[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6282458B2 - Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method - Google Patents

Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method Download PDF

Info

Publication number
JP6282458B2
JP6282458B2 JP2013257952A JP2013257952A JP6282458B2 JP 6282458 B2 JP6282458 B2 JP 6282458B2 JP 2013257952 A JP2013257952 A JP 2013257952A JP 2013257952 A JP2013257952 A JP 2013257952A JP 6282458 B2 JP6282458 B2 JP 6282458B2
Authority
JP
Japan
Prior art keywords
fluororesin
secondary battery
electrolyte secondary
negative electrode
winding element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013257952A
Other languages
Japanese (ja)
Other versions
JP2015115266A (en
Inventor
弘治 干場
弘治 干場
靖男 高野
靖男 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2013257952A priority Critical patent/JP6282458B2/en
Priority to KR1020140161736A priority patent/KR102278447B1/en
Priority to US14/562,503 priority patent/US9761854B2/en
Publication of JP2015115266A publication Critical patent/JP2015115266A/en
Application granted granted Critical
Publication of JP6282458B2 publication Critical patent/JP6282458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Description

本発明は、非水電解質二次電池用電極巻回素子及びその製造方法に関する。   The present invention relates to an electrode winding element for a non-aqueous electrolyte secondary battery and a method for manufacturing the same.

ポリフッ化ビニリデン(PVDF)系のフッ素樹脂をリチウムイオン(lithiumion)二次電池のゲル(gel)電解質のマトリックスポリマー(matrix polymer)として使用する例は、数多く存在する。例えば、PVDF系のフッ素(fluorine)樹脂からなる多孔質膜をセパレータ(separator)の表面に形成する技術が知られている。この技術では、例えば以下に示す方法によって多孔質膜をセパレータの表面に形成する。   There are many examples in which a polyvinylidene fluoride (PVDF) -based fluororesin is used as a matrix polymer of a gel electrolyte of a lithium ion secondary battery. For example, a technique for forming a porous film made of PVDF-based fluorine resin on the surface of a separator is known. In this technique, for example, a porous film is formed on the surface of a separator by the following method.

第1の方法では、NMP(N−メチルピロリドン)、ジメチルアセトアミド、アセトン(acetone)等の有機溶剤中にフッ素樹脂を溶解させることでスラリー(slurry)を作製する。そして、このスラリーをセパレータや電極に塗工後、水、メタノール、トリプロピレングリコール等の貧溶媒を用いてフッ素樹脂を相分離させることでフッ素樹脂を多孔質化させた塗工層を形成する。第2の方法では、フッ素樹脂をジメチルカーボネート、プロピレンカーボネート、エチレンカーボネート等を溶媒とする加熱電解液中に溶解させることで加熱スラリーを作製する。そして、この加熱スラリーをセパレータや電極に塗工することで塗工層を形成する。そして、塗工層を冷却することで、フッ素樹脂をゲル(電解液で膨潤した多孔質膜)に転移させる。   In the first method, a slurry is prepared by dissolving a fluororesin in an organic solvent such as NMP (N-methylpyrrolidone), dimethylacetamide, or acetone. And after apply | coating this slurry to a separator or an electrode, the coating layer which made the fluororesin porous is formed by phase-separating a fluororesin using poor solvents, such as water, methanol, and a tripropylene glycol. In the second method, a heated slurry is prepared by dissolving a fluororesin in a heated electrolyte using dimethyl carbonate, propylene carbonate, ethylene carbonate, or the like as a solvent. And a coating layer is formed by apply | coating this heating slurry to a separator or an electrode. Then, the fluororesin is transferred to a gel (a porous film swollen with an electrolytic solution) by cooling the coating layer.

特開平10−110052号公報Japanese Patent Laid-Open No. 10-110052 特開2012−190784号公報JP 2012-190784 A 特表2010−538173号公報JP 2010-538173 A 特開2011−204627号公報JP 2011-204627 A

ところで、上記の方法によってPVDFの多孔質膜が表面に形成されたセパレータは、未形成のセパレータに比べて滑り性が悪く、静電気も発生しやすいので、製造工程上で取り扱いにくいという問題があった。具体的には、当該セパレータを巻回素子のセパレータとした場合に、帯状の正極、負極、セパレータを重ねたときの相互の滑り性が悪いため、巻回素子が歪んでしまうという問題があった。巻回素子が歪んだ場合、巻回素子をケースに収納しにくくなるといった問題が生じうる。また、この歪みの影響によりこの巻回素子を使用した非水電解質二次電池は、サイクル(cycle)寿命が十分でないという問題もあった。   By the way, the separator with the PVDF porous film formed on the surface by the above method has a problem that it is difficult to handle in the manufacturing process because it is less slidable than the unformed separator and easily generates static electricity. . Specifically, when the separator is a winding element separator, there is a problem that the winding element is distorted due to poor slipperiness when the strip-like positive electrode, negative electrode, and separator are stacked. . When the winding element is distorted, there is a problem that it becomes difficult to store the winding element in the case. Further, the non-aqueous electrolyte secondary battery using this winding element has a problem that the cycle life is not sufficient due to the influence of the distortion.

一方、例えば特許文献1〜4に開示されているように、フッ素樹脂の粒子またはセラミック(ceramic)粒子を使用した技術が知られている。特許文献1に開示された技術では、セパレータである多孔質フィルムからフッ素樹脂からなる粒子の一部を突出させる。特許文献2に開示された技術では、セパレータ内にセラミック粒子を含有させる。特許文献3に開示された技術では、不織布内の細孔の一部をフッ素樹脂の粒子で充填する。特許文献4に開示された技術では、フッ素樹脂と含酸素官能基を有する高分子との複合化高分子が分散した水系スラリーを用いて負極を作製する。しかし、これらの技術では上記の問題を何ら解決することができなかった。   On the other hand, for example, as disclosed in Patent Documents 1 to 4, a technique using fluororesin particles or ceramic particles is known. In the technique disclosed in Patent Document 1, a part of particles made of a fluororesin is projected from a porous film that is a separator. In the technique disclosed in Patent Document 2, ceramic particles are contained in the separator. In the technique disclosed in Patent Document 3, a part of the pores in the nonwoven fabric is filled with fluororesin particles. In the technique disclosed in Patent Document 4, a negative electrode is manufactured using an aqueous slurry in which a composite polymer of a fluororesin and a polymer having an oxygen-containing functional group is dispersed. However, these techniques cannot solve the above problems.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、製造工程上で取り扱いやすいセパレータを用いて作製され、巻回素子の歪みを抑制し、かつ、非水電解質二次電池のサイクル寿命を向上させることが可能な、新規かつ改良された非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and the object of the present invention is produced using a separator that is easy to handle in the manufacturing process, suppresses distortion of the winding element, and New and improved electrode winding element for nonaqueous electrolyte secondary battery capable of improving cycle life of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary It is providing the manufacturing method of the electrode winding element for secondary batteries.

上記課題を解決するために、本発明のある観点によれば、帯状正極と、帯状負極と、帯状正極及び帯状負極の間に配置された帯状多孔質膜と、フッ素樹脂含有微粒子と、フッ素樹脂含有微粒子を担持し、かつ、総体積がフッ素樹脂含有微粒子の総体積よりも小さい結着剤とを含み、帯状多孔質膜の表面に形成される接着層と、を備えることを特徴とする、非水電解質二次電池用電極巻回素子が提供される。   In order to solve the above problems, according to an aspect of the present invention, a strip-like positive electrode, a strip-like negative electrode, a strip-like porous film disposed between the strip-like positive electrode and the strip-like negative electrode, fluororesin-containing fine particles, and a fluororesin An adhesive layer that supports the contained fine particles and includes a binder whose total volume is smaller than the total volume of the fluororesin-containing fine particles, and is formed on the surface of the band-shaped porous film, An electrode winding element for a non-aqueous electrolyte secondary battery is provided.

この巻回素子は、後述する実施例で示されるとおり、歪みが小さい。また、接着層によって各電極とセパレータとの界面が安定化するので、サイクル寿命が向上する。また、帯状セパレータ、すなわち接着層が形成された多孔質膜は、滑り性にも優れる。したがって、帯状セパレータは、取り扱い性も良好である。   This winding element has a small distortion as shown in the examples described later. Moreover, since the interface between each electrode and the separator is stabilized by the adhesive layer, the cycle life is improved. Moreover, the porous separator in which the strip separator, that is, the adhesive layer is formed, is also excellent in slipperiness. Therefore, the strip separator has good handleability.

ここで、帯状負極は、負極活物質と、フッ素樹脂含有微粒子とを含む負極活物質層を備え、接着層は、負極活物質層に結着していてもよく、この場合、帯状負極とセパレータとの界面がさらに安定化する。したがって、サイクル寿命がさらに向上する。   Here, the strip-shaped negative electrode includes a negative electrode active material layer including a negative electrode active material and fluororesin-containing fine particles, and the adhesive layer may be bound to the negative electrode active material layer. In this case, the strip-shaped negative electrode and the separator The interface with is further stabilized. Therefore, the cycle life is further improved.

また、フッ素樹脂含有微粒子は、球状粒子であってもよく、この場合、サイクル寿命がさらに向上する。   The fluororesin-containing fine particles may be spherical particles, and in this case, the cycle life is further improved.

