JP6292146B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6292146B2 JP6292146B2 JP2015035695A JP2015035695A JP6292146B2 JP 6292146 B2 JP6292146 B2 JP 6292146B2 JP 2015035695 A JP2015035695 A JP 2015035695A JP 2015035695 A JP2015035695 A JP 2015035695A JP 6292146 B2 JP6292146 B2 JP 6292146B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- temperature
- cold rolling
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000000137 annealing Methods 0.000 claims description 161
- 238000001953 recrystallisation Methods 0.000 claims description 105
- 238000005097 cold rolling Methods 0.000 claims description 99
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 64
- 238000005096 rolling process Methods 0.000 claims description 51
- 230000008569 process Effects 0.000 claims description 32
- 238000001816 cooling Methods 0.000 claims description 31
- 229910052742 iron Inorganic materials 0.000 claims description 31
- 230000009467 reduction Effects 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 28
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 238000005121 nitriding Methods 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 239000000047 product Substances 0.000 description 38
- 230000004907 flux Effects 0.000 description 16
- 239000013078 crystal Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000005261 decarburization Methods 0.000 description 13
- 239000003112 inhibitor Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000009749 continuous casting Methods 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- 230000032683 aging Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 229910052711 selenium Inorganic materials 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 229910052839 forsterite Inorganic materials 0.000 description 5
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007725 thermal activation Methods 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000612118 Samolus valerandi Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- -1 was melted Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、結晶粒がミラー指数で板面に{110}面、圧延方向に<001>方位が集積したいわゆる方向性電磁鋼板の製造方法に関するものである。方向性電磁鋼板は、軟磁性材料であり、主に変圧器等の電気機器の鉄芯として用いられる。 The present invention relates to a method for producing a so-called grain-oriented electrical steel sheet in which crystal grains are Miller indices and {110} planes are accumulated on the plate surface and <001> orientation is accumulated in the rolling direction. The grain-oriented electrical steel sheet is a soft magnetic material and is mainly used as an iron core of electrical equipment such as a transformer.
方向性電磁鋼板は、二次再結晶焼鈍により、結晶粒を{110}<001>方位(以降、Goss方位という)に集積させることで、優れた磁気特性を示すことが知られている(例えば、特許文献1参照)。 It is known that grain-oriented electrical steel sheets exhibit excellent magnetic properties by accumulating crystal grains in {110} <001> orientation (hereinafter referred to as Goss orientation) by secondary recrystallization annealing (for example, , See Patent Document 1).
そして、磁気特性の指標としては、磁場の強さ:800A/mにおける磁束密度B8および励磁周波数:50Hzの交流磁場で1.7Tまで磁化したときの鋼板1kgあたりの鉄損W17/50が主に用いられている。 And as an index of magnetic characteristics, magnetic field strength: magnetic flux density B 8 at 800 A / m and excitation frequency: iron loss W 17/50 per 1 kg of steel sheet when magnetized to 1.7 T with an alternating magnetic field of 50 Hz. Mainly used.
方向性電磁鋼板の低鉄損化手段の一つとして、二次再結晶焼鈍後の結晶粒をGoss方位に高度に集積させることが挙げられるが、Goss方位の集積度を高めるためには、先鋭なGoss方位粒のみが優先的に成長するように粒界易動度差をつけること、すなわち一次再結晶板の集合組織を所定の組織に形成すること、およびインヒビターと呼ばれる析出物を利用してGoss方位以外の再結晶粒の成長を抑制することが重要である。 One means for reducing the iron loss of grain-oriented electrical steel sheets is to highly accumulate the crystal grains after secondary recrystallization annealing in the Goss orientation. A difference in grain boundary mobility so that only Goss-oriented grains grow preferentially, that is, by forming a texture of the primary recrystallized plate into a predetermined structure, and using precipitates called inhibitors It is important to suppress the growth of recrystallized grains other than the Goss orientation.
このインヒビターを利用する技術としては、例えば特許文献1に、AlN、MnSを利用する方法が、また特許文献2には、MnS、MnSeを利用する方法がそれぞれ開示されており、いずれも工業的に実用化されている。これらのインヒビターを用いる方法は、インヒビターの均一微細分散が理想状態であるが、その達成のためには熱延前のスラブ加熱を1300℃以上の高温で行わなければならない。従来のインヒビターを用いた方向性電磁鋼板の製造方法においては、高温スラブ加熱に多大なエネルギーを要することなどから、製造コストが高くなるという問題があった。
As a technique using this inhibitor, for example,
特許文献3では、そもそもスラブにインヒビター成分を含有させずに二次再結晶を発現させる技術について検討が進められ、インヒビター成分を含有させなくとも二次再結晶を生じさせることができる技術(インヒビターレス法)が開示されている。
このインヒビターレス法は、より高純度化した鋼を利用し、テクスチャー(集合組織の制御)によって二次再結晶を発現させる技術である。また、インヒビターレス法では、高温でのスラブ加熱が不要であり、低コストで方向性電磁鋼板を製造することが可能である。
In Patent Document 3, a technique for developing secondary recrystallization without including an inhibitor component in the slab has been studied, and a technique capable of causing secondary recrystallization without including an inhibitor component (inhibitorless). Law) is disclosed.
This inhibitorless method is a technology that uses secondary steel with higher purity and develops secondary recrystallization by texture (control of texture). Further, the inhibitorless method does not require slab heating at a high temperature, and can produce a grain-oriented electrical steel sheet at low cost.
なお、この技術は、一次再結晶集合組織の制御が重要な要素であるため、集合組織制御のための温間圧延など多くの技術が提案されているが、この集合組織制御が十分に行えない場合は、インヒビターを用いる技術に比べると、二次再結晶後のゴス方位への集積度は低く、磁束密度も低くなる傾向にあった。 In this technique, since control of the primary recrystallization texture is an important factor, many techniques such as warm rolling for texture control have been proposed, but this texture control cannot be performed sufficiently. In some cases, the degree of integration in the Goth orientation after secondary recrystallization was low and the magnetic flux density tended to be low as compared with the technique using an inhibitor.
ここで、先鋭なGoss方位粒のみが優先成長できる所定の一次再結晶組織としては、{554}<225>方位粒、{411]<148>方位粒等が知られている。これらの方位粒を、一次再結晶板のマトリックス中にバランス良くかつ高度に集積させることによって、二次再結晶焼鈍後にGoss方位粒を高度に集積させることができる(例えば、特許文献4参照)。 Here, as a predetermined primary recrystallization structure in which only sharp Goss orientation grains can be preferentially grown, {554} <225> orientation grains, {411] <148> orientation grains, and the like are known. By accumulating these oriented grains in a well balanced and highly integrated manner in the matrix of the primary recrystallized plate, Goss oriented grains can be highly accumulated after the secondary recrystallization annealing (see, for example, Patent Document 4).
さらに、特許文献5には、1回の冷間圧延で圧下率85%以上の圧延をし、あるいは、中間焼鈍を挟む2回以上の冷間圧延で、最終冷延の圧下率を80%以上とした圧延を施して最終板厚の冷延板とし、その後、一次再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、上記冷間圧延における総圧下率が50%以下の段階で、ひずみ速度:150s−1以下の低ひずみ速度冷間圧延を1パス以上施すことで、上記低ひずみ速度による冷間圧延後の鋼板組織の{001}<110>強度を10以下とし、優れた磁気特性を示す二次再結晶板を得られることが開示されている。
Furthermore, in
また、特許文献6には、中間焼鈍をはさむ2回以上の冷間圧延を施す方向性電磁鋼板の製造方法において、800℃以上で熱延板焼鈍後、750℃から200〜300℃間の冷却停止温度までを冷却速度45℃/s以上で冷却し、その後、放冷して、1回目の冷間圧延は、1パス以上で、総圧下率を25〜50%として行い、かつ、全パスを200mmφ以上のロールを用いて、最初のロールへの噛込温度を100℃以下として行い、2回目の冷間圧延は、2パス以上で、総圧下率を80〜95%として行い、かつ、少なくとも1パス間で、200〜300℃の温度でパス間時効を行うことにより、優れた磁気特性を示す二次再結晶板を得られることが開示されている。 Moreover, in patent document 6, in the manufacturing method of the grain-oriented electrical steel sheet which performs the cold rolling of 2 times or more sandwiching intermediate annealing, it cools between 750 degreeC and 200-300 degreeC after hot-rolled sheet annealing at 800 degreeC or more. Cool to the stop temperature at a cooling rate of 45 ° C./s or higher, then let cool, and perform the first cold rolling at 1 pass or more with a total rolling reduction of 25 to 50%, and all passes Using a roll having a diameter of 200 mmφ or more, setting the biting temperature to the first roll to 100 ° C. or less, and performing the second cold rolling with 2 passes or more and a total rolling reduction of 80 to 95%, and It is disclosed that a secondary recrystallized plate exhibiting excellent magnetic properties can be obtained by performing inter-pass aging at a temperature of 200 to 300 ° C. in at least one pass.
しかしながら、特許文献5に記載された技術においては、冷間圧延初期に低ひずみ速度で製造するため、生産性が劣位となるという問題があった。
また、特許文献6に記載された技術においては、2回目の冷間圧延において数分〜数十分のパス間時効を付与しなければ、良好な磁気特性が得られないため、やはり生産性が劣位となるという問題があった。
However, the technique described in
In addition, in the technique described in Patent Document 6, good magnetic properties cannot be obtained unless aging between several minutes to several tens of minutes is applied in the second cold rolling, so productivity is still high. There was a problem of being inferior.
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、高温スラブ加熱を施さない低コストプロセスである方向性電磁鋼板の製造方法において、従来技術に比べて優れた磁気特性を発現し、しかも生産性が高い方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-described problems of the prior art, and its purpose is superior to the prior art in the method of manufacturing grain-oriented electrical steel sheets, which is a low-cost process that does not perform high-temperature slab heating. Another object of the present invention is to propose a method of manufacturing a grain-oriented electrical steel sheet that exhibits high magnetic properties and high productivity.
発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、最終冷間圧延直前の焼鈍後の冷却時における冷却速度を増加させ、その後72時間以内に最終冷間圧延を開始することが、鋼板の磁気特性の向上には特に重要であることを知見した。また、最終冷間圧延の総圧下率が50%以下の段階において、冷間圧延時のひずみ速度を増加させることや、臨界ひずみ速度を素材C量、Si量および圧延温度を用いた計算結果で制御することで、長時間のパス間時効を付与せずとも良好な一次再結晶集合組織の造り込みが可能となり、二次再結晶焼鈍後に高磁束密度を有する鋼板が発現することを知見し、本発明を開発するに至った。 The inventors have intensively studied to solve the above problems. As a result, it is particularly important to improve the magnetic properties of the steel sheet to increase the cooling rate at the time of cooling after annealing immediately before the final cold rolling, and then start the final cold rolling within 72 hours. I found out. In addition, in the stage where the total rolling reduction of the final cold rolling is 50% or less, the strain rate during cold rolling is increased or the critical strain rate is calculated by using the material C amount, Si amount and rolling temperature. By controlling, it became possible to build a good primary recrystallization texture without imparting aging between passes for a long time, and found that a steel sheet having a high magnetic flux density appears after secondary recrystallization annealing, The present invention has been developed.
本発明は、上記した知見に立脚するもので、その要旨構成は次のとおりである。
1.C:0.002〜0.100mass%、Si:2.00〜4.50mass%、Mn:0.03〜1.00mass%、sol.Al:0.003mass%以上0.010mass%未満およびN:(14.00/26.98)×[%sol.Al]以上0.008mass%以下を含有し、さらに、S:0.002〜0.005mass%および/またはSe:0.002〜0.005mass%(SおよびSeのうちから選んだ1種または2種は、合計量で0.002〜0.005mass%)を含有し、残部がFeおよび不可避的不純物からなるスラブを、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施すことなく中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、あるいは、該熱延板に熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚の冷延板とし、一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始し、該最終冷間圧延の総圧下率が50%以下の段階において、下記(1)式から算出される臨界ひずみ速度:X(s−1)以上のひずみ速度で、かつ1パスの圧下率が10%以上の冷間圧延を少なくとも1回施すことを特徴とする方向性電磁鋼板の製造方法。
記
X(s−1)=f([%C],[%Si])・g(T) ・・・ (1)
但し、f([%C],[%Si])=1/([%C]+[%Si]/150)
g(T)=exp(−100/T)
また、[%M]は、鋼板中の元素Mの含有量(質量%)を表す。
The present invention is based on the above-described knowledge, and the gist configuration is as follows.
