[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6289856B2 - ガス遮断器 - Google Patents

ガス遮断器 Download PDF

Info

Publication number
JP6289856B2
JP6289856B2 JP2013215861A JP2013215861A JP6289856B2 JP 6289856 B2 JP6289856 B2 JP 6289856B2 JP 2013215861 A JP2013215861 A JP 2013215861A JP 2013215861 A JP2013215861 A JP 2013215861A JP 6289856 B2 JP6289856 B2 JP 6289856B2
Authority
JP
Japan
Prior art keywords
arc
pressure
gas
circuit breaker
extinguishing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013215861A
Other languages
English (en)
Other versions
JP2015079635A (ja
Inventor
内井 敏之
敏之 内井
崇文 飯島
崇文 飯島
嵩人 石井
嵩人 石井
古田 宏
宏 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2013215861A priority Critical patent/JP6289856B2/ja
Priority to EP14854027.1A priority patent/EP3059753B1/en
Priority to PCT/JP2014/005194 priority patent/WO2015056438A1/ja
Priority to CN201480056753.2A priority patent/CN105765684B/zh
Priority to BR112016008143-9A priority patent/BR112016008143B1/pt
Publication of JP2015079635A publication Critical patent/JP2015079635A/ja
Priority to US15/085,011 priority patent/US9997314B2/en
Application granted granted Critical
Publication of JP6289856B2 publication Critical patent/JP6289856B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/12Auxiliary contacts on to which the arc is transferred from the main contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • H01H33/903Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc and assisting the operating mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H2033/888Deflection of hot gasses and arcing products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Landscapes

  • Circuit Breakers (AREA)