また、フッ素樹脂は、ポリフッ化ビニリデンを含んでいてもよく、この場合、サイクル寿命がさらに向上する。   Further, the fluororesin may contain polyvinylidene fluoride, and in this case, the cycle life is further improved.

また、結着剤はポリオレフィン樹脂を含んでいてもよく、この場合、サイクル寿命がさらに向上する。   Further, the binder may contain a polyolefin resin, and in this case, the cycle life is further improved.

また、接着層は、無機粒子を含んでいてもよく、この場合、サイクル寿命がさらに向上する。   The adhesive layer may contain inorganic particles, and in this case, the cycle life is further improved.

本発明の他の観点によれば、上記の非水電解質二次電池用電極巻回素子を備えることを特徴とする、非水電解質二次電池が提供される。   According to another aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery comprising the electrode winding element for a non-aqueous electrolyte secondary battery.

この非水電解質二次電池に含まれる巻回素子は歪みが小さい。また、非水電解質二次電池のサイクル寿命は良好である。また、非水電解質二次電池に含まれる帯状セパレータ、すなわち接着層が形成された多孔質膜は、滑り性にも優れる。したがって、帯状セパレータは、取り扱い性も良好である。   The winding element included in this nonaqueous electrolyte secondary battery has a small distortion. Further, the cycle life of the nonaqueous electrolyte secondary battery is good. In addition, the strip separator included in the nonaqueous electrolyte secondary battery, that is, the porous film on which the adhesive layer is formed is excellent in slipperiness. Therefore, the strip separator has good handleability.

本発明の他の観点によれば、フッ素樹脂含有微粒子と、フッ素樹脂含有微粒子を担持し、かつ、総体積がフッ素樹脂含有微粒子の総体積よりも小さい結着剤とを含む水系スラリーを帯状多孔質膜の表面に塗工し、乾燥する工程を含むことを特徴とする、非水電解質二次電池用電極巻回素子の製造方法が提供される。   According to another aspect of the present invention, an aqueous slurry containing fluororesin-containing fine particles and a binder that supports the fluororesin-containing fine particles and has a total volume smaller than the total volume of the fluororesin-containing fine particles There is provided a method for producing an electrode winding element for a non-aqueous electrolyte secondary battery, comprising the steps of coating on the surface of a membrane and drying.

この観点によれば、取り扱い性に優れた帯状セパレータが作製される。また、この帯状セパレータを用いて作製された巻回素子は、歪みが小さい。また、この巻回素子では、各電極とセパレータとの界面が安定化するので、この巻回素子を用いて作製された非水電解質二次電池は、サイクル寿命が向上する。   According to this viewpoint, a strip separator excellent in handleability is produced. Moreover, the winding element produced using this strip separator has a small distortion. Moreover, in this winding element, since the interface between each electrode and the separator is stabilized, the cycle life of the nonaqueous electrolyte secondary battery produced using this winding element is improved.

以上説明したように本発明による巻回素子は、製造工程上で取り扱いやすいセパレータを用いて作製される。また、巻回素子は、その歪みを抑制し、かつ、非水電解質二次電池のサイクル寿命を向上させることができる。   As described above, the winding element according to the present invention is manufactured using a separator that is easy to handle in the manufacturing process. Further, the wound element can suppress the distortion and improve the cycle life of the nonaqueous electrolyte secondary battery.

本発明の実施形態に係るリチウムイオン二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the lithium ion secondary battery which concerns on embodiment of this invention. 本発明の実施形態に係る電極積層体の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the electrode laminated body which concerns on embodiment of this invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.リチウムイオン二次電池の構成>
(リチウムイオン二次電池の全体構成)
まず、図1及び図2を参照して、本発明の実施形態に係るリチウムイオン二次電池の構成について説明する。図1は、巻回素子100の平面図と、巻回素子100の領域Aを拡大した拡大図とを示す。図2は、正極、負極および2枚のセパレータが積層された電極積層体100aの平面図と、電極積層体100aの領域Aを拡大した拡大図とを示す。
<1. Configuration of lithium ion secondary battery>
(Overall configuration of lithium ion secondary battery)
First, with reference to FIG.1 and FIG.2, the structure of the lithium ion secondary battery which concerns on embodiment of this invention is demonstrated. FIG. 1 shows a plan view of the winding element 100 and an enlarged view in which a region A of the winding element 100 is enlarged. FIG. 2 shows a plan view of an electrode laminate 100a in which a positive electrode, a negative electrode, and two separators are laminated, and an enlarged view in which a region A of the electrode laminate 100a is enlarged.

リチウムイオン二次電池は、巻回素子100と、非水電解質溶液と、外装材とを備える。巻回素子100は、帯状負極10、帯状セパレータ20、帯状正極30、及び帯状セパレータ20がこの順で積層された電極積層体100aを長手方向に巻回し、矢印B方向に圧縮したものである。   The lithium ion secondary battery includes a winding element 100, a non-aqueous electrolyte solution, and an exterior material. The winding element 100 is obtained by winding an electrode stack 100a in which a strip-like negative electrode 10, a strip-like separator 20, a strip-like positive electrode 30, and a strip-like separator 20 are laminated in this order in the longitudinal direction and compressing in the arrow B direction.

(負極の構成)
帯状負極10は、負極集電体10bと、負極集電体10bの両面に形成された負極活物質層10aとを含む。帯状負極10は、いわゆる水系負極である。
(Configuration of negative electrode)
The strip-shaped negative electrode 10 includes a negative electrode current collector 10b and a negative electrode active material layer 10a formed on both surfaces of the negative electrode current collector 10b. The strip-shaped negative electrode 10 is a so-called aqueous negative electrode.

具体的には、負極活物質層10aは、負極活物質と、増粘剤と、結着剤とを含む。負極活物質層10aを構成する負極活物質としては、リチウムとの合金化、又は、リチウム(Li)の可逆的な吸蔵及び放出が可能な物質であれば特に限定されず、例えば、リチウム、インジウム(In)、スズ(Sn)、アルミ(Al)、ケイ素(Si)等の金属及びこれらの合金や酸化物、Li4/3Ti5/3、SnO等の遷移金属酸化物や、人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛、難黒鉛化性炭素、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス(coke)、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール(furfuryl alcohol)樹脂焼成炭素、ポリアセン(polyacene)、ピッチ(pitch)系炭素繊維等の炭素材料などが挙げられる。これらの負極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。中でも、黒鉛系材料を主材料として用いるのが好ましい。 Specifically, the negative electrode active material layer 10a includes a negative electrode active material, a thickener, and a binder. The negative electrode active material constituting the negative electrode active material layer 10a is not particularly limited as long as it is a material capable of alloying with lithium or reversibly occluding and releasing lithium (Li). For example, lithium, indium (In), tin (Sn), aluminum (Al), silicon (Si) and other metals and alloys and oxides thereof, transition metal oxides such as Li 4/3 Ti 5/3 O 4 and SnO, and artificial Graphite, natural graphite, mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, non-graphitizable carbon, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon Carbon such as microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon fiber, etc. Materials and the like. These negative electrode active materials may be used independently and 2 or more types may be used together. Among these, it is preferable to use a graphite-based material as a main material.

増粘剤は、負極合剤スラリーを塗工に適した粘度に調整するとともに、負極活物質層10a内で結着剤として機能するものである。増粘剤としては水溶性高分子が好適に用いられ、例えばセルロース系高分子、ポリアクリル酸(Polyacrylic acid)系高分子、ポリビニルアルコール(polyvinyl alcohol)、ポリエチレンオキシド(polyethylene oxide)等が挙げられる。セルロース系高分子としては、例えばカルボキシメチルセルロース(CMC)の金属塩またはアンモニウム塩、メチルセルロース(methylcellulose)、エチルセルロース(ethyl cellulose)、ヒドロキシアルキルセルロース(hydroxy alkyl cellulose)などのセルロース(Cellulose)誘導体等が挙げられる。他の例としては、ポリビニルピロリドン(PVP)、スターチ(starch)、リン酸スターチ、カゼイン(casein)、各種変性デンプン(starch)、キチン(chitin)、キトサン(chitosan)誘導体などが挙げられる。これらの増粘剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースのアルカリ金属塩が特に好ましい。   The thickener adjusts the negative electrode mixture slurry to a viscosity suitable for coating and functions as a binder in the negative electrode active material layer 10a. As the thickener, a water-soluble polymer is preferably used, and examples thereof include a cellulose-based polymer, a polyacrylic acid-based polymer, polyvinyl alcohol, polyethylene oxide, and the like. Examples of the cellulosic polymer include metal derivatives or ammonium salts of carboxymethyl cellulose (CMC), cellulose derivatives such as methyl cellulose, ethyl cellulose, and hydroxyalkyl cellulose. . Other examples include polyvinylpyrrolidone (PVP), starch, starch phosphate, casein, various modified starches, chitin, chitosan derivatives and the like. These thickeners can be used alone or in combination of two or more. Among these, cellulose polymers are preferable, and alkali metal salts of carboxymethyl cellulose are particularly preferable.

結着剤は、負極活物質同士を結着するものである。結着剤の好ましい例としては、フッ素樹脂含有微粒子が挙げられる。フッ素樹脂含有微粒子は、フッ素樹脂を含む微粒子であり、負極活物質層10aの結着剤となるものである。フッ素樹脂含有微粒子は、好ましくはフッ素樹脂で構成される。   The binder binds the negative electrode active materials to each other. Preferable examples of the binder include fluororesin-containing fine particles. The fluororesin-containing fine particles are fine particles containing a fluororesin and serve as a binder for the negative electrode active material layer 10a. The fluororesin-containing fine particles are preferably composed of a fluororesin.

