KR102255737B1 (en) | 2021-05-26 |
CN105188878B (en) | 2017-04-05 |
JP2014208326A (en) | 2014-11-06 |
CN105188878A (en) | 2015-12-23 |
WO2014156398A1 (en) | 2014-10-02 |
TW201446323A (en) | 2014-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6292920B2 (en) | Air filter medium manufacturing method, air filter medium and air filter pack | |
JP5472405B2 (en) | Air filter medium, air filter unit, and method for producing air filter medium | |
JP6933456B2 (en) | Air filter filter media, air filter pack and air filter unit | |
JP2000079332A (en) | Filter medium for air filter | |
JP5966282B2 (en) | Air filter media and air filter unit | |
JP5784458B2 (en) | Air filter media | |
JP6584614B2 (en) | Air filter media, filter pleat pack and air filter unit | |
EP3520873B1 (en) | Air filter medium, air filter pack, and air filter unit | |
JP2002066226A (en) | Air filter medium, air filter pack and air filter unit using the same, and manufacturing method for air filter medium | |
WO2018062112A1 (en) | Air filter material, air filter pack, and air filter unit | |
JP2000300921A (en) | Air filter material and air filter unit using the same | |
WO2018062113A1 (en) | Air filter material, air filter pack, and air filter unit | |
JP2001170424A (en) | Filter material for air filter and air filter unit using the same | |
JP2002346319A (en) | Suction filter medium for turbine | |
JP2005095803A (en) | Filter medium for air filter, and air filter unit using it | |
WO2020137733A1 (en) | Filter medium, pleated filter pack, and filter unit | |
JP2005205305A (en) | Air filter medium | |
JP2005246233A (en) | Air filter medium for cleaner, and air filter unit for cleaner using the same | |
JP2007111697A (en) | Air filter medium | |
JP4224437B2 (en) | Air filter medium and air filter unit using the same | |
WO2022065515A1 (en) | Air filter filtration member, filter pleat pack, and air filter unit | |
WO2022065517A1 (en) | Air filter filtering medium, filter pleat pack, and air filter unit | |
JP2006075757A (en) | Filter unit | |
WO2020204177A1 (en) | Filtering material and filter unit | |
JP2002058974A (en) | Air filter medium, air filter pack and air filter unit using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6292920 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |