[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6260846B2 - エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物 - Google Patents

エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物 Download PDF

Info

Publication number
JP6260846B2
JP6260846B2 JP2017547582A JP2017547582A JP6260846B2 JP 6260846 B2 JP6260846 B2 JP 6260846B2 JP 2017547582 A JP2017547582 A JP 2017547582A JP 2017547582 A JP2017547582 A JP 2017547582A JP 6260846 B2 JP6260846 B2 JP 6260846B2
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
epoxy resin
resin
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017547582A
Other languages
English (en)
Other versions
JPWO2017098879A1 (ja
Inventor
陽祐 広田
陽祐 広田
芳行 高橋
芳行 高橋
歩 高橋
歩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Application granted granted Critical
Publication of JP6260846B2 publication Critical patent/JP6260846B2/ja
Publication of JPWO2017098879A1 publication Critical patent/JPWO2017098879A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、高い流動性を有しながら、得られる硬化物が耐熱性と高温安定性に優れるエポキシ樹脂、当該エポキシ樹脂の製造方法、および当該エポキシ樹脂を含有する硬化性樹脂組成物、その硬化物と、その用途に関する。
エポキシ樹脂は、接着剤、成形材料、塗料材料のほか、硬化物が耐熱性や耐湿性に優れる点から半導体封止材料やプリント配線基板用の絶縁材料等の電気・電子分野に広く用いられている。
このうち、車載用パワーモジュールに代表されるパワー半導体は、電気・電子機器における省エネルギー化の鍵を握る重要な技術であり、パワー半導体の更なる大電流化、小型化、高効率化に伴い、従来のシリコン(Si)半導体から炭化ケイ素(SiC)半導体への移行が進められている。SiC半導体の利点は、より高温条件下での動作が可能な点にあるため、当該半導体に用いられる半導体封止材料にはこれまで以上に高い耐熱性が要求される。これに加え、半導体封止材料としては、流動性が高い点、長時間高温に曝してもその質量変化が少ない点、高温安定性も重要な要求性能であり、これらの性能を兼備する樹脂材料が求められている。
これら様々な要求特性に対応するため、例えば、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)メタンを半導体封止材料として用いることが提供されている(例えば、特許文献1参照。)。前記特許文献1で提供されている当該化合物は、2,7−ジヒドロキシナフタレンとホルムアルデヒドとエピハロヒドリンを用いて製造されるが、このような手法で製造されたエポキシ樹脂は、得られる硬化物が優れた耐熱性を示すものの、溶融粘度が高いため、硬化性樹脂組成物、あるいは半導体封止材料として満足できる流動性を得ることが困難であり、また高温安定性においては実用レベルに達していない。
より流動性に優れた硬化性樹脂組成物を得るために、1,1−ビス(2,7−ジヒドロキシナフチル)アルカンとエピハロヒドリンとの反応物と、2官能エポキシ樹脂とを併用することが提供されている(例えば、特許文献2参照)。しかし、前記特許文献2で提供されている樹脂組成物から得られる硬化物は、前述の用途における満足できる耐熱性は得られていない。
特開平4−217675号公報 特開2000−103941号公報
上記事情を鑑み、本発明が解決しようとする課題は、高い流動性を有しながら、得られる硬化物が耐熱性と高温安定性に優れるエポキシ樹脂、そのエポキシ樹脂の製造方法、当該エポキシ樹脂を含む硬化性樹脂組成物、その硬化物、及びそれらの用途を提供することにある。
本発明者らは鋭意検討した結果、下記構造式(1)で表されるエポキシ樹脂であって、GPC測定においてn=0とn=1の間に現れるピークPのピーク面積が、n=0のピーク面積に対し、所定の割合であるエポキシ樹脂を用いることで、前記課題が解決できることを見出し、本発明を完成するに至った。
Figure 0006260846
[構造式(1)中、Gはグリシジル基を示し、Rは、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ヒドロキシフェニル基、ハロゲン置換フェニル基のいずれかを示し、*はナフタレン環上の結合可能な何れかの炭素原子に結合していることを示し、nは繰り返し数を示す。]
即ち、本発明は、下記構造式(1)
Figure 0006260846
[構造式(1)中、Gはグリシジル基を示し、Rは、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ヒドロキシフェニル基、ハロゲン置換フェニル基のいずれかを示し、*はナフタレン環上の結合可能な何れかの炭素原子に結合していることを示し、nは繰り返し数を示し、平均値で0〜10である。]
で表されるエポキシ樹脂であって、GPC測定においてn=0とn=1の間に現れるピークPのピーク面積がn=0のピーク面積に対し、0.0100倍以上、0.0750倍以下であるエポキシ樹脂、その製造方法、これを含有する硬化性樹脂組成物、硬化物、及びそれらの用途を提供するものである。
本発明によれば、高い流動性を有しながら、得られる硬化物が耐熱性と高温安定性に優れるエポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物、その硬化物、及びこれらを用いる半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、及び繊維強化成形品を提供することができる。
図1は実施例1で合成したエポキシ化物(I)のGPCチャートである。 図2は実施例1で得られた結晶性エポキシ樹脂(A−1)のGPCチャートである。 図3は実施例2で得られた結晶性エポキシ樹脂(A−2)のGPCチャートである。 図4は実施例3の結晶性エポキシ樹脂(A−3)のGPCチャートである。
<エポキシ樹脂>
以下、本発明のエポキシ樹脂を詳細に説明する。
本発明のエポキシ樹脂は、下記構造式(1)
Figure 0006260846