フッ素樹脂含有微粒子を構成するフッ素樹脂の好ましい例としては、PVDF及びPVDFを含む共重合体等が挙げられる。PVDFを含む共重合体としては、フッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)との共重合体、フッ化ビニリデン(VDF)とテトラフルオロエチレン(TFE)との共重合体等が挙げられる。   Preferable examples of the fluororesin constituting the fluororesin-containing fine particles include PVDF and a copolymer containing PVDF. Examples of the copolymer containing PVDF include a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), a copolymer of vinylidene fluoride (VDF) and tetrafluoroethylene (TFE), and the like. .

フッ素樹脂含有微粒子の粒径(フッ素系微粒子を球体とみなした時の直径)は特に制限されず、負極活物質層10a内に分散できる粒径であればどのような値であってもよい。例えば、フッ素樹脂含有微粒子の平均粒子径(粒径の算術平均値)は、80−500nm程度であればよい。フッ素樹脂含有微粒子の平均粒子径は、例えばレーザ回折法(laser diffractometry)によって測定される。具体的には、レーザ回折法によってフッ素系微粒子の粒度分布を測定し、この粒度分布に基づいて粒径の算術平均値を算出すればよい。   The particle size of the fluororesin-containing fine particles (the diameter when the fluorine-based fine particles are regarded as spheres) is not particularly limited, and may be any value as long as it can be dispersed in the negative electrode active material layer 10a. For example, the average particle diameter (arithmetic average value of particle diameter) of the fluororesin-containing fine particles may be about 80-500 nm. The average particle diameter of the fluororesin-containing fine particles is measured by, for example, a laser diffraction method (laser diffraction method). Specifically, the particle size distribution of the fluorine-based fine particles may be measured by a laser diffraction method, and the arithmetic average value of the particle sizes may be calculated based on this particle size distribution.

なお、フッ素樹脂含有微粒子は、本実施形態の効果を損なわない範囲内で各種の加工、例えば他の樹脂によって複合化されていてもよい。例えば、フッ素樹脂含有微粒子は、アクリル樹脂と複合化されていてもよい。このフッ素樹脂含有微粒子は、IPN(Inter−penetrating network polymer)状の構造をしている。   In addition, the fluororesin-containing fine particles may be combined with various types of processing, for example, other resins within a range that does not impair the effects of the present embodiment. For example, the fluororesin-containing fine particles may be combined with an acrylic resin. The fluororesin-containing fine particles have an IPN (Inter-penetrating network polymer) -like structure.

フッ素樹脂含有微粒子は、例えばフッ素樹脂を構成するモノマー(monomer)(例えばVDF)を乳化重合することにより作製(合成)される。フッ素系微粒子は、フッ素樹脂を構成するモノマーを懸濁重合させ、これによって得られた粗粒子を粉砕することで作製されてもよい。   The fluororesin-containing fine particles are produced (synthesized) by, for example, emulsion polymerization of a monomer (for example, VDF) constituting the fluororesin. The fluorine-based fine particles may be produced by suspension polymerization of a monomer constituting the fluororesin and pulverizing coarse particles obtained thereby.

本実施形態では、フッ素樹脂を微粒子としたので、フッ素樹脂含有微粒子は、水中で分散してラテックスを形成する。したがって、負極活物質層10aを形成するためのスラリーの溶媒として水を使用することができる。   In the present embodiment, since the fluororesin is used as fine particles, the fluororesin-containing fine particles are dispersed in water to form a latex. Therefore, water can be used as a solvent for the slurry for forming the negative electrode active material layer 10a.

本実施形態のフッ素樹脂含有微粒子は、球状粒子であることが特に好ましい。球状のフッ素樹脂含有微粒子は、例えば上述した乳化重合法により作製可能である。また、フッ素樹脂含有微粒子の形状(及び上述した構造)は、例えばSEM(走査型電子顕微鏡)によって確認できる。   The fluororesin-containing fine particles of the present embodiment are particularly preferably spherical particles. The spherical fluororesin-containing fine particles can be produced, for example, by the emulsion polymerization method described above. The shape of the fluororesin-containing fine particles (and the structure described above) can be confirmed by, for example, SEM (scanning electron microscope).

負極活物質層10aは、結着剤として、さらにエラストマー系高分子の微粒子を含んでもよい。エラストマー系高分子としては、SBR(スチレンブタジエンゴム)、BR(ブタジエンゴム)、NBR(ニトリルブタジエンゴム)、NR(天然ゴム)、IR(イソプレンゴム)、EPDM(エチレン−プロピレン−ジエン三元共重合体)、CR(クロロプレンゴム)、CSM(クロロスルホン化ポリエチレン)、アクリル酸エステル、メタクリル酸エステルの共重合体、および、これらの部分水素化物、あるいは完全水素化物、アクリル酸エステル系共重合体等が挙げられる。これらは結着性向上のため、カルボン酸やスルホン酸、リン酸、水酸基等の極性官能基をもつ単量体により変性されていてもよい。   The negative electrode active material layer 10a may further contain fine particles of an elastomeric polymer as a binder. Elastomer polymers include SBR (styrene butadiene rubber), BR (butadiene rubber), NBR (nitrile butadiene rubber), NR (natural rubber), IR (isoprene rubber), EPDM (ethylene-propylene-diene ternary copolymer) Coalesced), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), acrylic acid ester, methacrylic acid ester copolymer, and partially hydride or complete hydride, acrylic acid ester copolymer, etc. Is mentioned. These may be modified with a monomer having a polar functional group such as carboxylic acid, sulfonic acid, phosphoric acid, or hydroxyl group in order to improve binding properties.

増粘剤及び結着剤の負極活物質層内の含有比は特に制限されず、リチウムイオン二次電池の負極活物質層に適用可能な含有比であればよい。   The content ratio of the thickener and the binder in the negative electrode active material layer is not particularly limited as long as the content ratio is applicable to the negative electrode active material layer of the lithium ion secondary battery.

負極集電体10bは、導電体であればどのようなものでも良く、例えば、銅、ステンレス鋼、及びニッケルメッキ鋼等で構成される。負極集電体10bには、負極端子が接続される。   The negative electrode current collector 10b may be any conductor as long as it is a conductor, and is made of, for example, copper, stainless steel, nickel-plated steel, or the like. A negative electrode terminal is connected to the negative electrode current collector 10b.

帯状負極10は、例えば、以下の方法により作製される。すなわち、負極活物質層の材料を水に分散させることで負極合剤スラリー(水系スラリー)を形成し、この負極合剤スラリーを集電体上に塗工する。これにより、塗工層を形成する。ついで、塗工層を乾燥する。負極合剤スラリー中では、フッ素樹脂微粒子及びエラストマー系高分子の微粒子が負極活物質層10a内に分散している。ついで、乾燥した塗工層を負極集電体10bとともに圧延する。これにより、帯状負極10が作製される。   The strip-shaped negative electrode 10 is produced by the following method, for example. That is, a negative electrode mixture slurry (aqueous slurry) is formed by dispersing the material of the negative electrode active material layer in water, and this negative electrode mixture slurry is applied onto a current collector. Thereby, a coating layer is formed. Next, the coating layer is dried. In the negative electrode mixture slurry, fluororesin fine particles and elastomeric polymer fine particles are dispersed in the negative electrode active material layer 10a. Next, the dried coating layer is rolled together with the negative electrode current collector 10b. Thereby, the strip-shaped negative electrode 10 is produced.

帯状セパレータ20は、帯状多孔質膜20cと、帯状多孔質膜20cの両面に形成された接着層20aとを含む。   The strip-shaped separator 20 includes a strip-shaped porous membrane 20c and an adhesive layer 20a formed on both surfaces of the strip-shaped porous membrane 20c.

帯状多孔質膜20cは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。帯状多孔質膜20cとしては、優れた高率放電性能を示す多孔質膜や不織布等を、単独あるいは併用することが好ましい。帯状多孔質膜20cを構成する樹脂としては、例えばポリエチレン(polyethylene),ポリプロピレン(polypropylene)等に代表されるポリオレフィン(polyolefin)系樹脂、ポリエチレンテレフタレート(Polyethylene terephthalate),ポリブチレンテレフタレート(polybutylene terephthalate)等に代表されるポリエステル(Polyester)系樹脂、PVDF、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン−パーフルオロビニルエーテル(par fluorovinyl ether)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−トリフルオロエチレン(trifluoroethylene)共重合体、フッ化ビニリデン−フルオロエチレン(fluoroethylene)共重合体、フッ化ビニリデン−ヘキサフルオロアセトン(hexafluoroacetone)共重合体、フッ化ビニリデン−エチレン(ethylene)共重合体、フッ化ビニリデン−プロピレン(propylene)共重合体、フッ化ビニリデン−トリフルオロプロピレン(trifluoro propylene)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)−ヘキサフルオロプロピレン(hexafluoropropylene)共重合体、フッ化ビニリデン−エチレン(ethylene)−テトラフルオロエチレン(tetrafluoroethylene)共重合体等を挙げることができる。   The belt-like porous membrane 20c is not particularly limited, and any belt-like porous membrane 20c may be used as long as it is used as a separator for a lithium ion secondary battery. As the belt-like porous film 20c, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the resin constituting the band-shaped porous film 20c include polyolefin resins represented by polyethylene, polypropylene, and the like, polyethylene terephthalate, and polybutylene terephthalate. Representative polyester resin, PVDF, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetra Fluoroethylene (tetrafluoroeth) len) copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride -Ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene (Hexafluoropropylene) copolymer, vinylidene fluoride-ethylene ( thylene) - can be exemplified tetrafluoroethylene (tetrafluoroethylene) copolymers.