Description

本発明の実施形態は、電力系統において電流遮断及び投入を切り換えるガス遮断器に関する。
電力系統において、過大な事故電流、進み小電流、リアクトル遮断等の遅れ負荷電流、又は極めて小さな事故電流等の遮断を要する場合にガス遮断器が利用される。ガス遮断器は、遮断過程で接触子を機械的に切り離し、切り離しの過程で発弧したアーク放電を消弧性ガスの吹き付けによって消弧する。
上記のようなガス遮断器は、現在パッファ型と呼ばれるタイプが広く普及している(例えば、特許文献1参照)。パッファ型ガス遮断器は、消弧性ガスが充填された密閉容器内に、対向アーク接触子及び対向通電接触子と、可動アーク接触子及び可動通電接触子とがそれぞれ対向して配置され、それぞれを機械的な駆動力によって接触又は離反させることで電流を導通し又は遮断する。
このガス遮断器には、接触子の離反に伴って容積が減少し、内部の消弧性ガスが蓄圧される蓄圧空間と、両アーク接触子を取り囲むように配置され、蓄圧空間の消弧性ガスをアークに誘導する絶縁ノズルが設けられている。遮断過程においては、対向アーク接触子と可動アーク接触子が離反することで、両アーク接触子間にアークが発生する。接触子の離反に伴って蓄圧空間で十分蓄圧された消弧性ガスを、絶縁ノズルを介してアークに強力に吹き付けることにより、両アーク接触子の絶縁性能を回復させ、アークを消弧し、電流の遮断を完了させる。
小電流から大電流まで効果的に遮断可能なガス遮断器としては、直列パッファ型と呼ばれるタイプが広く普及している(例えば特許文献2参照)。このガス遮断器は、駆動エネルギーを増大させることなく遮断性能を向上する為に、蓄圧空間を昇圧メカニズムの異なる2室に分けたものである。すなわち、ガス遮断器は、熱パッファ室と機械パッファ室の両空間を有し、加熱昇圧作用と機械的圧縮作用を併用して消弧性ガスを昇圧し、強力な噴流を生み出す。
大電流の遮断の際には、アーク放電が非常に高温であるため、周囲の消弧性ガスが熱せられ、この消弧性ガスの熱膨張や熱パッファ室内への流入により、熱パッファ室は著しく昇圧される。この熱パッファ室の圧力は、アーク放電を消弧させるのに十分な消弧性ガスの吹き付け力を発生させる。
一方、小電流の遮断の際には、アーク放電による自力昇圧作用は小さいため、この作用による熱パッファ室の圧力上昇は期待できない。このような場合には、直列パッファ型のガス遮断器では、機械パッファ室から熱パッファ室への消弧性ガスの送り込みを併用できるので、小電流遮断のための吹き付け圧力を確保できるのである。
ここで、事故電流遮断時のように数kAオーダーの大電流アークの場合には、両アーク接触子間距離が十分開いて適切な流路が形成され、かつ蓄圧空間に十分な吹きつけ圧力が蓄圧された後でなければ、電流零点を迎えてもアークが消弧されることはない。
しかしながら、進み小電流遮断のような数百A以下の小電流アークの場合には、両アーク接触子の開離直後であっても、電流零点を迎えれば簡単にアークが消弧されてしまう。そうすると、電流位相によっては、アークが継続する時間が限りなく0に近くなり、アーク接触子開離直後にアークが消弧し、アーク接触子間の距離が極めて小さい状態で系統からの回復電圧が印加されてしまう。この回復電圧により、アーク接触子間に再点弧を引き起こすと、過電圧が発生する場合がある。再点弧とは、商用周波電圧において電流零点後4分の1周期以上の時間が経過した後に生じる絶縁破壊現象である。
アーク接触子間の絶縁破壊は、系統機器の信頼性を脅かすため、一般には、ガス遮断器は再点弧を回避するに十分で、速やかな絶縁回復特性を要求される。その要求に応えるためには、一般にはアーク接触子先端の電界を緩和するか、もしくは両アーク接触子が開離する時点での速度、すなわち開極速度を向上し、アーク接触子間の速やかな絶縁回復を確保する必要がある。
しかしながら、操作力を増加させることで高速化に対応すると、駆動装置が大型となるか、あるいは機械的強度を上げるため可動接触子部の重量が増加し、さらに駆動エネルギーを増加しなければならないという問題があった。
そこで、固定されたカム機構を介して駆動装置と可動接触子部を接続し、カムの溝の形に沿って可動接触子部に連結したリンクを駆動させ、開極後の速度を向上させる技術が提案されている(例えば、特許文献3参照)。また、回転溝カムを駆動装置と可動接触子部の間に設置することで、駆動装置側の可動部と可動接触部の移動距離を小さくし、効率的に駆動エネルギーを低減する技術も提案されている(例えば、特許文献4参照)。
特公平7−109744号公報 特公平7−97466号公報 特開2004−55420号公報 特開2002−208336号公報
しかしながら、従来のガス遮断器には、次に挙げる課題があり、この課題の解決を図ることが設けられている。
(A)吹付けガスの温度
従来のガス遮断器では、アーク放電により高温となった消弧性ガスをパッファ室あるいは熱パッファ室に取り込むので、高温化した消弧性ガスをアーク放電へ吹付けることになる。そのため、アーク放電の冷却効率は低くなって、遮断性能が低下するおそれがある
(B)吹付けガスの温度による耐久性とメンテナンスへの影響
また、高温化した消弧性ガスをアーク放電に吹付けることで、アーク放電周辺の温度も上昇する。その結果、アーク電極、や絶縁ノズルが高熱にさらされて劣化し易くなり、メンテナンスを頻繁に行う必要が生じた。これは耐久性の向上とメンテナンスの低減化を求める使用者のニーズと逆行するものである。
(C)電流遮断時間
さらに、パッファ室内や熱パッファ室内の圧力を昇圧させるには、ある程度の時間がかかってしまう。そのため、電流遮断が完了するまでの時間が長くなることがある。ガス遮断器は電力系統における過大な事故電流を速やかに遮断するための機器なので、ガス遮断器の基本機能からみて電流遮断が完了するまでの時間を短縮化することが常に要請されている。
(D)駆動操作力
また、ガス遮断器において駆動操作力を低減化するためには、構成の簡略化を実現して軽量化を図ることが重要である。例えば、パッファ室を2分割した直列パッファ型ガス遮断器では、仕切り板や逆止弁などの付帯部品が不可欠なので、構造が複雑化して可動部の重量が重くなる傾向にある。可動部の重量が重くなれば、同一の解離速度を得るために、強い駆動操作力が必要とならざるを得ない。つまり従来の直列パッファ型ガス遮断器では、可動部の軽量化に寄与するべく、構成の簡略化が求められている。
(E)ガス流の流れ方
さらに、アーク放電に消弧性ガスを吹付けるパッファ型ガス遮断器では、機器内部の消弧性ガスの流れに関しても、それを安定化させることが重視される。特に、直列パッファ型ガス遮断器においては、消弧性ガスの流れが不安定となり易く、その改善が望まれていた。
(F)高速再閉路動作時の遮断性能
さらに、ガス遮断器では高速再閉路動作時の遮断性能について良好であることが望まれるのは言うまでもないが、直列パッファ型ガス遮断器では高速再閉路動作時の遮断性能が低い場合があり、問題となっている。
本実施形態に係るガス遮断器は、以上に述べた課題を解決するために提案されたものである。すなわち、本実施形態に係るガス遮断器は、吹付けガスを低温化し、耐久性の向上とメンテナンスの低減化、電流遮断時間の短縮化ならびに駆動操作力の低減化を図ると共に、消弧性ガスの流れを安定化させ、さらには高速再閉路動作時の遮断性能を向上させたガス遮断器を提供することを目的とするものである。
本実施形態のガス遮断器は、電流遮断と投入を切り替えるガス遮断器であって、消弧性ガスが充填された密閉容器と、前記密閉容器内に対向配置された一対の固定アーク電極と、前記固定アーク電極間を移動自在に配置され、移動に伴ってアーク放電を発生させるトリガー電極と、昇圧手段により前記消弧性ガスを圧縮し昇圧させる昇圧部と、前記昇圧部と連通し昇圧した消弧性ガスを溜めておく蓄圧部と、を備え、前記トリガー電極は、前記蓄圧部を閉塞状態あるいは開放状態に切り替える開閉手段であり、電流遮断時の前半では前記蓄圧部を閉塞状態とし、電流遮断時の後半では前記蓄圧部を開放状態に切り替え、前記アーク放電に前記蓄圧部内の消弧性ガスを導き、前記一対の固定アーク電極の間には絶縁ノズルが固定され、アーク放電により高温となった消弧性ガスは絶縁ノズルにより整流され、前記昇圧手段は、移動に伴って前記昇圧部と前記蓄圧部との連通部分を塞ぎ、前記昇圧部と前記蓄圧部とを圧力的に切り離すことを特徴とする。
また、本実施形態のガス遮断器は、電流遮断と投入を切り替えるガス遮断器であって、電流遮断と投入を切り替えるガス遮断器であって、消弧性ガスが充填された密閉容器と、前記密閉容器内に対向配置された一対の固定アーク電極と、前記固定アーク電極間を移動自在に配置され、移動に伴ってアーク放電を発生させるトリガー電極と、昇圧手段により前記消弧性ガスを圧縮し昇圧させる昇圧部と、前記昇圧部と連通し昇圧した消弧性ガスを溜めておく蓄圧部と、を備え、前記トリガー電極は、前記蓄圧部を閉塞状態あるいは開放状態に切り替える開閉手段であり、電流遮断時の前半では前記蓄圧部を閉塞状態とし、電流遮断時の後半では前記蓄圧部を開放状態に切り替え、前記アーク放電に前記蓄圧部内の消弧性ガスを導き、前記一対の固定アーク電極の間には絶縁ノズルが固定され、アーク放電により高温となった消弧性ガスは絶縁ノズルにより整流され、前記昇圧部は、前記昇圧手段が前記連通部分を塞ぐ位置までの移動に伴い、前記昇圧部の圧力を放圧する放圧手段を備えたことを特徴とする。
第1の実施形態に係るガス遮断器の全体構成を示す断面図であって、投入時、遮断時前半、遮断時後半の状態を示す断面図である。 第1の実施形態のロッドを示す断面図である。 第1の実施形態の可動ピストン周辺の構造を示す断面図である。 フラットな駆動出力特性の場合における圧縮反力および可動部加速力のストローク変化を示すグラフ。 調減少な駆動出力特性の場合における圧縮反力および可動部加速力のストローク変化を示すグラフ。
[1.第1の実施形態]
(概略構成)
以下、図1乃至3を参照しつつ、第1の実施形態に係るガス遮断器を説明する。ガス遮断器は、電路を構成する電極同士を接離し、電流遮断と投入状態とを切り替える。電流遮断過程では、アーク放電により電極間に橋絡させる。また、電流遮断過程では、消弧性ガスのガス流を生成し、そのガス流をアーク放電に案内して吹き付けることで、アーク放電を冷却し、電流零点で消弧させる。
ガス遮断器は、消弧性ガスが充填された密閉容器(図示せず)を有する。密閉容器は、金属や碍子等からなり、接地されている。消弧性ガスは、六弗化硫黄ガス(SFガス)、空気、二酸化炭素、酸素、窒素、またはそれらの混合ガス、その他の消弧性能及び絶縁性能に優れたガスである。望ましくは、消弧性ガスは、六弗化硫黄ガスよりも地球温暖化係数が低く、かつ分子量が小さく、かつ少なくとも1気圧以上及び摂氏20度以下で気相であるガスの単体若しくは混合ガスである。
ガス遮断器の電極は、大別すると対向電極部Aと可動電極部Bに別れ、密閉容器内に対向して配置される。対向電極部Aと可動電極部Bは、それぞれ、内部中空の円筒又は内部中実の円柱を基本形とする複数の部材で主に構成され、共通の中心軸を有する同心状配置となっており、径を合わせることで関係部材同士が対向して共同的に機能する。
対向電極部Aは、固定アーク電極30a、及び固定通電電極3を有する。可動電極部Bは、固定アーク電極30b、可動通電電極3、及びトリガー電極31を有する。
一対の固定アーク電極30a、30bは、可動通電電極3やトリガー電極31や可動ピストン33などから成る可動部に含まれる部材ではなく、密閉容器(図示せず)の内部に固定される部材である。一方、可動電極部Bの可動要素である可動通電電極3、トリガー電極31、及び可動ピストン33などから成る可動部は、駆動装置(不図示)に直接又は間接的に連結し、駆動装置の操作力に応じて対向電極部Aに対して接離する。
これにより、可動電極部Bが対向電極部Aに対して接離し、電流の投入と遮断、及びアーク放電4の発弧及び消弧が実現する。また、密閉容器内の圧力は通常運転時においていずれの部分でも単一の圧力、例えば消弧性ガスの充気圧力となっている。
固定アーク電極30a、30bの開口縁は内部に膨出しており、当該開口縁部分の内径とロッド状のトリガー電極31の外径は一致している。固定アーク電極30aにトリガー電極31が差し込まれることで、固定アーク電極30aの内面とトリガー電極31の外面とが接触し、電気的に導通できる状態となる。同様に、固定アーク電極30bの内面とトリガー電極31の外面とが接触し、電気的に導通する。トリガー電極31は、固定アーク電極30a,30bを通電させる通電位置と、固定アーク電極30aから離れる遮断位置とを自在に移動することにより、アーク放電4の発弧を引き受ける。トリガー電極31の移動は、駆動装置(不図示)の操作力によって中心軸に沿って移動する。
通電位置に位置するとトリガー電極31は、固定アーク電極30a、30bと接触する。つまり、トリガー電極31により固定アーク電極30a、30bは短絡し、通電状態を実現するようになっている。通電位置から遮断位置へ移動するとトリガー電極31は、固定アーク電極30aから離れ、トリガー電極31と固定アーク電極30aの間にアーク放電4が発生する。トリガー電極31が固定アーク電極30aから更に離れ、固定アーク電極30aとトリガー電極31との距離が、固定アーク電極30aと固定アーク電極30bとの距離より広がると、アーク放電4は最終的にはトリガー電極31からアーク電極30bに転移する。
ロッド状のトリガー電極31を囲むようにして絶縁ノズル32が配置されている。絶縁ノズル32は、固定アーク電極30a、30bとの間の空間に設けられる。この絶縁ノズル32は、遮断動作時にも移動しない固定部品となっている。遮断動作時にはトリガー電極31は絶縁ノズル32内部を移動し、アーク放電4が当該絶縁ノズル32内部に発生するように構成されている。
アーク放電4に吹き付けるガス流は、昇圧室35と蓄圧室36により生成される。蓄圧室36及び昇圧室35は可動電極部Bに設けられ、トリガー電極31を囲むようにして設けられる。トリガー電極31を円筒部材40と固定アーク電極30bとで囲んだ空間が蓄圧室36として定義される。
固定アーク電極30bの先端部は、中心部側に突出しており、先端部の内径はトリガー電極31の外径と等しくなっており、トリガー電極31は、固定アーク電極30bに対して煽動する。トリガー電極31と固定アーク電極30bとが煽動する部分は一定の気密性を有している。トリガー電極31は、蓄圧室36を閉塞状態にする。一方、トリガー電極31が、固定アーク電極30aから離れる方向に移動することで、固定アーク電極30bからも離れる。これにより蓄圧室36は、開放状態となる。すなわち、トリガー電極31は、蓄圧室36を閉塞状態と開放状態を切り替える開閉手段である。
シリンダ39および円筒部材40および可動ピストン33に囲まれた空間は、昇圧室35として定義される。可動ピストン33が、昇圧室35の容積を変化させるように、シリンダ39内を扇動可能に配置される。可動ピストン33は、駆動装置(不図示)の操作力によりアーク放電4から遠ざかるように移動することで昇圧室35内の圧力は上昇する。可動ピストン33は、例えば、トリガー電極31とリンク42により結合されたロッド43により駆動される。軸ずれを防止し、過大な機械力が一か所に集中しないようにするため、ロッド43は図2に示すように角度方向に複数本設けることが望ましい。ロッド43とシリンダ39の摺動部分から昇圧室35内の圧力が漏れ出さないようにするために、同部はシール部材47によりシールされる。
(作用)
(通電状態)
通電状態では、対向通電電極2と可動通電電極3が電気的に接続されており、これらの部材が電路の一つとなる。特に図示しないが、密閉容器60には2本の導体がそれぞれスペーサによって対向電極部A側と可動電極部B側とに固定されている。スペーサは密閉容器60と導体とを絶縁するとともに、導体を支持するものである。通電状態において電流は、ブッシング(図示しない)を介してガス遮断器に流れ込み、対向電極部A側の導体から上記電路となる部材、及び可動電極部B側の導体とブッシング(図示しない)を介してガス遮断器外部へ流れ出す。
(遮断過程の前半)
過大な事故電流、進み小電流、リアクトル遮断等の遅れ負荷電流、又は極めて小さな事故電流の遮断を要する場合、駆動装置の操作力を受けて、トリガー電極31は固定アーク電極30aから解離すると同時に、トリガー電極31と固定アーク電極間でアーク放電4が発生する。アーク放電4から発生する排熱ガス20は、その発生と同時に遅延なくアーク放電4から遠ざかる方向に流れる。すなわち、固定アーク電極30aに設けられた排気穴(図示せず)や、可動通電電極3に設けられた排気穴37を抜けて、密閉容器内へと排出される。
すなわち、アーク放電4の熱により高温となった排熱ガス20は、ほとんどが密閉容器内に排出されるため、蓄圧室36側への流入は、極少量である。従って、遮断動作中のごく短時間では、前記消弧性ガスの昇圧は、アーク熱の影響をほとんど受けず、可動ピストン33による断熱圧縮作用によりほぼもたらされる。
(遮断過程の後半)
遮断過程の後半においては、昇圧室35の体積は相対的に小さくなり、可動ピストン33により圧縮された消弧性ガスは大半が蓄圧室36内に貯留される。それと同時に、可動ピストン33に設けたシール部材47が、前記連通穴34を塞ぐことにより、昇圧室35と蓄圧室36とは圧力的に切り離される。さらに、その後速やかに放圧機構48により昇圧室35内の圧力は密閉容器へと放圧される。放圧機構48は、図3に示すように、ロッド43の一部に溝を設けることなどが考えられるが、他にも種々の構造が有りうる。
一方、トリガー電極31が固定アーク電極30bを通過して閉塞部41が解放されるため、蓄圧室36内の圧縮ガスは吹付けガス21としてアーク放電4に強力に吹き付けられる。絶縁ノズル32は吹付けガス21が効果的にアーク放電4に吹付けられ、また熱排ガス20がスムーズに排出されるよう、ガスの流れを適切に整流する。
この段階では、アーク放電4は固定アーク電極30aに転移される。したがって、トリガー電極31にアーク放電4が点弧している期間は、固定アーク電極30bにアーク放電4が転移されるまでの遮断過程初期の限定された期間のみである。
(遮断過程の終了後)
昇圧室35には、吸気穴17および吸気バルブ5が設けられている。吸気バルブ5は、昇圧室35内の圧力が密閉容器内の充填圧力よりも低くなる際に限り、消弧性ガスを昇圧室35内に吸気補充するように構成されている。
したがって、遮断過程終了後に、再び投入動作をした場合、昇圧室35には吸気穴17を通じて新鮮な消弧性ガスが密閉容器内から供給される。
(a)吹付けガスの低温化
本実施形態のガス遮断器では、アーク放電4の熱による消弧性ガスの自力昇圧作用を利用していない。アーク放電4に吹付けられるガス21は、アーク放電4の熱による熱的な昇圧はなされておらず、可動ピストン33による機械的圧縮によって圧力が高められた消弧性ガスである。したがって、アーク放電4へ吹付けられる昇圧ガス35の温度は、自力昇圧作用を利用した従来の吹付けガス21の温度に比べて、はるかに低くなる。その結果、昇圧ガス35の吹付けによるアーク放電4の冷却効果を著しく高めることができる。
(b)耐久性の向上とメンテナンスの低減化
本実施形態のガス遮断器では、吹き付ける消弧性ガスは低温である。そのため、アーク放電4周辺の温度が低温化する。それ故に、電流遮断に伴う固定アーク電極30a、30bおよび絶縁ノズル32の劣化を著しく軽減することができ、耐久性が向上する。その結果、固定アーク電極30a、30bおよび絶縁ノズル32のメンテナンス頻度を落とすことが可能となり、メンテナンスの負担を低減化することができる。