1. C: 0.002 to 0.100 mass%, Si: 2.00 to 4.50 mass%, Mn: 0.03 to 1.00 mass%, sol. Al: 0.003 mass% or more and less than 0.010 mass% and N: (14.00 / 26.98) × [% sol. Al] or more and 0.008 mass% or less, and S: 0.002 to 0.005 mass% and / or Se: 0.002 to 0.005 mass% (one or two selected from S and Se) The seed contains 0.002 to 0.005 mass% in total amount, and the slab consisting of Fe and inevitable impurities as the remainder is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is subjected to hot-rolled sheet annealing Cold-rolled sheet with a final thickness by performing cold rolling two or more times without intermediate annealing, or after subjecting the hot-rolled sheet to hot-rolled sheet annealing, sandwiching once or intermediate annealing A grain-oriented electrical steel sheet comprising a series of processes in which cold rolling is performed twice or more to obtain a cold-rolled sheet having a final thickness, primary recrystallization annealing is performed, an annealing separator is applied to the surface of the steel sheet, and finish annealing is performed. In the manufacturing method of
The average cooling rate between 800 and 300 ° C. after annealing immediately before the final cold rolling is set to 40 ° C./s or more, then the final cold rolling is started within 72 hours, and the total rolling reduction of the final cold rolling is 50 % At a critical strain rate calculated from the following equation (1): a strain rate equal to or higher than X (s −1 ) and a cold rolling with a rolling reduction rate of 10% or higher per pass at least once. A method for producing a grain-oriented electrical steel sheet, comprising:
X (s −1 ) = f ([% C], [% Si]) · g (T) (1)
However, f ([% C], [% Si]) = 1 / ([% C] + [% Si] / 150)
g (T) = exp (-100 / T)
[% M] represents the content (% by mass) of the element M in the steel sheet.
2.前記最終冷間圧延によって、最終冷間圧延直前の再結晶粒に変形双晶を導入することを特徴とする前記1に記載の方向性電磁鋼板の製造方法。 2. 2. The method for producing a grain-oriented electrical steel sheet according to 1 above, wherein deformation twins are introduced into the recrystallized grains immediately before the final cold rolling by the final cold rolling.
3.前記スラブに、さらに、Ni:0.01〜1.50mass%、Cr:0.03〜0.50mass%、Cu:0.03〜0.50mass%、P:0.005〜0.500mass%、Sb:0.005〜0.500mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.500mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.001〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上の成分組成を含有することを特徴とする前記1または2に記載の方向性電磁鋼板の製造方法。 3. In addition to the slab, Ni: 0.01-1.50 mass%, Cr: 0.03-0.50 mass%, Cu: 0.03-0.50 mass%, P: 0.005-0.500 mass%, Sb: 0.005-0.500 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.500 mass%, Mo: 0.005-0.100 mass%, B: 0.0002- 0.0025 mass%, Te: 0.0005 to 0.0100 mass%, Nb: 0.001 to 0.010 mass%, V: 0.001 to 0.010 mass%, and Ta: 0.001 to 0.010 mass% The method for producing a grain-oriented electrical steel sheet according to 1 or 2 above, comprising one or more component compositions selected from the group consisting of:
4.前記一次再結晶焼鈍の昇温過程の200〜700℃間の昇温速度を、50℃/s以上とすることを特徴とする前記1〜3のいずれかに記載の方向性電磁鋼板の製造方法。 4). 4. The method for producing a grain-oriented electrical steel sheet according to any one of 1 to 3, wherein a rate of temperature increase between 200 and 700 ° C. in the temperature increasing process of the primary recrystallization annealing is 50 ° C./s or more. .
5.前記一次再結晶焼鈍の昇温過程の200〜700℃間の昇温速度を、50℃/s以上とし、さらに上記昇温過程の250〜600℃間のいずれかの温度で1〜10s間、保定することを特徴とする前記1〜3のいずれかに記載の方向性電磁鋼板の製造方法。 5. The heating rate between 200 and 700 ° C. in the temperature raising process of the primary recrystallization annealing is 50 ° C./s or more, and further between 1 and 10 s at any temperature between 250 and 600 ° C. in the temperature raising process. The method for producing a grain-oriented electrical steel sheet according to any one of the above 1 to 3, wherein the retaining is performed.
6.前記一次再結晶焼鈍の昇温過程の200〜700℃間の昇温速度を、50℃/s以上とし、さらに上記昇温過程の250℃以上500℃未満のいずれかの温度で、0.5〜10s間、1〜4回保定し、かつ500℃以上〜700℃以下のいずれかの温度で、0.5〜3s間、1〜2回保定することを特徴とする前記1〜3のいずれかに記載の鉄損の低い方向性電磁鋼板の製造方法。
6). The rate of temperature increase between 200 and 700 ° C. in the temperature raising process of the primary recrystallization annealing is set to 50 ° C./s or more, and at any temperature between 250 ° C. and less than 500 ° C. in the temperature raising process, 0.5 1 to 4 times for 10 seconds, and 1 to 2 times for 0.5 to 3 seconds at any temperature of 500 ° C. to 700 ° C. A method for producing a grain-oriented electrical steel sheet having low iron loss according to
7.前記一次再結晶焼鈍から前記二次再結晶焼鈍までのいずれかの段階で窒化処理を施すことを特徴とする前記1〜6のいずれかに記載の方向性電磁鋼板の製造方法。 7). 7. The method for producing a grain-oriented electrical steel sheet according to any one of 1 to 6, wherein nitriding treatment is performed at any stage from the primary recrystallization annealing to the secondary recrystallization annealing.
本発明によれば、最終冷間圧延直前の焼鈍後の冷却速度を増加し、その後72時間以内に最終冷間圧延を開始すること、および、最終冷間圧延の総圧下率が50%以下の段階において、素材のC量およびSi量に応じてひずみ速度を増すことで、一次再結晶集合組織を効果的に改善させることができるので、従来技術に比べて優れた磁気特性を発現し、かつ、生産性が高い方向性電磁鋼板を得ることができる。 According to the present invention, the cooling rate after annealing immediately before the final cold rolling is increased, and then the final cold rolling is started within 72 hours, and the total rolling reduction of the final cold rolling is 50% or less. In the stage, the primary recrystallization texture can be effectively improved by increasing the strain rate according to the amount of C and Si of the material, so that excellent magnetic properties compared to the prior art are expressed, and A grain-oriented electrical steel sheet with high productivity can be obtained.
以下、本発明を具体的に説明する。
まず、本発明を開発する契機となった実験について説明する。
《実験1》
残部がFeおよび不可避的不純物からなる3種類の鋼、鋼A(C:0.021mass%、Si:3.05mass%、Mn:0.064mass%、sol.Al:0.007mass%、N:0.004mass%、S:0.003mass%)、鋼B(C:0.040mass%、Si:3.36mass%、Mn:0.062mass%、sol.Al:0.007mass%、N:0.004mass%、S:0.002mass%)および鋼C(C:0.078mass%、Si:3.77mass%、Mn:0.068mass%、sol.Al:0.007mass%、N:0.004mass%、S:0.002mass%)を溶製し、連続鋳造法で鋼スラブとした後、1200℃の温度に再加熱し、熱間圧延して板厚2.5mmの熱延板とし、1020℃×60sの熱延板焼鈍を施した後、一次冷間圧延して中間板厚1.8mmとし、さらに1120℃×80sの中間焼鈍を施した後、この中間焼鈍の800〜300℃間の冷却を、平均冷却速度:60℃/sで冷却した。その後、18時間経過後に4スタンドのタンデム圧延を開始して、最終板厚0.26mmの冷延板とした。
Hereinafter, the present invention will be specifically described.
First, an experiment that triggered the development of the present invention will be described.
<
Three types of steel consisting of Fe and unavoidable impurities, Steel A (C: 0.021 mass%, Si: 3.05 mass%, Mn: 0.064 mass%, sol.Al: 0.007 mass%, N: 0 .004 mass%, S: 0.003 mass%), Steel B (C: 0.040 mass%, Si: 3.36 mass%, Mn: 0.062 mass%, sol.Al: 0.007 mass%, N: 0.004 mass) %, S: 0.002 mass%) and steel C (C: 0.078 mass%, Si: 3.77 mass%, Mn: 0.068 mass%, sol. Al: 0.007 mass%, N: 0.004 mass%, S: 0.002 mass%), and a steel slab is obtained by a continuous casting method, and then reheated to a temperature of 1200 ° C. and hot-rolled to obtain a plate thickness of 2 After 5mm hot-rolled sheet and subjected to hot-rolled sheet annealing at 1020 ° C x 60s, first cold rolled to an intermediate sheet thickness of 1.8mm, and further subjected to intermediate annealing at 1120 ° C x 80s, The cooling between 800-300 degreeC of annealing was cooled by the average cooling rate: 60 degreeC / s. After that, 4 stands of tandem rolling was started after 18 hours to obtain a cold-rolled sheet having a final thickness of 0.26 mm.
ここで、入側温度25℃で実施した1パス目の圧延速度を変更し、図1に示す種々のひずみ速度でサンプルを作製した。ここで、圧延時のひずみ速度(εm)は、以下のEkelundの式を用いて算出した。
また、最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:X(s−1)は、鋼A、BおよびCで、それぞれ、19.5(s−1)、12.0(s−1)、7.2(s−1)であった。
Here, the rolling speed in the first pass carried out at an inlet temperature of 25 ° C. was changed, and samples were produced at various strain rates shown in FIG. Here, the strain rate (ε m ) during rolling was calculated using the following Ekelund equation.
Further, critical strain rates X (s −1 ) at the stage where the total rolling reduction of the final cold rolling is 50% or less are steels A, B, and C, respectively, 19.5 (s −1 ), 12. It was 0 (s −1 ) and 7.2 (s −1 ).
次いで、上記冷延板を、50vol%H2−50vol%N2、露点:60℃の湿潤雰囲気下で、840℃×100sの条件の脱炭焼鈍を伴う一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍は、840℃までの昇温過程における200〜700℃間の昇温速度を20℃/sとした。 Next, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. × 100 s in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 , dew point: 60 ° C. In addition, the said primary recrystallization annealing set the temperature increase rate between 200-700 degreeC in the temperature increase process to 840 degreeC to 20 degrees C / s.
その後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で10時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とし、それぞれの条件下での試験片を得た。 After that, after applying an annealing separator mainly composed of MgO to the steel sheet surface, secondary recrystallization annealing is performed at 1200 ° C. for 10 hours, followed by application of a phosphate-based insulation tension coating. Then, flattening annealing for the purpose of baking and flattening of the steel strip was performed to obtain a product, and a test piece under each condition was obtained.
図1に、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比に及ぼす最終冷間圧延1パス目のひずみ速度の影響について調べた結果を示す。一次再結晶焼鈍板の結晶方位については、板厚中心層まで研磨して減厚したサンプルを10%硝酸で30s間エッチングし、X線シュルツ法にて(110)、(200)、(211)面を測定し、そのデータからODF(Orientation Distribution Function)解析を行い、各結晶方位の強度を算出した。解析にはResmat社のソフトウェアTextoolsを用い、ADC(Arbitrarily Defined Cell)法で算出した。ランダム強度に対する{411}<148>方位の強度比については、Bungeのオイラー角表示で(φ1、Φ、φ2)=(20、20、45)とした。
図1に示したように、最終冷間圧延1パス目のひずみ速度が臨界ひずみ速度:X(s−1)を超える条件において、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比が増加していた。
なお、本発明において、一次再結晶焼鈍板の板厚中心層とは、全板厚をtとすると、板厚0.5t±0.1tの範囲のことを指す。
FIG. 1 shows the results of investigating the influence of the strain rate of the first cold rolling first pass on the {411} <148> orientation versus random strength ratio of the thickness center layer of the primary recrystallization annealed plate. Regarding the crystal orientation of the primary recrystallized annealed plate, the thinned sample polished to the thickness center layer was etched with 10% nitric acid for 30 s, and (110), (200), (211) by X-ray Schulz method The surface was measured, ODF (Orientation Distribution Function) analysis was performed from the data, and the intensity of each crystal orientation was calculated. The analysis was performed by the ADC (Arbitrary Defined Cell) method using the Resmat software Texttools. The intensity ratio of the {411} <148> orientation relative to the random intensity was set to (φ 1 , Φ, φ 2 ) = (20, 20, 45) in Bunge's Euler angle display.