[構造式(1)中、Gはグリシジル基を示し、Rは、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ヒドロキシフェニル基、ハロゲン置換フェニル基のいずれかを示し、*はナフタレン環上の結合可能な何れかの炭素原子に結合していることを示し、nは繰り返し数を示し、平均値で0〜10である。]
で表されるエポキシ樹脂であって、GPC測定においてn=0とn=1の間に現れるピークPのピーク面積がn=0のピーク面積に対し、0.0100倍以上、0.0750倍以下であるエポキシ樹脂である。
ナフタレン環上の結合可能な何れかの炭素原子とは、ナフタレン環上の1位、3位、4位、5位、6位、8位上にある何れかの炭素原子を示している。
なお、前記で記載した化合物の中でも、得られる硬化物が高温安定性に優れ、かつ高い耐熱性を発現しうる観点から、Rは水素原子であることが好ましい。
前記構造式(1)において、繰り返し数nの平均値は流動性と結晶性の観点より0.01〜5.00であり、好ましくは0.05〜4.00である。尚、この平均値は、後述するGPCによる測定値より算出したものである。
本発明のエポキシ樹脂は、ゲル浸透クロマトグラフィ(GPC)測定において、図1に示すようなn=0(4官能体)とn=1(6官能体)の間にピーク(以下、ピークPという)を有する。図1では、保持時間(RT:横軸)が31〜31.5分にn=1のピークが、保持時間33〜34分にn=0のピークが現れており、Pのピークはその間に表れているものである。一般的に、高純度の化合物を使用することで物性が向上するということは知られているが、本発明においては前記構造式(1)で表されるエポキシ樹脂が、GPC測定においてn=0とn=1の間にピークPを有し、そのピーク面積がn=0のピーク面積に対し、0.0100倍以上、0.0750倍以下、さらに好ましくは、0.0120倍以上、0.0700倍以下であることにより、高い流動性を有しながら、得られる硬化物が耐熱性と高温安定性に優れるモノである。前記ピークPのピーク面積がn=0のピーク面積に対し、0.0100倍未満であると、結晶性が強くなりすぎてこれを用いてなる組成物の調製時に不具合が生じやすくなり、反対に0.0750倍を越えると耐熱性、高温安定性が不十分になるという問題が発生しやすくなる。
さらに、ピークPのGPC測定における面積%としては、より高温安定性に優れる硬化物が得られやすい観点より、0.5〜4.5面積%の範囲であることが好ましく、1.0〜4.4面積%の範囲であることがより好ましい。
このピークPは、下記のGPC測定条件でその面積%を測定することができる。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC―WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPCワークステーション EcoSEC―WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)
ピークPに該当する化合物は、ジヒドロキシナフタレンの2量体を含有する化合物の混合物であると推定される。ピークPは、本発明におけるエポキシ樹脂の好ましい製法である、エピクロルヒドリンとの反応の際に生成し、下記構造式(1−1)や(1−2)で表される化合物や、前記構造式(1)で表されるエポキシ樹脂中、部分的に結合が切れたものなどが含まれる。
Figure 0006260846
本発明のエポキシ樹脂としては、長時間高温に曝しても質量変化が少ない、すなわち高温安定性により優れた硬化物が得られることから、そのエポキシ当量が140〜160g/eqの範囲であることが好ましく、143〜158g/eqの範囲であることがより好ましい。
また本発明のエポキシ樹脂としては、硬化性樹脂組成物を製造する際の作業性がさらに良好となり、例えば、表面実装型半導体装置における半導体封止材、特にトランスファー成形用半導体封止材用途に適した材料となり得る観点から、ASTM D4287に準拠して測定した150℃における溶融粘度が、1.0〜3.5dPa・sの範囲であることが好ましい。
<エポキシ樹脂の製造方法>
本発明のエポキシ樹脂の製造方法は、下記構造式(2)
Figure 0006260846
[構造式(2)中、Rは、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ヒドロキシフェニル基、ハロゲン置換フェニル基のいずれかを示す。]
で表されるフェノール化合物のエポキシ化物を再結晶化することを特徴とするものであり、前述の本発明のエポキシ樹脂を好適に得ることができる。
<工程1>
本発明のエポキシ樹脂の製造方法の工程1は、フェノール化合物のエポキシ化工程であり、前記構造式(2)で表されるフェノール化合物を用いること以外、通常のエポキシ化反応手法を適用することができる。具体的には、例えば、前記構造式(2)で表されるフェノール化合物1モルに対し、エピハロヒドリン1〜10モルを添加し、更に、前記構造式(2)で表される化合物1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に、反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法でもよい。
なお、工業生産を行う際、エポキシ化工程の生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この際、グリシドール等、エピクロルヒドリンと水、有機溶剤等との反応により誘導される不純物を含有していても良い。この時、使用するエピハロヒドリンは特に限定されないが、例えば、エピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。これらの中でも、工業的に入手が容易なことからエピクロルヒドリンが好ましい。
また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10質量%〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ化工程の反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調製するために適宜二種以上を併用してもよい。
続いて、前述で得られた反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ化物とするために、得られた反応物を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いる反応物に対して0.1質量%〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することによりエポキシ化物を得ることができる。
<工程2>