また、密閉容器側に固定されたアーク電極30a、30bは可動部の重量には影響しないので、重量増大を懸念せずに、固定アーク電極30a、30bを太く構成することができる。このため大電流アークに対するアーク電極30a、30bの耐久性は著しく向上する。さらに、アーク電極30a、30bを太く構成した場合、電極ギャップ間に高電圧が印加されたときのアーク電極30a、30b先端における電界集中を大きく緩和することが可能である。
したがって、従来のガス遮断器に比べて必要となる電極ギャップ間隔を短くすることかできる。その結果、アーク放電4の長さは短くなり、電流遮断時におけるアーク放電4への電気的入力パワーは小さくなる。
(c)電流遮断時間の短縮化を図る
本実施形態によれば、アーク熱による自力昇圧作用を利用していないので、アーク放電4へと吹付けられる圧縮ガスの圧力や流量は、電流条件によらず常に一定である。また、アーク放電4への吹付け開始タイミングも、トリガー電極31の先端部が固定アーク電極30bを通過して両者が離れるタイミングで決まるので、電流条件によらず常に一定である。したがって、電流遮断の完了時間が長引くことはなく、電流遮断の完了時間の短縮化という要請に応えることができる。
(d)駆動操作力の低減化を図る
駆動ストロークが完全遮断位置に近づくにつれて、昇圧室35および蓄圧室36内の圧縮ガスの圧力は高まり、同時に可動ピストン33に作用する圧縮反力は大きくなる。これに打ち勝つためには、それ相応の駆動力をもった駆動装置が必要となる。
完全遮断位置においては、可動ピストン33に設けたシール部材47が、連通穴34をふさぐことにより、昇圧室35と蓄圧室36とは圧力的に切り離される。それと同時に、図3に示すように、放圧機構48により昇圧室35内の圧力は放圧される。このため、すくなくとも完全遮断位置にまで可動部を引っ張ることができる駆動エネルギーさえあれば、その後は可動ピストン33にはストロークを逆行させる力は一切作用されないため、ストロークが逆行する恐れはない。
また、トリガー電極31は固定アーク電極30a、30bより径が小さく、従来の可動アーク電極4および駆動ロッド6と比べて軽量で済む。また、2つの固定アーク電極30a、30bに加えて、絶縁ノズル32も可動部に含まれないので、可動部の重量を大幅に低減することが可能である。このように可動部の軽量化を進めた本実施形態では、電流遮断に必要な可動部の開極速度を得る面で、駆動操作力を大幅に低減することができる。
さらに、軽量化とともに、電流を遮断するために必要な吹き付け圧力自体を低減することができれば、圧縮に必要な駆動操作力を低減することができる。本実施形態では、吹付けガス21の温度が従来に比べてはるかに低いため、アーク放電4の冷却効果が著しく高まり、より低い圧力でアーク放電4を遮断することが可能となる。
また、アーク放電4から発生する熱排ガス20は、その発生と同時に、遅滞なくアーク放電4から遠ざかる方向に流れ、前記密閉容器内の空間へと速やかに排出される。そのため、アーク放電4への吹付けガス21は、上流側の圧力すなわち蓄圧室36の圧力と、下流側すなわち固定アーク電極30a近傍の圧力との差により流れる。すなわち、下流側の圧力が高いと、いくら蓄圧室36の圧力を高めても、十分な吹き付け力が得られない。
本実施の形態によれば、アーク放電4の発生と同時に、熱排ガス20の圧力は速やかに密閉容器へと排出されるため、下流側すなわち固定アーク電極30a近傍の圧力は常に密閉容器の充填圧力とほぼ同等の値が維持される。そのため、電流遮断に必要な吹き付け圧力を低減することができ、駆動操作力を低減することができる。
また、本実施形態では、固定アーク電極30bの内側から噴出した低温の昇圧ガス35は、固定アーク電極30b近傍に位置するアーク放電4の根元部に集中して、内側から外側に横切るように吹付けられる様相となる。そのため、より低い圧力でアークを遮断することが可能となり、優れた遮断性能を維持しつつ、駆動操作力の低減化を図ることができる。
また、アーク放電4から発生する熱排ガス20の圧力は、前述の通り速やかに密閉容器内の空間へと排出されるが、図1に示す可動ピストン33の左側の面には一部作用する可能性がある。しかしながら、熱排ガス20の圧力が作用した場合においても、その圧力は可動ピストン33による圧縮力をサポートする力になりこそすれ、少なくとも可動ピストン33の駆動操作力の反力として作用することは一切ない。この点からも、駆動操作力の低減化を図ることができる。
(e)ガス流の安定化を図る
さらに、本実施形態では、蓄圧室36内の圧力を調整する際などにおいて複雑なバルブ制御が不要であり、消弧性ガスの吹付け圧力上昇にアーク熱による自力昇圧作用も利用していない。したがって、遮断電流条件に関係なく、常に同等の吹付けガス圧力およびガス流量を安定して得ることができる。このため、遮断電流の大きさによる性能の不安定性は全く生じることがない。
本実施形態では、絶縁ノズル32とアーク電極30a、30bが全て固定されている。そのため、各部材の相対的な位置が変わることがなく、また、アーク熱による自力昇圧作用を一切利用していないので、アーク放電4へと吹付けられる昇圧ガス35の圧力や流量についても、電流条件によらず、常に一定である。したがって、アーク遮断にとって理想的となるように、絶縁ノズル32内の流路を最適に設計することが可能である。
(f)高速再閉路動作時の遮断性能の向上
さらには、昇圧室35には、吸気穴17および吸気バルブ5を設け、各室内の圧力が密閉容器内の充填圧力よりも低くなると、消弧性ガスを自動的に吸気補充できる。このため、投入動作時には低温の消弧性ガスが昇圧室35内に速やかに補充される。よって、高速再閉路責務における二回目の遮断過程においても、遮断性能の劣化は全く懸念されない。
(効果)
以上のように、本実施形態では、従来のガス遮断器が持つ全ての課題を同時に解消することができる。すなわち、本実施形態によれば、吹付けガスの低温化とシンプルな構造を実現して駆動操作力を大幅に低減することでき、消弧性ガスの流れの安定化を図り、優れた遮断性能と耐久性とを兼ね備えたガス遮断器を提供することができる。
[2.第2の実施形態]
第2の実施形態は第1の実施形態と基本構造は同一であるが、図1、2、3には図示されていない、可動部の駆動装置に特徴がある。
(構成)
図4および図5に、圧縮反力(ア)、すなわち可動ピストン33が昇圧室35の圧力から受ける力を実線で、駆動装置の駆動力(イ)を点線で、可動部を加速させる力(実効加速力,(イ−ア))を一点鎖線で示す。横軸は駆動ストロークであり、完全投入位置が0pu、完全開極位置が1.0puである。ここで摩擦等の影響は無視するとした場合、実効加速力は「駆動力(イ)−圧縮反力(ア)」で描かれる。実効加速力は正の値が加速力、負の値が減速力を意味する。