接着層20aは、上述したフッ素樹脂含有微粒子20b−1と、結着剤20b−2とを含み、帯状セパレータ20と帯状負極10及び帯状正極30とを結着する。図1では、接着層20aは、帯状セパレータ20の両面に形成されているが、少なくとも一方の表面に形成されていてもよい。   The adhesive layer 20 a includes the above-described fluororesin-containing fine particles 20 b-1 and the binder 20 b-2, and binds the strip separator 20, the strip negative electrode 10, and the strip positive electrode 30. In FIG. 1, the adhesive layer 20a is formed on both surfaces of the strip separator 20, but may be formed on at least one surface.

フッ素樹脂含有微粒子20b−1は、負極活物質層10aに含まれるものと同様である。結着剤20b−2は、接着層20a内でフッ素樹脂含有微粒子20b−1を担持するものである。接着層20a内に占める結着剤20b−2の総体積は、接着層20a内に占めるフッ素樹脂含有微粒子20b−1の総体積よりも小さい。具体的には、(フッ素樹脂含有微粒子20b−1の総体積)/(結着剤20b−2の総体積)は、2〜20程度であることが好ましい。   The fluororesin-containing fine particles 20b-1 are the same as those contained in the negative electrode active material layer 10a. The binder 20b-2 carries the fluororesin-containing fine particles 20b-1 in the adhesive layer 20a. The total volume of the binder 20b-2 in the adhesive layer 20a is smaller than the total volume of the fluororesin-containing fine particles 20b-1 in the adhesive layer 20a. Specifically, (total volume of fluororesin-containing fine particles 20b-1) / (total volume of binder 20b-2) is preferably about 2 to 20.

結着剤20b−2は、好ましくはポリオレフィン樹脂を含む。より好ましくは、結着剤20b−2は、ポリオレフィン樹脂で構成される。ポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、及びそれらのアイオノマー等が挙げられる。なお、結着剤20b−2は、上述したエラストマー系高分子で構成されていてもよいが、ポリオレフィン樹脂を含む結着剤であることが好ましい。   The binder 20b-2 preferably contains a polyolefin resin. More preferably, the binder 20b-2 is made of a polyolefin resin. Examples of the polyolefin resin include polyethylene, polypropylene, ethylene-vinyl acetate copolymers, and ionomers thereof. In addition, although the binder 20b-2 may be comprised with the elastomer type polymer mentioned above, it is preferable that it is a binder containing polyolefin resin.

接着層20aは、上述した塗工に適した粘度付与のため、増粘剤を更に含んでいてもよい。また、接着層20aは、多孔質度調整や熱安定性のため無機粒子を更に含んでいてもよい。無機粒子は、具体的にはセラミック粒子であり、より具体的には、金属酸化物粒子である。金属酸化物粒子としては、例えばアルミナ、ベーマイト、チタニア、ジルコニア、マグネシア、酸化亜鉛、水酸化アルミニウム、水酸化マグネシウム等の微粒子が挙げられる。無機粒子の平均粒子径は、接着層の厚みの1/2以下が好ましい。無機粒子の平均粒子径は、例えば、レーザ回折法等によって測定される体積累積50%(D50)である。無機粒子の含有率は本実施形態の効果が得られる範囲内であれば特に制限されないが、例えば接着層20aの総質量に対して70質量%以下であれば良い。   The adhesive layer 20a may further include a thickener for imparting a viscosity suitable for the above-described coating. Further, the adhesive layer 20a may further contain inorganic particles for adjusting the degree of porosity and thermal stability. The inorganic particles are specifically ceramic particles, and more specifically metal oxide particles. Examples of the metal oxide particles include fine particles such as alumina, boehmite, titania, zirconia, magnesia, zinc oxide, aluminum hydroxide, and magnesium hydroxide. The average particle diameter of the inorganic particles is preferably 1/2 or less of the thickness of the adhesive layer. The average particle diameter of the inorganic particles is, for example, 50% cumulative volume (D50) measured by a laser diffraction method or the like. Although the content rate of an inorganic particle will not be restrict | limited especially if it is in the range with which the effect of this embodiment is acquired, For example, what is necessary is just 70 mass% or less with respect to the total mass of the contact bonding layer 20a.

接着層20aは、以下の方法により作製される。すなわち、接着層20aの材料を水に分散、溶解させることで接着層合剤スラリー(水系スラリー)を作成する。ついで、この接着層合剤スラリーを帯状多孔質膜20cの両面のうち、少なくとも一方の表面に塗工することで塗工層を形成する。ついで、この塗工層を乾燥する。これにより、接着層20aが形成される。   The adhesive layer 20a is produced by the following method. That is, the adhesive layer mixture slurry (aqueous slurry) is prepared by dispersing and dissolving the material of the adhesive layer 20a in water. Next, the adhesive layer mixture slurry is applied to at least one surface of both surfaces of the belt-like porous film 20c to form a coating layer. Subsequently, this coating layer is dried. Thereby, the adhesive layer 20a is formed.

帯状正極30は、正極集電体30bと、正極集電体30bの両面に形成された正極活物質層30aとを有する。正極活物質層30aは、少なくとも正極活物質を含み、導電剤と、結着剤とをさらに含んでいてもよい。正極活物質は、リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば特に限定されず、例えば、コバルト酸リチウム(LCO)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、「NCA」と称する場合もある。)、ニッケルコバルトマンガン酸リチウム(以下、「NCM」と称する場合もある。)、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。   The strip-shaped positive electrode 30 includes a positive electrode current collector 30b and a positive electrode active material layer 30a formed on both surfaces of the positive electrode current collector 30b. The positive electrode active material layer 30a includes at least a positive electrode active material, and may further include a conductive agent and a binder. The positive electrode active material is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions. For example, lithium cobalt oxide (LCO), lithium nickelate, lithium nickel cobaltate, nickel cobalt aluminum acid Lithium (hereinafter also referred to as “NCA”), nickel cobalt lithium manganate (hereinafter also referred to as “NCM”), lithium manganate, lithium iron phosphate, nickel sulfide, copper sulfide, sulfur , Iron oxide, vanadium oxide and the like. These positive electrode active materials may be used independently and 2 or more types may be used together.

正極活物質は、上記に挙げた正極活物質の例のうち、特に、層状岩塩型構造を有する遷移金属酸化物のリチウム塩であることが好ましい。このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、Li1−x−y−zNiCoAl(NCA)またはLi1−x−y−zNiCoMn(NCM)(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩が挙げられる。 The positive electrode active material is preferably a lithium salt of a transition metal oxide having a layered rock salt type structure, among the examples of the positive electrode active materials listed above. As a lithium salt of a transition metal oxide having such a layered rock salt structure, for example, Li 1-x-yz Ni x Co y Al z O 2 (NCA) or Li 1-x-yz Ni x Co y Mn z O 2 (NCM) (0 <x <1, 0 <y <1, 0 <z <1, and x + y + z <1) is represented by a lithium salt of a ternary transition metal oxide. Can be mentioned.

導電剤は、例えばケッチェンブラック(Ketjenblack)、アセチレンブラック(acetylene black)等のカーボンブラック、天然黒鉛、人造黒鉛等であるが、正極の導電性を高めるためのものであれば特に制限されない。   The conductive agent is, for example, carbon black such as ketjen black or acetylene black, natural graphite, artificial graphite, or the like, but is not particularly limited as long as it is intended to increase the conductivity of the positive electrode.

結着剤は、正極活物質同士を結合すると共に、正極活物質と正極集電体30bとを結合する。結着剤の種類は特に限定されず、従来のリチウムイオン二次電池の正極活物質層に使用された結着剤であればどのようなものであっても使用できる。例えばポリフッ化ビニリデン(polyvinylidene fluoride)、フッ化ビニリデン(VDF)−ヘキサフルオロプロピレン(HFP)共重合体、フッ化ビニリデン−パーフルオロビニルエーテル(par fluorovinyl ether)共重合体、フッ化ビニリデン−テトラフルオロエチレン(tetrafluoroethylene)共重合体、フッ化ビニリデン−トリフルオロエチレン(trifluoroethylene)共重合体、エチレンプロピレンジエン(ethylene−propylene−diene)三元共重合体、スチレンブタジエンゴム(Styrene−butadiene rubber)、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber)、フッ素ゴム(fluororubber)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリエチレン(polyethylene)、ニトロセルロース(cellulose nitrate)等であるが、正極活物質及び導電剤を集電体21上に結着させることができるものであれば、特に制限されない。   The binder binds the positive electrode active materials to each other and bonds the positive electrode active material and the positive electrode current collector 30b. The type of the binder is not particularly limited, and any binder can be used as long as it is used for the positive electrode active material layer of the conventional lithium ion secondary battery. For example, polyvinylidene fluoride, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene (polyvinylidene fluoride) tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, ethylene-propylene-diene terpolymer, styrene-butadiene rubber butadiene rubber, butadiene rubber acrylonitrile-butadie erubber, fluororubber, polyvinyl acetate, polymethylmethacrylate, polyethylene, cellulosic nitrate, and the like. There is no particular limitation as long as it can be bound on the body 21.