本発明の製造方法における工程2は、前記工程1で得られたエポキシ化物の再結晶化工程であり、例えば、工程1で得られたエポキシ化物にトルエン、メチルイソブチルケトン、メチルエチルケトン等の溶媒を加えて前記エポキシ化物を溶解させ、これを攪拌して結晶性エポキシ樹脂を析出する方法等が挙げられる。再結晶化工程を経ることにより、エポキシ化物中に含まれる、前記工程1で発生したハロゲン化物イオンや前記ピークPに該当する化合物の含有量を減らすことができる。析出した結晶性エポキシ樹脂は、これをろ別にて取り出して乾燥させ固形として使用したり、乾燥後更に溶融させてアモルファス状態にしてから使用したりすることもできる。あるいは、ろ別により取り出したのち、新たに溶媒を加えて樹脂溶液として使用することもできる。
<硬化性樹脂組成物>
本発明の硬化性樹脂組成物は、本発明のエポキシ樹脂と硬化剤を含む。
ここで用いることのできる硬化剤としては、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノール系化合物などの、エポキシ樹脂用硬化剤として知られている各種の硬化剤が挙げられる。
具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール性水酸基含有化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール性水酸基含有化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール性水酸基含有化合物)等の多価フェノール性水酸基含有化合物が挙げられる。
また、前記硬化性樹脂組成物は、前記で詳述した本発明のエポキシ樹脂に加え、本発明の効果を損なわない範囲で、その他の硬化性樹脂を併用しても良い。
その他の硬化性樹脂としては、例えば、シアネートエステル樹脂、ベンゾオキサジン構造を有する樹脂、マレイミド化合物、活性エステル樹脂、ビニルベンジル化合物、アクリル化合物、スチレンとマレイン酸無水物の共重合物などが挙げられる。これらその他の硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、硬化性樹脂組成物100質量部中1〜50質量部の範囲であることが好ましい。
前記シアネートエステル樹脂としては、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール−フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール−クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン−フェノール付加反応型シアネートエステル樹脂が好ましい。
ベンゾオキサジン構造を有する樹脂としては、特に制限はないが、例えば、ビスフェノールFとホルマリンとアニリンの反応生成物(F−a型ベンゾオキサジン樹脂)やジアミノジフェニルメタンとホルマリンとフェノールの反応生成物(P−d型ベンゾオキサジン樹脂)、ビスフェノールAとホルマリンとアニリンの反応生成物、ジヒドロキシジフェニルエーテルとホルマリンとアニリンの反応生成物、ジアミノジフェニルエーテルとホルマリンとフェノールの反応生成物、ジシクロペンタジエン−フェノール付加型樹脂とホルマリンとアニリンの反応生成物、フェノールフタレインとホルマリンとアニリンの反応生成物、ジフェニルスルフィドとホルマリンとアニリンの反応生成物などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
前記マレイミド化合物としては、例えば、下記構造式(i)〜(iii)の何れかで表される各種の化合物等が挙げられる。
Figure 0006260846
(式中Rはs価の有機基であり、α及びβはそれぞれ水素原子、ハロゲン原子、アルキル基、アリール基の何れかであり、sは1以上の整数である。)
Figure 0006260846
(式中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。)
Figure 0006260846
(式中Rは水素原子、アルキル基、アリール基、アラルキル基、ハロゲン原子、水酸基、アルコキシ基の何れかであり、sは1〜3の整数、tは繰り返し単位の平均で0〜10である。)
これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
前記活性エステル樹脂としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。前記活性エステル樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物又はそのハライドとヒドロキシ化合物とから得られる活性エステル樹脂が好ましく、カルボン酸化合物又はそのハライドと、フェノール化合物及び/又はナフトール化合物とから得られる活性エステル樹脂がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等、又はそのハライドが挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、フェノールフタレイン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、カテコール、α−ナフトール、β−ナフトール、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン−フェノール付加型樹脂等が挙げられる。
活性エステル樹脂として、具体的にはジシクロペンタジエン−フェノール付加構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル樹脂、フェノールノボラックのアセチル化物である活性エステル樹脂、フェノールノボラックのベンゾイル化物である活性エステル樹脂等が好ましく、なかでもピール強度の向上に優れるという点で、ジシクロペンタジエン−フェノール付加構造を含む活性エステル樹脂、ナフタレン構造を含む活性エステル樹脂がより好ましい。ジシクロペンタジエン−フェノール付加構造を含む活性エステル樹脂として、より具体的には下記一般式(iv)で表される化合物が挙げられる。
Figure 0006260846
但し、式(iv)中、Rはフェニル基又はナフチル基であり、uは0又は1を表し、nは繰り返し単位の平均で0.05〜2.5である。なお、樹脂組成物の硬化物の誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基が好ましく、uは0が好ましく、また、nは0.25〜1.5が好ましい。
本発明の硬化性樹脂組成物は、硬化性樹脂組成物のみでも硬化は進行するが、硬化促進剤を併用してもよい。硬化促進剤としてはイミダゾール、ジメチルアミノピリジンなどの3級アミン化合物;トリフェニルホスフィンなどの燐系化合物;3フッ化ホウ素、3フッ化ホウ素モノエチルアミン錯体などの3フッ化ホウ素アミン錯体;チオジプロピオン酸等の有機酸化合物;チオジフェノールベンズオキサジン、スルホニルベンズオキサジン等のベンズオキサジン化合物;スルホニル化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これら触媒の添加量は、硬化性樹脂組成物100質量部中0.001〜15質量部の範囲であることが好ましい。
また、本発明の硬化性樹脂組成物に高い難燃性が求められる用途に用いる場合には、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,5―ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
これらリン系難燃剤の配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合には0.1質量部〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を用いる場合には同様に0.1質量部〜10.0質量部の範囲で配合することが好ましく、0.5質量部〜6.0質量部の範囲で配合することがより好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ素化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(1)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(2)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類及びホルムアルデヒドとの共縮合物、(3)前記(2)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(4)前記(2)、(3)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、0.1質量部〜5質量部の範囲で配合することがより好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05質量部〜20質量部の範囲で配合することが好ましく、0.5質量部〜15質量部の範囲で配合することがより好ましい。
前記有機金属塩系難燃剤は、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物例えば、硬化性樹脂組成物100質量部中、0.005質量部〜10質量部の範囲で配合することが好ましい。
本発明の硬化性樹脂組成物は、必要に応じて無機充填材を配合することができる。前記無機充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全質量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明の硬化性樹脂組成物は、この他、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
本発明の硬化性樹脂組成物は、前記した各成分を均一に混合することにより得られ、加熱することにより硬化し容易に硬化物とすることができる。具体的には、前記した各成分を均一に混合することにより得られ、かかる硬化性樹脂組成物を、好ましくは20〜250℃の温度で加熱することにより容易に硬化物とすることができる。このようにして得られる硬化物としては、積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
<硬化性樹脂組成物の用途>
本発明の硬化性樹脂組成物が用いられる用途としては、硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等が挙げられる。これら各種用途のうち、硬質プリント配線板材料、電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高い流動性を有しながら、得られる硬化物が耐熱性と高温安定性に優れる特性を生かし、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップ基板、ビルドアップフィルム、繊維強化複合材料、繊維強化樹脂成形品に用いることが好ましい。
1.半導体封止材料
本発明の半導体封止材料は、少なくとも硬化性樹脂組成物と無機充填材を含むものである。そのような半導体封止材料を硬化性樹脂組成物から得る方法としては、前記硬化性樹脂組成物及び無機充填剤等の配合剤と(必要に応じて前記硬化促進剤)を均一になるまで充分に溶融混合する方法が挙げられる。均一にするためには、必要に応じて押出機、ニーダ、ロール等を用いてもよい。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30質量%〜95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐半田クラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
2.半導体装置
本発明の半導体装置は、前記半導体封止材料を硬化させたものである。半導体封止材料から半導体装置を得る方法としては、前記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間の間、加熱する方法が挙げられる。
3.プリプレグ
本発明のプリプレグは、硬化性樹脂組成物と補強基材からなる含浸基材の半硬化物であり、前記硬化性樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることにより得られるものである。前記硬化性樹脂組成物からプリプレグを得る方法としては、有機溶剤を配合してワニス化した硬化性樹脂組成物を、補強基材(紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布など)に含浸したのち、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、得る方法が挙げられる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20質量%〜60質量%となるように調製することが好ましい。
ここで用いる有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、下記のようにプリプレグからプリント回路基板をさらに製造する場合には、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、また、不揮発分が40質量%〜80質量%となる割合で用いることが好ましい。
4.回路基板
本発明の回路基板は、硬化性樹脂組成物の板状賦形物と銅箔とを有し、前記硬化性樹脂組成物を有機溶剤に希釈したワニスを板状に賦形した基板に銅箔を積層し、加熱加圧成型して得られるものである。具体的には、例えば硬質プリント配線基板を製造するには、前記有機溶剤を含むワニス状の硬化性樹脂組成物を、更に有機溶剤を配合してワニス化し、これを補強基材に含浸し、半硬化させることによって製造される本発明のプリプレグを得、これに銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この際、用いる硬化性樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、前記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とする回路基板を得ることができる。本発明の硬化性樹脂組成物からフレキシルブル配線基板を製造するには、エポキシ樹脂、及び有機溶剤を配合して、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60〜170℃で1〜15分間加熱し、溶媒を揮発させて、接着剤組成物をB−ステージ化する。次いで、加熱ロール等を用いて、接着剤に金属箔を熱圧着する。その際の圧着圧力は2〜200N/cm、圧着温度は40〜200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100〜200℃で1〜24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の接着剤組成物膜の厚みは、5〜100μmの範囲が好ましい。
5.ビルドアップ基板
本発明のビルドアップ基板は、硬化性樹脂組成物の乾燥塗膜と基材フィルムを有するビルドアップ用接着フィルムを回路が形成された回路基板に塗布し、加熱硬化させて得られる回路基板に凹凸を形成し、次いで前記回路基板にめっき処理を行うことにより得られるものである。硬化性樹脂組成物から上記ビルドアップ基板を得る方法としては、工程1〜3を経由する方法が挙げられる。工程1では、まず、ゴム、フィラーなどを適宜配合した前記硬化性樹脂組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。工程2では、必要に応じて、硬化性樹脂組成物が塗布された回路基板に所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、前記基板に凹凸を形成させ、銅などの金属をめっき処理する。工程3では、工程1〜2の操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップしてビルドアップ基板を成形する。なお、前記工程において、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行うとよい。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
6.ビルドアップフィルム
本発明の硬化性樹脂組成物からビルドアップフィルムを得る方法としては、例えば、支持フィルム上に硬化性樹脂組成物を塗布したのち、乾燥させて、支持フィルムの上に樹脂組成物層を形成する方法が挙げられる。本発明の硬化性樹脂組成物をビルドアップフィルムに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう前記各成分を配合することが好ましい。
ここで、回路基板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
前記したビルドアップフィルムを製造する具体的な方法としては、有機溶剤を配合してワニス化した硬化性樹脂組成物を調製した後、支持フィルム(Y)の表面に、前記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥して硬化性樹脂組成物の層(X)を形成する方法が挙げられる。
ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30質量%〜60質量%となる割合で使用することが好ましい。
なお、形成される前記樹脂組成物の層(X)の厚さは、通常、導体層の厚さ以上とする必要がある。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。なお、本発明における前記樹脂組成物の層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
前記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。ビルドアップフィルムを構成する硬化性樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
なお、前記のようにして得られたビルドアップフィルムから多層プリント回路基板を製造することができる。例えば、前記樹脂組成物の層(X)が保護フィルムで保護されている場合はこれらを剥離した後、前記樹脂組成物の層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前にビルドアップフィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70〜140℃とすることが好ましく、圧着圧力を1〜11kgf/cm(9.8×10〜107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
7.繊維強化複合材料
本発明の繊維強化複合材料は硬化性樹脂組成物が強化繊維に含浸したもの、即ち硬化性樹脂組成物と強化繊維とを少なくとも含むものである。硬化性樹脂組成物から繊維強化複合材料を得る方法としては、硬化性樹脂組成物を構成する各成分を均一に混合してワニスを調整し、次いでこれを強化繊維からなる強化基材に含浸した後、重合反応させることにより製造する方法が挙げられる。
かかる重合反応を行う際の硬化温度は、具体的には、50〜250℃の温度範囲であることが好ましく、特に、50〜100℃で硬化させ、タックフリー状の硬化物にした後、更に、120〜200℃の温度条件で処理することが好ましい。
ここで、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化プラスチック製部材の成形性と機械強度を両立することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらの2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましい。ここで、ワニスを強化繊維からなる強化基材に含浸して繊維強化複合材料とする際の強化繊維の使用量は、該繊維強化複合材料中の強化繊維の体積含有率が40%〜85%の範囲となる量であることが好ましい。
8.繊維強化樹脂成形品
本発明の繊維強化成形品は、前記繊維強化複合材料を硬化させてなるものである。本発明の硬化性樹脂組成物から繊維強化成形品を得る方法としては、型に繊維骨材を敷き、前記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に前記ワニスを注入するRTM法などにより、強化繊維に前記ワニスを含浸させたプリプレグを製造し、これを大型のオートクレーブで焼き固める方法などが挙げられる。なお、前記で得られた繊維強化樹脂成形品は、強化繊維と硬化性樹脂組成物の硬化物とを有する成形品であり、具体的には、繊維強化成形品中の強化繊維の量は、40質量%〜70質量%の範囲であることが好ましく、強度の点から50質量%〜70質量%の範囲であることが特に好ましい。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、GPCは以下の条件にて測定した。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8320 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPCワークステーション EcoSEC―WorkStation」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPCワークステーション EcoSEC―WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
実施例1
<エポキシ化物(I)の製造>
温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、2,7−ジヒドロキシナフタレン320g(2モル)とイソプロピルアルコール320gを加えて充分混合した。その後、49%NaOH33gを加えて70℃に昇温した。次いで37%ホルマリン81gを70℃に液温を保ちながら1時間で滴下した。その後、70℃で2時間撹拌を続けて、2量化反応を完結した。それにエピクロルヒドリン1850g(20モル)を添加して、50℃で49%NaOH360g(4.4モル)を3時間要して滴下した。その後、50℃で1時間撹拌を続けてエポキシ化反応を完結して、撹拌を停止して下層を棄却した。次いで、過剰のエピクロルヒドリンを蒸留回収した後に、メチルイソブチルケトン(以下、MIBKとする)1000gを加えて粗樹脂を溶解した。それに10%NaOH30gを添加して、80℃で3時間撹拌して、撹拌を停止して下層を棄却した。それに水300gを加えて2回水洗して、脱水−濾過−脱溶媒を経て、エポキシ化物(I)501gを得た。エポキシ化物(I)のGPCチャートを図1に示す。13C−NMR、FD−MSの測定結果より、前記構造式(1)で示されるエポキシ樹脂であることを確認した。さらに、図1に示すGPCチャートより、GPC測定において前記構造式(1)で示されるエポキシ樹脂のn=0とn=1のピークとの間に現れるピークPのピーク面積(S1)と、n=0のピーク面積(S2)との比は、S1/S2で、0.0783であった。さらに、図1のGPCチャートより、ピークPのエポキシ樹脂全体に占めるピーク面積比率は、4.52面積%であった。なお、得られたエポキシ樹脂は、エポキシ当量が161g/eqであり、150℃のICI粘度が3.8dPa・s、前記構造式(1)においてn=0で示されるエポキシ樹脂の含有率は、GPCにおいて57.7面積%であった。
<結晶性エポキシ樹脂(A−1)の製造>
温度計、滴下ロート、冷却管、撹拌器を取り付けたフラスコに、エポキシ化物(I)500g、MIBK300gを加えて80℃で溶解させた後、撹拌しながら室温まで冷却し、10時間撹拌を続けた。析出した結晶をろ別し、MIBK500gで3度洗浄して目的の結晶性エポキシ樹脂(A−1)を得た。エポキシ樹脂(A−1)のGPCチャートを図2に示す。GPCチャートより、GPC測定において前記構造式(1)で示されるエポキシ樹脂のn=0とn=1のピークとの間に現れるピークPのピーク面積(S1)と、n=0におけるエポキシ樹脂のピーク面積(S2)との比は、S1/S2で、0.0626であった。さらに、ピークPのエポキシ樹脂全体に占めるピーク面積比率は、4.39%であった。なお、得られたエポキシ樹脂(A−1)は、エポキシ当量が158g/eqであり、150℃のICI粘度が3.3dPa・s、前記構造式(1)においてn=0で示されるエポキシ樹脂の含有率は70.1面積%であった。
実施例2 結晶性エポキシ樹脂(A−2)の製造
エポキシ樹脂(I)500gを300gに変更した以外は実施例1と同様にして目的の結晶性エポキシ樹脂(A−2)を得た。得られたエポキシ樹脂(A−2)のGPC測定において、n=0とn=1のピークとの間に現れるピークPのピーク面積(S1)と、n=0示されるエポキシ樹脂のピーク面積(S2)との比は、S1/S2で、0.0285であった。さらに、ピークPのエポキシ樹脂全体に占めるピーク面積比率は、2.18%であった。なお、得られたエポキシ樹脂(A−2)は、エポキシ当量が153g/eqであり、150℃のICI粘度が2.7dPa・s、前記構造式(1)においてn=0で示されるエポキシ樹脂の含有率は76.4面積%であった。
実施例3 結晶性エポキシ樹脂(A−3)の製造
エポキシ樹脂(I)500gを200gに変更した以外は実施例1と同様にして目的の結晶性エポキシ樹脂(A−3)を得た。得られたエポキシ樹脂(A−3)のGPCチャートより、GPC測定において前記構造式(1)で示されるエポキシ樹脂のn=0とn=1のピークとの間に現れるピークPのピーク面積(S1)と、n=0示されるエポキシ樹脂のピーク面積(S2)との比は、S1/S2で、0.0164であった。さらに、ピークPのエポキシ樹脂全体に占めるピーク面積比率は、1.42%であった。なお、得られたエポキシ樹脂(A−3)は、エポキシ当量が147g/eqであり、150℃のICI粘度が1.8dPa・s、前記構造式(1)においてn=0で示されるエポキシ樹脂の含有率は86.4面積%であった。
実施例4〜6、比較例1〜2 硬化性樹脂組成物及び積層板の作製
下記化合物を表1に示す組成で各化合物を配合したのち、2本ロールを用いて90℃の温度で5分間溶融混練して目的の硬化性樹脂組成物を合成した。なお、表1における略号は、下記の化合物を意味している。
・エポキシ樹脂I :実施例1で合成したエポキシ化物
・エポキシ樹脂A−1:実施例1で得られたエポキシ樹脂
・エポキシ樹脂A−2:実施例2で得られたエポキシ樹脂
・エポキシ樹脂A−3:実施例3で得られたエポキシ樹脂
・エポキシ樹脂A−4:トリフェノールメタン型エポキシ樹脂 エポキシ当量:172g/eq EPPN−502H(日本化薬株式会社製)
・硬化剤TD−2093Y:フェノールノボラック樹脂 水酸基当量:104g/eq(DIC株式会社製)
・TPP:トリフェニルホスフィン
・溶融シリカ:球状シリカ「FB−560」電気化学株式会社製
・シランカップリング剤:γ−グリシドキシトリエトキシキシシラン「KBM−403」信越化学工業株式会社製
・カルナウバワックス:「PEARL WAX No.1−P」電気化学株式会社製
<流動性の測定>
前記で得られた硬化性樹脂組成物を試験用金型に注入し、175℃、70kg/cm、120秒の条件でスパイラルフロー値を測定した。その結果を表1に示す。
次いで、前記で得られた硬化性樹脂組成物を粉砕して得られたものを、トランスファー成形機にて、圧力70kg/cm、温度175℃、時間180秒でφ50mm×3(t)mmの円板状に成形し、180℃で5時間さらに硬化した。
<耐熱性の測定>
前記で作製した成形物を厚さ0.8mmの硬化物を幅5mm、長さ54mmのサイズに切り出し、これを試験片1とした。この試験片1を粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として測定した。その結果を表1に示す。
<高温放置後の質量減少率の測定>高温安定性の評価
前記で作製した成形物を厚さ1.6mmの硬化物を幅5mm、長さ54mmのサイズに切り出し、これを試験片2とした。この試験片2を250℃で72時間保持した後、初期質量と比較した際の質量減少率を測定した。その結果を表1に示す。
Figure 0006260846

Claims (19)

  1. 下記構造式(1)
    Figure 0006260846
    [構造式(1)中、Gはグリシジル基を示し、Rは、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ヒドロキシフェニル基、ハロゲン置換フェニル基のいずれかを示し、*はナフタレン環上の結合可能な何れかの炭素原子に結合していることを示し、nは繰り返し数を示し、平均値で0〜10である。]
    で表されるエポキシ樹脂であって、GPC測定においてn=0とn=1の間に現れるピークPのピーク面積がn=0のピーク面積に対し、0.0100倍以上、0.0750倍以下であるエポキシ樹脂。
  2. GPC測定においてn=0とn=1の間に現れるピークPのピーク面積比率が0.5〜4.5面積%である請求項1に記載のエポキシ樹脂。
  3. エポキシ当量が、140〜160g/eqである請求項1に記載のエポキシ樹脂。
  4. ASTM D4287に準拠して測定した150℃における溶融粘度が、1.0〜3.5dPa・sである請求項1に記載のエポキシ樹脂。
  5. 下記構造式(2)
    Figure 0006260846
    [構造式(2)中、Rは、それぞれ独立して水素原子、炭素数が1〜4のアルキル基、フェニル基、ヒドロキシフェニル基、ハロゲン置換フェニル基のいずれかを示す。]
    で表されるフェノール化合物のエポキシ化物を再結晶化することを特徴とするエポキシ樹脂の製造方法。
  6. 請求項1〜4の何れか1つに記載のエポキシ樹脂と硬化剤とを含む硬化性樹脂組成物。
  7. 請求項6に記載の硬化性樹脂組成物を硬化させてなる硬化物。
  8. 請求項6に記載の硬化性樹脂組成物と無機充填材とを含有する半導体封止材料。
  9. 請求項8に記載の半導体封止材料を硬化させてなる半導体装置。
  10. 請求項6に記載の硬化性樹脂組成物と補強基材からなる含浸基材の半硬化物であるプリプレグ。
  11. 請求項6に記載の硬化性樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させるプリプレグの製造方法。
  12. 請求項6に記載の硬化性樹脂組成物の板状賦形物と銅箔とを有する回路基板。
  13. 請求項6に記載の硬化性樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型する回路基板の製造方法。
  14. 請求項6に記載の硬化性樹脂組成物の乾燥塗膜と基材フィルムを有するビルドアップ用接着フィルム。
  15. 請求項6に記載の硬化性樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させるビルドアップ用接着フィルムの製造方法。
  16. 請求項14に記載のビルドアップ用接着フィルムの加熱硬化物を有する回路基板と、その加熱硬化物上に形成されためっき層とを有するビルドアップ基板。
  17. 請求項14に記載のビルドアップ用接着フィルムを回路が形成された回路基板に塗布し、加熱硬化させて得られる回路基板に凹凸を形成し、次いで前記回路基板にめっき処理を行うビルドアップ基板の製造方法。
  18. 請求項6に記載の硬化性樹脂組成物と強化繊維とを含有する繊維強化複合材料。
  19. 請求項18に記載の繊維強化複合材料を硬化させてなる繊維強化成形品。
JP2017547582A 2015-12-08 2016-11-17 エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物 Active JP6260846B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015239358 2015-12-08
JP2015239358 2015-12-08
PCT/JP2016/084053 WO2017098879A1 (ja) 2015-12-08 2016-11-17 エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物