本実施形態のガス遮断器は、吹付けガスの圧力上昇を可動ピストン33による断熱圧縮を主体として行うため、圧縮反力((ア),実線)のカーブは断熱圧縮特性として知られる図4および図5に示すような単調増加特性となる。また、吹付けガスの圧力上昇にアークからの熱エネルギーを活用しないため、圧縮反力(実線)のカーブは遮断電流の大小や交流電流の位相などによらず、常に一定のカーブとなる。
図4は、駆動装置の駆動力((イ),点線)がストロークに対してフラットな特性の場合を示している。一方,図5は、駆動装置の駆動力((イ),点線)がストロークに対して減衰していく特性の場合を示している。図4では最も極端な例として、駆動力は全ストローク位置にわたり0.5puで一定としている。一方、図5では、駆動力が一例として0.8puから0.2puまで直線的に減衰するケースを取り上げている。
また、駆動装置が遮断動作のために蓄勢している駆動エネルギーは、駆動力((イ),点線)をストロークで積分した面積として与えられる。
すなわち、図4の駆動力特性の場合、駆動エネルギーは
0.5pu×全ストローク1pu=0.5 ・・・(式1)
のエネルギー量となる。
一方、図5の駆動力特性の場合、駆動エネルギーは、縦軸0puのラインと駆動力(イ)の点線とで囲まれた台形の面積となり、
(0.8pu+0.2pu)÷2×全ストローク1pu=0.5 ・・・(式2)
のエネルギー量となる。
つまり、図4と図5は駆動力のストローク特性は異なるものの、駆動エネルギーとしては同一である。第2の実施形態では、駆動装置に図5に示すような出力減衰型の特性を有するものを採用することを特徴とする。
(作用効果)
一般的に駆動装置の大きさやコストは、駆動エネルギーに対して概ね単調増加の傾向を持つ。すなわち、図4と図5は駆動力の特性は異なるものの、駆動エネルギーとしては同一であるため、どちらも駆動装置の大きさやコストはさほど大きな差はないといえる。
一方、駆動エネルギーは同じでも、ストロークの前半で大きな駆動力を出し、後半に向かって減衰してゆく図5の特性の駆動装置の方が、実効加速力(イ−ア)が図4より大きな値となっていることが分かる。圧縮反力の特性(ア)は図4と図5で同一で、かつ、駆動エネルギーも同一であるので、完全開極位置(ストローク1pu)での速度は同一となるが、ストローク途中の速度は両社で異なり、開極前半における加速力が大きい図5の方が可動部のトップスピードは速くなる。
これは、操作駆動エネルギーが同じ場合、図5に示すような出力減衰型の駆動特性をもった駆動装置の方が、図4の駆動特性の駆動装置と比べ、可動部の駆動速度を速くすることができることを示している。これはガス遮断器にとっては、より速く電極間のギャップが開くことを意味しており、電極間の速やかな電気絶縁性の回復の面で大きなメリットとなる。また、可動部の駆動速度が速くなれば、アーク放電4がトリガー電極31から固定アーク電極30bに転移し、蓄圧室36から低温の圧縮ガスが強力にアーク放電4へ吹付けられるまでの時間が短くなり、遮断完了までに要する時間の短縮、さらには耐久性の向上につながる。
以上述べた作用効果が得られるのは、ガス遮断器が吹付けガスの圧力上昇を可動ピストン33による断熱圧縮を主体として行っており、そのため圧縮反力が初期は非常に小さく、後半に向かって急激に増加する特性であることに由来する。また、圧縮反力の特性が遮断電流の大小や交流電流位相などによらず、常に一定のカーブとなることも、当該作用効果を得るための必須条件である。いずれも、従来のガス遮断器の構造では達成できない特徴である。従来の遮断器では、固定ピストン15に印加される圧縮反力はアーク発生熱の影響を大きく受けるため、単調増加のカーブにはならず、また遮断電流の条件により様相は大きく異なるからである。
駆動エネルギーが同一の条件で、駆動出力を図4のようなフラットな特性から、図5のような減衰型の特性とする具体的方策について説明する。これは、駆動エネルギー源として蓄勢したバネを採用すれば容易に実現できる。バネ機構の出力特性は、原理的には以下の式のように与えられ、図5に示したような単調減少直線となる。
F=−k・x ・・・(式3)
ここで、F:駆動力、k:バネ定数、x:ストロークである。
特に、完全開極位置(ストローク1pu)でバネが自由長に近くなるように構成すれば、バネ定数kの値は大きくなり、バネの放勢にともない駆動力がストロークに対して大きく減衰する特性となる。
あるいはまた、油圧操作機構のようにストロークに対して比較的フラットな出力特性を持つ駆動装置を用いる場合は、適正なリンク構造を連結することで、操作駆動エネルギーを変えずに、出力特性を減衰型に変更することも可能である。
出力特性を減衰型にする方策は上記以外にも種々考えうるが、重要なことは、第1の実施形態で示した構造においては、駆動力がストロークに対して減衰型にある機構と組み合わせることで、同一の操作駆動エネルギーであっても、電極の解離速度を効果的に上げることができ、遮断器の速やかな絶縁回復、遮断完了までに要する時間の短縮、耐久性の向上などの、特有のメリットが得られるということである。
さらに、第1の実施形態で述べた昇圧室36の高いガス圧力を可動ピストン33から切り離し、かつ昇圧室35の圧力を放圧機構48により放圧することで、たとえ駆動力が開極後半に大きく低下しても、可動部が逆行するなどの不具合は生じない。
なお、出力低下型の駆動力特性の一つの目安として、投入位置(ストローク0pu)での駆動力に対して、完全遮断位置(ストローク1pu)での駆動力が例えば概ね80%以下とすることを提案する。完全開極位置における出力低下率を80%以下となるように設定すれば,上記の作用効果が実質的に得ることができる。
[3.他の実施形態]
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。実施形態で開示の構成の全て又はいずれかを組み合わせたものも包含される。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
A…固定電極部
B…可動電極部
1…ガス遮断器
2…対向通電電極
3…可動通電電極
4…アーク放電
5…吸気バルブ
20…熱排ガス
30a、30b…固定アーク電極
31…トリガー電極
33…可動ピストン
34…連通穴
35…昇圧室
36…蓄圧室
37…排気穴
39…シリンダ
40…円筒部材
41…閉塞部
42…リンク
43…ロッド
47…シール部材
48…放圧機構
49…放出圧縮ガス