正極集電体30bは、導電体であればどのようなものでも良く、例えば、アルミニウム、ステンレス鋼、及びニッケルメッキ鋼等で構成される。正極集電体30bには、正極端子が接続される。   The positive electrode current collector 30b may be any material as long as it is a conductor. For example, the positive electrode current collector 30b is made of aluminum, stainless steel, nickel-plated steel, or the like. A positive electrode terminal is connected to the positive electrode current collector 30b.

帯状正極30は、例えば、以下の方法により作製される。すなわち、正極活物質層の材料を有機溶剤または水に分散させることで正極合剤スラリーを形成し、この正極合剤スラリーを集電体上に塗工する。これにより、塗工層が形成される。ついで、塗工層を乾燥する。ついで、乾燥した塗工層を正極集電体30bとともに圧延する。これにより、帯状正極30が作製される。   The strip-shaped positive electrode 30 is produced by the following method, for example. That is, a positive electrode mixture slurry is formed by dispersing the material of the positive electrode active material layer in an organic solvent or water, and this positive electrode mixture slurry is applied onto a current collector. Thereby, a coating layer is formed. Next, the coating layer is dried. Next, the dried coating layer is rolled together with the positive electrode current collector 30b. Thereby, the strip-shaped positive electrode 30 is produced.

電極積層体100aは、帯状負極10、帯状セパレータ20、帯状正極30、及び帯状セパレータ20をこの順で積層することで製造される。したがって、電極積層体100aの一方の面(表面)には帯状セパレータ20が配置され、裏面には帯状負極10が配置されるので、電極積層体100aを巻回すると、電極積層体100aのある部分の表面(すなわち帯状セパレータ20)に電極積層体100aの他の部分の裏面(すなわち帯状負極10)が接触する。   The electrode laminate 100a is manufactured by laminating the strip-shaped negative electrode 10, the strip-shaped separator 20, the strip-shaped positive electrode 30, and the strip-shaped separator 20 in this order. Accordingly, the strip separator 20 is disposed on one surface (front surface) of the electrode laminate 100a, and the strip negative electrode 10 is disposed on the back surface. Therefore, when the electrode laminate 100a is wound, a portion of the electrode laminate 100a is present. The back surface (that is, the strip-shaped negative electrode 10) of the other part of the electrode laminate 100a is in contact with the surface (that is, the strip-shaped separator 20).

非水電解質溶液は、電解質を有機溶媒に溶解させた溶液である。電解質は特に限定されず、例えば、本実施形態では、リチウム塩を使用することができる。リチウム塩としては、例えば、LiClO、LiBF、LiAsF、LiPF,LiPF6−x(C2n+1(但し、1<x<6,n=1or2),LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム(stearyl sulfonic acid lithium)、オクチルスルホン酸リチウム(octyl sulfonic acid)、ドデシルベンゼンスルホン酸リチウム(dodecyl benzene sulphonic acid)等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、適当なリチウム化合物(電解質塩)を0.8〜1.5mol/L程度の濃度で含有させた非水電解液を使用することができる。 The non-aqueous electrolyte solution is a solution in which an electrolyte is dissolved in an organic solvent. The electrolyte is not particularly limited. For example, in this embodiment, a lithium salt can be used. Examples of the lithium salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF 6-x (C n F 2n + 1 ) x (where 1 <x <6, n = 1 or 2), LiSCN, LiBr, LiI, Inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium (K) such as Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN, etc. LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5) 4 N -benzoate, (C 2 H 5) 4 N-phtalate, lithium stearyl sulfonate (stearyl sulfonic acid lithium), lithium octyl sulfonate (octyl sulfonic acid), lithium dodecylbenzenesulfonate (dodecyl organic ionic salts such as benzene sulphonic acid), and the like, and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt may be the same as that of the nonaqueous electrolytic solution used in the conventional lithium secondary battery, and is not particularly limited. In this embodiment, a nonaqueous electrolytic solution containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.8 to 1.5 mol / L can be used.

また、有機溶媒としては、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(ethylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル(ester)類;γ−ブチロラクトン(butyrolactone)、γ−バレロラクトン(valerolactone)等の環状エステル類;ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethyl methyl carbonate)等の鎖状カーボネート類;ギ酸メチル(methyl formate)、酢酸メチル(methyl acetate)、酪酸メチル(butyric acid methyl)、酢酸エチル(ethyl acetate)、プロピオン酸エチル(ethyl propionate)等の鎖状エステル類;テトラヒドロフラン(Tetrahydrofuran)またはその誘導体;1,3−ジオキサン(dioxane)、1,4−ジオキサン(dioxane)、1,2−ジメトキシエタン(dimethoxyethane)、1,4−ジブトキシエタン(dibutoxyethane)、メチルジグライム(methyl diglyme)等のエーテル(ether)類;アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル(nitrile)類;ジオキソラン(Dioxolane)またはその誘導体;エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)またはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。非水電解質溶液は、帯状セパレータ20に含浸される。なお、上記の各電極には、公知の導電助剤、添加剤等を適宜加えてもよい。外装材は、例えばアルミラミネートである。   Examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate (vinyl carbonate), and the like. Esters; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate (eth) linear carbonates such as l methyl carbonate; methyl format, methyl acetate, butyric acid methyl, ethyl acetate, ethyl propionate, etc. Tetrahydrofuran or its derivatives; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane , Ethers such as methyl diglyme; Nitriles such as acetyl, benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof alone or the like A mixture of two or more types can be mentioned, but is not limited thereto. The non-aqueous electrolyte solution is impregnated in the strip separator 20. In addition, you may add a well-known conductive support agent, an additive, etc. to said each electrode suitably. The exterior material is, for example, an aluminum laminate.

<2.非水電解質リチウムイオン二次電池の製造方法>
次に、非水電解質リチウムイオン二次電池の製造方法について説明する。
(帯状正極の製造方法)
帯状正極30は、例えば、以下の方法により作製される。すなわち、正極活物質層の材料を有機溶媒や水に分散させることで正極合剤スラリーを形成し、この正極合剤スラリーを集電体上に塗工する。これにより、塗工層が形成される。ついで、塗工層を乾燥する。ついで、乾燥した塗工層を正極集電体30bとともに圧延する。これにより、帯状正極30が作製される。
<2. Manufacturing method of non-aqueous electrolyte lithium ion secondary battery>
Next, the manufacturing method of a nonaqueous electrolyte lithium ion secondary battery is demonstrated.
(Method for producing strip-shaped positive electrode)
The strip-shaped positive electrode 30 is produced by the following method, for example. That is, a positive electrode mixture slurry is formed by dispersing the material of the positive electrode active material layer in an organic solvent or water, and this positive electrode mixture slurry is applied onto a current collector. Thereby, a coating layer is formed. Next, the coating layer is dried. Next, the dried coating layer is rolled together with the positive electrode current collector 30b. Thereby, the strip-shaped positive electrode 30 is produced.

(帯状負極の製造方法)
帯状負極10は、例えば、以下の方法により作製される。すなわち、負極活物質層の材料を水に分散させることで負極合剤スラリーを形成し、この負極合剤スラリーを集電体上に塗工する。これにより、塗工層を形成する。ついで、塗工層を乾燥する。負極合剤スラリー中では、フッ素樹脂微粒子及びエラストマー系高分子の微粒子が負極活物質層10a内に分散している。ついで、乾燥した塗工層を負極集電体10bとともに圧延する。これにより、帯状負極10が作製される。
(Method for producing strip-shaped negative electrode)
The strip-shaped negative electrode 10 is produced by the following method, for example. That is, a negative electrode mixture slurry is formed by dispersing the material of the negative electrode active material layer in water, and this negative electrode mixture slurry is applied onto a current collector. Thereby, a coating layer is formed. Next, the coating layer is dried. In the negative electrode mixture slurry, fluororesin fine particles and elastomeric polymer fine particles are dispersed in the negative electrode active material layer 10a. Next, the dried coating layer is rolled together with the negative electrode current collector 10b. Thereby, the strip-shaped negative electrode 10 is produced.

(帯状セパレータの製造方法)   (Manufacturing method of strip separator)

帯状セパレータ20は、以下の方法により作製される。すなわち、接着層20aの材料を水に分散、溶解させることで接着層合剤スラリーを作成する。ついで、この接着層合剤スラリーを帯状多孔質膜20cの両面のうち、少なくとも一方の表面に塗工することで塗工層を形成する。ついで、この塗工層を乾燥する。これにより、接着層20aが形成される。すなわち、帯状セパレータ20が作製される。   The strip separator 20 is produced by the following method. That is, the adhesive layer mixture slurry is prepared by dispersing and dissolving the material of the adhesive layer 20a in water. Next, the adhesive layer mixture slurry is applied to at least one surface of both surfaces of the belt-like porous film 20c to form a coating layer. Subsequently, this coating layer is dried. Thereby, the adhesive layer 20a is formed. That is, the strip separator 20 is produced.