Publications (2)

Publication Number Publication Date
JP6260846B2 true JP6260846B2 (ja) 2018-01-17
JPWO2017098879A1 JPWO2017098879A1 (ja) 2018-02-15

Family

ID=59013115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547582A Active JP6260846B2 (ja) 2015-12-08 2016-11-17 エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物

Country Status (6)

Country Link
US (1) US20180346639A1 (ja)
JP (1) JP6260846B2 (ja)
KR (1) KR102624960B1 (ja)
CN (1) CN108368237B (ja)
TW (1) TWI709583B (ja)
WO (1) WO2017098879A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626664B (zh) * 2017-02-07 2018-06-11 聯茂電子股份有限公司 具有低介電損耗的無鹵素環氧樹脂組成物
CN109837032B (zh) * 2017-11-27 2024-02-13 中国科学院大连化学物理研究所 一种金属表面用高拉伸强度快速固化胶黏剂的结构及应用
US20220025107A1 (en) * 2018-12-11 2022-01-27 Showa Denko Materials Co., Ltd. Epoxy resin b-stage film, epoxy resin cured film and method of producing epoxy resin cured film
CN112852104B (zh) * 2021-01-11 2023-02-28 广东生益科技股份有限公司 一种热固性树脂组合物及其应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137202B2 (ja) 1990-10-30 2001-02-19 大日本インキ化学工業株式会社 エポキシ樹脂、その製造方法及びエポキシ樹脂組成物
US5302672A (en) * 1991-02-27 1994-04-12 Dainippon Ink And Chemicals, Inc. 2,7-dihydroxynaphthalene based epoxy resin, intermediate thereof, processes for producing them, and epoxy resin composition
JP3575776B2 (ja) * 1995-12-28 2004-10-13 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4264769B2 (ja) * 1998-09-28 2009-05-20 Dic株式会社 エポキシ樹脂組成物及び半導体封止材料
JP2000119369A (ja) * 1998-10-09 2000-04-25 Nippon Steel Chem Co Ltd 固形エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2000336248A (ja) * 1999-05-27 2000-12-05 Dainippon Ink & Chem Inc エポキシ樹脂組成物および電気積層板
JP2005097352A (ja) * 2003-09-22 2005-04-14 Dainippon Ink & Chem Inc エポキシ樹脂組成物、半導体封止材料及び半導体装置
JP4550392B2 (ja) * 2003-09-26 2010-09-22 共栄社化学株式会社 釘用コーティング組成物
JP2007204528A (ja) * 2006-01-31 2007-08-16 Dainippon Ink & Chem Inc 変性エポキシ化合物、カチオン重合開始剤及び変性エポキシ化合物の製造方法
JP2008007629A (ja) * 2006-06-29 2008-01-17 Dainippon Ink & Chem Inc 水性着色材料及び粉末状着色材料
US20130243715A1 (en) * 2010-11-24 2013-09-19 L'oreal S.A. Compositions containing acrylic thickener and oil
JP5761584B2 (ja) * 2012-09-28 2015-08-12 Dic株式会社 エポキシ化合物、その製造方法、エポキシ樹脂組成物およびその硬化物

Also Published As

Publication number Publication date
CN108368237B (zh) 2021-04-02
TWI709583B (zh) 2020-11-11
JPWO2017098879A1 (ja) 2018-02-15
WO2017098879A1 (ja) 2017-06-15
US20180346639A1 (en) 2018-12-06
CN108368237A (zh) 2018-08-03
KR102624960B1 (ko) 2024-01-16
TW201734077A (zh) 2017-10-01
KR20180090264A (ko) 2018-08-10

Similar Documents

Publication Publication Date Title
JP4953039B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2018180451A1 (ja) エポキシ樹脂、製造方法、エポキシ樹脂組成物及びその硬化物
JP5557033B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5904387B1 (ja) エポキシ樹脂、硬化性樹脂組成物、硬化物、半導体封止材料、半導体装置、プレプリグ、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、及び繊維強化成形品
JP5146793B2 (ja) リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6260846B2 (ja) エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物
KR102409661B1 (ko) 에폭시 수지, 제조 방법, 에폭시 수지 조성물 및 그 경화물
JP6809200B2 (ja) エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP2017105898A (ja) エポキシ樹脂、エポキシ樹脂の製造方法、硬化性樹脂組成物及びその硬化物
JP6874359B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5402761B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール類の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP6809206B2 (ja) エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP7024227B2 (ja) エポキシ樹脂の製造方法、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5516980B2 (ja) 新規リン原子含有フェノール樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP5637367B2 (ja) 硬化性樹脂組成物、その硬化物、リン原子含有フェノール樹脂の製造方法、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
WO2017199831A1 (ja) エポキシ樹脂、製造方法、エポキシ樹脂組成物及びその硬化物
JP6992932B2 (ja) 多官能フェノール樹脂、多官能エポキシ樹脂、それらを含む硬化性樹脂組成物及びその硬化物
JP5516979B2 (ja) 新規リン原子含有フェノール樹脂、その製造方法、硬化性樹脂組成物、その硬化物、プリント配線基板用樹脂組成物、プリント配線基板、フレキシブル配線基板用樹脂組成物、半導体封止材料用樹脂組成物、及びビルドアップ基板用層間絶縁材料用樹脂組成物
JP6048035B2 (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6750427B2 (ja) 多官能エポキシ樹脂、その製造方法、硬化性樹脂組成物及びその硬化物
JP2021066832A (ja) 多官能フェノール樹脂、多官能エポキシ樹脂、それらを含む硬化性樹脂組成物及びその硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170908

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171129

R151 Written notification of patent or utility model registration

Ref document number: 6260846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250