Claims (6)

  1. 電流遮断と投入を切り替えるガス遮断器であって、
    消弧性ガスが充填された密閉容器と、
    前記密閉容器内に対向配置された一対の固定アーク電極と、
    前記固定アーク電極間を移動自在に配置され、移動に伴ってアーク放電を発生させるトリガー電極と、
    昇圧手段により前記消弧性ガスを圧縮し昇圧させる昇圧部と、
    前記昇圧部と連通し昇圧した消弧性ガスを溜めておく蓄圧部と、
    を備え、
    前記トリガー電極は、前記蓄圧部を閉塞状態あるいは開放状態に切り替える開閉手段であり、
    電流遮断時の前半では前記蓄圧部を閉塞状態とし、電流遮断時の後半では前記蓄圧部を開放状態に切り替え、前記アーク放電に前記蓄圧部内の消弧性ガスを導き、
    前記一対の固定アーク電極の間には絶縁ノズルが固定され、
    アーク放電により高温となった消弧性ガスは絶縁ノズルにより整流され
    前記昇圧手段は、移動に伴って前記昇圧部と前記蓄圧部との連通部分を塞ぎ、
    前記昇圧部と前記蓄圧部とを圧力的に切り離すことを特徴とするガス遮断器。
  2. 前記昇圧部は、前記昇圧手段が前記連通部分を塞ぐ位置までの移動に伴い、前記昇圧部の圧力を放圧する放圧手段を備えたことを特徴とする請求項1に記載のガス遮断器
  3. 電流遮断と投入を切り替えるガス遮断器であって、
    消弧性ガスが充填された密閉容器と、
    前記密閉容器内に対向配置された一対の固定アーク電極と、
    前記固定アーク電極間を移動自在に配置され、移動に伴ってアーク放電を発生させるトリガー電極と、
    昇圧手段により前記消弧性ガスを圧縮し昇圧させる昇圧部と、
    前記昇圧部と連通し昇圧した消弧性ガスを溜めておく蓄圧部と、
    を備え、
    前記トリガー電極は、前記蓄圧部を閉塞状態あるいは開放状態に切り替える開閉手段であり、
    電流遮断時の前半では前記蓄圧部を閉塞状態とし、電流遮断時の後半では前記蓄圧部を開放状態に切り替え、前記アーク放電に前記蓄圧部内の消弧性ガスを導き、
    前記一対の固定アーク電極の間には絶縁ノズルが固定され、
    アーク放電により高温となった消弧性ガスは絶縁ノズルにより整流され、
    前記昇圧部は、前記昇圧手段が前記連通部分を塞ぐ位置までの移動に伴い、前記昇圧部の圧力を放圧する放圧手段を備えたことを特徴とするガス遮断器。
  4. 前記昇圧手段は、前記消弧性ガスを機械的に圧縮するための駆動装置を設け、
    この駆動装置の駆動力は、前記昇圧部の圧力を放圧と共に減少するように構成されたことを特徴する請求項1乃至3の何れか1項に記載のガス遮断器。
  5. 前記昇圧手段は、前記トリガー電極と連動し、
    前記トリガー電極を移動させる駆動装置と、前記昇圧手段により消弧性ガスを機械的に圧縮するための駆動装置とが共通であることを特徴とする請求項1乃至4の何れか1項に記載のガス遮断器。
  6. 前記昇圧部は、シリンダと、このシリンダと一体的に設けられたピストンから構成され、
    前記ピストンは、前記シリンダ内に煽動自在に配置し、
    前記アーク放電による熱により、前記シリンダ内の消弧性ガスの圧力が上昇しないことを特徴とする請求項1乃至5の何れか1項に記載のガス遮断器。
JP2013215861A 2013-10-16 2013-10-16 ガス遮断器 Active JP6289856B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013215861A JP6289856B2 (ja) 2013-10-16 2013-10-16 ガス遮断器
EP14854027.1A EP3059753B1 (en) 2013-10-16 2014-10-14 Gas circuit breaker
PCT/JP2014/005194 WO2015056438A1 (ja) 2013-10-16 2014-10-14 ガス遮断器
CN201480056753.2A CN105765684B (zh) 2013-10-16 2014-10-14 气体断路器
BR112016008143-9A BR112016008143B1 (pt) 2013-10-16 2014-10-14 Disjuntor a gás
US15/085,011 US9997314B2 (en) 2013-10-16 2016-03-30 Gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215861A JP6289856B2 (ja) 2013-10-16 2013-10-16 ガス遮断器