(巻回素子及び電池の製造方法)
ついで、帯状負極10、帯状セパレータ20、帯状正極30、及び帯状セパレータ20をこの順で積層することで電極積層体100aを作製する。ついで、電極積層体100aを巻回する。これにより、電極積層体100aのある部分の表面(すなわち帯状セパレータ20)に電極積層体100aの他の部分の裏面(すなわち帯状負極10)が接触する。これにより、巻回素子100が作製される。ついで、巻回素子100を押しつぶすことで扁平状の巻回素子100を作製する。ついで、扁平状の巻回素子100を非水電解液とともに外装体(例えばラミネートフィルム)に挿入し、外装体を封止することで、リチウムイオン二次電池を作製する。なお、外装体を封止する際には、各集電体に導通する端子を外装体の外部に突出させる。
(Wound element and battery manufacturing method)
Next, the electrode stack 100a is manufactured by laminating the belt-like negative electrode 10, the belt-like separator 20, the belt-like positive electrode 30, and the belt-like separator 20 in this order. Next, the electrode laminate 100a is wound. Thereby, the back surface (namely, strip | belt-shaped negative electrode 10) of the other part of the electrode laminated body 100a contacts the surface (namely, strip | belt-shaped separator 20) of a part with the electrode multilayer body 100a. Thereby, the winding element 100 is produced. Subsequently, the flat winding element 100 is produced by crushing the winding element 100. Next, the flat wound element 100 is inserted into an exterior body (for example, a laminate film) together with a non-aqueous electrolyte, and the exterior body is sealed to produce a lithium ion secondary battery. Note that, when sealing the exterior body, the terminals that are electrically connected to the current collectors are projected outside the exterior body.

(実施例1)
(正極の作製)
コバルト酸リチウム、カーボンブラック、ポリフッ化ビニリデン(PVDF)を固形分の質量比96:2:2でN−メチルピロリドン中に溶解分散させることで正極合剤スラリーを作製した。ついで、正極合剤スラリーを厚さ12μmのアルミ箔集電体の両面に塗布後、乾燥した。乾燥後の塗工層を圧延することで正極活物質層を作製した。集電体及び正極活物質層の総厚は120μmであった。ついで、アルミリード線を電極端部に溶接することで帯状正極を得た。
Example 1
(Preparation of positive electrode)
A positive electrode mixture slurry was prepared by dissolving and dispersing lithium cobaltate, carbon black, and polyvinylidene fluoride (PVDF) in N-methylpyrrolidone in a mass ratio of solids of 96: 2: 2. Next, the positive electrode mixture slurry was applied to both sides of an aluminum foil current collector having a thickness of 12 μm and then dried. The positive electrode active material layer was produced by rolling the coating layer after drying. The total thickness of the current collector and the positive electrode active material layer was 120 μm. Subsequently, a strip-like positive electrode was obtained by welding an aluminum lead wire to the end portion of the electrode.

(負極の作製)
黒鉛、変性SBR微粒子の水分散体、PVDF水分散体中でアクリル樹脂を重合させて複合化したフッ素樹脂含有高分子微粒子の水分散体、カルボキシメチルセルロースのナトリウム塩を固形分の質量比97:1:1:1で水溶媒中に溶解分散させることで、負極合剤スラリーを作製した。ついで、この負極合剤スラリーを厚さ10μmの銅箔集電体の両面に塗布後、乾燥した。乾燥後の塗工層を圧延することで負極活物質層を得た。集電体及び負極活物質層の総厚は120μmであった。その後、ニッケルリード線を端部に溶接することで帯状負極を得た。なお、本実施例で使用したフッ素樹脂含有微粒子の平均粒子径をレーザ回折法で測定したところ、300nm程度であった。また、フッ素樹脂含有微粒子をSEMで観察したところ、球状粒子であった。
(Preparation of negative electrode)
Graphite, an aqueous dispersion of modified SBR fine particles, an aqueous dispersion of fluororesin-containing polymer fine particles obtained by polymerizing an acrylic resin in a PVDF aqueous dispersion, and a sodium salt of carboxymethyl cellulose in a mass ratio of 97: 1 A negative electrode mixture slurry was prepared by dissolving and dispersing in an aqueous solvent at a ratio of 1: 1. Next, this negative electrode mixture slurry was applied to both sides of a 10 μm thick copper foil current collector and then dried. The negative electrode active material layer was obtained by rolling the coating layer after drying. The total thickness of the current collector and the negative electrode active material layer was 120 μm. Then, the strip | belt-shaped negative electrode was obtained by welding a nickel lead wire to an edge part. In addition, when the average particle diameter of the fluororesin-containing fine particles used in this example was measured by a laser diffraction method, it was about 300 nm. Further, when the fluororesin-containing fine particles were observed with an SEM, they were spherical particles.

(セパレータの作製)
PVDF水分散体中でアクリル樹脂を重合させて複合化したフッ素樹脂含有高分子微粒子の水分散体とカルボキシメチルセルロースのナトリウム塩と結着剤のポリエチレンアイオノマー微粒子の水分散体を固形分95:1:4で水溶媒中に溶解分散させることで接着層合剤スラリーを作製した。ついで、この接着層合剤スラリーを厚さ12μmの多孔質ポリエチレンセパレータフィルムの両面に塗布、乾燥することで、両面に厚さ3μmの接着層が形成されたセパレータを得た。このときのフッ素樹脂含有高分子微粒子と結着剤であるポリエチレンアイオノマー微粒子との体積比は、約18:1であった。
(Preparation of separator)
An aqueous dispersion of fluororesin-containing polymer fine particles obtained by polymerizing an acrylic resin in a PVDF aqueous dispersion to form a composite, and an aqueous dispersion of sodium ion of carboxymethyl cellulose and polyethylene ionomer fine particles of a binder as a solid content of 95: 1: 4 was used to dissolve and disperse in an aqueous solvent to prepare an adhesive layer mixture slurry. Next, this adhesive layer mixture slurry was applied to both sides of a 12 μm thick porous polyethylene separator film and dried to obtain a separator having a 3 μm thick adhesive layer formed on both sides. At this time, the volume ratio of the fluororesin-containing polymer fine particles to the polyethylene ionomer fine particles as a binder was about 18: 1.

(巻回素子の作製)
負極、セパレータ、正極、セパレータをこの順に積層し、直径3cmの巻き芯を用いて、この積層体を長手方向に巻きつけた。端部をテープにて固定した後、巻き芯を取り除き、厚さ3cmの2枚の金属プレートの間に円筒状電極巻回素子を挟み、3秒間保持することで、扁平状の電極巻回素子を得た。
(Production of wound element)
A negative electrode, a separator, a positive electrode, and a separator were laminated in this order, and this laminate was wound in the longitudinal direction using a winding core having a diameter of 3 cm. After fixing the end with tape, the winding core is removed, a cylindrical electrode winding element is sandwiched between two 3 cm thick metal plates, and held for 3 seconds, so that a flat electrode winding element Got.

(厚み増加率の評価)
この電極巻回素子を48時間放置前後の素子の厚み増加率を計測し、形状安定性とした。厚み増加率が小さいほど形状安定性が良好なので(すなわち、巻回素子の歪みが小さいので)好ましい。厚み増加率は、48時間放置前後の素子の厚み増加量を放置前の素子の厚みで除算することで得られる。
(Evaluation of thickness increase rate)
The electrode winding element was measured for the rate of increase in thickness of the element before and after being left for 48 hours to obtain shape stability. The smaller the rate of increase in thickness, the better the shape stability (that is, because the distortion of the winding element is small), which is preferable. The thickness increase rate can be obtained by dividing the increase in the thickness of the element before and after being left for 48 hours by the thickness of the element before being left.

(電池の作製)
上記電極巻回素子をポリプロピレン/アルミ/ナイロンの3層からなるラミネートフィルムに、2本のリード線が外に出るように電解液とともに減圧封止することで、電池を作製した。電解液には、エチレンカーボネート/エチルメチルカーボネートを3対7(体積比)で混合した溶媒に1MのLiPFを溶解させたものを使用した。この電池を80℃に加熱した厚さ3cmの2枚の金属プレートの間に挟み、5分間保持した。この電池を設計容量の1/10CA(1CAは1時間放電率)で4.4Vまで定電流充電行い、引き続き4.4Vで1/20CAになるまで定電圧充電を行った。その後1/2CAで3.0Vまで定電流放電を行った。このときの容量を初期放電容量とし、寿命評価用電池を作製した。
(Production of battery)
The electrode winding element was sealed under reduced pressure with an electrolyte so that two lead wires were exposed to a laminate film composed of three layers of polypropylene / aluminum / nylon, thereby producing a battery. As the electrolytic solution, a solution obtained by dissolving 1M LiPF 6 in a solvent in which ethylene carbonate / ethyl methyl carbonate was mixed at a ratio of 3 to 7 (volume ratio) was used. The battery was sandwiched between two 3 cm thick metal plates heated to 80 ° C. and held for 5 minutes. This battery was charged with a constant current up to 4.4 V at 1/10 CA of the designed capacity (1 CA is a discharge rate for 1 hour), and then charged with a constant voltage until 4.4 V at 1/20 CA. Thereafter, constant current discharge was performed to 3.0 V at 1/2 CA. The capacity at this time was used as the initial discharge capacity, and a battery for life evaluation was produced.