As shown in FIG. 1, in the condition where the strain rate of the first cold rolling first pass exceeds the critical strain rate: X (s −1 ), {411} <148 of the thickness center layer of the primary recrystallization annealed plate. > The orientation to random intensity ratio increased.
In the present invention, the plate thickness center layer of the primary recrystallization annealed plate indicates a range of plate thickness of 0.5 t ± 0.1 t, where t is the total plate thickness.
次に、図2に、製品板の磁束密度B8に及ぼす最終冷間圧延1パス目のひずみ速度の影響について調べた結果を示す。
図2に示したように、最終冷間圧延1パス目のひずみ速度が臨界ひずみ速度:X(s−1)を超える条件で、製品板の磁束密度B8が増加していた。
上記最終冷間圧延の1パス目のひずみ速度が臨界ひずみ速度:X(s−1)を超える条件で圧延を施すことによって、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比が増加した理由については、まだ十分に明らかとなっていないが、発明者らは次のように考えている。
Next, FIG. 2 shows the results of examining the effect of the final cold rolling the first pass on the magnetic flux density B 8 of the product plate strain rate.
As shown in FIG. 2, the magnetic flux density B 8 of the product plate was increased under the condition that the strain rate in the first cold rolling first pass exceeded the critical strain rate: X (s −1 ).
By rolling under the condition that the strain rate of the first pass of the final cold rolling exceeds the critical strain rate: X (s −1 ), {411} <148> of the center thickness layer of the primary recrystallization annealed plate Although the reason why the azimuth-to-random intensity ratio has increased has not yet been fully clarified, the inventors consider as follows.
最終冷間圧延の1パス後の種々のサンプルを後方散乱電子線回折(Electron Back Scattering Diffraction Pattern:EBSD)を用いて結晶方位解析した結果、臨界ひずみ速度:X(s−1)を超える条件のサンプルにおいては、種々の初期粒内に母相とは方位差が異なった数百nm〜数μm程度の幅を持った線状領域が確認された。
当該領域は、初期粒界とぶつかったところで方位の連続性が途切れており、母相と<111>軸回りに大きな方位差角をなす結晶方位関係にあることと、線状領域の両側でその方位関係が同じであることとから、変形双晶であると特定できる。ここで、BCC結晶構造の変形双晶は、母相と<111>軸回りに60°の方位関係となることが知られている。ただし、最終冷間圧延の1パス中に、上述の結晶方位関係を有する変形双晶が形成された後にも、圧延加工による結晶方位回転がさらに起こるため、1パス後のサンプルにおいて、上述のような正確な双晶方位関係は維持していない。
よって、本発明における変形双晶とは、最終冷間圧延1パス後のサンプルに存在する上記線状領域のうち、100nm以上20μm以下の幅を有し、かつ、隣接する母相と<111>軸回りに40°以上の方位関係を有する領域のことを意味する。
なお、一般に引張試験においては、素材Si量の増加に伴って変形双晶が増加することが知られている。
As a result of crystal orientation analysis of various samples after one pass of final cold rolling using backscattered electron diffraction (Electron Back Scattering Diffraction Pattern: EBSD), critical strain rate: exceeding X (s −1 ) In the samples, linear regions having a width of about several hundred nm to several μm, which differed in orientation from the parent phase, were confirmed in various initial grains.
In this region, the continuity of orientation is interrupted when it hits the initial grain boundary, and there is a crystal orientation relationship that forms a large misorientation angle around the <111> axis with the parent phase, and on both sides of the linear region Since the orientation relationship is the same, it can be identified as a deformation twin. Here, it is known that the deformation twins of the BCC crystal structure have an orientation relationship of 60 ° around the <111> axis with the parent phase. However, even after the deformation twins having the above-mentioned crystal orientation relationship are formed in one pass of the final cold rolling, the crystal orientation rotation by rolling further occurs, so in the sample after one pass, as described above The exact twin orientation relationship is not maintained.
Therefore, the deformation twin in the present invention is a width of 100 nm or more and 20 μm or less in the linear region existing in the sample after the final
In general, in a tensile test, it is known that deformation twins increase as the amount of raw material Si increases.
今回、2.5mass%以上のSiを添加した電磁鋼板において、C無添加の材料では変形双晶は形成されなかった。これは、引張加工と圧延加工では変形モードが異なるためであると考えている。一方、素材C量を増加させることで圧延加工によって変形双晶が形成されることが確認された。この理由については、Si添加によりベースとしてすべり変形が抑制される、つまり、双晶変形が誘発されるような応力状態となっていることに加え、C添加によりすべり変形がさらに抑制された結果、双晶変形が相対的に活性化したものと推定される。以上より、SiおよびCを併せて添加することは、鋼板の変形双晶を増加させる作用があるものと考えられる。 In this case, in the electrical steel sheet to which 2.5 mass% or more of Si was added, no deformation twins were formed with the C-free material. This is considered to be because the deformation mode is different between the tensile process and the rolling process. On the other hand, it was confirmed that deformation twins were formed by rolling by increasing the amount of material C. For this reason, the addition of Si suppresses slip deformation as a base, that is, in addition to being in a stress state that induces twin deformation, the addition of C further suppresses the slip deformation, It is presumed that twin deformation was relatively activated. From the above, it is considered that adding Si and C together has the effect of increasing the deformation twins of the steel sheet.
また、本発明は、最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、その後72時間以内に最終冷間圧延を開始する条件下において、さらに、製品板の高磁束密度化効果を発揮することが明らかとなった。この理由についてはまだ十分に明らかとなっていないが、発明者らは次のように考えている。 In addition, the present invention provides an average cooling rate between 800 ° C. and 300 ° C. after annealing immediately before the final cold rolling at 40 ° C./s or more, and then starts the final cold rolling within 72 hours. It has been clarified that the product plate exhibits the effect of increasing the magnetic flux density. Although the reason for this has not been fully clarified yet, the inventors consider as follows.
焼鈍後の800〜300℃間の冷却速度を増加させること、その後短時間で最終冷間圧延を開始することは、最終冷間圧延母材内に炭化物を析出させず固溶Cを十分に残存させた状態で最終冷間圧延を施すことを意味する。すなわち、最終冷間圧延鋼板内に固溶Cを十分に残存させておくことが、双晶変形を誘発する結果、一次再結晶{411}<148>粒の増加につながって、本発明における製品板の高磁束密度化効果を発揮するのではないかと考えている。 Increasing the cooling rate between 800 to 300 ° C. after annealing, and starting the final cold rolling in a short time after that, does not precipitate carbide in the final cold rolled base metal, leaving sufficient solid solution C It means that the final cold rolling is performed in a state of being made to occur. That is, leaving sufficient solid solution C in the final cold-rolled steel sheet induces twin deformation, resulting in an increase in primary recrystallized {411} <148> grains, and the product according to the present invention. We think that the effect of increasing the magnetic flux density of the plate may be demonstrated.
さらに、最終冷間圧延1パス目のひずみ速度を増加させることで、双晶変形の誘発がより顕著となる理由については以下のように考えている。
金属の変形のうち、すべり変形は熱活性化過程であることから、すべり変形の臨界分解剪断応力(Critical Resolved Shear Stress:CRSS)は温度依存性があり、温度低下に伴いCRSSが増加することが知られている。また、すべり変形のCRSSは、ひずみ速度にも依存性があることも知られていて、ひずみ速度が増加すると、すべり変形のCRSSが増加することが知られている。一方、金属の変形のうち、双晶変形のCRSSは、すべり変形のCRSSに比べて温度依存性が極めて小さいことが知られている。すなわち、双晶変形は熱活性化過程ではない、もしくはその影響が極めて小さいことが推定される。
従って、加工温度を低下させた場合、もしくはひずみ速度を増加させた場合には、すべり変形のCRSSは増加するのに対し、双晶変形のCRSSは増加しない、もしくは僅かにしか増加しないため、すべり変形のCRSSよりも双晶変形のCRSSの方が低くなるので、双晶変形が起きやすくなって、変形双晶が優先的に形成されたものと推定される。
Furthermore, the reason why the induction of twin deformation becomes more conspicuous by increasing the strain rate in the first cold rolling first pass is considered as follows.
Among metal deformations, slip deformation is a thermal activation process, so the critical resolved shear stress (CRSS) of slip deformation is temperature-dependent, and CRSS may increase as the temperature decreases. Are known. Further, it is known that the CRSS of slip deformation is also dependent on the strain rate, and it is known that the CRSS of slip deformation increases as the strain rate increases. On the other hand, among metal deformations, twin deformation CRSS is known to have extremely low temperature dependence compared to slip deformation CRSS. That is, it is presumed that twin deformation is not a thermal activation process or its influence is extremely small.
Therefore, when the processing temperature is lowered or the strain rate is increased, the CRSS of the slip deformation increases, whereas the CRSS of the twin deformation does not increase or only slightly increases. Since the twin deformation CRSS is lower than the deformation CRSS, twin deformation is likely to occur, and it is presumed that the deformation twin was formed preferentially.
BCC構造の双晶面は{112}であって、バーガースベクトルは<111>であるため、冷間圧延初期に形成された双晶領域では特定の結晶方位を有することになり、冷間圧延後期ですべり変形が起こった際に、従来とは異なる結晶方位が形成される。
本発明では、上記のような最終冷間圧延板に対して一次再結晶焼鈍を施すことで、一次再結晶{411}<148>粒が増加しているものと推定される。
そして、一次再結晶{411}<148>粒の増加に伴い、二次再結晶Goss方位粒のズレ角は低減して、製品板の高磁束密度化が成される。さらに、上記したように、最終冷間圧延1パス目のひずみ速度を、臨界ひずみ速度:X(s−1)を超える条件とした圧延を施すことで、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比が増加して、結果的に製品板の高磁束密度化を達成したものと推定される。
Since the twin plane of the BCC structure is {112} and the Burgers vector is <111>, the twin region formed at the initial stage of cold rolling has a specific crystal orientation, and the latter stage of cold rolling When slip deformation occurs, a crystal orientation different from the conventional one is formed.
In the present invention, it is presumed that the primary recrystallization {411} <148> grains are increased by subjecting the final cold rolled sheet as described above to the primary recrystallization annealing.
As the primary recrystallized {411} <148> grains increase, the deviation angle of the secondary recrystallized Goss orientation grains decreases, and the magnetic flux density of the product plate is increased. Furthermore, as mentioned above, the thickness center layer of the primary recrystallization annealed sheet is obtained by rolling with the strain rate in the first cold rolling first pass exceeding the critical strain rate: X (s −1 ). It is presumed that the {411} <148> orientation to random intensity ratio increased and consequently the product plate achieved a higher magnetic flux density.