Publications (2)

Publication Number Publication Date
JP2015079635A JP2015079635A (ja) 2015-04-23
JP6289856B2 true JP6289856B2 (ja) 2018-03-07

Family

ID=52827895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215861A Active JP6289856B2 (ja) 2013-10-16 2013-10-16 ガス遮断器

Country Status (6)

Country Link
US (1) US9997314B2 (ja)
EP (1) EP3059753B1 (ja)
JP (1) JP6289856B2 (ja)
CN (1) CN105765684B (ja)
BR (1) BR112016008143B1 (ja)
WO (1) WO2015056438A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109931A1 (ja) 2016-12-16 2018-06-21 株式会社 東芝 ガス絶縁開閉装置
WO2019092866A1 (ja) * 2017-11-10 2019-05-16 株式会社 東芝 ガス遮断器
WO2019092864A1 (ja) 2017-11-10 2019-05-16 株式会社 東芝 ガス遮断器
WO2019092861A1 (ja) * 2017-11-10 2019-05-16 株式会社 東芝 ガス遮断器
JP6915086B2 (ja) * 2017-12-01 2021-08-04 株式会社東芝 ガス遮断器
US11177097B2 (en) * 2017-12-01 2021-11-16 Kabushiki Kaisha Toshiba Gas circuit breaker
EP3770939B1 (en) * 2018-03-20 2024-02-07 Panasonic Intellectual Property Management Co., Ltd. Circuit interrupter
WO2020084754A1 (ja) * 2018-10-26 2020-04-30 株式会社 東芝 ガス遮断器
CN113330529B (zh) 2019-03-19 2024-04-02 株式会社东芝 气体断路器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3134200A1 (de) * 1981-08-27 1983-03-10 Siemens AG, 1000 Berlin und 8000 München Elektrischer schalter
US4550330A (en) 1984-06-29 1985-10-29 International Business Machines Corporation Semiconductor interferometer
JPS6114444U (ja) * 1984-07-02 1986-01-28 株式会社東芝 パツフア式ガス遮断器
DE3438635A1 (de) 1984-09-26 1986-04-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Druckgasschalter
JPS6238548Y2 (ja) * 1984-12-04 1987-10-01
US4665289A (en) 1985-05-08 1987-05-12 Kabushiki Kaisha Toshiba Puffer type gas insulated circuit breaker
DE4010007A1 (de) * 1990-03-26 1991-10-02 Siemens Ag Druckgasleistungsschalter mit antreibbarem kompressionskolben
FR2680044B1 (fr) * 1991-08-02 1995-01-20 Alsthom Gec Disjoncteur a moyenne ou haute tension a contacts d'arc en bout.
FR2692400B1 (fr) * 1992-06-10 1997-06-27 Alsthom Gec Buse de soufflage a plusieurs divergents.
DE19517615A1 (de) * 1995-05-13 1996-11-14 Abb Research Ltd Leistungsschalter
DE19641550A1 (de) * 1996-10-09 1998-04-16 Asea Brown Boveri Leistungsschalter
DE19816505A1 (de) * 1998-04-14 1999-10-21 Asea Brown Boveri Leistungsschalter
JP2000348580A (ja) * 1999-01-07 2000-12-15 Fuji Electric Co Ltd パッファ形ガス遮断器
FR2807870B1 (fr) * 2000-04-18 2002-05-24 Alstom Interrupteur a soufflage d'arc, possedant une chambre de coupure a compression de gaz reduite et un mouvement alternatif du piston
EP1207544B1 (de) * 2000-11-17 2006-06-14 ABB Schweiz AG Kontaktzone für einen Leistungsschalter
FR2817389B1 (fr) 2000-11-30 2003-01-03 Schneider Electric High Voltag Appareillage de coupure electrique haute tension a double mouvement
JP2004055420A (ja) 2002-07-23 2004-02-19 Toshiba Corp 遮断器
JP2010056023A (ja) * 2008-08-29 2010-03-11 Toshiba Corp ガス遮断器
JP5242461B2 (ja) * 2009-03-06 2013-07-24 株式会社東芝 ガス遮断器
JP6157824B2 (ja) * 2012-09-28 2017-07-05 株式会社東芝 ガス遮断器
JP6382543B2 (ja) 2014-03-24 2018-08-29 株式会社東芝 ガス遮断器
JP6320106B2 (ja) 2014-03-25 2018-05-09 株式会社東芝 ガス遮断器

Also Published As

Publication number Publication date
EP3059753A1 (en) 2016-08-24
US9997314B2 (en) 2018-06-12
EP3059753A4 (en) 2017-08-02
EP3059753B1 (en) 2019-02-13
BR112016008143B1 (pt) 2022-05-03
CN105765684B (zh) 2018-11-16
BR112016008143A2 (ja) 2017-08-01
US20160211097A1 (en) 2016-07-21
JP2015079635A (ja) 2015-04-23
CN105765684A (zh) 2016-07-13
WO2015056438A1 (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6289856B2 (ja) ガス遮断器
JP6157824B2 (ja) ガス遮断器
JP6320106B2 (ja) ガス遮断器
JP6382543B2 (ja) ガス遮断器
US9312085B2 (en) Circuit breaker with fluid injection
JP2015041504A (ja) ガス遮断器
JP6773918B2 (ja) ガス遮断器
WO2018229972A1 (ja) ガス遮断器
WO2019092861A1 (ja) ガス遮断器
WO2019092864A1 (ja) ガス遮断器
WO2019092862A1 (ja) ガス遮断器
JP2005276614A (ja) ガス遮断器
JP2014186796A (ja) ガス遮断器
RU2396629C2 (ru) Дугогасительное устройство высоковольтного газонаполненного автокомпрессионного выключателя
JP2015023006A (ja) ガス遮断器
JP2013054989A (ja) ガス遮断器
JP2014179305A (ja) ガス遮断器
JP2013171747A (ja) ガス遮断器
JP2015122273A (ja) 電力用ガス遮断器
JP2017199616A (ja) ガス遮断器
EP2791958A1 (en) Circuit breaker with fluid injection
EP2791959A1 (en) Circuit breaker with fluid injection
JP2012084282A (ja) ガス遮断器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171204

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150