(寿命試験)
作製した電池を0.5CA、4.4Vの定電流充電、0.05CAまでの定電圧充電、の充電工程と、0.5CA、3.0Vの定電流放電の放電工程を繰り返すサイクル試験を行い、100サイクル後の初期放電容量に対する放電容量の減少率(維持率)を計測し、寿命性能評価とした。放電容量の減少率が小さいほど寿命特性に優れているおり、好ましい。維持率は、100サイクル後の放電容量を初期放電容量で除算することで得られる。
(Life test)
The cycle test which repeats the charge process of 0.5CA, the constant current charge of 4.4V, the constant voltage charge to 0.05CA, and the discharge process of the constant current discharge of 0.5CA and 3.0V is performed for the manufactured battery. The reduction rate (maintenance rate) of the discharge capacity with respect to the initial discharge capacity after 100 cycles was measured to evaluate the life performance. The smaller the reduction rate of the discharge capacity, the better the life characteristics, which is preferable. The maintenance rate is obtained by dividing the discharge capacity after 100 cycles by the initial discharge capacity.

(実施例2)
負極の製造において、黒鉛、変性SBR微粒子の水分散体、カルボキシメチルセルロースのナトリウム塩を固形分の質量比97:2:1で水溶媒中に溶解分散させることで負極合剤スラリーを作製したこと、セパレータの製造において、PVDF水分散体中でアクリル樹脂を重合させて複合化したフッ素樹脂含有高分子微粒子の水分散体、カルボキシメチルセルロースのナトリウム塩、結着剤のポリエチレンアイオノマー微粒子の水分散体を固形分の質量比89:1:10で水溶媒中に溶解分散させることで接着層合剤スラリーを作製したこと以外は実施例1と同様の処理を行った。なお、実施例2におけるフッ素樹脂含有高分子微粒子と結着剤であるポリエチレンアイオノマー微粒子の体積比は、約7:1であった。
(Example 2)
In the production of the negative electrode, a negative electrode mixture slurry was prepared by dissolving and dispersing graphite, an aqueous dispersion of modified SBR fine particles, and a sodium salt of carboxymethyl cellulose in an aqueous solvent at a solid mass ratio of 97: 2: 1. In the production of separators, solid dispersion of fluororesin-containing polymer fine particle water dispersion, polymerized acrylic resin in PVDF water dispersion, sodium salt of carboxymethyl cellulose, and polyethylene ionomer fine particle binder as solid The same treatment as in Example 1 was performed except that the adhesive layer mixture slurry was prepared by dissolving and dispersing in a water solvent at a mass ratio of 89: 1: 10 min. The volume ratio of the fluororesin-containing polymer fine particles and the polyethylene ionomer fine particles as the binder in Example 2 was about 7: 1.

(実施例3)
セパレータの製造において、平均粒子径0.5μmのアルミナ粉末、PVDF水分散体中でアクリル樹脂を重合させて複合化したフッ素樹脂含有高分子微粒子の水分散体、カルボキシメチルセルロースのナトリウム塩、結着剤のポリエチレンアイオノマー微粒子の水分散体を固形分の質量比62:27:1:10で水溶媒中に溶解分散させることで接着層合剤スラリーを作製したこと以外は実施例1と同様の処理を行った。実施例3におけるフッ素樹脂含有高分子微粒子と結着剤であるポリエチレンアイオノマー微粒子の体積比は、約2:1であった。なお、アルミナ粉末の平均粒子径は、レーザ回折法によって測定された体積累積50%(D50)である。
(Example 3)
In the production of separators, alumina powder having an average particle size of 0.5 μm, aqueous dispersion of fluororesin-containing polymer fine particles obtained by polymerizing acrylic resin in PVDF aqueous dispersion, sodium salt of carboxymethyl cellulose, binder The same treatment as in Example 1 was carried out except that an aqueous dispersion of polyethylene ionomer fine particles was dissolved and dispersed in an aqueous solvent at a mass ratio of solid content of 62: 27: 1: 10 to prepare an adhesive layer mixture slurry. went. The volume ratio of the fluororesin-containing polymer fine particles and the polyethylene ionomer fine particles as the binder in Example 3 was about 2: 1. In addition, the average particle diameter of alumina powder is 50% (D50) of volume accumulation measured by the laser diffraction method.

(比較例1)
セパレータ製造において、PVDFをN−メチルピロリドンに溶解させた溶液を、厚さ12μmの多孔質ポリエチレンフィルムの両面に塗布し、溶液が塗布されたフィルムを水中に浸漬させた後乾燥することで、フィルムの両面に網目状に多孔質化した接着層を形成した。接着層の厚さは3μmであった。比較例1は、このフィルムをセパレータとしたことは実施例1と同様の処理を行った。
(Comparative Example 1)
In the manufacture of separators, a film in which PVDF is dissolved in N-methylpyrrolidone is applied to both sides of a porous polyethylene film having a thickness of 12 μm, and the film coated with the solution is immersed in water and then dried. An adhesive layer having a mesh-like porosity was formed on both sides. The thickness of the adhesive layer was 3 μm. In Comparative Example 1, the same treatment as in Example 1 was performed except that this film was used as a separator.

(比較例2)
セパレータの製造において、平均粒子径0.5μmのアルミナ粉末、PVDF水分散体中でアクリル樹脂を重合させて複合化したフッ素樹脂含有高分子微粒子の水分散体、カルボキシメチルセルロースのナトリウム塩、結着剤のポリエチレンアイオノマー微粒子の水分散体を固形分の質量比63:18:1:18で水溶媒中に溶解分散させることで接着層合剤スラリーを作製したこと以外は実施例1と同様の処理を行った。比較例2におけるフッ素樹脂含有高分子微粒子と結着剤であるポリエチレンアイオノマー微粒子の体積比は、約0.8:1であった。
(Comparative Example 2)
In the production of separators, alumina powder having an average particle size of 0.5 μm, aqueous dispersion of fluororesin-containing polymer fine particles obtained by polymerizing acrylic resin in PVDF aqueous dispersion, sodium salt of carboxymethyl cellulose, binder The same treatment as in Example 1 was conducted except that an aqueous dispersion of polyethylene ionomer fine particles was dissolved and dispersed in an aqueous solvent at a solid mass ratio of 63: 18: 1: 18 to prepare an adhesive layer mixture slurry. went. The volume ratio of the fluororesin-containing polymer fine particles and the polyethylene ionomer fine particles as the binder in Comparative Example 2 was about 0.8: 1.

(比較例3)
セパレータの製造において、PVDF水分散体中でアクリル樹脂を重合させて複合化したフッ素樹脂含有高分子微粒子の水分散体に代えて架橋ポリスチレン微粒子を用いたこと以外は実施例2と同様の処理を行った。
(Comparative Example 3)
In the production of the separator, the same treatment as in Example 2 was performed except that crosslinked polystyrene fine particles were used in place of the aqueous dispersion of fluororesin-containing polymer fine particles obtained by polymerizing and compounding an acrylic resin in PVDF aqueous dispersion. went.

(評価)
評価結果を表1にまとめて示す。
(Evaluation)
The evaluation results are summarized in Table 1.

Figure 0006282458
Figure 0006282458

実施例1〜3では、いずれも厚み増加率が小さく、サイクル寿命も良好であった。とくに、無機粒子を含有する実施例3では、サイクル寿命が向上した。一方、比較例1は、フッ素樹脂含有高分子が粒子状ではなく網目状構造をしているため扁平型巻回素子の製造後の形状安定性が劣っていた。すなわち、比較例1の巻回素子は実施例の巻回素子よりも大きく歪んでいた。さらに、比較例1では、サイクル寿命も劣化しているが、この理由は扁平型巻回素子の歪みにあると考えられる。すなわち、比較例1の帯状セパレータは、実施例1〜3の帯状セパレータよりも滑り性が悪く、巻回素子を扁平状にする際に電極積層体同士の接触部分がうまく滑らなかった。この結果、巻回素子が歪んだ。そして、比較例1では、歪んだ巻回素子を用いて電池を作製している。このため、電池内で電極間距離が安定せず、サイクル寿命が低下したと考えられる。比較例2は、フッ素樹脂含有高分子よりも多い体積の結着剤を含有しており、サイクル容量維持率が実施例に比べて劣っている。フッ素樹脂含有高分子の代わりに粒子状架橋ポリスチレンを含有した比較例3は、同じくサイクル寿命特性に劣っている。   In Examples 1 to 3, the thickness increase rate was small and the cycle life was good. In particular, in Example 3 containing inorganic particles, the cycle life was improved. On the other hand, Comparative Example 1 was inferior in shape stability after the production of the flat wound element because the fluororesin-containing polymer had a network structure instead of particles. That is, the winding element of Comparative Example 1 was distorted to a greater extent than the winding element of the example. Further, in Comparative Example 1, the cycle life is also deteriorated, and this is considered to be due to the distortion of the flat winding element. That is, the strip separator of Comparative Example 1 was less slippery than the strip separators of Examples 1 to 3, and the contact portions between the electrode laminates did not slip well when the winding element was flattened. As a result, the winding element was distorted. And in the comparative example 1, the battery is produced using the distorted winding element. For this reason, it is considered that the distance between the electrodes is not stable in the battery and the cycle life is reduced. Comparative Example 2 contains a larger volume of binder than the fluororesin-containing polymer, and the cycle capacity retention rate is inferior to that of the example. Comparative Example 3 containing particulate crosslinked polystyrene instead of the fluororesin-containing polymer is similarly inferior in cycle life characteristics.

以上により、本実施形態に係る巻回素子は、製造工程上で取り扱いやすいセパレータを用いて作製される。また、巻回素子は、その歪みを抑制し、かつ、非水電解質二次電池のサイクル寿命を向上させることができる。   As described above, the winding element according to this embodiment is manufactured using a separator that is easy to handle in the manufacturing process. Further, the wound element can suppress the distortion and improve the cycle life of the nonaqueous electrolyte secondary battery.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

100 巻回素子
100a 積層体
10 帯状負極
10a 負極活物質層
10b 負極集電体
20 帯状セパレータ
20a 接着層
20b−1 フッ素樹脂含有微粒子
20b−2 結着剤
20c 帯状多孔質膜
30 帯状正極
30a 正極活物質層
30b 正極集電体
DESCRIPTION OF SYMBOLS 100 Winding element 100a Laminated body 10 Strip | belt-shaped negative electrode 10a Negative electrode active material layer 10b Negative electrode collector 20 Band-shaped separator 20a Adhesion layer 20b-1 Fluorine resin containing fine particle 20b-2 Binder 20c Band-shaped porous film 30 Band-shaped positive electrode 30a Positive electrode active Material layer 30b Positive electrode current collector

Claims (7)

帯状正極と、
帯状負極と、
前記帯状正極及び帯状負極の間に配置された帯状多孔質膜と、
フッ素樹脂含有微粒子と、前記フッ素樹脂含有微粒子を担持し、かつ、総体積が前記フッ素樹脂含有微粒子の総体積よりも小さい結着剤とを含み、前記帯状多孔質膜の表面に形成される接着層と、を備え
前記結着剤はポリオレフィン樹脂を含むことを特徴とする、非水電解質二次電池用電極巻回素子。
A strip-shaped positive electrode;
A strip-shaped negative electrode;
A band-shaped porous film disposed between the band-shaped positive electrode and the band-shaped negative electrode;
An adhesive formed on the surface of the band-shaped porous film, comprising: a fluororesin-containing fine particle; and a binder that supports the fluororesin-containing fine particle and has a total volume smaller than the total volume of the fluororesin-containing fine particle includes a layer, the,
The electrode winding element for a non-aqueous electrolyte secondary battery, wherein the binder contains a polyolefin resin .
前記帯状負極は、負極活物質と、前記フッ素樹脂含有微粒子とを含む負極活物質層を備え、
前記接着層は、前記負極活物質層に結着していることを特徴とする、請求項1記載の非水電解質二次電池用電極巻回素子。
The strip-shaped negative electrode includes a negative electrode active material layer including a negative electrode active material and the fluororesin-containing fine particles,
The electrode winding element for a nonaqueous electrolyte secondary battery according to claim 1, wherein the adhesive layer is bound to the negative electrode active material layer.
前記フッ素樹脂含有微粒子は、球状粒子であることを特徴とする、請求項1または2記載の非水電解質二次電池用電極巻回素子。 The electrode winding element for a non-aqueous electrolyte secondary battery according to claim 1, wherein the fluororesin-containing fine particles are spherical particles. 前記フッ素樹脂は、ポリフッ化ビニリデンを含むことを特徴とする、請求項1〜3のいずれか1項に記載の非水電解質二次電池用電極巻回素子。   The electrode winding element for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the fluororesin includes polyvinylidene fluoride. 前記接着層は、無機粒子を含むことを特徴とする、請求項1〜のいずれか1項に記載の非水電解質二次電池用電極巻回素子。 The electrode winding element for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4 , wherein the adhesive layer includes inorganic particles. 請求項1〜のいずれか1項に記載の非水電解質二次電池用電極巻回素子を備えることを特徴とする、非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the electrode winding element for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5 . フッ素樹脂含有微粒子と、前記フッ素樹脂含有微粒子を担持し、かつ、総体積が前記フッ素樹脂含有微粒子の総体積よりも小さい結着剤とを含む水系スラリーを帯状多孔質膜の表面に塗工し、乾燥する工程を含み、
前記結着剤はポリオレフィン樹脂を含むことを特徴とする、非水電解質二次電池用電極巻回素子の製造方法。

An aqueous slurry containing fluororesin-containing microparticles and a binder that supports the fluororesin-containing microparticles and has a total volume smaller than the total volume of the fluororesin-containing microparticles is applied to the surface of the belt-like porous membrane. , the step of drying seen including,
The method for producing an electrode winding element for a nonaqueous electrolyte secondary battery, wherein the binder contains a polyolefin resin .

JP2013257952A 2013-12-13 2013-12-13 Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method Active JP6282458B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013257952A JP6282458B2 (en) 2013-12-13 2013-12-13 Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method
KR1020140161736A KR102278447B1 (en) 2013-12-13 2014-11-19 Winding type electrode assembly for rechargeable lithium battery and rechargeable lithium battery including the same
US14/562,503 US9761854B2 (en) 2013-12-13 2014-12-05 Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013257952A JP6282458B2 (en) 2013-12-13 2013-12-13 Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method

Publications (2)

Publication Number Publication Date
JP2015115266A JP2015115266A (en) 2015-06-22
JP6282458B2 true JP6282458B2 (en) 2018-02-21

Family

ID=53516620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013257952A Active JP6282458B2 (en) 2013-12-13 2013-12-13 Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method

Country Status (2)

Country Link
JP (1) JP6282458B2 (en)
KR (1) KR102278447B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726584B2 (en) * 2015-10-22 2020-07-22 マクセルホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6605996B2 (en) * 2016-03-17 2019-11-13 株式会社東芝 Batteries, battery packs, and vehicles
CN107785521B (en) * 2016-08-29 2021-03-26 比亚迪股份有限公司 Battery diaphragm, lithium ion battery and preparation method thereof
JP2021523527A (en) * 2018-05-10 2021-09-02 セルガード エルエルシー Battery Separator, Coated Battery Separator, Battery and Related Methods
CN112930577A (en) * 2019-02-28 2021-06-08 日本瑞翁株式会社 Composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
JP7483911B2 (en) * 2021-10-12 2024-05-15 寧徳時代新能源科技股▲分▼有限公司 Separator, secondary battery and power consuming device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096368B2 (en) * 1996-11-25 2008-06-04 宇部興産株式会社 Nonaqueous electrolyte secondary battery
KR20090102874A (en) * 2007-03-15 2009-09-30 히다치 막셀 가부시키가이샤 Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
CN101796668B (en) * 2007-10-03 2013-08-14 日立麦克赛尔株式会社 Battery separator and nonaqueous electrolyte battery
WO2012165580A1 (en) * 2011-06-02 2012-12-06 三菱樹脂株式会社 Multilayer porous film, separator for batteries, and battery
TWI557969B (en) * 2011-10-21 2016-11-11 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
WO2013073503A1 (en) * 2011-11-15 2013-05-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
JP5867044B2 (en) * 2011-12-12 2016-02-24 株式会社村田製作所 Insulating adhesive layer and power storage device using the same
JP5910164B2 (en) * 2012-02-28 2016-04-27 日産自動車株式会社 Nonaqueous electrolyte secondary battery
KR101475791B1 (en) * 2012-03-09 2014-12-23 데이진 가부시키가이샤 Non-aqueous secondary battery separator, method for manufacturing same, and non-aqueous secondary battery

Also Published As

Publication number Publication date
KR20150069515A (en) 2015-06-23
JP2015115266A (en) 2015-06-22
KR102278447B1 (en) 2021-07-19

Similar Documents

Publication Publication Date Title
JP6399921B2 (en) Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method
JP6278679B2 (en) A conductive composition, a positive electrode, and a lithium ion secondary battery.
JP6931974B2 (en) Positive electrode mixture slurry, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6310242B2 (en) A positive electrode for a secondary battery, and a secondary battery.
JP6494273B2 (en) Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method
JP6830757B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, winding element for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP3038186B1 (en) Separator for non-aqueous electrolyte rechargeable battery, non-aqueous electrolyte rechargeable lithium battery including same, method of preparing same
JP6282458B2 (en) Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method
US20150147627A1 (en) Rechargeable lithium battery
JP2018120706A (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2016126896A (en) Positive electrode for wound type lithium ion secondary battery, negative electrode for wound type lithium ion secondary battery, and wound type lithium ion secondary battery
JP6399922B2 (en) Non-aqueous electrolyte secondary battery electrode winding element, non-aqueous electrolyte secondary battery using the same, and non-aqueous electrolyte secondary battery electrode winding element manufacturing method
US9761854B2 (en) Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
JP2017162699A (en) Wound type secondary battery separator, method for manufacturing wound type secondary battery separator, flat wound device, wound type secondary battery, and method for manufacturing wound type secondary battery
JP6571330B2 (en) Positive electrode active material layer for secondary battery, winding element, and secondary battery
JP6406813B2 (en) Negative electrode active material layer for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US11978907B2 (en) Positive electrode for lithium secondary battery, winding element for lithium secondary battery, and lithium secondary battery
JP6234186B2 (en) Nonaqueous electrolyte secondary battery
JP2016126857A (en) Nonaqueous electrolyte secondary battery
JP2019207895A (en) Nonaqueous electrolyte secondary battery
KR102290315B1 (en) Rechargeable lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180124

R150 Certificate of patent or registration of utility model

Ref document number: 6282458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250