《実験2》
次に、一次再結晶焼鈍の昇温速度の影響について調査した。C:0.052mass%、Si:3.31mass%、Mn:0.066mass%、sol.Al:0.008mass%、N:0.005mass%、S:0.003mass%を含有し、残部はFeおよび不可避的不純物からなる成分組成の鋼を溶製し、連続鋳造法で鋼スラブとした後、1240℃の温度に再加熱し、熱間圧延して板厚2.2mmの熱延板とし、1050℃×30sの熱延板焼鈍を施した後、この熱延板焼鈍の800〜300℃間の冷却中の平均冷却速度を45℃/sとし、70時間経過後に4スタンドのタンデム圧延を開始して、最終板厚0.26mmの冷延板とした。各スタンド入側温度はそれぞれ、50℃、60℃、70℃、80℃、各スタンド出側板厚はそれぞれ、1.2mm、0.68mm、0.40mm、0.26mmだった。また、各スタンドにおけるひずみ速度は、それぞれ、31.2s−1、71.9s−1、156.1s−1、277.9s−1だった。なお、最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:Xは9.7s−1である。
次いで、上記冷延板を、60vol%H2−40vol%N2の、露点:58℃の湿潤雰囲気下で840℃×120sの脱炭焼鈍を伴う一次再結晶焼鈍を施した。上記一次再結晶焼鈍は、840℃までの昇温過程における200〜700℃間の種々の昇温速度について検討し、さらにその昇温途中で種々の温度で5s保定する処理も施した。なお、保定温度は図3〜6に示すとおり、100、250、400、600および700℃である。
<
Next, the influence of the temperature increase rate of primary recrystallization annealing was investigated. C: 0.052 mass%, Si: 3.31 mass%, Mn: 0.066 mass%, sol. It contains Al: 0.008 mass%, N: 0.005 mass%, S: 0.003 mass%, and the remainder melts steel having a component composition consisting of Fe and unavoidable impurities, and is made into a steel slab by a continuous casting method. Then, after reheating to a temperature of 1240 ° C. and hot rolling to obtain a hot rolled sheet having a thickness of 2.2 mm, the hot rolled sheet is annealed at 1050 ° C. × 30 s, and then 800 to 300 of this hot rolled sheet is annealed. The average cooling rate during cooling between 0 ° C. was 45 ° C./s, and after 70 hours, 4 stands of tandem rolling was started to obtain a cold rolled sheet having a final thickness of 0.26 mm. Each stand entry side temperature was 50 ° C., 60 ° C., 70 ° C., 80 ° C., and each stand exit side plate thickness was 1.2 mm, 0.68 mm, 0.40 mm, and 0.26 mm, respectively. Moreover, the strain rate in each stand was 31.2 s −1 , 71.9 s −1 , 156.1 s −1 and 277.9 s −1 , respectively. Note that the critical strain rate: X is 9.7 s −1 when the total rolling reduction of the final cold rolling is 50% or less.
Next, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. × 120 s in a humid atmosphere of 60 vol% H 2 -40 vol% N 2 with a dew point of 58 ° C. In the primary recrystallization annealing, various heating rates between 200 and 700 ° C. in the temperature rising process up to 840 ° C. were examined, and further, a treatment for holding at various temperatures for 5 s during the temperature rising was also performed. In addition, holding temperature is 100, 250, 400, 600, and 700 degreeC as shown to FIGS.
また、本発明において、昇温速度は、図7に示したように、200℃から700℃まで到達する時間から保定時間t2、t4を除いたt1、t3、t5における平均昇温速度((700−200)/(t1+t3+t5))のことをいう。
その後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で10時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とし、それぞれの条件下での試験片を得た。
Further, in the present invention, as shown in FIG. 7, the rate of temperature increase is the average rise in t 1 , t 3 , t 5 excluding the holding time t 2 , t 4 from the time from 200 ° C. to 700 ° C. It refers to the temperature rate ((700-200) / (t 1 + t 3 + t 5 )).
After that, after applying an annealing separator mainly composed of MgO to the steel sheet surface, secondary recrystallization annealing is performed at 1180 ° C. for 10 hours, followed by application of a phosphate-based insulating tension coating. Then, flattening annealing for the purpose of baking and flattening of the steel strip was performed to obtain a product, and a test piece under each condition was obtained.
図3〜6に、製品板の鉄損W17/50に及ぼす一次再結晶焼鈍の200〜700℃間の加熱(昇温)過程における昇温速度並びに昇温途中での保定温度および保定時間の影響について調べた結果を示した。
図3〜6に示したように、最終冷間圧延1パス目のひずみ速度が臨界ひずみ速度:X(s−1)を超える条件下で、かつ一次再結晶焼鈍の昇温過程における200〜700℃間を50℃/s以上で急速加熱処理を施すことで、製品板の鉄損W17/50が低減することが分かる。また、一次再結晶焼鈍の昇温過程における200〜700℃の間を50℃/s以上の昇温速度で加熱するとともに、昇温過程の250〜600℃間から選択したいずれかの温度で1〜10s間保定する保定処理を施すことで、製品板の鉄損W17/50がさらに低減することが分かる。
FIGS. 3 to 6 show the heating rate in the heating (heating) process between 200 and 700 ° C. of the primary recrystallization annealing on the iron loss W 17/50 of the product plate, and the holding temperature and holding time during the heating. The result of investigating the influence was shown.
As shown in FIGS. 3-6, 200-700 in the temperature rising process of the primary recrystallization annealing under the condition that the strain rate of the first cold rolling first pass exceeds the critical strain rate: X (s −1 ). It can be seen that the iron loss W 17/50 of the product plate is reduced by performing the rapid heat treatment at a temperature of 50 ° C./s or more. Moreover, while heating between 200-700 degreeC in the temperature rising process of primary recrystallization annealing with the temperature increase rate of 50 degrees C / s or more, it is 1 at any temperature selected from between 250-600 degreeC of temperature rising process. It can be seen that the iron loss W 17/50 of the product plate is further reduced by performing the holding process of holding for 10 seconds.
上記した《実験2》に示された結果、すなわち一次再結晶焼鈍の昇温過程を急速加熱することで製品板の鉄損W17/50が低減した理由は、まだ十分に明らかとなっていないが、発明者らは、次のように考えている。
鋼板の再結晶温度近傍まで短時間で昇温することによって、通常の昇温速度であれば優先的に形成されるγファイバー(<111>//ND方位)の発達が抑制されるので、二次再結晶の核となる{110}<001>組織の発生が促進され、先鋭な{110}<001>が増加したものと推定される。さらに、その結果、二次再結晶後の結晶粒(Goss方位粒)が細粒化して、鋼板の鉄損特性が改善されたものと推定される。
The result shown in the above << Experiment 2 >>, that is, the reason why the iron loss W 17/50 of the product plate is reduced by rapidly heating the temperature raising process of the primary recrystallization annealing is not yet sufficiently clear. However, the inventors consider as follows.
By raising the temperature to the vicinity of the recrystallization temperature of the steel sheet in a short time, the development of the γ fiber (<111> // ND orientation) formed preferentially at a normal heating rate is suppressed. It is presumed that the generation of {110} <001> structure which becomes the nucleus of the next recrystallization is promoted, and sharp {110} <001> is increased. Furthermore, as a result, it is presumed that the crystal grains (Goss-oriented grains) after the secondary recrystallization are refined and the iron loss characteristics of the steel sheet are improved.
上記昇温過程において、昇温速度を上げることは、前述したように再結晶集合組織における<111>//ND方位の発達を抑制し、二次再結晶の核となるGoss方位粒({110}<001>)の発生を促進する効果があると考えられる。というのは、一般に、冷間圧延では、<111>//ND方位は、他の方位に比較して多くの歪が導入され、蓄積される歪エネルギーが高い状態にあるため、通常の昇温速度で加熱する一次再結晶焼鈍では、蓄積された歪エネルギーが高い<111>//ND方位の圧延組織から優先的に再結晶を起こしてしまう。その結果、再結晶では、通常、<111>//ND方位の圧延組織から<111>//ND方位粒が優先出現し、再結晶後の組織は<111>//ND方位が主方位となる。
これに対し、昇温速度を上げることで、再結晶によって放出されるエネルギーよりも多くの熱エネルギーが鋼板に供給されるから、蓄積された歪エネルギーの比較的低いGoss方位でも再結晶が起こるようになって、相対的に再結晶後の<111>//ND方位が減少し、Goss方位({110}<001>)が増加する。Goss方位が多くなると、二次再結晶においても多くのGoss方位粒が出現するため、二次再結晶粒が細粒化し、鉄損が低減するからである。
In the temperature rising process, increasing the temperature rising rate suppresses the development of the <111> // ND orientation in the recrystallization texture as described above, and the Goss orientation grains ({110 } <001>) is considered to be effective. This is because, in general, in cold rolling, the <111> // ND orientation introduces more strain than other orientations, and the accumulated strain energy is high. In the primary recrystallization annealing that is heated at a speed, recrystallization occurs preferentially from a rolled structure having a <111> // ND orientation in which the accumulated strain energy is high. As a result, in recrystallization, <111> // ND orientation grains usually appear preferentially from a rolled structure with <111> // ND orientation, and the structure after recrystallization has <111> // ND orientation as the main orientation. Become.
On the other hand, by increasing the heating rate, more thermal energy than that released by recrystallization is supplied to the steel sheet, so that recrystallization occurs even in a Goss orientation with a relatively low accumulated strain energy. Thus, the <111> // ND orientation after recrystallization relatively decreases, and the Goss orientation ({110} <001>) increases. This is because when the Goss orientation is increased, many Goss orientation grains appear in the secondary recrystallization, so that the secondary recrystallization grains become finer and the iron loss is reduced.
昇温の途中、回復が起こる温度で所定時間保定する保定処理を施した場合には、歪エネルギーが高い<111>//ND方位が優先的に回復を起こす。そのため、<111>//ND方位の圧延組織から生じる<111>//ND方位の再結晶を起こす駆動力が選択的に低下し、それ以外の方位が再結晶を起こすようになる。その結果、再結晶後の<111>//ND方位が相対的に減少することになる。
一方、保定処理の保定温度が高過ぎたり、保定時間が10sを超えたりすると、鋼板の広い範囲で回復が起こってしまうため、回復組織がそのまま残り、上記の一次再結晶組織とは異なる組織となってしまう。その結果、二次再結晶に大きな悪影響を及ぼし、鉄損特性が劣化してしまう。
In the middle of the temperature increase, when a holding process is performed to hold for a predetermined time at a temperature at which recovery occurs, the <111> // ND orientation with high strain energy recovers preferentially. Therefore, the driving force causing recrystallization of <111> // ND orientation generated from the rolled structure of <111> // ND orientation is selectively reduced, and other orientations cause recrystallization. As a result, the <111> // ND orientation after recrystallization is relatively reduced.
On the other hand, if the holding temperature of the holding process is too high or the holding time exceeds 10 s, recovery occurs in a wide range of the steel sheet, so that the recovery structure remains as it is, and the structure is different from the primary recrystallization structure described above. turn into. As a result, the secondary recrystallization is greatly adversely affected and the iron loss characteristics are deteriorated.
また、昇温途中の回復が起こる温度で短時間の保定処理を施すことにより磁気特性向上効果が得られるのは、従来のラジアントチューブ等を用いた昇温速度(10〜30℃/s)よりも速い昇温速度、具体的には50℃/s以上の昇温速度の場合に限られる。そこで、本発明においては、一次再結晶焼鈍の200〜700℃の温度範囲における昇温速度は50℃/s以上とするのが好ましい。なお、この昇温速度の上限に制限はないが、設備的には、500℃/s程度である。 In addition, the effect of improving the magnetic properties by performing a short-term holding treatment at a temperature at which recovery during the temperature rise occurs can be obtained from the temperature rise rate (10 to 30 ° C./s) using a conventional radiant tube or the like. However, it is limited to a case where the heating rate is high, specifically, the heating rate is 50 ° C./s or more. Therefore, in the present invention, the rate of temperature increase in the temperature range of 200 to 700 ° C. during primary recrystallization annealing is preferably 50 ° C./s or more. In addition, although there is no restriction | limiting in the upper limit of this temperature increase rate, it is about 500 degreeC / s on an installation.
ここで、一次再結晶焼鈍時に上記したような急速加熱を行う際のデメリットとして、昇温中の初期酸化に費やす時間が短くなるため、一次再結晶焼鈍後のサブスケール構造が変化して、仕上焼鈍中に被膜不良が生じると共に、二次再結晶不良が生じて、磁気特性が劣化することが考えられる。しかしながら、昇温中に保定処理を行うことで、急速加熱時にも適正な初期酸化が行われ、被膜劣化を防止して磁気特性が向上したと考えられる。
そして、上記のような被膜改善による更なる磁性改善効果を得るには、昇温途中に少なくとも2回の保定が好ましく、一度は回復が起こる温度域250℃以上500℃未満で、もう一度は初期酸化が活発になる温度域500℃以上700℃以下で保定することが好ましいと考えられる。回復には、少なくとも0.5sは必要であるが、長くとも10sに抑える必要があると考えられる。保定時間を10s以下に抑えることは、回復しすぎると、その後の再結晶粒が発生しなくなるおそれがあるためである。
Here, as a demerit when performing the rapid heating as described above during the primary recrystallization annealing, the time spent for the initial oxidation during the temperature increase is shortened, so the subscale structure after the primary recrystallization annealing changes, and the finish It is conceivable that a film defect occurs during annealing and a secondary recrystallization defect occurs, resulting in deterioration of magnetic properties. However, it is considered that by performing the retention treatment during the temperature rise, proper initial oxidation is performed even during rapid heating, preventing deterioration of the film and improving the magnetic characteristics.
And in order to obtain the further magnetic improvement effect by the above-mentioned film improvement, it is preferable to hold at least twice during the temperature rise, once in the temperature range where the recovery occurs at 250 ° C. or more and less than 500 ° C., once again the initial oxidation It is considered preferable that the temperature is maintained in a temperature range of 500 ° C. or higher and 700 ° C. or lower. At least 0.5 s is required for recovery, but it is considered necessary to suppress it to 10 s at the longest. Keeping the holding time to 10 s or less is because there is a possibility that subsequent recrystallized grains will not be generated if recovered too much.
また、保定は複数回行ってもよいが、保定回数が多いと回復しすぎて再結晶しなくなるおそれがあるので4回以内に収めることが望ましい。より望ましくは、250〜500℃で複数回保定した場合においても、その合計の保定時間は10s以内とすることが、再結晶不良の防止の観点から望ましい。 Further, the holding may be performed a plurality of times, but if the number of holdings is large, it may be recovered too much to stop recrystallization, so that it is desirable to keep it within 4 times. More preferably, even when held at 250 to 500 ° C. a plurality of times, the total holding time is preferably within 10 s from the viewpoint of preventing recrystallization failure.
さらに、初期酸化が活発になる温度域での保定は、0.5s以上が好適であると考えられる。しかし、この温度域は、鋼板の再結晶が起こる温度域でもあるが、この時点での再結晶は極力回避する必要があるため、3s以内が好ましい。なお、この温度域での保定は複数回行ってもよいが、再結晶不良の防止の観点から2回以内に抑えることが望ましい。 Furthermore, it is considered that the retention in the temperature range where the initial oxidation is active is preferably 0.5 s or more. However, this temperature range is also a temperature range where recrystallization of the steel sheet occurs. However, since recrystallization at this point needs to be avoided as much as possible, it is preferably within 3 s. In addition, although holding in this temperature range may be performed a plurality of times, it is desirable to suppress it within two times from the viewpoint of preventing recrystallization failure.
次に、本発明の方向性電磁鋼板の素材に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.100mass%
Cは、0.002mass%に満たないと、Cによる粒界強化効果が失われ、スラブに割れが生じるなどして、製造に支障を来たすようになる。また、本発明の特徴である変形双晶の形成も抑制される。一方、0.100mass%を超えると、脱炭焼鈍で、Cを磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.100mass%の範囲とする。好ましくは0.010〜0.080mass%の範囲である。
Next, the component composition of the steel material (slab) used for the material of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002 to 0.100 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect due to C is lost, and cracks occur in the slab, which causes problems in production. Further, the formation of deformation twins, which is a feature of the present invention, is also suppressed. On the other hand, when it exceeds 0.100 mass%, it becomes difficult to reduce C to 0.005 mass% or less at which no magnetic aging occurs by decarburization annealing. Therefore, C is set to a range of 0.002 to 0.100 mass%. Preferably it is the range of 0.010-0.080 mass%.
Si:2.00〜4.50mass%
Siは、鋼板の比抵抗を高め、鉄損を低減するのに必要な元素である。2.00mass%未満の添加では、これらの効果が十分に発揮できないだけでなく、本発明の特徴である変形双晶の形成も抑制される。一方、4.50mass%を超えると、鋼板の加工性が低下し、圧延して製造することが困難となる。よって、Siは2.00〜4.50mass%の範囲とする。好ましくは2.50〜4.50mass%の範囲である。
Si: 2.00 to 4.50 mass%
Si is an element necessary for increasing the specific resistance of a steel sheet and reducing iron loss. When the addition is less than 2.00 mass%, not only these effects cannot be sufficiently exhibited, but also the formation of deformation twins, which is a feature of the present invention, is suppressed. On the other hand, when it exceeds 4.50 mass%, the workability of the steel sheet is lowered, and it becomes difficult to perform rolling. Therefore, Si is set to a range of 2.00 to 4.50 mass%. Preferably it is the range of 2.50-4.50 mass%.
Mn:0.03〜1.00mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.03mass%未満では十分ではなく、一方、1.00mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.03〜1.00mass%の範囲とする。好ましくは0.05〜0.20mass%の範囲である。
Mn: 0.03-1.00 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.03 mass%, it is not sufficient. On the other hand, if it exceeds 1.00 mass%, the magnetic flux density of the product plate decreases. Therefore, Mn is set to a range of 0.03 to 1.00 mass%. Preferably it is the range of 0.05-0.20 mass%.
酸可溶性Al(Sol.Al):0.003mass%以上0.010mass%未満
Alは、表面に緻密な酸化膜を形成し、窒化の際にその窒化量の制御を困難にしたり、脱炭を阻害したりすることがあるため、Sol.Alで0.01mass%未満に抑制する。但し、酸素親和力の高いAlは、製鋼で微量添加することにより鋼中の溶存酸素量を低減し、特性劣化につながる酸化物系介在物の低減などを見込めるので、この観点からはSol.Alを0.003mass%以上含有させることが必要で、これにより磁気特性の劣化を抑制することができる。
Acid-soluble Al (Sol.Al): 0.003 mass% or more and less than 0.010 mass% Al forms a dense oxide film on the surface, making it difficult to control the amount of nitridation during nitridation or inhibiting decarburization Sol. It suppresses to less than 0.01 mass% with Al. However, since Al having high oxygen affinity can be added in a small amount in steelmaking, the amount of dissolved oxygen in the steel can be reduced and oxide inclusions leading to property deterioration can be expected. It is necessary to contain Al in an amount of 0.003 mass% or more, which can suppress deterioration of magnetic characteristics.
N:(14.00/26.98)×[%sol.Al]以上0.008mass%以下
本発明では、窒化により窒化珪素を析出させることが特徴であるため、含有するAl量に対してAlNとして析出するN以上のNを事前に含有させておくことが肝要である。AlNはそれぞれ1:1で結合しているため、原子量比で1以上のN、すなわちSol.Alのmass%含有量:[%Sol.Al]に対し、(14.00/26.98)以上のNを含有させておくことで、鋼中に含まれる微量Nを窒化珪素として析出させることができる。一方で、Nは、スラブ加熱時にフクレなどの欠陥の原因となることもあるため、0.008mass%以下に抑制する必要がある。望ましくは0.006mass%以下である。
N: (14.00 / 26.98) × [% sol. Al] or more and 0.008 mass% or less The present invention is characterized in that silicon nitride is precipitated by nitriding. Therefore, N or more of N that precipitates as AlN can be included in advance with respect to the amount of Al contained. It is essential. Since AlN is bonded at a ratio of 1: 1, N of 1 or more in atomic weight ratio, that is, Sol. Mass% content of Al: [% Sol. By containing N of (14.00 / 26.98) or more with respect to Al], a trace amount of N contained in the steel can be precipitated as silicon nitride. On the other hand, since N may cause defects such as blisters during slab heating, it is necessary to suppress N to 0.008 mass% or less. Desirably, it is 0.006 mass% or less.
Sおよび/またはSe:0.002〜0.005mass%
SおよびSeは、Mnと結合してインヒビターを形成するが、SおよびSeのうちから選んだ1種または2種の含有量が0.002mass%未満では、インヒビターの絶対量が不足し、正常粒成長の抑制力不足となる。一方、SおよびSeのうちから選んだ1種または2種の含有量が0.005mass%を超えると、二次再結晶焼鈍において、脱S、脱Seが不完全となるため、鉄損劣化を引き起こす。そのため、SおよびSeのうちから選んだ1種または2種は、それぞれ0.002〜0.005mass%の範囲とした。
S and / or Se: 0.002 to 0.005 mass%
S and Se combine with Mn to form an inhibitor. However, when the content of one or two selected from S and Se is less than 0.002 mass%, the absolute amount of the inhibitor is insufficient, and normal grains Insufficient growth control. On the other hand, if the content of one or two selected from S and Se exceeds 0.005 mass%, since the de-S and de-Se are incomplete in the secondary recrystallization annealing, the iron loss is deteriorated. cause. Therefore, 1 type or 2 types selected from S and Se were set in the range of 0.002 to 0.005 mass%, respectively.
本発明の方向性電磁鋼板に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。
なお、本発明では、磁気特性の改善を目的として、さらに、Ni:0.01〜1.50mass%、Cr:0.03〜0.50mass%、Cu:0.03〜0.50mass%、P:0.005〜0.500mass%、Sb:0.005〜0.500mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.500mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.001〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を適宜含有していてもよい。
In the steel material used for the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities.
In the present invention, for the purpose of improving magnetic properties, Ni: 0.01-1.50 mass%, Cr: 0.03-0.50 mass%, Cu: 0.03-0.50 mass%, P : 0.005-0.500 mass%, Sb: 0.005-0.500 mass%, Sn: 0.005-0.50 mass%, Bi: 0.005-0.500 mass%, Mo: 0.005-0 100 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.0100 mass%, Nb: 0.001 to 0.010 mass%, V: 0.001 to 0.010 mass%, and Ta: You may contain suitably 1 type or 2 types chosen from 0.001-0.010mass%.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を、常法の精錬プロセスで溶製した後、常法の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは、常法に従い、1250℃以下程度の温度に再加熱し、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後、スラブを再加熱することなく直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A steel material (slab) may be produced by a conventional ingot-bundling rolling method or continuous casting method after melting the steel having the above-described component composition by a conventional refining process, or A thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. The slab is reheated to a temperature of about 1250 ° C. or less and subjected to hot rolling according to a conventional method. In addition, when not containing an inhibitor component, you may use for hot rolling immediately after casting, without reheating a slab. In the case of a thin slab, the hot rolling may be omitted and the process may proceed as it is.
次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶粒の成長が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。 Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The temperature of this hot rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized grain, and the growth of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.
熱延後あるいは熱延板焼鈍後の鋼板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する。一方、1200℃を超えると、熱延板焼鈍と同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなるからである。 The steel sheet after hot rolling or after hot-rolled sheet annealing is made into a cold-rolled sheet having a final thickness by one or more cold rollings or two or more cold rollings sandwiching intermediate annealing. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing become finer, and the Goss nuclei in the primary recrystallized structure are reduced to deteriorate the magnetic properties of the product plate. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of the sized grains.
さらに、本発明は、最終冷間圧延直前の焼鈍後における800〜300℃間の冷却時の平均冷却速度を40℃/s以上とし、その後72時間以内に最終冷間圧延を開始することを、必須の条件とする。最終冷間圧延直前の焼鈍後の800〜300℃間の冷却速度が40℃/s未満、および/または、その後72時間を越えて最終冷間圧延を開始すると、最終冷間圧延母材内に炭化物が析出することで十分な固溶C量が確保できずに、本発明の製品板の高磁束密度化効果を十分に発揮できないからである。なお、本発明において最終冷間圧延直前の焼鈍とは、1回の冷間圧延しか行わない場合は、熱延板焼鈍後のことを指し、中間焼鈍を挟む2回以上の冷間圧延を行う場合は、最終冷間圧延の直前の中間焼鈍を指す。 Furthermore, the present invention sets the average cooling rate at the time of cooling between 800 and 300 ° C. after annealing immediately before the final cold rolling to 40 ° C./s or more, and then starts the final cold rolling within 72 hours. It is an indispensable condition. When the final cold rolling is started after the cooling rate between 800 and 300 ° C. after annealing immediately before the final cold rolling is less than 40 ° C./s and / or after 72 hours, the final cold rolling base material This is because a sufficient amount of dissolved C cannot be secured due to the precipitation of carbides, and the effect of increasing the magnetic flux density of the product plate of the present invention cannot be sufficiently exhibited. In the present invention, the annealing immediately before the final cold rolling refers to after hot-rolled sheet annealing when only one cold rolling is performed, and performs two or more cold rolling sandwiching the intermediate annealing. In the case, it refers to the intermediate annealing immediately before the final cold rolling.
また、本発明は、最終冷間圧延の総圧下率が50%以下の段階において、下記(1)式から算出される臨界ひずみ速度:X(s−1)以上のひずみ速度で1パスの圧下率10%以上の圧延を少なくとも1回施すことが必要である。
記
X(s−1)=f([%C],[%Si])・g(T) ・・・ (1)
なお、f([%C],[%Si])=1/([%C]+[%Si]/150)、
g(T)=exp(−100/T)
ここで、[%M]は、鋼板中の元素Mのmass%、Tは圧延スタンド入側温度(K)である。
Further, the present invention provides a one-pass reduction at a strain rate equal to or higher than the critical strain rate: X (s −1 ) calculated from the following equation (1) in a stage where the total rolling reduction of the final cold rolling is 50% or less. It is necessary to perform rolling at a rate of 10% or more at least once.
X (s −1 ) = f ([% C], [% Si]) · g (T) (1)
F ([% C], [% Si]) = 1 / ([% C] + [% Si] / 150),
g (T) = exp (-100 / T)
Here, [% M] is mass% of the element M in the steel sheet, and T is the rolling stand entry side temperature (K).
さらに、本発明の特徴は、上記冷間圧延を施すことで冷間圧延前の再結晶粒に変形双晶が導入されるところにあり、変形双晶が導入された再結晶粒の割合が10%以上あれば、本発明の効果が顕著に現れる。一方、変形双晶が過剰に増加すると圧延中に破断が発生するリスクが高まることから、好ましくは変形双晶が導入された再結晶粒の割合を90%以下とする。なお、変形双晶が導入された再結晶粒の割合とは、板厚中心1/5層領域において、冷間圧延前の全再結晶粒のうち、上述したEBSP方位解析により変形双晶と特定されたものが導入された再結晶粒の数の割合を指す。 Further, the present invention is characterized in that deformed twins are introduced into recrystallized grains before cold rolling by performing the cold rolling, and the ratio of recrystallized grains introduced with deformed twins is 10%. If it is at least%, the effect of the present invention will remarkably appear. On the other hand, if the deformation twins increase excessively, the risk of fracture occurring during rolling increases, so the ratio of recrystallized grains in which the deformation twins are introduced is preferably 90% or less. The ratio of recrystallized grains introduced with deformation twins is specified as deformation twins by the above-mentioned EBSP orientation analysis among all recrystallized grains before cold rolling in the 1/5 layer region of the plate thickness center. Refers to the ratio of the number of recrystallized grains introduced.
最終板厚とする冷間圧延(最終冷間圧延)は、前述したように、タンデム圧延(一方向圧延)でも製品板の磁性改善効果を十分に得ることができる。なお、従来公知である温間圧延技術、もしくはパス間時効技術を用いることで、さらなる特性向上が得られる。その場合には、タンデム圧延(一方向圧延)ではなく、リバース圧延を採用することが好ましい。 As described above, the cold rolling (final cold rolling) with the final plate thickness can sufficiently obtain the magnetic improvement effect of the product plate even by tandem rolling (unidirectional rolling). In addition, further improvement in characteristics can be obtained by using a conventionally known warm rolling technique or pass aging technique. In that case, it is preferable to employ reverse rolling rather than tandem rolling (unidirectional rolling).
最終板厚とした冷延板は、その後、一次再結晶焼鈍を施す。この一次再結晶焼鈍における焼鈍温度は、脱炭焼鈍を兼ねる場合には、脱炭反応を速やかに進行させる観点から、800〜900℃の範囲とするのが好ましく、また、雰囲気は湿潤雰囲気とするのが好ましい。一方、脱炭が不要なC:0.005mass%以下の鋼素材を用いる場合は、800〜1000℃の範囲とするのが好ましい。なお、一次再結晶焼鈍と脱炭焼鈍を別々に行ってもよい。 The cold-rolled sheet having the final thickness is then subjected to primary recrystallization annealing. The annealing temperature in the primary recrystallization annealing is preferably in the range of 800 to 900 ° C. from the viewpoint of promptly proceeding with the decarburization reaction when serving also as decarburization annealing, and the atmosphere is a humid atmosphere. Is preferred. On the other hand, when using a steel material with C: 0.005 mass% or less that does not require decarburization, the temperature is preferably in the range of 800 to 1000 ° C. In addition, you may perform a primary recrystallization annealing and a decarburization annealing separately.
さらに、本発明では、一次再結晶焼鈍から二次再結晶焼鈍までのいずれかの段階で追加インヒビター処理として窒化処理を適用することができる。この窒化処理は、一次再結晶焼鈍後、アンモニア雰囲気中で熱処理を行うガス窒化や、塩浴中で熱処理を行う塩浴窒化、さらにはプラズマ窒化や、窒化物を焼鈍分離剤中に含有させたり、二次再結晶焼鈍雰囲気を窒化雰囲気としたりするなどの公知の窒化技術がいずれも適用できる。 Furthermore, in the present invention, a nitriding treatment can be applied as an additional inhibitor treatment at any stage from the primary recrystallization annealing to the secondary recrystallization annealing. This nitriding treatment includes gas nitriding in which heat treatment is performed in an ammonia atmosphere after primary recrystallization annealing, salt bath nitriding in which heat treatment is performed in a salt bath, plasma nitriding, and nitride containing an annealing separator. Any known nitriding technique such as changing the secondary recrystallization annealing atmosphere to a nitriding atmosphere can be applied.
一次再結晶焼鈍を施した鋼板は、鉄損特性やトランスの騒音を重視する場合には、MgOを主体とする焼鈍分離剤を鋼板表面に塗布して、乾燥した後、仕上焼鈍を施し、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させるのが好ましい。一方、打抜加工性を重視し、フォルステライト被膜を形成させない場合には、焼鈍分離剤を適用しないか、あるいは、シリカやアルミナ等を主体とした焼鈍分離剤を用いて仕上焼鈍を施すのが好ましい。なお、フォルステライト被膜を形成しない場合、焼鈍分離剤の塗布に水分を持ち込まない静電塗布を行うことも有効である。また、焼鈍分離剤に代えて、耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。 When the steel sheet subjected to primary recrystallization annealing places importance on iron loss characteristics and transformer noise, an annealing separator mainly composed of MgO is applied to the steel sheet surface, dried, and then subjected to finish annealing. It is preferable to develop a secondary recrystallized structure highly accumulated in the orientation and to form a forsterite film. On the other hand, when emphasizing the punching processability and not forming the forsterite film, it is not necessary to apply an annealing separator or to perform a final annealing using an annealing separator mainly composed of silica, alumina or the like. preferable. In addition, when a forsterite film is not formed, it is also effective to perform electrostatic coating without bringing moisture into the coating of the annealing separator. Further, a heat resistant inorganic material sheet (silica, alumina, mica) may be used in place of the annealing separator.
仕上焼鈍の条件としては、フォルステライト被膜を形成させる場合には、800〜1050℃付近に20時間以上保定して二次再結晶を発現、完了させた後、1100℃以上の温度まで昇温することが好ましく、鉄損特性を重視し、純化処理を施す場合には、さらに1200℃程度の温度まで昇温するのがより好ましい。一方、フォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので、800〜1050℃までの昇温で焼鈍を終了することができる。 As a condition for the finish annealing, when forming a forsterite film, it is maintained at around 800 to 1050 ° C. for 20 hours or more to develop and complete secondary recrystallization, and then the temperature is raised to a temperature of 1100 ° C. or more. In the case where the iron loss characteristic is emphasized and the purification process is performed, it is more preferable to raise the temperature to about 1200 ° C. On the other hand, when the forsterite film is not formed, the secondary recrystallization may be completed, so that the annealing can be completed by raising the temperature to 800 to 1050 ° C.
また、仕上焼鈍後の鋼板は、その後、水洗やブラッシング、酸洗等で、鋼板表面に付着した未反応の焼鈍分離剤を除去した後、平坦化焼鈍を施して形状矯正することが、鉄損の低減には有効である。仕上焼鈍は、通常、コイル状態で行うため、コイルの巻き癖が付き、これが原因で、鉄損測定時に特性が劣化することがあるためである。 In addition, the steel sheet after finish annealing can be iron loss by removing the unreacted annealing separator adhering to the steel sheet surface by water washing, brushing, pickling, etc., and then performing flattening annealing to correct the shape. It is effective in reducing the above. This is because the finish annealing is usually performed in a coil state, so that the coil has wrinkles, and this may cause deterioration of characteristics when measuring iron loss.
さらに、鋼板を積層して使用する場合には、上記平坦化焼鈍において、あるいは、その前後において、鋼板表面に絶縁被膜を被成することが有効である。特に、鉄損の低減を図るためには、絶縁被膜として、鋼板に張力を付与する張力付与被膜を適用するのが好ましい。張力付与被膜の形成には、バインダーを介して張力被膜を塗布する方法や、物理蒸着法や化学蒸着法により無機物を鋼板表層に蒸着させる方法を採用することが、被膜密着性に優れかつ著しく鉄損低減効果が大きい絶縁被膜を形成することができるので、より好ましい。 Furthermore, in the case where the steel plates are laminated and used, it is effective to form an insulating film on the steel plate surface in the above-described flattening annealing or before and after that. In particular, in order to reduce iron loss, it is preferable to apply a tension-imparting film that imparts tension to the steel sheet as the insulating film. For the formation of a tension-imparting coating, it is possible to apply a method of applying a tension coating via a binder or a method of depositing an inorganic substance on the surface of a steel sheet by physical vapor deposition or chemical vapor deposition. Since an insulating film having a large loss reducing effect can be formed, it is more preferable.
また、鉄損をより低減するためには、磁区細分化処理を施すことが好ましい。処理方法としては、一般的に実施されている、最終製品板に溝を形成したり、電子ビーム照射やレーザ照射、プラズマ照射等によって線状または点状に熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板や中間工程の鋼板表面にエッチング加工を施して溝を形成したりする等、公知公用の磁区細分化処理方法を用いることができる。 Moreover, in order to further reduce the iron loss, it is preferable to perform a magnetic domain fragmentation process. As a processing method, a method of generally forming a groove in the final product plate, introducing a thermal strain or an impact strain in a linear or dotted manner by electron beam irradiation, laser irradiation, plasma irradiation, or the like, A publicly known and publicly-known magnetic domain subdividing method can be used, such as forming a groove by etching a steel sheet that has been cold-rolled to a final thickness or a steel sheet surface in an intermediate process.
[実施例1]
C:0.046mass%、Si:3.45mass%、Mn:0.069mass%、sol.Al:0.006mass%、S:0.004mass%、Se:0.003mass%およびN:0.003mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼を溶製し、連続鋳造法で鋼スラブとした後、1180℃の温度に再加熱し、熱間圧延して板厚2.5mmの熱延板とし、1000℃×50sの熱延板焼鈍を施し、一次冷間圧延により1.8mmの中間板厚とし、1020℃×20sの中間焼鈍を施した後、この中間焼鈍の800〜300℃間の冷却時の平均冷却速度を40℃/sとし、18時間経過後に表1−1、表1−2に示す条件で最終冷間圧延を開始した。なお、表1−1および表1−2中、記号1〜3はタンデムミル、記号4、5はリバースミルで最終冷間圧延して最終板厚0.26mmの冷延板に仕上げた。また、本サンプルの最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:X(s−1)は、10.6である。
次いで、上記冷延板に、50vol%H2−50vol%N2、露点:56℃の湿潤雰囲気下で、840℃×100sの脱炭焼鈍を伴う一次再結晶焼鈍を施した。この際、200〜700℃間を25℃/sで昇温した。
さらに、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
表1−1および表1−2に、最終冷間圧延の各パス間におけるひずみ速度を、また、表1−3に、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比および製品板の磁束密度B8、鉄損W17/50の測定結果を示す。
[Example 1]
C: 0.046 mass%, Si: 3.45 mass%, Mn: 0.069 mass%, sol. Al: 0.006 mass%, S: 0.004 mass%, Se: 0.003 mass% and N: 0.003 mass% Steel, the balance of which is composed of Fe and inevitable impurities, and is made into a steel slab by a continuous casting method, and then reheated to a temperature of 1180 ° C. and hot-rolled to obtain a plate thickness of 2. The hot-rolled sheet of 5 mm was subjected to hot-rolled sheet annealing at 1000 ° C. × 50 s, the thickness of the intermediate sheet was 1.8 mm by primary cold rolling, and the intermediate annealing was performed at 1020 ° C. × 20 s. The average cooling rate during cooling between ˜300 ° C. was 40 ° C./s, and after 18 hours, final cold rolling was started under the conditions shown in Table 1-1 and Table 1-2. In Table 1-1 and Table 1-2,
Subsequently, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. × 100 s in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 , dew point: 56 ° C. At this time, the temperature was raised between 200 and 700 ° C. at 25 ° C./s.
Furthermore, after applying an annealing separator mainly composed of MgO to the surface of the steel sheet, secondary recrystallization annealing is performed at 1180 ° C. for 50 hours, followed by application of a phosphate-based insulating tension coating. The product was subjected to flattening annealing for the purpose of baking and flattening of the steel strip.
Table 1-1 and Table 1-2 show the strain rate between each pass of the final cold rolling, and Table 1-3 shows the {411} <148> orientation of the center thickness layer of the primary recrystallization annealed plate The measurement results of the to-random strength ratio, the magnetic flux density B 8 of the product plate, and the iron loss W 17/50 are shown.
タンデムミルで最終冷間圧延した材料について、記号1においては、最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始した場合であっても、1パス目のひずみ速度が臨界ひずみ速度:X(s−1)以下の5.7であったため、良好な製品板の磁気特性が得られなかった。記号2、3については、それぞれ1パス目および1パス目と2パス目において臨界ひずみ速度以上を達成したため、良好な製品板の磁気特性が得られた。また、リバースミルで圧延した記号4、5は、最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始し、さらに1パス目において臨界ひずみ速度以上でかつ1パスの圧下率が10%以上の冷間圧延を達成したことや、パス間時効の効果も相まって極めて良好な磁気特性が得られた。
With respect to the material finally cold-rolled by the tandem mill, in
[実施例2]
C:0.036mass%、Si:3.37mass%、Mn:0.088mass%、sol.Al:0.007mass%、S:0.005mass%およびN:0.004mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼を溶製し、連続鋳造法で鋼スラブとした後、1240℃の温度に再加熱し、熱間圧延して板厚2.2mmの熱延板とし、1120℃×60sの熱延板焼鈍を施した。この熱延板焼鈍の800〜300℃間の冷却時の平均冷却速度を表2に示す種々の値とし、表2に示す種々の時間経過後にリバース圧延を開始して、最終板厚0.22mmの冷延板に仕上げた。各スタンド入側温度はそれぞれ、40℃、100℃、140℃、170℃、190℃、100℃、各スタンド出側板厚はそれぞれ、1.4mm、0.90mm、0.60mm、0.42mm、0.30mm、0.22mmだった。また、各スタンドにおけるひずみ速度はそれぞれ、234.2s−1、289.9s−1、344.3s−1、392.2s−1、453.6s−1、512.8s−1だった。なお、本鋼の最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:X(s−1)=11.9である。
次いで、上記冷延板に、55vol%H2−45vol%N2、露点:55℃の湿潤雰囲気下で、840℃×100sの脱炭焼鈍を伴う一次再結晶焼鈍を施した。この際、200〜700℃間を25℃/sで昇温した。
さらに、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
表2に、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比および製品板の磁束密度B8、鉄損W17/50の測定結果を示す。
[Example 2]
C: 0.036 mass%, Si: 3.37 mass%, Mn: 0.088 mass%, sol. A steel having a component composition containing Al: 0.007 mass%, S: 0.005 mass%, and N: 0.004 mass%, the balance being Fe and inevitable impurities, was melted, and a steel slab was obtained by a continuous casting method. Thereafter, it was reheated to a temperature of 1240 ° C., hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm, and subjected to hot-rolled sheet annealing of 1120 ° C. × 60 s. The average cooling rate at the time of cooling between 800 and 300 ° C. during the hot-rolled sheet annealing is set to various values shown in Table 2, and reverse rolling is started after various times shown in Table 2 to obtain a final sheet thickness of 0.22 mm. Finished in cold rolled sheet. Each stand entry side temperature is 40 ° C., 100 ° C., 140 ° C., 170 ° C., 190 ° C., 100 ° C., and each stand exit side plate thickness is 1.4 mm, 0.90 mm, 0.60 mm, 0.42 mm, They were 0.30 mm and 0.22 mm. Moreover, the strain rate in each stand was 234.2 s −1 , 289.9 s −1 , 344.3 s −1 , 392.2 s −1 , 453.6 s −1 , and 512.8 s −1 , respectively. It should be noted that the critical strain rate X (s −1 ) = 11.9 at the stage where the total rolling reduction of the final cold rolling of the steel is 50% or less.
Subsequently, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. × 100 s in a humid atmosphere of 55 vol% H 2 -45 vol% N 2 , dew point: 55 ° C. At this time, the temperature was raised between 200 and 700 ° C. at 25 ° C./s.
Furthermore, after applying an annealing separator mainly composed of MgO to the surface of the steel sheet, secondary recrystallization annealing is performed at 1180 ° C. for 50 hours, followed by application of a phosphate-based insulating tension coating. The product was subjected to flattening annealing for the purpose of baking and flattening of the steel strip.
Table 2 shows the measurement results of the {411} <148> orientation-to-random strength ratio of the primary recrystallization annealed plate, the magnetic flux density B 8 of the product plate, and the iron loss W 17/50 .
表2より、最終冷間圧延の総圧下率が50%以下の段階において、臨界ひずみ速度:X(s−1)以上のひずみ速度で、かつ1パスの圧下率が10%以上の冷間圧延を行うと共に、熱延板焼鈍後(最終冷間圧延直前)の800〜300℃間の平均冷却速度を40℃/s以上とし、さらに、その後72時間以内に最終冷間圧延を開始することで、良好な製品板の磁気特性が得られることが分かる。 From Table 2, in the stage where the total rolling reduction of the final cold rolling is 50% or less, the cold rolling is performed at a strain rate of critical strain rate: X (s −1 ) or more and a rolling reduction rate of 1% or more in one pass. And the average cooling rate between 800-300 ° C. after hot-rolled sheet annealing (immediately before the final cold rolling) is 40 ° C./s or more, and then the final cold rolling is started within 72 hours. It can be seen that good magnetic properties of the product plate can be obtained.
[実施例3]
表3に記載の成分組成を有する記号A〜Lの鋼を溶製し、連続鋳造法で鋼スラブとし、1230℃に再加熱した後、熱間圧延して板厚1.8mmの熱延板とし、1050℃×30sの熱延板焼鈍を施した後、この熱延板焼鈍の800〜300℃間の冷却時の平均冷却速度を70℃/sとし、14時間経過後に4スタンドのタンデム圧延を開始して、最終板厚0.22mmの冷延板に仕上げた。
各スタンド入側温度は、それぞれ、40℃、50℃、60℃、70℃、各スタンド出側板厚は、それぞれ、1.3mm、0.71mm、0.40mm、0.22mmだった。また、各スタンドにおけるひずみ速度はそれぞれ、54.6s−1、167.5s−1、390.2s−1、967.7s−1だった。
その後、上記冷延板に、60vol%H2−40vol%N2、露点:58℃の湿潤雰囲気下で、850℃×120sの脱炭焼鈍を伴う一次再結晶焼鈍を施した。この一次再結晶焼鈍の際、200〜700℃間を昇温速度:15℃/sで昇温した。
ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で10時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
表3に、最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:X(s−1)、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比および製品板の磁束密度B8、鉄損W17/50を併記する。
[Example 3]
Steels of symbols A to L having the composition shown in Table 3 were melted, made into a steel slab by a continuous casting method, reheated to 1230 ° C., and hot-rolled to a hot-rolled sheet having a thickness of 1.8 mm After performing 1050 ° C. × 30 s hot-rolled sheet annealing, the average cooling rate during cooling between 800-300 ° C. of this hot-rolled sheet annealing was set to 70 ° C./s, and after 14 hours, 4-stand tandem rolling And finished into a cold-rolled sheet having a final sheet thickness of 0.22 mm.
Each stand entry side temperature was 40 ° C., 50 ° C., 60 ° C., 70 ° C., and each stand exit side plate thickness was 1.3 mm, 0.71 mm, 0.40 mm, and 0.22 mm, respectively. Moreover, the strain rate in each stand was 54.6 s −1 , 167.5 s −1 , 390.2 s −1 , and 967.7 s −1 , respectively.
Thereafter, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 850 ° C. × 120 s in a humid atmosphere of 60 vol% H 2 -40 vol% N 2 , dew point: 58 ° C. During the primary recrystallization annealing, the temperature was raised between 200 and 700 ° C. at a rate of temperature rise of 15 ° C./s.
Next, after applying an annealing separator mainly composed of MgO to the steel sheet surface, secondary recrystallization annealing is performed at 1180 ° C. for 10 hours, followed by application of a phosphate-based insulation tension coating. The product was subjected to flattening annealing for the purpose of baking and flattening of the steel strip.
Table 3 shows the critical strain rate at the stage where the total rolling reduction of the final cold rolling is 50% or less: X (s −1 ), a pair of {411} <148> orientations of the center thickness layer of the primary recrystallization annealed sheet The random strength ratio, the magnetic flux density B 8 of the product plate, and the iron loss W 17/50 are also shown.
表3に示したように、最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始し、さらに総圧下率が50%以下の段階において、各サンプルの臨界ひずみ速度:X(s−1)以上でかつ1パスの圧下率が10%以上の最終冷間圧延を施すことで、一次再結晶焼鈍板の板厚中心層の{411}<148>方位の対ランダム強度比は増加し、良好な製品板磁気特性が得られた。 As shown in Table 3, the average cooling rate between 800 and 300 ° C. after annealing immediately before the final cold rolling is set to 40 ° C./s or more, then the final cold rolling is started within 72 hours, and further the total reduction In a stage where the rate is 50% or less, the final recrystallization annealing plate is subjected to final cold rolling with a critical strain rate of each sample: X (s −1 ) or more and a one-pass reduction rate of 10% or more. The {411} <148> orientation to random strength ratio of the plate thickness center layer increased, and good product plate magnetic properties were obtained.
[実施例4]
表3に記載の記号Jの鋼を溶製し、連続鋳造法で鋼スラブとし、1230℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1020℃×30sの熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1020℃×60sの中間焼鈍を施した後、この中間焼鈍の800〜300℃間の冷却時の平均冷却速度を40℃/sとし、18時間経過後に4スタンドのタンデム圧延を開始して、最終板厚0.22mmの冷延板に仕上げた。各スタンド入側温度は全て50℃、各スタンド出側板厚はそれぞれ、1.0mm、0.58mm、0.35mm、0.22mmだった。また、各スタンドにおけるひずみ速度はそれぞれ、86.1s−1、190.6s−1、397.2s−1、775.1s−1だった。なお。記号Jの鋼の最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:X(s−1)=12.9である。
次いで、上記冷延板に、60vol%H2−40vol%N2、露点:55℃の湿潤雰囲気下で、840℃×120sの脱炭焼鈍を伴う一次再結晶焼鈍を施した。
この一次再結晶焼鈍の際、840℃までの昇温過程のうち、200〜700℃間を昇温速度:120℃/sで昇温し、さらにその昇温途中で種々の温度や、時間、回数で保定する保定処理を施した。その条件を表3に併記する。
さらに、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1180℃で10時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
表3に、製品板の磁束密度B8、鉄損W17/50の測定結果を併記する。
[Example 4]
The steel of the symbol J shown in Table 3 is melted and made into a steel slab by a continuous casting method, reheated to 1230 ° C., and then hot-rolled into a hot-rolled sheet having a thickness of 2.2 mm, 1020 ° C. × 30 s. After performing the hot-rolled sheet annealing, the intermediate sheet thickness is set to 1.8 mm by primary cold rolling, and after performing the intermediate annealing of 1020 ° C. × 60 s, the average of this intermediate annealing during cooling between 800 to 300 ° C. The cooling rate was set to 40 ° C./s, and after 18 hours, 4 stands of tandem rolling was started to finish a cold rolled sheet having a final thickness of 0.22 mm. Each stand entry side temperature was 50 ° C., and each stand exit side plate thickness was 1.0 mm, 0.58 mm, 0.35 mm, and 0.22 mm, respectively. Moreover, the strain rate in each stand was 86.1 s −1 , 190.6 s −1 , 397.2 s −1 and 775.1 s −1 , respectively. Note that. The critical strain rate: X (s −1 ) = 12.9 at the stage where the total rolling reduction of the steel of symbol J is 50% or less.
Subsequently, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 840 ° C. × 120 s in a humid atmosphere of 60 vol% H 2 -40 vol% N 2 , dew point: 55 ° C.
During the primary recrystallization annealing, the temperature is increased between 200 and 700 ° C. at a temperature increase rate of 120 ° C./s in the temperature increasing process up to 840 ° C., and various temperatures, times, A retaining process was performed to retain the number of times. The conditions are also shown in Table 3.
Furthermore, after applying an annealing separator mainly composed of MgO to the steel sheet surface, secondary recrystallization annealing is performed at 1180 ° C. for 10 hours, followed by application of a phosphate-based insulation tension coating. The product was subjected to flattening annealing for the purpose of baking and flattening of the steel strip.
Table 3 shows the measurement results of the magnetic flux density B 8 and the iron loss W 17/50 of the product plate.
表4に示すように、最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始し、さらに総圧下率が50%以下の段階において、各サンプルの臨界ひずみ速度:X(s−1)以上でかつ1パスの圧下率が10%以上の最終冷間圧延を施すことで、良好な製品板磁気特性が得られた。 As shown in Table 4, the average cooling rate between 800 and 300 ° C. after annealing immediately before the final cold rolling is set to 40 ° C./s or more, then the final cold rolling is started within 72 hours, and the total reduction rate When the final cold rolling is performed with the critical strain rate of each sample: X (s −1 ) or more and the one-pass reduction ratio of 10% or more at a stage of 50% or less, good product sheet magnetic properties can be obtained. Obtained.
[実施例5]
表3に記載の記号Bの鋼を溶製し、連続鋳造法で鋼スラブとし、1230℃に再加熱した後、熱間圧延して板厚2.2mmの熱延板とし、1120℃×30sの熱延板焼鈍を施した後、この熱延板焼鈍の800〜300℃間の冷却時の平均冷却速度を55℃/sとし、24時間経過後にリバース圧延を開始して、最終板厚0.26mmの冷延板に仕上げた。各スタンド入側温度はそれぞれ、40℃、100℃、140℃、160℃、180℃、180℃、各スタンド出側板厚はそれぞれ、1.4mm、0.90mm、0.63mm、0.45mm、0.34mm、0.26mmだった。また、各スタンドにおけるひずみ速度はそれぞれ、234.2s−1、289.9s−1、320.2s−1、370.4s−1、395.8s−1、444.4s−1だった。なお、記号Bの鋼の最終冷間圧延の総圧下率が50%以下の段階における臨界ひずみ速度:X(s−1)=9.8である。
次いで、上記冷延板に、60vol%H2−40vol%N2、露点:58℃の湿潤雰囲気下で、820℃×120sの脱炭焼鈍を伴う一次再結晶焼鈍を施した。
この一次再結晶焼鈍の際、840℃までの昇温過程のうち、200〜700℃間を図8に示す種々の昇温速度で昇温した。ついで、アンモニアと窒素と水素の混合雰囲気中、750℃で30sのガス窒化処理を施したのち、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布してから、1200℃で50時間の純化焼鈍を兼ねた二次再結晶焼鈍を行い、引き続きリン酸塩系の絶縁張力コーティングの塗布、焼付けと鋼帯の平坦化を目的とする平坦化焼鈍を施して製品とした。
[Example 5]
The steel of symbol B shown in Table 3 is melted and made into a steel slab by a continuous casting method, reheated to 1230 ° C., and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.2 mm, 1120 ° C. × 30 s. After performing the hot-rolled sheet annealing, the average cooling rate at the time of cooling between 800 to 300 ° C. of this hot-rolled sheet annealing was set to 55 ° C./s, and reverse rolling was started after 24 hours, and the final sheet thickness was 0 Finished in a cold-rolled plate of 26 mm. Each stand entry side temperature is 40 ° C., 100 ° C., 140 ° C., 160 ° C., 180 ° C., 180 ° C., and each stand exit side plate thickness is 1.4 mm, 0.90 mm, 0.63 mm, 0.45 mm, They were 0.34 mm and 0.26 mm. Moreover, the strain rate in each stand was 234.2 s −1 , 289.9 s −1 , 320.2 s −1 , 370.4 s −1 , 395.8 s −1 , 444.4 s −1 , respectively. Note that the critical strain rate at the stage where the total rolling reduction of the final cold rolling of the steel of symbol B is 50% or less: X (s −1 ) = 9.8.
Subsequently, the cold-rolled sheet was subjected to primary recrystallization annealing with decarburization annealing at 820 ° C. × 120 s in a humid atmosphere of 60 vol% H 2 -40 vol% N 2 , dew point: 58 ° C.
During the primary recrystallization annealing, the temperature was raised between 200 and 700 ° C. at various heating rates shown in FIG. Next, after performing gas nitriding treatment at 750 ° C. for 30 s in a mixed atmosphere of ammonia, nitrogen, and hydrogen, an annealing separator containing MgO as a main component was applied to the steel sheet surface, and then purified at 1200 ° C. for 50 hours. Secondary recrystallization annealing that also serves as annealing was performed, and then the product was subjected to flattening annealing for the purpose of applying a phosphate-based insulating tension coating, baking, and flattening the steel strip.
図8に、製品板の鉄損W17/50を示す。
図8に示したように、最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始し、さらに総圧下率が50%以下の段階において、臨界ひずみ速度:X(s−1)以上でかつ1パスの圧下率が10%以上の最終冷間圧延を施し、一次再結晶焼鈍の昇温過程における200〜700℃間で急速加熱処理を施すことで、さらに良好な製品板磁気特性が得られていることが分かる。
FIG. 8 shows the iron loss W 17/50 of the product plate.
As shown in FIG. 8, the average cooling rate between 800 and 300 ° C. after annealing immediately before the final cold rolling is set to 40 ° C./s or more, then the final cold rolling is started within 72 hours, and further the total reduction In a stage where the rate is 50% or less, a final cold rolling with a critical strain rate of X (s −1 ) or more and a one-pass reduction rate of 10% or more is performed, and the temperature is increased from 200 to 200 in the temperature increase process of primary recrystallization annealing. It can be seen that by applying the rapid heat treatment between 700 ° C., even better product plate magnetic properties are obtained.
本発明の技術は、冷延鋼板の集合組織の制御に適しているので、加工性が要求される自動車用鋼板や、リジング抑制が要求されるフェライト系ステンレス鋼の製造方法にも適用することができる。 Since the technology of the present invention is suitable for control of the texture of cold-rolled steel sheets, it can be applied to automobile steel sheets that require workability and ferritic stainless steels that require ridging suppression. it can.
Claims (7)
最終冷間圧延直前の焼鈍後の800〜300℃間の平均冷却速度を40℃/s以上とし、次いで72時間以内に最終冷間圧延を開始し、該最終冷間圧延の総圧下率が50%以下の段階において、下記(1)式から算出される臨界ひずみ速度:X(s-1)以上のひずみ速度で、かつ1パスの圧下率が10%以上の冷間圧延を少なくとも1回施すことを特徴とする方向性電磁鋼板の製造方法。
記
X(s-1)=f([%C],[%Si])・g(T) ・・・ (1)
但し、f([%C],[%Si])=1/([%C]+[%Si]/150)
g(T)=exp(−100/T)
また、[%M]は、鋼板中の元素Mの含有量(質量%)、Tは圧延スタンド入側温度(K)を表す。 C: 0.002 to 0.100 mass%, Si: 2.00 to 4.50 mass%, Mn: 0.03 to 1.00 mass%, sol. Al: 0.003 mass% or more and less than 0.010 mass% and N: (14.00 / 26.98) × [% sol. Al] or more and 0.008 mass% or less, and further contains S: 0.002 to 0.005 mass% and / or Se: 0.002 to 0.005 mass%, with the balance being Fe and inevitable impurities. The slab is reheated to a temperature of 1250 ° C. or lower , hot-rolled to form a hot-rolled sheet, and subjected to cold rolling at least twice with intermediate annealing without subjecting the hot-rolled sheet to hot-rolled sheet. It is a cold-rolled sheet having a thickness, or after subjecting the hot-rolled sheet to hot-rolled sheet annealing, it is subjected to cold rolling twice or more sandwiching one or intermediate annealing, to obtain a cold-rolled sheet having a final sheet thickness, In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying an annealing separator to the steel sheet surface and performing final annealing after the primary recrystallization annealing,
The average cooling rate between 800 and 300 ° C. after annealing immediately before the final cold rolling is set to 40 ° C./s or more, then the final cold rolling is started within 72 hours, and the total rolling reduction of the final cold rolling is 50 % At a critical strain rate calculated from the following formula (1): S ( 1 ) or more, and at least one cold rolling with a reduction rate of 10% or more in one pass. A method for producing a grain-oriented electrical steel sheet, comprising:
X (s −1 ) = f ([% C], [% Si]) · g (T) (1)
However, f ([% C], [% Si]) = 1 / ([% C] + [% Si] / 150)
g (T) = exp (-100 / T)
[% M] represents the content (mass%) of the element M in the steel sheet , and T represents the rolling stand entry side temperature (K) .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015035695A JP6292146B2 (en) | 2015-02-25 | 2015-02-25 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015035695A JP6292146B2 (en) | 2015-02-25 | 2015-02-25 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016156069A JP2016156069A (en) | 2016-09-01 |
JP6292146B2 true JP6292146B2 (en) | 2018-03-14 |
Family
ID=56825180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015035695A Active JP6292146B2 (en) | 2015-02-25 | 2015-02-25 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6292146B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108291268A (en) * | 2015-12-04 | 2018-07-17 | 杰富意钢铁株式会社 | The manufacturing method of grain-oriented magnetic steel sheet |
CN113710822B (en) * | 2019-04-23 | 2023-05-16 | 杰富意钢铁株式会社 | Method for producing oriented electrical steel sheet |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5011711B2 (en) * | 2005-11-15 | 2012-08-29 | Jfeスチール株式会社 | Manufacturing method of unidirectional electrical steel sheet |
JP4932544B2 (en) * | 2006-08-07 | 2012-05-16 | 新日本製鐵株式会社 | Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction |
JP5835557B2 (en) * | 2011-02-17 | 2015-12-24 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
CN103695619B (en) * | 2012-09-27 | 2016-02-24 | 宝山钢铁股份有限公司 | A kind of manufacture method of high magnetic strength common orientation silicon steel |
JP6119959B2 (en) * | 2012-11-05 | 2017-04-26 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5839204B2 (en) * | 2013-02-28 | 2016-01-06 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
-
2015
- 2015-02-25 JP JP2015035695A patent/JP6292146B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016156069A (en) | 2016-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7171636B2 (en) | Method for producing grain-oriented silicon steel sheet, grain-oriented electrical steel sheet and uses thereof | |
EP2878687B1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6844125B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
US9214275B2 (en) | Method for manufacturing grain oriented electrical steel sheet | |
WO2013069754A1 (en) | Anisotropic electromagnetic steel sheet and method for producing same | |
JP6132103B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN113825847B (en) | Method for producing oriented electrical steel sheet | |
JP6344263B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN113710822B (en) | Method for producing oriented electrical steel sheet | |
JP5287615B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6292146B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6292147B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6950723B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5754115B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2015193921A (en) | Method for manufacturing oriented electromagnetic steel sheet excellent in iron loss characteristics | |
WO2023277170A1 (en) | Grain-oriented electromagnetic steel sheet manufacturing method and rolling equipment for manufacturing grain-oriented electromagnetic steel sheet | |
JP7284392B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5854236B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7284391B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP5846390B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7159594B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7414145B2 (en) | Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets | |
JP7193041B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7392849B2 (en) | Method for producing grain-oriented electrical steel sheets and rolling equipment for producing electrical steel sheets | |
JP2019183271A (en) | Production method of grain-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6292146 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |