[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6257392B2 - Water absorbent resin foam and method for producing the same - Google Patents

Water absorbent resin foam and method for producing the same Download PDF

Info

Publication number
JP6257392B2
JP6257392B2 JP2014054154A JP2014054154A JP6257392B2 JP 6257392 B2 JP6257392 B2 JP 6257392B2 JP 2014054154 A JP2014054154 A JP 2014054154A JP 2014054154 A JP2014054154 A JP 2014054154A JP 6257392 B2 JP6257392 B2 JP 6257392B2
Authority
JP
Japan
Prior art keywords
water
aqueous liquid
resin foam
liquid medium
soluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014054154A
Other languages
Japanese (ja)
Other versions
JP2015174971A (en
Inventor
亮佑 夛田
亮佑 夛田
英生 大田
英生 大田
ソラ バン
ソラ バン
敦紀 菊地
敦紀 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Technical Center Co Ltd
Original Assignee
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Technical Center Co Ltd filed Critical Inoac Technical Center Co Ltd
Priority to JP2014054154A priority Critical patent/JP6257392B2/en
Publication of JP2015174971A publication Critical patent/JP2015174971A/en
Application granted granted Critical
Publication of JP6257392B2 publication Critical patent/JP6257392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、吸水性樹脂発泡体及びその製造方法に関する。   The present invention relates to a water absorbent resin foam and a method for producing the same.

ポリマーの微粒子が水中に分散された水分散性樹脂を主原料として、気体混入法により発泡させて得られた発泡体のうち、吸水性を発揮するものは、止水材、ワイプ材等の広範囲の用途を有しており、その製造方法にも多くの方法がある。   Of the foams obtained by foaming by the gas mixing method using water-dispersible resin in which fine particles of polymer are dispersed in water as the main raw material, a wide range of water-stopping materials, wipes, etc. There are many methods for manufacturing the same.

例えば、特許文献1には、アクリル系やウレタン系のバインダーに吸水性ポリマーを混合することで得られた混合液を、ポリウレタン発泡体に塗布することによって製造される、吸水性樹脂発泡体が開示されている。   For example, Patent Document 1 discloses a water absorbent resin foam produced by applying a liquid mixture obtained by mixing a water absorbent polymer to an acrylic or urethane binder to a polyurethane foam. Has been.

特開2007−008126号公報JP 2007-008126 A

しかしながら、特許文献1に記載された方法では、吸水性ポリマーが発泡体の内部まで入り込んでいないために吸水性が低く、更に、吸水性ポリマーが脱離し易いことから、吸水性が容易に低下するという問題があった。   However, in the method described in Patent Document 1, the water-absorbing polymer is not penetrated to the inside of the foam, so that the water-absorbing polymer is low. There was a problem.

そこで、本発明は、高い吸水性を有し、更には吸水性が低下し難い吸水性樹脂発泡体及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the water absorbing resin foam which has high water absorption, and also water absorption is hard to fall, and its manufacturing method.

発明を解決するための手段Means for Solving the Invention

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、分散質として水分散性樹脂と、特定の起泡剤と、分散媒として水と、を原料とする水系液体媒体を発泡させて樹脂発泡体を製造する方法において、特定の親水化工程を含ませることにより、優れた吸水性を有する吸水性樹脂発泡体を形成可能なことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found an aqueous liquid medium made from a water-dispersible resin as a dispersoid, a specific foaming agent, and water as a dispersion medium. In the method of producing a resin foam by foaming, it was found that a water-absorbing resin foam having excellent water absorption can be formed by including a specific hydrophilization step, and the present invention was completed. .

すなわち、本発明(1)は、分散質として水分散性樹脂と、起泡剤としてアニオン性界面活性剤と、分散媒として水又は水と水溶性溶剤との混合物と、を含有する水系液体媒体に気体を混合して撹拌させることにより前記水系液体媒体を発泡させて発泡水系液体媒体を得、前記発泡水系液体媒体を加熱して前記分散媒を蒸発させて吸水性樹脂発泡体を製造する方法であって、前記水系液体媒体が、前記分散媒に溶解する水溶性ポリマーを更に含有することを特徴とする吸水性樹脂発泡体の製造方法である。
本発明(2)は、前記水溶性ポリマーの重量平均分子量が、500以上である、本発明(1)の吸水性樹脂発泡体の製造方法である。
本発明(3)は、前記水溶性ポリマーが、スルホニル基含有ポリマーである、本発明(1)又は(2)の吸水性樹脂発泡体の製造方法である。
本発明(4)は、前記水溶性ポリマーが、カルボキシル基含有ポリマーである、本発明(1)又は(2)の吸水性樹脂発泡体の製造方法である。
本発明(5)は、前記水溶性ポリマーが、スルホニル基含有ポリマーとカルボキシル基含有ポリマーとの共重合体である、本発明(1)又は(2)の吸水性樹脂発泡体の製造方法である。
本発明(6)は、前記水系液体媒体が、前記水分散性樹脂と前記水溶性ポリマーとを架橋させるための架橋剤を含む、本発明(1)〜(5)のいずれかの吸水性樹脂発泡体の製造方法である。
ここで、本発明において、「吸水性」とは、水(液体)を吸収する性質のことを広く示し、吸水速度、吸水率、吸水量などによって評価することができる。
That is, the present invention (1) provides an aqueous liquid medium containing a water-dispersible resin as a dispersoid, an anionic surfactant as a foaming agent, and water or a mixture of water and a water-soluble solvent as a dispersion medium. A method of producing a water-absorbent resin foam by foaming the aqueous liquid medium by mixing and stirring the gas to obtain a foamed aqueous liquid medium, and heating the foamed aqueous liquid medium to evaporate the dispersion medium The water-based liquid medium further comprises a water-soluble polymer that dissolves in the dispersion medium.
This invention (2) is a manufacturing method of the water absorbing resin foam of this invention (1) whose weight average molecular weights of the said water-soluble polymer are 500 or more.
This invention (3) is a manufacturing method of the water-absorbent resin foam of this invention (1) or (2) whose said water-soluble polymer is a sulfonyl group containing polymer.
This invention (4) is a manufacturing method of the water absorbing resin foam of this invention (1) or (2) whose said water-soluble polymer is a carboxyl group containing polymer.
The present invention (5) is the method for producing a water-absorbent resin foam according to the present invention (1) or (2), wherein the water-soluble polymer is a copolymer of a sulfonyl group-containing polymer and a carboxyl group-containing polymer. .
The water-absorbent resin according to any one of the present inventions (1) to (5), wherein the aqueous liquid medium includes a cross-linking agent for cross-linking the water-dispersible resin and the water-soluble polymer. It is a manufacturing method of a foam.
Here, in the present invention, “water absorption” widely indicates the property of absorbing water (liquid) and can be evaluated by the water absorption speed, the water absorption rate, the water absorption amount, and the like.

本発明によれば、高い吸水性を有し、更には吸水性が低下し難い吸水性樹脂発泡体及びその製造方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the water absorbing resin foam which has high water absorption, and also water absorption is hard to fall, and its manufacturing method.

参考例1に係る、樹脂発泡体の断面SEM写真である。It is a cross-sectional SEM photograph of the resin foam based on the reference example 1. 参考例19に係る、樹脂発泡体の断面SEM写真である。It is a cross-sectional SEM photograph of the resin foam based on Reference Example 19. 参考比較例1に係る、樹脂発泡体の断面SEM写真である。It is a cross-sectional SEM photograph of the resin foam based on the reference comparative example 1. 参考例1に係る、樹脂発泡体のセル径の算出方法を示す図である。It is a figure which shows the calculation method of the cell diameter of the resin foam based on the reference example 1. FIG. 参考例1に係る、樹脂発泡体のセル径の算出方法を示す図である。It is a figure which shows the calculation method of the cell diameter of the resin foam based on the reference example 1. FIG. 参考例1に係る、樹脂発泡体のセル径の算出方法を示す図である。It is a figure which shows the calculation method of the cell diameter of the resin foam based on the reference example 1. FIG. 参考例1に係る、樹脂発泡体のセル径の算出方法を示す図である。It is a figure which shows the calculation method of the cell diameter of the resin foam based on the reference example 1. FIG. 参考例1に係る、樹脂発泡体のセル径の算出方法を示す図である。It is a figure which shows the calculation method of the cell diameter of the resin foam based on the reference example 1. FIG.

以下、本発明の好適な実施形態について詳細に説明するが、これらはあくまで一例であり、本発明は以下の態様に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, these are merely examples, and the present invention is not limited to the following aspects.

尚、本形態に係る吸水性樹脂発泡体及びその製造方法については、以下の順序で説明する。
1 吸水性樹脂発泡体の製造方法
2 吸水性泡体の構造
3 吸水性泡体の性質
4 吸水性樹脂発泡体の用途
In addition, the water absorbent resin foam according to the present embodiment and the manufacturing method thereof will be described in the following order.
DESCRIPTION OF SYMBOLS 1 Manufacturing method of water absorbent resin foam 2 Structure of water absorbent foam 3 Properties of water absorbent foam 4 Use of water absorbent resin foam

≪吸水性樹脂発泡体の製造方法≫
本形態に係る吸水性樹脂発泡体の製造方法は、分散質として水分散性樹脂と、起泡剤としてアニオン性界面活性剤と、分散媒として水と、前記分散媒に溶解する水溶性ポリマーと、を含有する水系液体媒体に気体を混合して撹拌させることにより水系液体媒体を発泡させて発泡水系液体媒体を得、発泡水系液体媒体を加熱して前記分散媒を蒸発させて樹脂発泡体を製造する方法であり、原料として、前記分散媒に溶解する水溶性ポリマーを更に含有する。吸水性樹脂発泡体の製造方法として、原料、組成(配合量)、液性(水系液体媒体又は発泡水系液体媒体の液性)、プロセス(具体的な製造工程)に関して詳述する。
≪Method for producing water absorbent resin foam≫
A method for producing a water-absorbent resin foam according to the present embodiment includes a water-dispersible resin as a dispersoid, an anionic surfactant as a foaming agent, water as a dispersion medium, and a water-soluble polymer dissolved in the dispersion medium. The foamed aqueous liquid medium is obtained by mixing and stirring the gas in the aqueous liquid medium containing, to obtain the foamed aqueous liquid medium, and the foamed aqueous liquid medium is heated to evaporate the dispersion medium to obtain the resin foam. It is a manufacturing method, and further contains a water-soluble polymer dissolved in the dispersion medium as a raw material. The raw material, composition (blending amount), liquidity (aqueous liquid medium or liquidity of the foamed aqueous liquid medium), and process (specific production steps) will be described in detail as a method for producing the water absorbent resin foam.

尚、本形態に係る吸水性樹脂発泡体の製造方法においては、発泡水系液体媒体における気泡の合一化を防止するために、前記水系液体媒体の流動性を下げるチキソ性付与工程を含む。ここで、当該チキソ性付与工程としては、公知の手段であってもよいが、水系液体媒体(発泡水系液体媒体)において、アニオン性界面活性剤(起泡アニオン性界面活性剤に限らず、系に存在するアニオン性界面活性剤)を、何らかの形で分散媒に対して不溶化させる工程であってもよい。より具体的には、分散媒に溶解している起泡アニオン性界面活性剤を分散媒に対して不溶化させる工程であってもよい。以下、このように、分散媒に溶解している起泡アニオン性界面活性剤を分散媒に対して不溶化させる場合を特に、「アニオン性界面活性剤の不溶化」や「不溶化工程」等とする。   In addition, in the manufacturing method of the water absorbing resin foam which concerns on this form, in order to prevent the coalescence of the bubble in a foaming aqueous liquid medium, the thixotropy provision process which reduces the fluidity | liquidity of the said aqueous liquid medium is included. Here, the thixotropy imparting step may be a known means, but in an aqueous liquid medium (foamed aqueous liquid medium), an anionic surfactant (not limited to a foaming anionic surfactant) The anionic surfactant present in the solvent may be insolubilized in some form in the dispersion medium. More specifically, it may be a step of insolubilizing the foaming anionic surfactant dissolved in the dispersion medium with respect to the dispersion medium. Hereinafter, the case where the foaming anionic surfactant dissolved in the dispersion medium is insolubilized in the dispersion medium is particularly referred to as “insolubilization of the anionic surfactant” or “insolubilization step”.

<原料>
本形態に係る樹脂発泡体は、原料として、水分散性樹脂、アニオン性界面活性剤、分散媒として水、水溶性ポリマー、水溶性ポリマー架橋剤、ゲル化成分(ゲル化剤)及びその他の添加剤等を含む(尚、発泡工程において用いられる発泡用の気体に関しては、発泡工程にて述べる)。尚、本発明において、水分散性樹脂を、樹脂が水に分散した水分散体とする場合もある。
<Raw material>
The resin foam according to this embodiment includes a water-dispersible resin, an anionic surfactant as a raw material, water as a dispersion medium, a water-soluble polymer, a water-soluble polymer cross-linking agent, a gelling component (gelling agent), and other additions. (The foaming gas used in the foaming process is described in the foaming process). In the present invention, the water dispersible resin may be an aqueous dispersion in which the resin is dispersed in water.

(水分散性樹脂)
本形態に係る樹脂発泡体の製造方法は、主剤として水分散性樹脂を含む。水分散性樹脂としては、その構造や製造方法は何ら限定されず、どのような水分散性樹脂であってもよい。
(Water dispersible resin)
The manufacturing method of the resin foam which concerns on this form contains water-dispersible resin as a main ingredient. The structure and production method of the water dispersible resin are not limited at all, and any water dispersible resin may be used.

ここで、本形態に係る水分散性樹脂は、アニオン性界面活性剤の不溶化を行う際には、安定分散型であるか、不安定分散型であるか、によってその好適な利用形態が異なる。次に、安定分散型の水分散性樹脂と、不安定分散型の水分散性樹脂と、に関して、各々詳述する。尚、安定分散型の水分散性樹脂とは析出率(析出率の具体的な算出方法に関しては以下の方法に従う)が10%未満である水分散性樹脂を、不安定分散型の水分散性樹脂とは析出率が10%以上である水分散性樹脂を示す。   Here, when the water-dispersible resin according to the present embodiment is insolubilized with an anionic surfactant, the preferred use form differs depending on whether it is a stable dispersion type or an unstable dispersion type. Next, a stable dispersion type water-dispersible resin and an unstable dispersion type water-dispersible resin will be described in detail. Note that a stable dispersion type water-dispersible resin means a water-dispersible resin having a precipitation rate (following the following method for a specific calculation method of the precipitation rate) of less than 10%, an unstable dispersion type water-dispersibility resin. The resin refers to a water dispersible resin having a precipitation rate of 10% or more.

・析出率の算出方法
水分散性樹脂の分散安定性を評価するために、水分散性樹脂に凝固剤水溶液(0.5質量%の硝酸カルシウム水溶液)を添加し、生成する析出物の量から析出率を算出した。具体的な析出率は下記式(1)によって求められる{尚、式(1)中、Aは析出物の乾燥質量(g)、Bは水分散性樹脂の質量(g)、Cは水分散性樹脂の固形分濃度(質量%)である}。
析出率(%)=A/{B×(C/100)}×100・・・(1)
・ Calculation method of precipitation rate In order to evaluate the dispersion stability of the water-dispersible resin, a coagulant aqueous solution (0.5 mass% calcium nitrate aqueous solution) is added to the water-dispersible resin, and the amount of the precipitate produced The precipitation rate was calculated. The specific precipitation rate is determined by the following formula (1) {wherein, in formula (1), A is the dry mass (g) of the precipitate, B is the mass (g) of the water-dispersible resin, and C is water-dispersed. It is the solid content concentration (mass%) of the conductive resin}.
Precipitation rate (%) = A / {B × (C / 100)} × 100 (1)

より具体的には、23℃の室内で、容量100mlの樹脂容器に、水分散性樹脂を10g入れ、撹拌しながら、凝固剤水溶液として濃度0.5質量%の硝酸カルシウム水溶液を10g滴下する。凝固剤水溶液の全量を滴下した後、1時間静置する。次に、全量をガラス濾過器(柴田科学株式会社製、吸引濾過瓶1L、柴田科学株式会社製、ガラスフィルターベースφ47mm用、有限会社桐山製作所製、桐山セパロート55Z)及び40メッシュフィルタ(株式会社ヤマニ製、T230LY−40)に投入し、減圧濾過して析出物を回収する。更に、濾液が透明になるまで水洗したのち、110℃で3時間乾燥させる。析出物の乾燥質量を測定し、上記式(1)に基づいて析出率を計算し、当該析出率から水分散性樹脂の分散安定性を評価する。即ち、析出率が10%未満のものは樹脂粒子が凝集しにくいことを意味するため、「安定分散型の水分散性樹脂」と評価し、析出率が10%以上のものは樹脂粒子が凝集しやすいことを意味するため、「不安定分散型の水分散性樹脂」と評価する。   More specifically, 10 g of a water-dispersible resin is placed in a resin container having a capacity of 100 ml in a room at 23 ° C., and 10 g of a calcium nitrate aqueous solution having a concentration of 0.5 mass% is dropped as a coagulant aqueous solution while stirring. After dropping the entire amount of the coagulant aqueous solution, it is allowed to stand for 1 hour. Next, the entire amount was filtered through a glass filter (Shibata Kagaku Co., Ltd., suction filter bottle 1L, Shibata Kagaku Co., Ltd., glass filter base φ47 mm, Kiriyama Seisakusho, Kiriyama Separot 55Z) and 40 mesh filter (Yamamani Co., Ltd.) Manufactured, T230LY-40), and filtered under reduced pressure to collect the precipitate. Further, after washing with water until the filtrate becomes transparent, it is dried at 110 ° C. for 3 hours. The dry mass of the precipitate is measured, the precipitation rate is calculated based on the above formula (1), and the dispersion stability of the water-dispersible resin is evaluated from the precipitation rate. That is, when the deposition rate is less than 10%, it means that the resin particles are difficult to aggregate. Therefore, it is evaluated as a “stable dispersion type water-dispersible resin”. When the deposition rate is 10% or more, the resin particles are aggregated. Therefore, it is evaluated as “unstable dispersion type water dispersible resin”.

尚、本形態に係る水分散性樹脂としては、1種類の水分散性樹脂に限定されず、複数種類の水分散性樹脂を組み合わせて用いてもよい。このように、水分散性樹脂が、複数の水分散性樹脂からなる場合にも、水分散性樹脂全体において当該析出率を算出し、安定分散型であるか、不安定分散型であるか、を判別する。   The water-dispersible resin according to this embodiment is not limited to one type of water-dispersible resin, and a plurality of types of water-dispersible resins may be used in combination. Thus, even when the water-dispersible resin is composed of a plurality of water-dispersible resins, the precipitation rate is calculated for the entire water-dispersible resin, whether it is a stable dispersion type or an unstable dispersion type, Is determined.

・安定分散型の水分散性樹脂
安定分散型の水分散性樹脂としては、特に限定されないが、ウレタンエマルジョン、アクリルエマルジョン、酢酸ビニル系エマルジョン、塩化ビニル系エマルジョン、エポキシ系エマルジョン等が例示できる。これらの内、特に好適なウレタンエマルジョン及びアクリルエマルジョンについて詳述する。尚、ウレタンエマルジョンを用いることで、得られるウレタン樹脂発泡体の柔軟性が優れ、圧縮残留歪みが低くなるため好適である。また、強度に優れるとともに軽量性、断熱性に優れていることから、アクリルエマルジョンを用いることも好適である。
Stable dispersion type water-dispersible resin The stable dispersion type water-dispersible resin is not particularly limited, and examples thereof include urethane emulsions, acrylic emulsions, vinyl acetate emulsions, vinyl chloride emulsions, and epoxy emulsions. Of these, particularly preferred urethane emulsions and acrylic emulsions will be described in detail. Use of a urethane emulsion is preferred because the resulting urethane resin foam has excellent flexibility and lower compression residual strain. Moreover, since it is excellent in intensity | strength, and it is excellent in lightweight property and heat insulation, it is also suitable to use an acrylic emulsion.

ウレタン樹脂の水分散体(ウレタンエマルジョン)の製造方法としては、下記方法(I)〜(III)が例示出来る。
(I)活性水素含有化合物、親水性基を有する化合物、及び、ポリイソシアネートを反応させて得られた親水性基を有するウレタン樹脂の有機溶剤溶液又は有機溶剤分散液に、必要に応じ、中和剤を含む水溶液を混合し、ウレタン樹脂水分散体を得る方法。
(II)活性水素含有化合物、親水性基を有する化合物、及び、ポリイソシアネートを反応させて得られた親水性基を有する末端イソシアネート基含有ウレタンプレポリマーに、中和剤を含む水溶液と混合するか、又は、予めプレポリマー中に中和剤を加えた後水を混合して水に分散させた後、ポリアミンと反応させて、ウレタン樹脂水分散体を得る方法。
(III)活性水素含有化合物、親水性基を有する化合物、及び、ポリイソシアネートを反応させて得られた親水性基を有する末端イソシアネート基含有ウレタンプレポリマーに、中和剤及びポリアミンを含む水溶液と混合するか、又は、予めプレポリマー中に中和剤を加えた後、ポリアミンを含む水溶液を添加混合し、ウレタン樹脂水分散体を得る方法。
Examples of the method for producing an aqueous dispersion of urethane resin (urethane emulsion) include the following methods (I) to (III).
(I) An active hydrogen-containing compound, a compound having a hydrophilic group, and an organic solvent solution or an organic solvent dispersion of a urethane resin having a hydrophilic group obtained by reacting a polyisocyanate are neutralized as necessary. The method of mixing the aqueous solution containing an agent and obtaining a urethane resin water dispersion.
(II) Whether an active hydrogen-containing compound, a compound having a hydrophilic group, and a terminal isocyanate group-containing urethane prepolymer having a hydrophilic group obtained by reacting a polyisocyanate are mixed with an aqueous solution containing a neutralizing agent. Alternatively, a method of obtaining a urethane resin aqueous dispersion by adding a neutralizing agent to a prepolymer in advance, mixing water and dispersing in water, and then reacting with polyamine.
(III) An active hydrogen-containing compound, a compound having a hydrophilic group, and a terminal isocyanate group-containing urethane prepolymer having a hydrophilic group obtained by reacting a polyisocyanate are mixed with an aqueous solution containing a neutralizing agent and a polyamine. Or a method in which a neutralizing agent is added to the prepolymer in advance, and then an aqueous solution containing a polyamine is added and mixed to obtain a urethane resin aqueous dispersion.

前記ウレタン樹脂の製造において用いるポリイソシアネートとしては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、m−フェニレンジイソシアネート、p−フフェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、3,3’−ジメトキシ−4,4’−ビフェニレンジイソシアネート、3,3’−ジクロロ−4,4’−ビフェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、1,5−テトラヒドロナフタレンジイソシアネート、テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3−シクロヘキシレンジイソシアネート、1,4−シクロヘキシレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、3,3’−ジメチル−4,4’−ジシクロヘキシルメタンジイソシアネート等が例示できる。また発明の効果を損なわない範囲において、3価以上のポリイソシアネートを併用してもよい。   Polyisocyanates used in the production of the urethane resin include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phphenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4. '-Diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 3,3'-dichloro- 4,4′-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate Dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, 4,4 Examples include '-dicyclohexylmethane diisocyanate and 3,3'-dimethyl-4,4'-dicyclohexylmethane diisocyanate. Moreover, you may use together polyisocyanate more than trivalence in the range which does not impair the effect of invention.

また、前記親水性基を有する化合物としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリアセタールポリオール、ポリアクリレートポリオール、ポリエステルアミドポリオール、ポリチオエーテルポリオール、ポリブタジエン系等のポリオレフィンポリオール等が例示できる。これら高分子量化合物は、2種以上を併用してもよい。前記ポリエステルポリオールとしては、公知のものを使用してもよい。   Examples of the compound having a hydrophilic group include polyester polyols, polyether polyols, polycarbonate polyols, polyacetal polyols, polyacrylate polyols, polyester amide polyols, polythioether polyols, polybutadiene-based polyolefin polyols, and the like. Two or more of these high molecular weight compounds may be used in combination. Known polyester polyols may be used.

上記方法(I)〜(III)において、発明の効果を損なわない範囲で、更に乳化剤を使用してもよい。係る乳化剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート等のノニオン系乳化剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルフォン酸ナトリウム塩等のアニオン系乳化剤;ポリオキシエチレンアルキル硫酸塩、ポリオキシエチレンアルキルフェニル硫酸塩等のノニオンアニオン系乳化剤、等を例示できる。   In the above methods (I) to (III), an emulsifier may be further used as long as the effects of the invention are not impaired. Examples of such emulsifiers include nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene sorbitol tetraoleate; fatty acid salts such as sodium oleate, alkyl Anionic emulsifiers such as sulfate esters, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, alkane sulfonate sodium salts, sodium alkyl diphenyl ether sulfonates; polyoxyethylene alkyl sulfates, polyoxyethylene alkylphenyl sulfates Nonionic anionic emulsifiers such as

アクリル樹脂の水分散体(アクリルエマルジョン)の製法としては、重合開始剤、必要に応じて乳化剤及び分散安定剤の存在下に、(メタ)アクリル酸エステル系単量体を必須の重合性単量体成分とし、更に必要に応じてこれらの単量体と共重合可能なその他の重合性単量体の混合物を共重合させることにより得ることができる。   As a method for producing an aqueous dispersion (acrylic emulsion) of an acrylic resin, a (meth) acrylic acid ester monomer is an essential polymerizable monomer in the presence of a polymerization initiator, and if necessary, an emulsifier and a dispersion stabilizer. It can be obtained by copolymerizing a mixture of other polymerizable monomers copolymerizable with these monomers as necessary.

上記アクリル樹脂エマルジョンの製造に使用することができる重合性単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アルリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル系単量体;アクリル酸、メタクリル酸、β−カルボキシエチル(メタ)アクリレート、2−(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸等のカルボキシル基を有する不飽和結合含有単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性単量体;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有重合性単量体;エチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジビニルベンゼン、アリル(メタ)アクリレート等が例示できる。   Examples of polymerizable monomers that can be used in the production of the acrylic resin emulsion include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) allylate, (meth ) Hexyl acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, octadecyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, nonyl (meth) acrylate, ( (Meth) acrylic acid such as dodecyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate Ester monomers; acrylic acid, methacrylic acid, β-carboxyethyl Unsaturation having carboxyl group such as (meth) acrylate, 2- (meth) acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride, itaconic anhydride Bond-containing monomers: Glycidyl group-containing polymerizable monomers such as glycidyl (meth) acrylate and allyl glycidyl ether; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) Hydroxyl group-containing polymerizable monomers such as acrylate and glycerol mono (meth) acrylate; ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethyl Examples thereof include roll propane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, diallyl phthalate, divinylbenzene, and allyl (meth) acrylate.

尚、アクリルエマルジョンの製造時に乳化剤を使用する場合には、上述の乳化剤等を使用すればよい。   In addition, what is necessary is just to use the above-mentioned emulsifier etc. when using an emulsifier at the time of manufacture of an acrylic emulsion.

・不安定分散型の水分散性樹脂
不安定分散型の水分散性樹脂としては、特に限定されないが、ゴムラテックス等を例示出来る。ゴムラテックスは、発泡体の感触がよく弾性に優れるため好適である。次に、ゴムラテックスについて詳述する。
Unstable dispersion type water-dispersible resin The unstable dispersion type water-dispersible resin is not particularly limited, and examples thereof include rubber latex. Rubber latex is preferred because it has a good foam feel and excellent elasticity. Next, the rubber latex will be described in detail.

本形態に係るゴムの水分散体(ゴムラテックス)としては、天然ゴムラテックスであってもよいし、合成ゴムラテックスであってもよい。合成ゴムラテックスの製法としては、脂肪族共役ジエン系単量体と、共重合可能な他の重合性単量体と、を乳化重合することによって得られる。ここで、脂肪族共役ジエン系単量体としては、1,2−ブタジェン、1,3−ブタジェン、イソプレン、クロロプレン等が例示できる。   The rubber aqueous dispersion (rubber latex) according to this embodiment may be natural rubber latex or synthetic rubber latex. The synthetic rubber latex can be obtained by emulsion polymerization of an aliphatic conjugated diene monomer and another polymerizable monomer that can be copolymerized. Here, examples of the aliphatic conjugated diene monomer include 1,2-butadiene, 1,3-butadiene, isoprene, chloroprene and the like.

共重合可能な他の重合性単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アルリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル系単量体;(メタ)アクリル酸、クロトン酸、マレイン酸及びその無水物、フマル酸、イタコン酸、不飽和ジカルボン酸モノアルキルエステル(例えばマレイン酸モノメチル、フマル酸モノエチル、イタコン酸モノノルマルブチル)等のカルボキシル基を有する不飽和結合含有単量体;スチレン、α−メチルスチレン、ビニルトルエン、クロルスチレン、2,4−ジブロモスチレン等のエチレン性不飽和芳香族単量体;アクリロニトリル、メタクロニトリル等の不飽和ニトリル;酢酸ビニル、プロピオン酸ビニル等の如きビニルエステル;塩化ビニリデン臭化ビニリデン等のビニリデンハライド;(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル等のエチレン性不飽和カルボン酸のヒドロキシアルキルエステル;(メタ)アクリル酸グリシジル等のエチレン性不飽和カルボン酸のグリシジルエステル;(メタ)アクリルアミド、Nーメチロール(メタ)アクリルアミド、ブトキシメチル(メタ)アクリルアミド、ジアセトンアクリルミド等を例示できる。   Other polymerizable monomers that can be copolymerized include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) arylate, hexyl (meth) acrylate, ( (Meth) acrylic acid ester monomers such as heptyl (meth) acrylate, octyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylic acid, crotonic acid, maleic acid and its anhydride, fumaric acid , Itaconic acid, unsaturated dicarboxylic acid monoalkyl ester (for example, monomethyl maleate, monoethyl fumarate, mononormal butyl itaconate) and other unsaturated bond-containing monomers having a carboxyl group; styrene, α-methylstyrene, vinyltoluene Ethylenically unsaturated aromatic monomers such as chlorostyrene, 2,4-dibromostyrene; Unsaturated nitriles such as rilonitrile and methacrylonitrile; vinyl esters such as vinyl acetate and vinyl propionate; vinylidene halides such as vinylidene chloride and vinylidene bromide; (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-2 -Hydroxyalkyl esters of ethylenically unsaturated carboxylic acids such as hydroxypropyl; glycidyl esters of ethylenically unsaturated carboxylic acids such as glycidyl (meth) acrylate; (meth) acrylamide, N-methylol (meth) acrylamide, butoxymethyl (meta ) Examples include acrylamide and diacetone acrylimide.

水分散性樹脂として使用可能なゴムラテックス(合成ゴムラテックス)は、乳化剤、フリーラジカル発生触媒等の存在下に水性媒体中で上記単量体を乳化重合することにより得ることができる。この際2段重合法を採用することもできる。乳化剤としては、各種の陰イオン性界面活性剤、非イオン界面活性剤、陽イオン界面活性剤、両イオン界面活性剤などを使用することができる。   A rubber latex (synthetic rubber latex) that can be used as a water-dispersible resin can be obtained by emulsion polymerization of the above monomers in an aqueous medium in the presence of an emulsifier, a free radical generating catalyst, and the like. In this case, a two-stage polymerization method can also be employed. As an emulsifier, various anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants and the like can be used.

尚、本形態の水分散性樹脂の不安定分散型又は安定分散型に係る分類においては、上記材料による分類は概略的なものである{水分散性樹脂が不安定分散型であるか安定分散型であるかは、あくまで、上記式(1)によって分類されるものである}。例えば、上記式(1)にて、析出率が10%以上となるウレタンエマルジョンは、不安定分散型の水分散性樹脂に分類され、析出率が10%未満となるゴムラテックスは、安定分散型の水分散性樹脂に分類される。   In addition, in the classification related to the unstable dispersion type or the stable dispersion type of the water-dispersible resin of the present embodiment, the classification by the above materials is approximate {the water-dispersible resin is an unstable dispersion type or a stable dispersion Whether it is a type is classified according to the above formula (1) to the last}. For example, in the above formula (1), the urethane emulsion having a precipitation rate of 10% or more is classified as an unstable dispersion type water-dispersible resin, and the rubber latex having a precipitation rate of less than 10% is a stable dispersion type. It is classified as a water-dispersible resin.

(分散媒)
本形態において、水系液体媒体の分散媒としては、水を必須成分とするが、水と水溶性溶剤との混合物であってもよい。水溶性溶剤とは、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N−メチルピロリドン等の極性溶剤等であり、これらの1種又は2種以上の混合物等を使用してもよい。
(Dispersion medium)
In this embodiment, the dispersion medium of the aqueous liquid medium contains water as an essential component, but may be a mixture of water and a water-soluble solvent. Examples of the water-soluble solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, and butyl cellosolve, polar solvents such as N-methylpyrrolidone, and the like, one or more of these. A mixture of the above may be used.

(アニオン性界面活性剤)
アニオン性界面活性剤(起泡アニオン性界面活性剤)は、水系液体媒体の起泡剤として機能する。また、アニオン性界面活性剤の不溶化を行う際には、例えば、後述の金属カチオンとの反応によって、分散媒に対して不溶化される(これに関しては後述する。)。
(Anionic surfactant)
The anionic surfactant (foaming anionic surfactant) functions as a foaming agent for the aqueous liquid medium. Moreover, when insolubilizing an anionic surfactant, it insolubilizes with respect to a dispersion medium by reaction with the below-mentioned metal cation, for example (this is mentioned later).

アニオン性界面活性剤の具体例としては、ラウリン酸ナトリウム、ミリスチン酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸アンモニウム、オレイン酸ナトリウム、オレイン酸カリウム石鹸、ひまし油カリウム石鹸、やし油カリウム石鹸、ラウロイルサルコシンナトリウム、ミリストイルサルコシンナトリウム、オレイルサルコシンナトリウム、ココイルサルコシンナトリウム、やし油アルコール硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、アルキルスルホコハク酸ナトリウム、ラウリルスルホ酢酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、α−オレフィンスルホン酸ナトリウム等が挙げられるが、特に、アルキルスルホコハク酸ナトリウムが好ましい。   Specific examples of anionic surfactants include sodium laurate, sodium myristate, sodium stearate, ammonium stearate, sodium oleate, potassium oleate soap, castor oil potassium soap, palm oil potassium soap, lauroyl sarcosine sodium, Myristoyl sarcosine sodium, oleyl sarcosine sodium, cocoyl sarcosine sodium, sodium palm oil alcohol sulfate, polyoxyethylene lauryl ether sodium sulfate, sodium alkylsulfosuccinate, sodium lauryl sulfoacetate, sodium dodecylbenzenesulfonate, sodium α-olefin sulfonate, etc. In particular, sodium alkylsulfosuccinate is preferable.

ここで、本形態に用いられるアニオン性界面活性剤は、水系液体媒体に分散しやすくするため、HLBが、10以上であることが好適であり、20以上であることがより好適であり、30以上であることが特に好適である。   Here, the anionic surfactant used in this embodiment is preferably 10 or more, more preferably 20 or more, in order to facilitate dispersion in an aqueous liquid medium. The above is particularly preferable.

・HLB
尚、本発明において、HLB値とは、親水性−疎水性バランス(HLB)値を意味し、小田法により求められる。小田法によるHLBの求め方は、「新・界面活性剤入門」第195〜196頁及び1957年3月20日槙書店発行 小田良平外1名著「界面活性剤の合成と其応用」第492〜502頁に記載されており、HLB=(無機性/有機性)×10で求めることができる。
・ HLB
In the present invention, the HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method. The method of obtaining HLB by the Oda method is “Introduction to New Surfactants”, pages 195 to 196, published by Sakai Shoten on March 20, 1957, “Synthetics and Applications of Surfactants” 492 It is described on page 502 and can be obtained by HLB = (inorganic / organic) × 10.

ここで、本形態に係るアニオン性界面活性剤は、アニオン性界面活性剤の不溶化を行う際には、当初分散媒に溶解している成分であるが、分散媒に対して不溶化される(例えば、金属カチオンとの反応により分散媒に対して不溶化される)成分となる。このようなアニオン性界面活性剤の不溶化手段としては、特に限定されないが、アニオン性界面活性剤と共に、金属カチオン源、メラミン−ホルムアルデヒド縮合物の酸コロイド液、ビニルフェノール重合体などの凝結剤、等を配合することが例示出来る。アニオン性界面活性剤の不溶化を行うことにより、主剤となる水分散性樹脂や分散剤等の種類を限定せずとも、微細且つ均一なセル構造を有する樹脂発泡体が形成可能となる。更には、アニオン性界面活性剤が不溶化されるため、水等によって抽出され難くなる(即ち、ブリードの防止が可能となる)。また、強いゲル化強度となるため、発泡段階における気泡の合一化が強く抑制されることで気泡が安定化し、厚みのある発泡体を形成することも可能となる(更には、製造工程のハイスピード化が可能となる)。ここでは、特に好適な、金属カチオン源の配合によるアニオン性界面活性剤の不溶化に関して詳述する。   Here, the anionic surfactant according to this embodiment is a component that is initially dissolved in the dispersion medium when insolubilizing the anionic surfactant, but is insolubilized in the dispersion medium (for example, , A component that is insolubilized in the dispersion medium by reaction with a metal cation. The insolubilizing means of such an anionic surfactant is not particularly limited, but together with the anionic surfactant, a metal cation source, an acid colloid solution of a melamine-formaldehyde condensate, a coagulant such as a vinyl phenol polymer, etc. Can be exemplified. By insolubilizing the anionic surfactant, it is possible to form a resin foam having a fine and uniform cell structure without limiting the type of water-dispersible resin or dispersant as the main agent. Furthermore, since the anionic surfactant is insolubilized, it is difficult to extract with water or the like (that is, bleeding can be prevented). In addition, since the gel strength is strong, the coalescence of the bubbles in the foaming stage is strongly suppressed, so that the bubbles are stabilized and it is possible to form a thick foam ( High speed is possible). Here, a particularly preferable insolubilization of the anionic surfactant by blending a metal cation source will be described in detail.

(金属カチオン源)
本形態に係る金属カチオン源は、アニオン性界面活性剤と結合して水不溶性の塩を形成できる金属カチオンを水中に放出可能な成分である。このような成分を系に存在させることにより、アニオン性界面活性剤と結合し水不溶性の塩を形成する。その結果、気体を混入させた発泡体原料混合物にチキソ性を付与し流動性を低下させることにより、加熱時でも気泡の合一を抑制できる。このような、金属カチオン源としては、水中で溶解し金属イオンを生じる成分であれば特に限定されず、無機金属塩や有機金属塩のような金属塩、例えば、硝酸カルシウム;アルカリ、例えば、水酸化カルシウムや酸化カルシウム;金属単体、例えば、カルシウムが挙げられる。これらの内、水中での電離定数が比較的大きいという理由から、金属塩が好適である。
(Metal cation source)
The metal cation source according to the present embodiment is a component capable of releasing into the water a metal cation that can be combined with an anionic surfactant to form a water-insoluble salt. When such a component is present in the system, it binds to the anionic surfactant to form a water-insoluble salt. As a result, the coalescence of bubbles can be suppressed even during heating by imparting thixotropy to the foam raw material mixture mixed with gas and reducing fluidity. Such a metal cation source is not particularly limited as long as it is a component that dissolves in water and generates metal ions, such as a metal salt such as an inorganic metal salt or an organic metal salt, such as calcium nitrate; an alkali such as water. Examples include calcium oxide and calcium oxide; simple metal, for example, calcium. Of these, metal salts are preferred because of their relatively high ionization constant in water.

前記成分としては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属イオン、及び、アルミニウムイオン、バリウムイオン、カルシウムイオン、銅イオン、鉄イオン、マグネシウムイオン、マンガンイオン、ニッケルイオン、スズイオン、チタンイオン、亜鉛イオン等の多価金属イオンと、無機酸(例えば、塩酸、臭酸、ヨウ化水素酸、硫酸、硝酸、リン酸、チオシアン酸等)、及び、有機酸(例えば、酢酸、蓚酸、乳酸、フマル酸、フマル酸、クエン酸、サリチル酸、安息香酸等の有機カルボン酸、及び、有機スルホン酸)との塩等が挙げられる。   Examples of the components include alkali metal ions such as lithium ions, sodium ions, and potassium ions, and aluminum ions, barium ions, calcium ions, copper ions, iron ions, magnesium ions, manganese ions, nickel ions, tin ions, titanium ions, Polyvalent metal ions such as zinc ions, inorganic acids (for example, hydrochloric acid, odorous acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, thiocyanic acid, etc.) and organic acids (for example, acetic acid, oxalic acid, lactic acid, And salts thereof with organic carboxylic acids such as fumaric acid, fumaric acid, citric acid, salicylic acid and benzoic acid, and organic sulfonic acids).

具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム、ヨウ化ナトリウム、ヨウ化カリウム、硫酸ナトリウム、硝酸カリウム、酢酸ナトリウム、蓚酸カリウム、クエン酸ナトリウム、安息香酸カリウム等のアルカリ金属類の塩、及び、塩化アルミニウム、臭化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、硫酸ナトリウムアルミニウム、硫酸カリウムアルミニウム、酢酸アルミニウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、酸化バリウム、硝酸バリウム、チオシアン酸バリウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、亜硝酸カルシウム、硝酸カルシウム、リン酸二水素カルシウム、チオシアン酸カルシウム、安息香酸カルシウム、酢酸カルシウム、サリチル酸カルシウム、酒石酸カルシウム、乳酸カルシウム、フマル酸カルシウム、クエン酸カルシウム、塩化銅、臭化銅、硫酸銅、硝酸銅、酢酸銅、塩化鉄、臭化鉄、ヨウ化鉄、硫酸鉄、硝酸鉄、蓚酸鉄、乳酸鉄、フマル酸鉄、クエン酸鉄、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム、乳酸マグネシウム、塩化マンガン、硫酸マンガン、硝酸マンガン、リン酸二水素マンガン、酢酸マンガン、サリチル酸マンガン、安息香酸マンガン、乳酸マンガン、塩化ニッケル、臭化ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル、硫酸スズ、塩化チタン、塩化亜鉛、臭化亜鉛、硫酸亜鉛、硝酸亜鉛、チオシアン酸亜鉛、酢酸亜鉛等の多価金属類の塩等が挙げられる。   Specific examples include lithium chloride, sodium chloride, potassium chloride, sodium bromide, potassium bromide, sodium iodide, potassium iodide, sodium sulfate, potassium nitrate, sodium acetate, potassium oxalate, sodium citrate, potassium benzoate and the like. Alkali metal salts and aluminum chloride, aluminum bromide, aluminum sulfate, aluminum nitrate, sodium aluminum sulfate, potassium aluminum sulfate, aluminum acetate, barium chloride, barium bromide, barium iodide, barium oxide, barium nitrate, thiocyanate Barium acid, calcium chloride, calcium bromide, calcium iodide, calcium nitrite, calcium nitrate, calcium dihydrogen phosphate, calcium thiocyanate, calcium benzoate, calcium acetate, salicylic acid Lucium, calcium tartrate, calcium lactate, calcium fumarate, calcium citrate, copper chloride, copper bromide, copper sulfate, copper nitrate, copper acetate, iron chloride, iron bromide, iron iodide, iron sulfate, iron nitrate, oxalic acid Iron, iron lactate, iron fumarate, iron citrate, magnesium chloride, magnesium bromide, magnesium iodide, magnesium sulfate, magnesium nitrate, magnesium acetate, magnesium lactate, manganese chloride, manganese sulfate, manganese nitrate, manganese dihydrogen phosphate , Manganese acetate, manganese salicylate, manganese benzoate, manganese lactate, nickel chloride, nickel bromide, nickel sulfate, nickel nitrate, nickel acetate, tin sulfate, titanium chloride, zinc chloride, zinc bromide, zinc sulfate, zinc nitrate, thiocyanate Examples thereof include salts of polyvalent metals such as zinc acid and zinc acetate.

安定分散型の水分散性樹脂の存在する系では、金属カチオンの金属カチオン源となる成分が水溶性金属塩であるものの中でも、ゲル化強度が強く、ゲル化時間が短いため、溶解度が10g/100g水以上であることが好適であり、30g/100g水以上であることがより好適であり、100g/100g水以上であることが特に好適である。このような成分である電解質としては、例えば、硝酸カルシウム(溶解度138g/100g水)、硫酸アルミニウム(溶解度38.6g/100g水)、硫酸マグネシウム(溶解度36.3g/100g水)、等が挙げられる。   In a system in which a stable dispersion type water-dispersible resin is present, among components in which the metal cation source of the metal cation is a water-soluble metal salt, the gel strength is strong and the gel time is short, so the solubility is 10 g / It is preferably 100 g water or more, more preferably 30 g / 100 g water or more, and particularly preferably 100 g / 100 g water or more. Examples of the electrolyte as such a component include calcium nitrate (solubility 138 g / 100 g water), aluminum sulfate (solubility 38.6 g / 100 g water), magnesium sulfate (solubility 36.3 g / 100 g water), and the like. .

不安定分散型の水分散性樹脂の存在する系では、金属カチオンの金属カチオン源となる成分が水難溶性金属塩であるものの中でも、凝集物などの異物が生成しにくいため、溶解度が10g/100g水未満であることが好適であり、3g/100g水未満であることがより好適であり、1g/100g水未満であることが特に好適である。尚、下限値は特に限定されないが、0.0001g/100g水以上である。このような成分である電解質としては、例えば、クエン酸カルシウム(溶解度25.9mg/100g水)、炭酸カルシウム(溶解度0.81g/100g水)、第1リン酸カルシウム(溶解度1.8g/100g水)、等が挙げられる。   In a system in which an unstable dispersion type water-dispersible resin is present, a component that is a metal cation source of a metal cation is a poorly water-soluble metal salt, so that foreign matter such as aggregates is difficult to be generated, so the solubility is 10 g / 100 g. It is preferably less than water, more preferably less than 3 g / 100 g water, and particularly preferably less than 1 g / 100 g water. In addition, although a lower limit is not specifically limited, it is 0.0001 g / 100g water or more. Examples of the electrolyte as such a component include calcium citrate (solubility 25.9 mg / 100 g water), calcium carbonate (solubility 0.81 g / 100 g water), primary calcium phosphate (solubility 1.8 g / 100 g water), Etc.

(水溶性ポリマー)
本形態において用いられる水溶性ポリマーとは、溶解度が1g/100g水以上であるポリマーである。尚、水溶性ポリマーとしては、−COOM基、−SOM基、(Mは水素原子、周期表第I、II、III族元素、アミン、アンモニウムを示す)−NH、−OHなどの親水基を有するポリマーが例示出来る。水溶性ポリマーとしては、スルホニル基含有ポリマー及びカルボキシル基含有ポリマーが好適であるが、カルボキシル基と比較して、多価の電解質水溶液に対して官能基同士が架橋しにくいため吸水性を失いにくく、高い酸解離定数によってイオン濃度差が増し高い吸水力が期待できるため、スルホニル基含有ポリマーであることがより好適である。また、前記水溶性ポリマーとしては、スルホニル基含有ポリマーとカルボキシル基含有ポリマーとの共重合体であることが特に好適である。
(Water-soluble polymer)
The water-soluble polymer used in this embodiment is a polymer having a solubility of 1 g / 100 g water or more. As the water-soluble polymer, -COOM group, -SO 3 M group, (M represents a hydrogen atom, the periodic table I, II, III group element, amine, ammonium) -NH 2, hydrophilicity such as -OH Examples thereof include a polymer having a group. As the water-soluble polymer, a sulfonyl group-containing polymer and a carboxyl group-containing polymer are suitable, but compared to the carboxyl group, the functional groups are less likely to crosslink with respect to the polyvalent electrolyte aqueous solution, so that it is difficult to lose water absorption. Since a high acid dissociation constant increases the difference in ion concentration and high water absorption can be expected, a sulfonyl group-containing polymer is more preferable. In addition, the water-soluble polymer is particularly preferably a copolymer of a sulfonyl group-containing polymer and a carboxyl group-containing polymer.

このような水溶性ポリマーの例として、具体的には、ポリビニルアルコール(PVA)、カルボキシメチルセルロースなどの汎用樹脂の他に(メタ)アクリル酸とジエン化合物を共重合させたジエン系ゴム、無水マレイン酸で変性した液状ポリブタジエン、又特に効果的な骨格としては−COOM、−SOM(Mは水素原子、周期表第I、II、III族元素、アミン、アンモニウムを示す)を50〜50,000当量/10g有するポリマーであり、前記周期表第I、II族元素としては、ナトリウム、カリウム、リチウムなどのアルカリ金属、カルシウム、マグネシウムなどのアルカリ土類金属、ホウ素、アルミニウムなどが挙げられる。 Specific examples of such water-soluble polymers include diene rubbers obtained by copolymerizing (meth) acrylic acid and diene compounds in addition to general-purpose resins such as polyvinyl alcohol (PVA) and carboxymethylcellulose, and maleic anhydride. 50 to 50,000 are liquid polybutadiene modified with the above, and -COOM, -SO 3 M (M represents a hydrogen atom, Group I, II, Group III element, amine, ammonium) as a particularly effective skeleton. was equivalent / 10 6 g with polymer, the periodic table I, as a group II element, sodium, potassium, alkali metals such as lithium, calcium, alkaline earth metals such as magnesium, boron, and aluminum.

また、水溶性ポリマーとして、具体的には−COOM基又は−SOM基含有ポリウレタン、−COOM基又は−SOM基含有ポリウレタン、−COOM基又は−SOM基含有ポリエステル、−COOM基又は−SOM基含有エポキシ化合物、−COOM基又は−SOM基含有ポリアミド酸、−COOM基又は−SOM基含有アクリロニトリル−ブタジエンコポリマー、−COOM基又は−SOM基含有スチレン−ブタジエンコポリマー、−COOM基又は−SOM基含有ポリブタジエン、ポリアクリルアミド、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(MRC)、メチルセルロース(MC)、ポリエチレンオキサイド、ポリエチレンイミン、及び該化合物誘導体等が使用できるが、これらに限定されるものではない。 Further, as the water-soluble polymer, specifically, —COOM group or —SO 3 M group-containing polyurethane, —COOM group or —SO 3 M group-containing polyurethane, —COOM group or —SO 3 M group-containing polyester, —COOM group Or -SO 3 M group-containing epoxy compound, -COOM group or -SO 3 M group-containing polyamic acid, -COOM group or -SO 3 M group-containing acrylonitrile-butadiene copolymer, -COOM group or -SO 3 M group-containing styrene- Butadiene copolymer, -COOM group or -SO 3 M group-containing polybutadiene, polyacrylamide, sodium polyacrylate, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (MRC), methyl cellulose (MC), polyethylene oxide , Polyethyleneimine, and compound derivatives thereof can be used, but are not limited thereto.

尚、前記水溶性ポリマーに含有されるカルボキシル基、又はスルホン酸基の少なくとも一部を中和するために使用される化合物としては、水酸化ナトリウム等アルカリ金属の水酸化物、炭酸リチウム、炭酸カリウム、炭酸ナトリウム等の炭酸アルカリ金属塩、カリウムt−ブトキサイド、ナトリウムメトキサイド等のアルカリ金属のアルコキサイド、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の多価金属の水酸化物、アルミニウムイソプロポキサイドを始めとする多価金属アルコキサイド、トリエチルアミン、トリn−プロピルアミン等の第3級アミン、ジエチルアミン、ジ−n−プロピルアミン等第2級アミンエチルアミン、n−プロピルアミン等第1級アミン、モルホリン等の環状アミン、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート等アミノ基含有(メタ)アクリレート、炭酸アンモニウム等、アンモニウム塩、等を挙げることが出来る。これらは、単独あるいは複数類組み合せて使用してよい。   The compounds used to neutralize at least a part of the carboxyl group or sulfonic acid group contained in the water-soluble polymer include alkali metal hydroxides such as sodium hydroxide, lithium carbonate, and potassium carbonate. Alkali metal carbonates such as sodium carbonate, alkali metal alkoxides such as potassium t-butoxide and sodium methoxide, hydroxides of polyvalent metals such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide, aluminum isopropoxide And other polyvalent metal alkoxides, tertiary amines such as triethylamine and tri-n-propylamine, secondary amines such as diethylamine and di-n-propylamine, ethylamines such as n-propylamine, primary amines such as morpholine, etc. Cyclic amine, N, N-dimethylamino Chill (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate such as an amino group-containing (meth) acrylate, ammonium carbonate, ammonium salts, and the like. These may be used alone or in combination.

尚、前記水溶性ポリマーは−COOM基又は−SOM基以外に親水部としてポリオキシアルキレン鎖を有していてもよく、また架橋剤として作用できるようにエチレン性不飽和基を含有していてもよい。また本形態において水溶性ポリマーとして前記水溶性ポリマー以外に例えば、水酸基、アミン基等の親水性基及び/あるいはポリオキシアルキレン鎖を有するポリマーなどを併用してもよい。 In addition to the —COOM group or —SO 3 M group, the water-soluble polymer may have a polyoxyalkylene chain as a hydrophilic portion, and contains an ethylenically unsaturated group so that it can act as a crosslinking agent. May be. In this embodiment, in addition to the water-soluble polymer, for example, a polymer having a hydrophilic group such as a hydroxyl group or an amine group and / or a polyoxyalkylene chain may be used in combination.

水溶性ポリマーは、高吸水性を発現するために、溶解度が1g/100g水以上であることが好ましく、10g/100g水以上であることがより好ましい。尚、上限値としては特に限定されないが、例えば500g/100g水以下である。また、水溶性ポリマーは、重量平均分子量が500以上1000000以下であることが好適であり、1000以上100000以下であることがより好適であり、1000以上10000以下であることが更に好適であり、3000以上5000以下であることが特に好適である。このような範囲とすることで、高吸水性が発現し、発泡時の液粘度上昇が抑制できる。   The water-soluble polymer has a solubility of preferably 1 g / 100 g water or more, and more preferably 10 g / 100 g water or more in order to exhibit high water absorption. In addition, although it does not specifically limit as an upper limit, For example, it is 500 g / 100g water or less. The water-soluble polymer preferably has a weight average molecular weight of 500 or more and 1000000 or less, more preferably 1000 or more and 100000 or less, further preferably 1000 or more and 10,000 or less, and 3000 It is particularly preferable that it is 5,000 or more. By setting it as such a range, high water absorption will express and the liquid viscosity raise at the time of foaming can be suppressed.

ここで、本形態において、「重量平均分子量」とは、ゲルパーミエーションクロマトグラフ(GPC)法によって得られた数値を示す。具体的には、水分散性樹脂の分子量分布はGPC測定装置(東ソー株式会社製、HLC−8320GPC EcoSEC)によって測定した。カラムにはTSKgel SuperMultiporeHZ−M(東ソー株式会社製)を使用した。40℃のヒートチャンバー中でカラムを安定させ、この温度におけるカラムに、溶媒としてTHF(テトラヒドロフラン)を毎分1mlの流速で流し、試料濃度として0.05〜0.6重量%に調製した樹脂の試料溶液を50〜200μl注入して測定した。重量平均分子量Mw、個数平均分子量Mnの測定に当たっては、試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント数との関係から算出した。検量線作成用の標準ポリスチレン試料としては、例えばPressure ChemicalCo.、あるいは東洋ソーダ工業社製の分子量が6×10、2.1×10、4×10、1.75×10、5.1×10、1.1×10、3.9×10、8.6×10、2×10、4.48×10のものを用いた。また、検出器にはRI(屈折率)検出器を用いた。 Here, in this embodiment, “weight average molecular weight” indicates a numerical value obtained by a gel permeation chromatograph (GPC) method. Specifically, the molecular weight distribution of the water-dispersible resin was measured with a GPC measuring device (HLC-8320GPC EcoSEC, manufactured by Tosoh Corporation). TSKgel SuperMultipore HZ-M (manufactured by Tosoh Corporation) was used for the column. The column was stabilized in a heat chamber at 40 ° C., and THF (tetrahydrofuran) as a solvent was passed through the column at this temperature at a flow rate of 1 ml / min. Measurement was performed by injecting 50 to 200 μl of the sample solution. In measuring the weight average molecular weight Mw and the number average molecular weight Mn, the molecular weight distribution of the sample was calculated from the relationship between the logarithmic value of the calibration curve prepared from several types of monodisperse polystyrene standard samples and the number of counts. As a standard polystyrene sample for preparing a calibration curve, for example, Pressure Chemical Co. Or a molecular weight of 6 × 10 2 , 2.1 × 10 2 , 4 × 10 2 , 1.75 × 10 4 , 5.1 × 10 4 , 1.1 × 10 5 , 1.1 × 10 5 , manufactured by Toyo Soda Kogyo Co., Ltd. 9 × 10 5 , 8.6 × 10 5 , 2 × 10 6 , 4.48 × 10 6 were used. An RI (refractive index) detector was used as the detector.

(水溶性ポリマー用架橋剤)
水溶性ポリマー用の架橋剤を用いることにより、水溶性ポリマーを水分散性樹脂へグラフト化させることで、吸水剤の脱落が抑制され繰り返し耐性が向上する。
(Crosslinking agent for water-soluble polymer)
By using the cross-linking agent for the water-soluble polymer, the water-soluble polymer is grafted onto the water-dispersible resin, so that the water-absorbing agent is prevented from dropping and the repeated resistance is improved.

このような水溶性ポリマー架橋剤としては特に限定されず、使用する水溶性ポリマーに合わせて適宜変更可能であり、カルボキシル基などの酸素原子を架橋する有機ジルコニウム化合物、有機チタン化合物やホルムアルデヒド樹脂(ホルマリン系縮合樹脂)、アミノ基などの窒素原子を架橋する水溶性エポキシ樹脂等が例示出来る。   Such a water-soluble polymer cross-linking agent is not particularly limited, and can be appropriately changed according to the water-soluble polymer to be used. Organic zirconium compounds, organic titanium compounds, and formaldehyde resins that cross-link oxygen atoms such as carboxyl groups (formalin) And water-soluble epoxy resins that crosslink nitrogen atoms such as amino groups.

(ゲル化成分)
本形態に係る樹脂発泡体のゲル化成分(後述の発泡工程において、発泡形成された水系液体媒体のセル合一化を防ぐために、水系液体媒体をゲル化させる成分)を配合してもよい。このようなゲル化成分としては、ゲル化方法に応じて適宜添加すればよく、例えば、ケイフッ化ナトリウム、ケイフッ化カリウム、ケイフッ化カルシウムのようなヘキサフルオロケイ酸塩;又はシクロヘキシルアミンの酢酸塩、スルファミン酸塩のようなシクロヘキシルアミン塩等を使用でき、一般には、これらの化合物を水溶液状態とした液状物が使用される。例えば、ケイフッ化ナトリウムを用いることで、ゲル化開始時間の制御等の反応制御が容易となる。
(Gel component)
You may mix | blend the gelling component of the resin foam which concerns on this form (The component which gelatinizes an aqueous liquid medium in order to prevent the cell integration of the foamed aqueous liquid medium in the foaming process mentioned later). Such a gelling component may be appropriately added depending on the gelation method, for example, hexafluorosilicate such as sodium silicofluoride, potassium silicofluoride, calcium silicofluoride; or cyclohexylamine acetate, A cyclohexylamine salt such as a sulfamate can be used, and generally a liquid in which these compounds are in an aqueous solution is used. For example, by using sodium silicofluoride, reaction control such as control of gelation start time becomes easy.

(その他の添加剤)
その他の添加剤として、水分散性樹脂分散用界面活性剤(乳化剤)、硬化剤等を添加してもよい。
(Other additives)
As other additives, a water dispersible resin dispersing surfactant (emulsifier), a curing agent and the like may be added.

・水分散性樹脂分散用界面活性剤
本形態に係る水分散性樹脂分散用界面活性剤とは、水分散性樹脂を分散させるための界面活性剤である(アニオン性界面活性剤と異なり、起泡剤としての効果を有さずともよい)。このような界面活性剤は、選択する水分散性樹脂に応じて適宜選択すればよい。例えば、水分散性樹脂を、ウレタンエマルジョンとした場合、アクリルエマルジョンとした場合、ゴムラテックスとした場合の具体的な水分散性樹脂分散用界面活性剤に関しては、上述の通りである。
-Water-dispersible resin-dispersing surfactant The water-dispersible resin-dispersing surfactant according to this embodiment is a surfactant for dispersing a water-dispersible resin (unlike an anionic surfactant, It may not have an effect as a foaming agent). Such a surfactant may be appropriately selected according to the water-dispersible resin to be selected. For example, when the water-dispersible resin is a urethane emulsion, an acrylic emulsion, or a rubber latex, the specific surfactant for dispersing the water-dispersible resin is as described above.

・硬化剤
本形態に係る硬化剤とは、水分散性樹脂用の架橋剤であり、用途等に応じて、必要量添加すればよい。硬化剤による硬化手法としては、例えば、物理架橋、イオン架橋、化学架橋があり、架橋方法は、水分散性樹脂の種類に応じて選択することができる。
-Curing agent The hardening | curing agent which concerns on this form is a crosslinking agent for water-dispersible resin, and what is necessary is just to add required amount according to a use etc. Examples of the curing method using a curing agent include physical crosslinking, ionic crosslinking, and chemical crosslinking, and the crosslinking method can be selected according to the type of the water-dispersible resin.

硬化剤としては、エポキシ系硬化剤、メラミン系硬化剤、イソシアネート系硬化剤、カルボジイミド系硬化剤、オキサゾリン系硬化剤などを、使用する樹脂配合系が含有する官能基の種類及び、官能基量に応じて適量使用することができる。   As the curing agent, epoxy resin curing agent, melamine curing agent, isocyanate curing agent, carbodiimide curing agent, oxazoline curing agent, etc. Appropriate amount can be used accordingly.

尚、水分散性樹脂として、ゴムラテックスを用いる場合、樹脂発泡体の製造に慣用される架橋剤(ゴムポリマー同士を架橋するための添加剤であり、例えば、加硫剤)、架橋促進剤(架橋剤による架橋反応を促進するための添加剤であり、例えば、加硫促進剤)、老化防止剤等を添加してもよい。   When a rubber latex is used as the water-dispersible resin, a crosslinking agent (additive for crosslinking rubber polymers, for example, a vulcanizing agent), a crosslinking accelerator ( It is an additive for accelerating the crosslinking reaction by the crosslinking agent. For example, a vulcanization accelerator), an antiaging agent, or the like may be added.

架橋剤としては、ゴムポリマーの種類及び架橋反応機構に応じて、硫黄、有機過酸化物、又はフェノール化合物等が用いられる。硫黄による架橋の場合、コロイド状硫黄及び微粉末硫黄の他、二塩化硫黄及びジペンタメチレンチウラムテトラスルフィド等の硫黄化合物等を用いることができる。有機過酸化物による架橋の場合、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド;ベンゾイルペルオキシド、m−トルイルペルオキシド等のアシルペルオキシド;t−ブチルクミルペルオキシド、ジクミルペルオキシド、2,5−ジメチル−2,5−ビス(t−ブトキシペルオキシ)ヘキサン等のアルキルペルオキシド;t−ブトキシペルオキシ−3,3,5−トリメチルシクロヘキサノアート、t−ブトキシペルオキシベンゾアート等のペルオキシエステル;1,1−ビス(t−ブトキシペルオキシ)シクロヘキサン、1,1−ビス(t−ブトキシペルオキシ)−3,3,5−トリメチルシクロヘキサ等のペルオキシケタール;t−ブトキシペルオキシイソプロピルカルボナート、t−ブトキシペルオキシ−2−エチルヘキシルカルボナート等のペルオキシカルボナート等の有機過酸化物を用いることができる。有機過酸化物は、そのまま配合してもよく、モレキュラーシーブ等の無機粉末に吸着させたり、炭化水素や可塑剤に溶解したり、ポリジメチルシロキサンなどの不活性の液体に混和したりして安定化したものを、配合に使用してもよい。フェノール化合物による架橋の場合、アルキフェノール・ホルムアルデヒド樹脂、硫化−p−第三ブチルフェノール樹脂及びアルキルフェノール・スルフィド樹脂等を用いることができる。架橋剤の配合量は、ゴムポリマーの種類、架橋機構、及び架橋剤によっても異なるが、ゴムラテックスの混合物中において、ゴムポリマー100質量部に対して0.02〜20質量部が好ましく、0.1〜10質量部がより好ましい。   As the crosslinking agent, sulfur, an organic peroxide, a phenol compound, or the like is used depending on the type of rubber polymer and the crosslinking reaction mechanism. In the case of crosslinking by sulfur, in addition to colloidal sulfur and fine powder sulfur, sulfur compounds such as sulfur dichloride and dipentamethylene thiuram tetrasulfide can be used. In the case of crosslinking with an organic peroxide, hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; acyl peroxides such as benzoyl peroxide and m-toluyl peroxide; t-butylcumyl peroxide, dicumyl peroxide, 2,5- Alkyl peroxides such as dimethyl-2,5-bis (t-butoxyperoxy) hexane; peroxyesters such as t-butoxyperoxy-3,3,5-trimethylcyclohexanoate, t-butoxyperoxybenzoate; 1,1- Peroxyketals such as bis (t-butoxyperoxy) cyclohexane and 1,1-bis (t-butoxyperoxy) -3,3,5-trimethylcyclohexa; t-butoxyperoxyisopropyl carbonate, t-butoxyper Organic peroxides peroxycarbonate such as carboxymethyl-2-ethylhexyl carbonate can be used. Organic peroxides can be blended as they are, and are stable when adsorbed on inorganic powders such as molecular sieves, dissolved in hydrocarbons and plasticizers, and mixed with inert liquids such as polydimethylsiloxane. What was converted may be used for a mixing | blending. In the case of crosslinking with a phenol compound, an alkylphenol / formaldehyde resin, a sulfurized p-tert-butylphenol resin, an alkylphenol / sulfide resin, or the like can be used. The blending amount of the crosslinking agent varies depending on the type of the rubber polymer, the crosslinking mechanism, and the crosslinking agent, but is preferably 0.02 to 20 parts by mass with respect to 100 parts by mass of the rubber polymer in the rubber latex mixture. 1-10 mass parts is more preferable.

架橋促進剤としては、各種物質が使用できるが、極性油に対する膨潤性を下げることから、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジ−n−ブチルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、N−ペンタメチレンジチオカルバミン酸亜鉛のようなジチオカルバミン酸亜鉛類;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、N,N’−ジメチル−N,N’−ジフェニルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィドのようなチウラム類;N,N−ジイソプロピル−2−ベンゾチアリルスルフェンアミド、N−t−ブチル−2−ベンゾチアリルスルフェンアミド、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド、N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド、N−オキシジエチレン−2−ベンゾチアジルスルフェンアミドのようなスルフェンアミド類;2−メルカプトベンゾチアゾール及びその塩(ナトリウム塩、亜鉛塩、シクロヘキシルアミン塩、ジシクロヘキシルアミン塩等)、2−(4’−モルホリノジチオ)ベンゾチアゾール、4−モルホリニル−2−ベンゾチアジルジスルフィド、2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾールのようなベンゾチアゾール類;並びにそれらの混合物が好ましい。これらのうち、ジチオカルバミン酸亜鉛類が更に好ましく、ジブチルジチオカルバミン酸亜鉛が特に好ましい。架橋促進剤の配合量は、ゴムラテックスの混合物中において、ゴムポリマー100質量部に対して0.02〜20質量部が好ましく、0.1〜10質量部がより好ましい。   Various substances can be used as the crosslinking accelerator, but since the swelling property against polar oil is lowered, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc di-n-butyldithiocarbamate, zinc dibenzyldithiocarbamate, ethylphenyl Zinc dithiocarbamates such as zinc dithiocarbamate and zinc N-pentamethylenedithiocarbamate; tetramethylthiuram monosulfide, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, N, N′-dimethyl-N, N ′ -Thiurams such as diphenyl thiuram disulfide and dipentamethylene thiuram tetrasulfide; N, N-diisopropyl-2-benzothialylsulfenamide, Nt-butyl- -Benzothialylsulfenamide, N-cyclohexyl-2-benzothiazylsulfenamide, N, N-dicyclohexyl-2-benzothiazylsulfenamide, N-oxydiethylene-2-benzothiazylsulfenamide 2-mercaptobenzothiazole and its salts (sodium salt, zinc salt, cyclohexylamine salt, dicyclohexylamine salt, etc.), 2- (4′-morpholinodithio) benzothiazole, 4-morpholinyl-2-benzo Preferred are thiazyl disulfide, benzothiazoles such as 2- (N, N-diethylthiocarbamoylthio) benzothiazole; and mixtures thereof. Of these, zinc dithiocarbamates are more preferred, and zinc dibutyldithiocarbamate is particularly preferred. The blending amount of the crosslinking accelerator is preferably 0.02 to 20 parts by mass and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber polymer in the rubber latex mixture.

老化防止剤としては、例えば、N−フェニル−N’−(p−トルエンスルホニル)−p−フェニレンジアミン等のジフェニルアミン系化合物;芳香族アミンと脂肪族ケトンの縮合物;2−メルカプトベンゾイミダゾールやその亜鉛塩等のイミダゾール系化合物;2,6−ジ−t−ブチル−4−メチルフェノール等のモノ−フェノール系化合物;ビス−、トリス、ポリフェノール系化合物等が挙げられる。老化防止剤の配合量は、ゴムラテックスの混合物中において、ゴムポリマー100質量部に対して1.0〜10質量部が好ましく、2.0〜6.0質量部がより好ましい。   Examples of the antioxidant include diphenylamine compounds such as N-phenyl-N ′-(p-toluenesulfonyl) -p-phenylenediamine; condensates of aromatic amines and aliphatic ketones; 2-mercaptobenzimidazole and the like Examples thereof include imidazole compounds such as zinc salts; mono-phenol compounds such as 2,6-di-t-butyl-4-methylphenol; bis-, tris, and polyphenol compounds. 1.0-10 mass parts is preferable with respect to 100 mass parts of rubber polymers in the mixture of rubber latex, and, as for the compounding quantity of anti-aging agent, 2.0-6.0 mass parts is more preferable.

尚、架橋剤、架橋促進剤及び老化防止剤については、ゴムラテックス中での分散性を向上させるため、これらの副原料を予め分散剤等を用いて水中に分散させてペースト状にしたもの(加硫系ペースト)を調製し、この加硫系ペーストをゴムラテックス中に添加してもよい。   In addition, in order to improve the dispersibility in the rubber latex, the cross-linking agent, the cross-linking accelerator and the anti-aging agent are prepared by previously dispersing these auxiliary materials in water using a dispersant or the like ( A vulcanizing paste) may be prepared and this vulcanizing paste may be added to the rubber latex.

(好適な原料の組み合わせ)
ここで、上述の通り、アニオン性界面活性剤の不溶化によるゲル化手法を用い、水分散性樹脂として安定分散型の水分散性樹脂を用いる場合、金属カチオンの金属カチオン源として、水溶性金属塩を用いることが好適である。このような組み合わせとすることにより、ゲル化強度が強く、ゲル化時間が短いという効果が得られる。また、同様に、水分散性樹脂として不安定分散型の水分散性樹脂を用いる場合、金属カチオンの金属カチオン源として、水難溶性金属塩を用いることが好適である。このような組み合わせとすることにより、凝集物などの異物が生成しにくいという効果が得られる。
(Suitable combination of raw materials)
Here, as described above, when using a gelation technique by insolubilization of an anionic surfactant and using a stably dispersed water-dispersible resin as the water-dispersible resin, a water-soluble metal salt is used as the metal cation source of the metal cation. Is preferably used. By such a combination, the effect that gelation strength is strong and gelation time is short is acquired. Similarly, when an unstable dispersion type water dispersible resin is used as the water dispersible resin, it is preferable to use a poorly water-soluble metal salt as the metal cation source of the metal cation. By using such a combination, it is possible to obtain an effect that foreign matters such as aggregates are hardly generated.

<組成>
(各原料の配合量や配合比)
液体媒体に対する、水分散性樹脂(固形分)の配合量としては、液体媒体100質量部に対して、30〜70質量部が好ましい。このような範囲とすることで、安定な発泡体を成形することができるという効果が得られる。
<Composition>
(Blending amount and blending ratio of each raw material)
As a compounding quantity of water-dispersible resin (solid content) with respect to a liquid medium, 30-70 mass parts is preferable with respect to 100 mass parts of liquid media. By setting it as such a range, the effect that a stable foam can be shape | molded is acquired.

アニオン性界面活性剤の配合量としては、水分散性樹脂の混合物(水系液体媒体)中において、水分散性樹脂(固形分)100質量部に対して1.0〜10質量部が好ましく、3〜10質量部がより好ましい。このような範囲とすることで、適切な発泡とし易く、微細なセル構造を成形できるという効果が得られる。   The compounding amount of the anionic surfactant is preferably 1.0 to 10 parts by mass with respect to 100 parts by mass of the water-dispersible resin (solid content) in the water-dispersible resin mixture (aqueous liquid medium). 10 mass parts is more preferable. By setting it as such a range, it is easy to make it suitable foaming, and the effect that a fine cell structure can be shape | molded is acquired.

水溶性ポリマーの配合量としては、水分散性樹脂の混合物中において、水分散性樹脂(固形分)100質量部に対して0.5〜10質量部が好ましく、2〜5質量部がより好ましい。このような範囲とすることで、高吸水性を発現できるという効果が得られる。   As a compounding quantity of a water-soluble polymer, 0.5-10 mass parts is preferable with respect to 100 mass parts of water-dispersible resin (solid content) in the mixture of water-dispersible resin, and 2-5 mass parts is more preferable. . By setting it as such a range, the effect that high water absorption can be expressed is acquired.

水分散性樹脂の混合物中において、水溶性ポリマー架橋剤/水溶性ポリマーの質量部比率は0.02〜5が好ましく、0.1〜2以上がより好ましい。   In the water-dispersible resin mixture, the mass part ratio of the water-soluble polymer crosslinking agent / water-soluble polymer is preferably 0.02 to 5, and more preferably 0.1 to 2 or more.

架橋剤(硬化剤)の配合量としては、水分散性樹脂の混合物中において、水分散性樹脂(固形分)100質量部に対して0.1〜20質量部が好ましく、1〜10質量部がより好ましい。尚、硬化剤として加硫系ペーストを使用する場合には、水分散性樹脂の混合物中において、水分散性樹脂(固形分)100質量部に対して1〜20質量部が好ましく、5〜15質量部がより好ましい。このような範囲とすることで、圧縮残留歪みの小さい発泡体を成形できるという効果が得られる。   As a compounding quantity of a crosslinking agent (curing agent), 0.1-20 mass parts is preferable with respect to 100 mass parts of water-dispersible resin (solid content) in the mixture of water-dispersible resin, and 1-10 mass parts. Is more preferable. In addition, when using a vulcanization | cure paste as a hardening | curing agent, 1-20 mass parts is preferable with respect to 100 mass parts of water-dispersible resin (solid content) in the mixture of water-dispersible resin, and 5-15. Part by mass is more preferable. By setting it as such a range, the effect that a foam with a small compression residual strain can be shape | molded is acquired.

ゲル化成分(ゲル化剤)を配合する場合、その配合量は、特に限定されないが、水分散性樹脂の混合物中において、ポリマー100質量部に対して1〜10質量部程度が好適である。ゲル化剤の配合量が上記範囲外となると、好適なゲル化を発現できない、すなわち、長時間経過しても液状のままゲル化しなかったり、短時間でゲル化が進行して所望の形状への成形が困難になったりする。これにより、具体的にはゲル化の完了に必要な時間(ゲル化時間)が長くなり過ぎたり、短くなり過ぎたりしてしまうことにより、好適な樹脂発泡体が得られなくなってしまう。   When the gelling component (gelling agent) is blended, the blending amount is not particularly limited, but is preferably about 1 to 10 parts by mass with respect to 100 parts by mass of the polymer in the mixture of the water-dispersible resin. When the blending amount of the gelling agent is out of the above range, suitable gelation cannot be expressed, that is, it does not gel in a liquid state even after a long time, or gelation proceeds in a short time to a desired shape. It may be difficult to mold. As a result, specifically, the time required for completion of gelation (gelation time) becomes too long or too short, so that a suitable resin foam cannot be obtained.

尚、金属カチオン(金属カチオン源)によるアニオン性界面活性剤の不溶化を行い、金属カチオン源として電解質を用いる場合、電解質の配合量としては、水分散性樹脂の混合物中において、水分散性樹脂(固形分)100質量部に対して1.0〜10質量部が好ましく、2〜5質量部がより好ましい。このような範囲とすることで、適切なゲル化強度、ゲル化時間となるため、微細なセル構造を成形できるという効果が得られる。   In addition, when an anionic surfactant is insolubilized with a metal cation (metal cation source) and an electrolyte is used as the metal cation source, the amount of the electrolyte blended in the water-dispersible resin mixture is: The solid content is preferably 1.0 to 10 parts by mass, more preferably 2 to 5 parts by mass with respect to 100 parts by mass. By setting it as such a range, since it becomes suitable gelatinization intensity | strength and gelatinization time, the effect that a fine cell structure can be shape | molded is acquired.

尚、金属カチオン(金属カチオン源)によるアニオン性界面活性剤の不溶化を行う場合には、水分散性樹脂の混合物中において、不溶化する対象構成成分である金属カチオンの価数/不溶化する対象構成成分である前記アニオン性界面活性剤の価数{後述の表等においては、省略して、「価数比」[金属カチオン(金属カチオン源)/アニオン性界面活性剤]等ともする}は、0.1以上が好ましく、0.5以上がより好ましく、価数のモル当量である1.0以上が特に好ましい。このような範囲とすることで、適切なゲル化強度、ゲル化時間となるため、微細なセル構造を成形できるという効果が得られる。   In the case where the anionic surfactant is insolubilized with a metal cation (metal cation source), the valence of the metal cation which is the target constituent to be insolubilized / the target constituent to be insolubilized in the water-dispersible resin mixture. The valence of the anionic surfactant that is {the abbreviation is omitted in the table and the like described later, and is also referred to as "metal cation (metal cation source) / anionic surfactant] etc.}" is 0 0.1 or more is preferable, 0.5 or more is more preferable, and 1.0 or more which is a molar equivalent of the valence is particularly preferable. By setting it as such a range, since it becomes suitable gelatinization intensity | strength and gelatinization time, the effect that a fine cell structure can be shape | molded is acquired.

<プロセス>
本形態に係る樹脂発泡体の製造プロセスは、原料調製工程と、撹拌・発泡工程と、チキソ性付与工程と、加熱工程と、を含む。以下、それぞれの工程に関して詳述する。
(原料調製工程)
原料調製工程では、以上説明したような各原料を混合することで、吸水性樹脂発泡体の原料混合物である水系液体媒体を調製する。この際の混合方法としては、特に限定されるものではないが、例えば、各成分を混合する混合タンク等の容器内で撹拌しながら混合すればよい。
<Process>
The manufacturing process of the resin foam according to the present embodiment includes a raw material preparation step, a stirring / foaming step, a thixotropy imparting step, and a heating step. Hereinafter, each step will be described in detail.
(Raw material preparation process)
In the raw material preparation step, an aqueous liquid medium that is a raw material mixture of the water absorbent resin foam is prepared by mixing the raw materials as described above. The mixing method at this time is not particularly limited, and for example, mixing may be performed while stirring in a container such as a mixing tank for mixing the components.

(撹拌・発泡工程)
攪拌・発泡工程では、上記原料調製工程で得られた水系液体媒体に所定の発泡用気体を添加し、これらを充分に混合させて水系液体媒体中に気泡が多数存在する状態(発泡水系液体媒体)にする。この攪拌・発泡工程は、通常は、原料調製工程で得られた液状の吸水性樹脂発泡体の原料混合物と、発泡用気体とをミキシングヘッド等の混合装置により充分に混合することで実施される。
(Stirring / foaming process)
In the agitation / foaming step, a predetermined foaming gas is added to the aqueous liquid medium obtained in the raw material preparation step, and these are sufficiently mixed to produce a state in which many bubbles exist in the aqueous liquid medium (foamed aqueous liquid medium ). This stirring / foaming step is usually carried out by sufficiently mixing the raw material mixture of the liquid water-absorbent resin foam obtained in the raw material preparation step and the foaming gas with a mixing device such as a mixing head. .

・発泡用気体
攪拌・発泡工程で水系液体媒体に混合される発泡用気体は、吸水性樹脂発泡体中の気泡(セル)を形成するものであり、この発泡用気体の混入量によって、得られる吸水性樹脂発泡体の発泡倍率及び密度が決まる。吸水性樹脂発泡体の密度を調整するためには、所望の吸水性樹脂発泡体の密度と、吸水性樹脂発泡体の原料の体積(例えば、吸水性樹脂発泡体の原料が注入される成形型の内容積)とから、必要な吸水性樹脂発泡体の原料の重量を算出し、この重量において所望の体積となるように発泡用気体の量を決定すればよい。また、発泡用気体の種類としては、主に空気が使用されるが、その他にも、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスを使用することもできる。
-Foaming gas The foaming gas mixed with the aqueous liquid medium in the stirring / foaming process forms bubbles (cells) in the water-absorbent resin foam, and is obtained depending on the amount of the foaming gas mixed in. The expansion ratio and density of the water absorbent resin foam are determined. In order to adjust the density of the water absorbent resin foam, the density of the desired water absorbent resin foam and the volume of the raw material of the water absorbent resin foam (for example, a mold into which the raw material of the water absorbent resin foam is injected) The volume of the foaming gas may be determined so as to obtain a desired volume at this weight. As the type of foaming gas, air is mainly used, but in addition, inert gases such as nitrogen, carbon dioxide, helium, and argon can also be used.

・発泡方法、発泡条件
本発明に係る吸水性樹脂発泡体の製造方法で使用される発泡方法としては、発泡体の製造で一般的に使用される方法であれば特に制限されないが、例えば、メカニカルフロス(機械発泡)法を使用することができる。メカニカルフロス法は、水系液体媒体を攪拌羽根等で攪拌することにより、大気中の空気を水系液体媒体に混入させて発泡させる方法である。撹拌装置としては、メカニカルフロス法に一般に用いられる撹拌装置を特に制限なく使用可能であるが、例えば、ホモジナイザー、ディゾルバー、メカニカルフロス発泡機等を使用することができる。このメカニカルフロス法によれば、水系液体媒体と空気との混合割合を調節することによって、種々の用途に適した密度の吸水性樹脂発泡体を得ることができる。
-Foaming method and foaming conditions The foaming method used in the method for producing a water-absorbent resin foam according to the present invention is not particularly limited as long as it is a method generally used in the production of foams. A floss (mechanical foaming) method can be used. The mechanical floss method is a method in which air in the atmosphere is mixed into an aqueous liquid medium and foamed by stirring the aqueous liquid medium with a stirring blade or the like. As the stirring device, a stirring device generally used in the mechanical floss method can be used without particular limitation, and for example, a homogenizer, a dissolver, a mechanical floss foaming machine, or the like can be used. According to this mechanical floss method, by adjusting the mixing ratio of the aqueous liquid medium and air, it is possible to obtain water absorbent resin foams having a density suitable for various applications.

水系液体媒体と空気との混合時間は特に制限されないが、通常は1〜10分、好ましくは2〜6分である。混合温度も特に制限されないが、通常は常温である。また、上記の混合における攪拌速度は、気泡を細かくするために200rpm以上が好ましく(500rpm以上がより好ましく)、発泡機からの発泡物の吐出をスムーズにするために2000rpm以下が好ましい(800rpm以下がより好ましい)。   The mixing time of the aqueous liquid medium and air is not particularly limited, but is usually 1 to 10 minutes, preferably 2 to 6 minutes. The mixing temperature is not particularly limited, but is usually room temperature. Further, the stirring speed in the above mixing is preferably 200 rpm or more in order to make the bubbles fine (more preferably 500 rpm or more), and 2000 rpm or less is preferable (800 rpm or less is preferable) in order to smoothly discharge the foam from the foaming machine. More preferred).

・成形
以上のようにして発泡した水系液体媒体(発泡水系液体媒体)は、例えば、ドクターナイフ、ドクターロール等の公知の手段により、所望の吸水性樹脂発泡体の厚みに合わせたシート状等に成形される。
-Molding The aqueous liquid medium (foamed aqueous liquid medium) foamed as described above is formed into a sheet or the like that matches the thickness of the desired water-absorbent resin foam by known means such as a doctor knife or a doctor roll. Molded.

(チキソ性付与工程)
チキソ性付与工程では、上記原料調製工程で得られた水系液体媒体に所定のゲル化方法を用いて、ゲル化された水系液体媒体を得る。このチキソ性付与工程は、ゲル化剤を用いる場合には、原料調製工程で得られた液状の水系液体媒体と、発泡用ガスと、ゲル化剤とをミキシングヘッド等の混合装置により充分に混合することで実施される。尚、ここでいうゲル化した水系液体媒体とは、完全にゲル化が完了した水系液体媒体だけを指すものでなく、チキソ性付与工程により添加されたゲル化剤により、原料調製工程で得られる液状の水系液体媒体から次第にゲル化している途上の水系液体媒体及び完全にゲル化した水系液体媒体の両方を指すものである。
(Thixotropic process)
In the thixotropy imparting step, a gelled aqueous liquid medium is obtained by using a predetermined gelation method for the aqueous liquid medium obtained in the raw material preparation step. In this thixotropic imparting step, when a gelling agent is used, the liquid aqueous liquid medium obtained in the raw material preparation step, the foaming gas, and the gelling agent are sufficiently mixed by a mixing device such as a mixing head. It is carried out by doing. The gelled aqueous liquid medium here refers not only to an aqueous liquid medium that has been completely gelled, but can be obtained in the raw material preparation step by a gelling agent added in the thixotropy imparting step. It refers to both an aqueous liquid medium in the middle of gelation from a liquid aqueous liquid medium and a completely gelled aqueous liquid medium.

また、ゲル化の完了により、ゲル化した水系液体媒体中に存在する発泡ガスは気泡として保持されることになる。この気泡は、そのまま最終的に得られる樹脂発泡体のセルとなるため、この気泡の大きさはセル径を決定することになる。   Moreover, the foaming gas which exists in the gelatinized aqueous liquid medium will be hold | maintained as a bubble by completion of gelation. Since the bubbles become cells of the resin foam finally obtained as they are, the size of the bubbles determines the cell diameter.

尚、水系液体媒体のゲル化手法及び発泡手法としては、何ら限定されず、用途等に応じて適宜選択すればよい。例えば、ゲル化剤を使用する常温ゲル化法(ダンロップ法)、ゲル化剤を使用しない冷凍凝固法(タラレー法)、アンミン錯体によるゲル化法(ケイサム法)、感熱剤を使用する感熱ゲル化法等の既知の方法を用いればよい。その他にも、上記のように、アニオン性界面活性剤と共に金属カチオン源を配合することにより、アニオン性界面活性剤を不溶化させるゲル化方法であってもよい。   The gelation method and foaming method of the aqueous liquid medium are not limited at all, and may be appropriately selected according to the application. For example, room temperature gelation method using gelling agent (Dunlop method), freezing solidification method without using gelling agent (Tararay method), gelation method with ammine complex (caysam method), heat sensitive gelation using heat sensitive agent A known method such as a method may be used. In addition, as described above, a gelation method may be used in which an anionic surfactant is insolubilized by blending a metal cation source together with the anionic surfactant.

尚、金属カチオン源を樹脂発泡体の原料に添加する場合、添加のタイミングはいつでもよいが、特に、ゲル化時間が短い場合や、溶解度の大きい水溶性塩を用いる場合は、発泡前に添加するとゲル化による増粘で混入できる気体の量が減少し高密度な発泡体になるため、発泡後の発泡水系液体媒体に添加することが好ましい。また、ゲル化時間が長い場合や、徐放性水難溶性塩を用いる場合は、発泡後に添加すると気泡の合一により微細なセル構造が成形できないため、発泡前の水系液体媒体に添加することが好ましい。他方、金属カチオン源を予め(発泡前に)水系液体媒体に添加することにより、工程の簡略化を行うことが可能となる。   In addition, when adding a metal cation source to the raw material of the resin foam, the timing of addition may be any time, especially when gelation time is short or when using a water-soluble salt with high solubility, Since the amount of gas that can be mixed by thickening due to gelation is reduced and a high-density foam is formed, it is preferably added to the foamed aqueous liquid medium after foaming. In addition, when the gelation time is long or when a sustained-release sparingly water-soluble salt is used, if it is added after foaming, a fine cell structure cannot be formed due to coalescence of bubbles, so it may be added to the aqueous liquid medium before foaming. preferable. On the other hand, by adding the metal cation source to the aqueous liquid medium in advance (before foaming), the process can be simplified.

上で詳述したアニオン性界面活性剤の不溶化は、主に、発泡後、起泡剤であるアニオン性界面活性剤(起泡アニオン性界面活性剤)を不溶化させることにより系にチキソ性を付与するものであるが、アニオン性界面活性剤の不溶化工程としては、これとは異なる手法も考えられる。一例として、発泡後、系内に存在している水可溶型成分(例えば、起泡アニオン性界面活性剤由来の金属カチオン、水溶性樹脂中に含まれている成分、予め添加しておいた水可溶型成分)を不溶化させる手法を挙げることができる。例えば、起泡アニオン性界面活性剤由来の金属カチオンを用いて水不溶性成分を形成させる手法としては、当該金属カチオンと結合して不溶化する別の成分を添加することで実現できる。より好適な例は、起泡剤であるアニオン性界面活性剤とは別のアニオン性界面活性剤を添加する手法である。アニオン性界面活性剤の水へ溶解性は、一般に、多価金属塩{例えば、アルカリ土類金属塩(例えば、カルシウム塩)}<アルカリ金属塩(例えば、ナトリウム塩)<アンモニウム又はアミン塩、の順である。この性質を利用し、例えば、起泡アニオン性界面活性剤として水溶解性の高い塩(例えば、第1のアニオン性界面活性剤のナトリウム塩)を用いることで、起泡アニオン性界面活性剤を溶解して起泡性を担保しつつ、系内に当該起泡アニオン性界面活性剤由来の水可溶型カチオンを存在させる。そして、起泡後、前記水可溶型カチオンと難溶性の塩を形成する第2のアニオン性界面活性剤(例えば、アンモニウム塩)を系内に添加する。ここで、例えば、前記例の場合、第2のアニオン性界面活性剤は、アンモニウム塩としては水に可溶するが、アルカリ金属塩としては水に不溶なものである。このような第2のアニオン性界面活性剤を系に添加することにより、第2のアニオン性界面活性剤はカチオン交換(例えば、アンモニウム→ナトリウムイオン)し、水可溶型→水不溶型に変化する。これにより、系の流動性は低下し、上で詳述した起泡アニオン性界面活性剤を不溶化させる態様と同様、低気泡径等を有する発泡体を製造することが可能となる。   The insolubilization of the anionic surfactant detailed above is mainly to impart thixotropy to the system by insolubilizing the foaming anionic surfactant (foaming anionic surfactant) after foaming. However, as the insolubilizing step of the anionic surfactant, a different method may be considered. As an example, a water-soluble component existing in the system after foaming (for example, a metal cation derived from a foaming anionic surfactant, a component contained in a water-soluble resin, previously added) A method for insolubilizing the water-soluble component) can be mentioned. For example, a technique for forming a water-insoluble component using a metal cation derived from a foaming anionic surfactant can be realized by adding another component that binds to and insolubilizes the metal cation. A more preferred example is a method of adding an anionic surfactant other than the anionic surfactant that is a foaming agent. The solubility of anionic surfactants in water is generally determined by the multivalent metal salt {eg, alkaline earth metal salt (eg, calcium salt)} <alkali metal salt (eg, sodium salt) <ammonium or amine salt. In order. Utilizing this property, for example, by using a highly water-soluble salt as the foaming anionic surfactant (for example, the sodium salt of the first anionic surfactant), the foaming anionic surfactant Water-soluble cations derived from the foaming anionic surfactant are allowed to exist in the system while dissolving and ensuring foamability. Then, after foaming, a second anionic surfactant (for example, an ammonium salt) that forms a poorly soluble salt with the water-soluble cation is added to the system. Here, for example, in the case of the above example, the second anionic surfactant is soluble in water as an ammonium salt, but is insoluble in water as an alkali metal salt. By adding such a second anionic surfactant to the system, the second anionic surfactant undergoes cation exchange (for example, ammonium → sodium ion) and changes from a water-soluble type to a water-insoluble type. To do. Thereby, the fluidity | liquidity of a system falls and it becomes possible to manufacture the foam which has a low cell diameter etc. similarly to the aspect which insolubilizes the foaming anionic surfactant explained in full detail above.

例えば、起泡アニオン性界面活性剤としてアルカリ金属塩(例えばナトリウム塩)を少なくとも用いた場合を想定する(他の界面活性剤を併用してもよい)。この場合、第2のアニオン性界面活性剤として長鎖脂肪酸(例えば、炭素数16〜22)アンモニウム(例えば、ステアリン酸アンモニウム等)を用いると、起泡アニオン性界面活性剤由来のアルカリ金属イオン(例えばナトリウムイオン)と第2のアニオン性界面活性剤由来の長鎖脂肪酸とが反応し、水不溶性塩として脂肪酸アルカリ金属塩(例えばナトリウム塩)を析出させることが可能となる。尚、起泡アニオン性界面活性剤として、中鎖脂肪酸(例えば、炭素数8〜15)アルカリ金属塩(例えば、ドデカン酸ナトリウム等)を用いることも想定する(この場合は、上で詳述した起泡アニオン性界面活性剤を不溶化させる態様に該当する)。この場合、起泡した系に、多価金属イオン(例えば、カルシウムイオン)を添加する。これにより、当該多価金属イオンと起泡アニオン性界面活性剤由来の短鎖脂肪酸とが反応し、水不溶性塩として脂肪酸多価金属塩(例えばカルシウム塩)を析出させることが可能となる。   For example, it is assumed that at least an alkali metal salt (for example, sodium salt) is used as the foaming anionic surfactant (other surfactant may be used in combination). In this case, when long-chain fatty acid (for example, C16-22) ammonium (for example, ammonium stearate) is used as the second anionic surfactant, alkali metal ions derived from the foaming anionic surfactant ( For example, sodium ions) and a long-chain fatty acid derived from the second anionic surfactant react to precipitate a fatty acid alkali metal salt (for example, sodium salt) as a water-insoluble salt. In addition, it is assumed that a medium chain fatty acid (for example, C8-15) alkali metal salt (for example, sodium dodecanoate) is used as the foaming anionic surfactant (in this case, detailed above). This corresponds to an embodiment in which the foaming anionic surfactant is insolubilized). In this case, polyvalent metal ions (for example, calcium ions) are added to the foamed system. Thereby, the said polyvalent metal ion and the short chain fatty acid derived from a foaming anionic surfactant react, and it becomes possible to precipitate a fatty acid polyvalent metal salt (for example, calcium salt) as a water-insoluble salt.

尚、アニオン性界面活性剤の不溶化工程としては、上述した方法を適宜組みあわせてもよい。   In addition, as an insolubilization process of an anionic surfactant, you may combine the method mentioned above suitably.

(加熱工程)
加熱工程では、成形された発泡水系液体媒体中の分散媒を蒸発させる。この際の乾燥方法としては特に制限されるものではないが、例えば、熱風乾燥等を用いればよい。また、乾燥温度及び乾燥時間についても特に制限されるものではないが、例えば、80℃程度で1〜3時間程度とすればよい。
(Heating process)
In the heating step, the dispersion medium in the formed foamed aqueous liquid medium is evaporated. The drying method at this time is not particularly limited, and for example, hot air drying or the like may be used. Also, the drying temperature and the drying time are not particularly limited, but may be, for example, about 80 ° C. and about 1 to 3 hours.

また、この加熱工程において、分散媒が発泡水系液体媒体中から蒸発するが、この蒸気が抜ける際の通り道が、吸水性樹脂発泡体の内部から外部まで連通されることとなる。従って、本発明に係る吸水性樹脂発泡体では、この水蒸気が抜ける際の通り道が連続気泡として残るため、吸水性樹脂発泡体中に存在する気泡の少なくとも一部が連続気泡となる。ここで、攪拌・発泡工程で混入された発泡用気体がそのまま残存している場合には、得られた吸水性樹脂発泡体中では独立気泡となり、混入された発泡用気体が、本工程において蒸気が抜ける際に連通された場合には、得られた吸水性樹脂発泡体中では連続気泡となる。また、本発明においては、樹脂発泡体中の気泡の一部が連続気泡であり、残りの気泡が独立気泡であってもよく、あるいは、全ての気泡が連続気泡であってもよい。   Further, in this heating step, the dispersion medium evaporates from the foamed aqueous liquid medium, but the path through which the vapor escapes communicates from the inside to the outside of the water absorbent resin foam. Therefore, in the water absorbent resin foam according to the present invention, the path when the water vapor escapes remains as open cells, so that at least some of the bubbles present in the water absorbent resin foam become open cells. Here, when the foaming gas mixed in the stirring / foaming process remains as it is, it becomes closed cells in the obtained water absorbent resin foam, and the mixed foaming gas is vaporized in this process. When the bubbles are communicated when they are removed, they become open cells in the obtained water-absorbent resin foam. In the present invention, some of the bubbles in the resin foam may be open cells, and the remaining bubbles may be closed cells, or all the bubbles may be open cells.

硬化剤・架橋剤を添加した場合には、加熱工程では、原料の架橋(硬化)反応を進行及び完了させる。具体的には、上述した硬化剤・架橋剤により原料同士が架橋され、硬化した吸水性樹脂発泡体が形成される。この際の加熱手段としては、原料に充分な加熱を施し、原料を架橋(硬化)させ得るものであれば特に制限はされないが、例えば、トンネル式加熱炉等を使用することができる。また、加熱温度及び加熱時間も、原料を架橋(硬化)させることができる温度及び時間であればよく、例えば、80〜150℃(特に、120℃程度が好適)で1時間程度とすればよい。   When a curing agent / crosslinking agent is added, in the heating step, the crosslinking (curing) reaction of the raw material proceeds and is completed. Specifically, raw materials are cross-linked by the above-described curing agent / crosslinking agent, and a cured water-absorbent resin foam is formed. The heating means in this case is not particularly limited as long as the raw material can be sufficiently heated and the raw material can be crosslinked (cured). For example, a tunnel heating furnace or the like can be used. Also, the heating temperature and the heating time may be any temperature and time that can crosslink (harden) the raw material. .

≪吸水性樹脂発泡体の構造≫
<構造>
本形態に係る樹脂発泡体としては、ホールインホール型の発泡体であることが好適である。このような構造とすることにより、各セルの膜に存在する孔が毛細管現象を発揮し、親水性の用途とした場合に、吸水力を向上させるという効果を奏することが出来る。尚、「ホールインホール型発泡体」とは、発泡体の各セルにおいて、セルの壁面に該当する膜部分に、当該セルのセル径よりも小さい径を有する孔(開口部)が複数存在する発泡体である。
≪Structure of water absorbent resin foam≫
<Structure>
The resin foam according to this embodiment is preferably a hole-in-hole type foam. By adopting such a structure, when the pores present in the membrane of each cell exhibit a capillary phenomenon and are used for hydrophilic purposes, the effect of improving water absorption can be achieved. The “hole-in-hole type foam” means that in each cell of the foam, a plurality of holes (openings) having a diameter smaller than the cell diameter of the cell exist in the film portion corresponding to the cell wall surface. It is a foam.

(平均セル径)
樹脂発泡体の断面の平均セル径(平均断面セル径)が5μm以上(例えば、10μm以上)300μm以下であることが好ましく、5μm以上200μm以下であることがより好ましく、5μm以上100μm以下であることが特に好ましい。尚、平均セル径の測定方法としては、以下の方法に従うものとする。
(Average cell diameter)
The average cell diameter (average cross-sectional cell diameter) of the cross section of the resin foam is preferably 5 μm or more (for example, 10 μm or more) and 300 μm or less, more preferably 5 μm or more and 200 μm or less, and 5 μm or more and 100 μm or less. Is particularly preferred. In addition, as a measuring method of an average cell diameter, the following method shall be followed.

まず、走査型電子顕微鏡(SEM、株式会社キーエンス製、VHXD−500)を用いて、樹脂発泡体の断面のセル写真を撮影する。その後、画像処理ソフトImage−Pro PLUS(Media Cybernetics社製、6.3ver)を用いて、各セル径を計測する。より具体的には、SEM画像を読み取り、コントラストでセルを認識するため、コントラストを調節する。次に、画像処理でセルの形状を読み取る(真円ではなく、形状をそのまま認識する)。次に、測定項目として「直径(平均)」を選択する。次に、オブジェクトの重心を通る径を2度刻みで測定しそれを平均した値として、各セル径を算出する。   First, a cell photograph of a cross section of the resin foam is taken using a scanning electron microscope (SEM, manufactured by Keyence Corporation, VHXD-500). Then, each cell diameter is measured using image processing software Image-Pro PLUS (Media Cybernetics, 6.3 ver). More specifically, the contrast is adjusted in order to read the SEM image and recognize the cell with the contrast. Next, the shape of the cell is read by image processing (not a perfect circle, but the shape is recognized as it is). Next, “diameter (average)” is selected as the measurement item. Next, each cell diameter is calculated as a value obtained by measuring the diameter passing through the center of gravity of the object in increments of 2 degrees and averaging the measured values.

(セル径の分布)
上記断面セル写真において、発泡体の断面における各セルに関して、全てのセルのセル断面積の合計値Sと、断面セル径が1〜100μmであるセル面積の合計値Sxとにおいて、Sx/S≧0.1であることが好適であり、Sx/S≧0.2であることがより好適であり、Sx/S≧0.3であることが特に好適である。Sx/Sの上限値としては特に限定されないが、例えば1である。尚、より望ましくは、全てのセルのセル断面積の合計値Sと、断面セル径が50〜125μmであるセル面積の合計値Syとにおいて、Sy/S≧0.05であることが好適であり、Sy/S≧0.1であることがより好適であり、Sy/S≧0.15であることが特に好適である。Sy/Sの上限値としては特に限定されないが、例えば1である断面セル径及び断面セル径の分布をこのような範囲とすることにより、上記毛細管現象に起因する吸水性がより期待出来る。
(Cell diameter distribution)
In the cross-sectional cell photograph, for each cell in the cross-section of the foam, Sx / S ≧ in the total value S of the cell cross-sectional areas of all the cells and the total value Sx of the cell areas having a cross-sectional cell diameter of 1 to 100 μm. 0.1 is preferable, Sx / S ≧ 0.2 is more preferable, and Sx / S ≧ 0.3 is particularly preferable. Although it does not specifically limit as an upper limit of Sx / S, For example, it is 1. It is more preferable that Sy / S ≧ 0.05 in the total value S of the cell cross-sectional areas of all the cells and the total value Sy of the cell area having a cross-sectional cell diameter of 50 to 125 μm. Yes, Sy / S ≧ 0.1 is more preferable, and Sy / S ≧ 0.15 is particularly preferable. The upper limit of Sy / S is not particularly limited, but for example, by setting the cross-sectional cell diameter and the cross-sectional cell diameter distribution of 1 to such a range, water absorption due to the capillary phenomenon can be expected more.

≪性質≫
本形態に係る吸水性樹脂発泡体によれば、水溶性ポリマーが発泡体の内部まで入り込む形で発泡体が形成されるため、吸水力(吸水速度)に優れるものとなる。更には、水溶性ポリマーがポリマーマトリックスに一部埋め込まれる形となるため、繰り返し耐性に優れるものとなる。
≪Properties≫
According to the water-absorbent resin foam according to the present embodiment, the foam is formed in such a way that the water-soluble polymer penetrates to the inside of the foam, so that the water-absorbing power (water absorption speed) is excellent. Furthermore, since the water-soluble polymer is partially embedded in the polymer matrix, it has excellent repeated resistance.

≪吸水性樹脂発泡体の用途≫
本発明に係る吸水性樹脂発泡体は、吸水性ロール、化粧用のパフ、各種半導体または光学材料等の研磨パット、湿布剤、インキ保持材、人工皮革、合成皮革、おむつ、生理用品などの、吸水を目的とする用途に広く使用可能である。
≪Use of water absorbent resin foam≫
The water absorbent resin foam according to the present invention includes a water absorbent roll, a cosmetic puff, a polishing pad such as various semiconductors or optical materials, a poultice, an ink retaining material, artificial leather, synthetic leather, a diaper, a sanitary product, It can be widely used in applications intended to absorb water.

ここで、本発明において、「不溶化」とは、当業界にて一般的に理解されている「不溶化」と同義であり、水溶性成分が水不溶性成分に変化することで、溶解が抑制されることであり、例えば、不溶化される前の水溶性成分の、好ましくは10質量%以上(より好ましくは50質量%以上)が水不溶性成分として析出する(例えば、アニオン性界面活性剤の、好ましくは10質量%以上、より好ましくは50質量%以上が、水不溶性成分根となる)ことを示し;「水不溶性塩」とは、溶解度が1g/水100g以下である塩を示し;「水溶性金属塩」とは、溶解度が10g/水100g以上である金属塩を示し;「水難溶性金属塩」とは、溶解度が10g/水100g未満である金属塩を示し;「溶解度」とは、1気圧、25℃にて、水100gに対して飽和した化合物のグラム数(g/100g水)を示す。   Here, in the present invention, “insolubilization” is synonymous with “insolubilization” generally understood in the art, and dissolution is suppressed by changing a water-soluble component to a water-insoluble component. For example, preferably 10% by mass or more (more preferably 50% by mass or more) of the water-soluble component before being insolubilized is precipitated as a water-insoluble component (for example, preferably an anionic surfactant, 10% by mass or more, more preferably 50% by mass or more is a water-insoluble component root); “water-insoluble salt” means a salt having a solubility of 1 g / 100 g or less of water; “Salt” refers to a metal salt with a solubility of 10 g / 100 g or more of water; “Slightly water-soluble metal salt” refers to a metal salt with a solubility of less than 10 g / 100 g of water; Water 10 at 25 ° C. g grams of saturated compounds against a (g / 100 g water) is shown.

次に、本発明を実施例及び比較例により、更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。   Next, although an example and a comparative example explain the present invention still more concretely, the present invention is not limited at all by these examples.

≪原料≫
まず、本実施例及び比較例においては、下記の原料を使用した。尚、下記において、水分散性樹脂の安定分散型又は不安定分散型の判別方法(析出率の算出方法)及びHLB値の測定方法は、上述の方法に従うものとする。また、引張破断強度は、JIS K6400に準じて、試験片を2号のダンベル状に打ち抜いて測定した。引張破断伸びは、JIS K6400に準じて、試験片を2号のダンベル状に打ち抜いて測定した。軟化点は、JIS K2207に準じて、測定した。粘度は、JIS K7117に準じて、単一円筒形回転粘度計(B形粘度計)を用いて測定した。表面張力は、Wilhelmy法により、表面張力計(協和科学社製、ESB−V型)を用いて測定した。ポリマーガラス転移温度(Tg)は、JIS K7121に準じて、示差走査熱量測定(DSC)を用いて測定した。
<水分散性樹脂>
・水分散性樹脂1
カーボネート系ウレタンエマルジョン(安定分散型水分散性樹脂;析出率0.8%)、pH8、親水基;スルホン酸基、固形分40%、引張破断強度50MPa、引張破断伸び600%、軟化点200−220℃
・水分散性樹脂2
{アクリロニトリル-ブタジエンゴムラテックス(不安定分散型水分散性樹脂;析出率33%)、pH11、固形分40%、中高ニトリル、粘度300mPa・s、表面張力34mN/m、Tg−12℃
<アニオン性界面活性剤>
・アニオン性界面活性剤1(アルキルスルホコハク酸ナトリウム)
分散媒;水、pH9.4、固形分30%、HLB39.7
・アニオン性界面活性剤2(ステアリン酸アンモニウム)
分散媒;水、pH11、固形分30%、HLB25.5
<金属カチオン源>
・金属カチオン源1(硝酸カルシウム)
(溶解度138g/100g水
<水溶性ポリマー>
・水溶性ポリマー1
アクリル酸/スルホン酸共重合体、分子量3000、固形分40%
・水溶性ポリマー2
スルホニル基非含有ポリマー、分子量5000、固形分40%
・水溶性ポリマー3
アクリル酸/スルホン酸共重合体、分子量8000、固形分40%
・水溶性ポリマー4
アクリル酸/スルホン酸共重合体、分子量60000、固形分40%
<水溶性ポリマー用架橋剤>
炭酸ジルコニウムアンモニウム
<硬化剤>
・硬化剤
疎水系HDIイソシアヌレート(官能基数3.5、3量体)
<加硫系ペースト>
・加硫系ペースト1
硫黄、酸化亜鉛、チアゾール系加硫促進剤、老化防止剤など
10質量部の加硫剤、6質量部のノクセラーMZ、18質量部の酸化亜鉛2種、13質量部の老化防止剤、及び3質量部の分散剤を50質量部のイオン交換水中に加えてボールミルにて48時間分散して、加硫系ペーストを調製した。
<ゲル化剤>
・ゲル化剤1
ポリエーテル変性シリコーンオイル
・ゲル化剤2
ケイ弗化ナトリウム
≪Raw material≫
First, in the examples and comparative examples, the following raw materials were used. In the following description, the method for determining the stable dispersion type or the unstable dispersion type of water-dispersible resin (calculation method for the precipitation rate) and the method for measuring the HLB value are the same as those described above. The tensile strength at break was measured by punching the test piece into a No. 2 dumbbell shape according to JIS K6400. The tensile elongation at break was measured by punching a test piece into a No. 2 dumbbell shape according to JIS K6400. The softening point was measured according to JIS K2207. The viscosity was measured using a single cylindrical rotational viscometer (B-type viscometer) according to JIS K7117. The surface tension was measured by a Wilhelmy method using a surface tension meter (Kyowa Kagaku Co., Ltd., ESB-V type). The polymer glass transition temperature (Tg) was measured using differential scanning calorimetry (DSC) according to JIS K7121.
<Water dispersible resin>
・ Water dispersible resin 1
Carbonate urethane emulsion (stable dispersion type water-dispersible resin; precipitation rate 0.8%), pH 8, hydrophilic group; sulfonic acid group, solid content 40%, tensile breaking strength 50 MPa, tensile breaking elongation 600%, softening point 200- 220 ° C
・ Water dispersible resin 2
{Acrylonitrile-butadiene rubber latex (unstable dispersion type water-dispersible resin; precipitation rate 33%), pH 11, solid content 40%, medium-high nitrile, viscosity 300 mPa · s, surface tension 34 mN / m, Tg-12 ° C
<Anionic surfactant>
Anionic surfactant 1 (sodium alkylsulfosuccinate)
Dispersion medium: water, pH 9.4, solid content 30%, HLB39.7
・ Anionic surfactant 2 (ammonium stearate)
Dispersion medium: water, pH 11, solid content 30%, HLB 25.5
<Metal cation source>
・ Metal cation source 1 (calcium nitrate)
(Solubility 138 g / 100 g water <water-soluble polymer>
・ Water-soluble polymer 1
Acrylic acid / sulfonic acid copolymer, molecular weight 3000, solid content 40%
・ Water-soluble polymer 2
Non-sulfonyl group-containing polymer, molecular weight 5000, solid content 40%
・ Water-soluble polymer 3
Acrylic acid / sulfonic acid copolymer, molecular weight 8000, solid content 40%
・ Water-soluble polymer 4
Acrylic acid / sulfonic acid copolymer, molecular weight 60000, solid content 40%
<Crosslinking agent for water-soluble polymer>
Zirconium ammonium carbonate <curing agent>
・ Hardening agent Hydrophobic HDI isocyanurate (functional group number 3.5, trimer)
<Vulcanization paste>
・ Vulcanized paste 1
10 parts by mass of vulcanizing agent such as sulfur, zinc oxide, thiazole vulcanization accelerator, anti-aging agent, 6 parts by mass of Noxeller MZ, 18 parts by mass of zinc oxide, 13 parts by mass of anti-aging agent, and 3 A vulcanizing paste was prepared by adding 50 parts by mass of a dispersant to 50 parts by mass of ion-exchanged water and dispersing for 48 hours in a ball mill.
<Gelling agent>
-Gelling agent 1
Polyether-modified silicone oil and gelling agent 2
Sodium silicofluoride

≪吸水性樹脂発泡体の形成≫
<実施例1>
(原料調製工程)
水分散性樹脂1のウレタンエマルジョンを主剤として使用し、主剤100質量部に対し、8.6質量部のアニオン性界面活性剤1、2.4質量部の無機電解質1、6.0質量部の硬化剤、5.0質量部の水溶性ポリマー1、1.0質量部の水溶性ポリマー用架橋剤を混合して樹脂発泡体原料とした。
(撹拌工程)
当該樹脂発泡体原料にエアー又は窒素ガス等の不活性ガスを加えて、(発泡条件100〜1000rpmにて)発泡させた。
(金属カチオン源添加工程)
主剤100質量部に対し、8.6質量部の金属カチオン源1を配合した。
(加熱工程)
(処理条件オーブン又は乾燥炉等にて)加熱処理することで樹脂発泡体を作成した。
<実施例2−3、5−11、変形例4の調製>
表1〜2に示す原料を配合した以外は、実施例1と同様にして樹脂発泡体を作成した。
<実施例12−13の調整>
ゲル化剤(ゲル化剤1、ゲル化剤2)を配合し、金属カチオン源を添加しなかったこと以外は、実施例1と同様にして樹脂発泡体を作成した。
≪Formation of water absorbent resin foam≫
<Example 1>
(Raw material preparation process)
Using urethane emulsion of water-dispersible resin 1 as the main agent, 8.6 parts by mass of the anionic surfactant 1, 2.4 parts by mass of the inorganic electrolyte 1, 6.0 parts by mass with respect to 100 parts by mass of the main agent. A curing agent, 5.0 parts by mass of a water-soluble polymer 1, and 1.0 part by mass of a crosslinking agent for a water-soluble polymer were mixed to obtain a resin foam raw material.
(Stirring process)
An inert gas such as air or nitrogen gas was added to the resin foam raw material to cause foaming (at a foaming condition of 100 to 1000 rpm).
(Metal cation source addition process)
8.6 parts by mass of metal cation source 1 was blended with 100 parts by mass of the main agent.
(Heating process)
A resin foam was prepared by heat treatment (in a processing condition oven or a drying furnace).
<Preparation of Examples 2-3, 5-11 and Modification 4 >
Resin foams were prepared in the same manner as in Example 1 except that the raw materials shown in Tables 1 and 2 were blended.
<Adjustment of Examples 12-13>
A resin foam was prepared in the same manner as in Example 1 except that the gelling agent (gelling agent 1, gelling agent 2) was added and the metal cation source was not added.

<比較例1>
表3に示すように、実施例12に水溶性ポリマー及び水溶性ポリマー用架橋剤を添加しなかったこと以外は、同様に発泡体を作成し、更に、水溶性ポリマー1をエアーガンで噴霧することで、吸水性樹脂発泡体とした。
<比較例2>
実施例12に水溶性ポリマー及び水溶性ポリマー用架橋剤を添加しなかったこと以外は、同様に発泡体を作成し、更に、水溶性ポリマー1を含浸させることで、吸水性樹脂発泡体とした。
<Comparative Example 1>
As shown in Table 3, a foam was prepared in the same manner except that the water-soluble polymer and the water-soluble polymer crosslinking agent were not added to Example 12, and the water-soluble polymer 1 was sprayed with an air gun. Thus, a water absorbent resin foam was obtained.
<Comparative example 2>
Except that the water-soluble polymer and the water-soluble polymer cross-linking agent were not added to Example 12, a foam was prepared in the same manner, and further impregnated with the water-soluble polymer 1 to obtain a water-absorbent resin foam. .

≪吸水試験≫
下記に示す方法に従い吸水時間の測定を行い、この測定結果から、吸水速度、及び吸水性を評価した。
<試験方法1>
イオン交換水1滴(0.033ml)を試験片に滴下して、完全にしみ込むまでの時間を測定した。測定箇所は、5cm×5cmの樹脂発泡体の4隅及び中央の計5点測定し、以下の基準で吸水速度を評価した。尚、下記評価において、評価が◎、○、△及び▲のものが本発明における吸水速度の評価として良好なもので、吸水性が良好であると判断し、評価が×のものが本発明における吸水速度の評価として不良なもので、吸水性を有しないものであると判断した。
測定箇所5点すべての吸水時間が10秒以内であった場合「◎」
測定箇所5点のうち1〜4点において吸水時間が10秒以内であった場合「○」
測定箇所5点のうち1〜4点において吸水時間が10秒超30秒以内であった場合「△」
測定箇所5点のうち1〜4点において吸水時間が30秒超60秒以内であった場合「▲」
測定箇所5点すべての吸水時間が60秒超であった場合「×」
<試験方法2>
更に、繰り返し吸水試験を行った。全自動洗濯機(株式会社東芝製、AW−421S)を準備し、洗濯水量を45Lに設定し、上記で作製した試験片(実施例1〜3、5〜13、変形例4、比較例1〜2)を入れた。洗い13分、脱水7分の洗濯工程を行った後、試験片を乾燥させた。試験片の耐久性(吸水性が維持できるかどうか)を評価するために、上記洗濯工程を1回繰り返したものの吸水性の評価を行った。得られた結果を表1に示した。吸水性の評価方法は上述した通りである。
また、洗濯試験を繰り返し行うことで、試験片(実施例1、7、9、11、比較例1、2)の耐久性を評価した。洗濯前のものと、上記洗濯工程を1〜3回繰り返したものの吸水性の評価を行い、得られた結果を表4に示した。吸水性の評価方法は上述した通りである。
≪Water absorption test≫
The water absorption time was measured according to the method shown below, and the water absorption speed and water absorption were evaluated from the measurement results.
<Test method 1>
One drop (0.033 ml) of ion-exchanged water was dropped on the test piece, and the time until complete penetration was measured. Measurement points were measured at a total of five points at the four corners and the center of a 5 cm × 5 cm resin foam, and the water absorption rate was evaluated according to the following criteria. In the following evaluations, the evaluations of ◎, ○, △, and ▲ are good as the evaluation of the water absorption rate in the present invention, the water absorption is judged to be good, and the evaluation of × is in the present invention. It was judged that the water absorption rate was poor and no water absorption was obtained.
If the water absorption time at all five measurement points is within 10 seconds, “◎”
“○” when the water absorption time is within 10 seconds at 1 to 4 points out of 5 points to be measured.
If the water absorption time is more than 10 seconds and less than 30 seconds at 1 to 4 points out of 5 measurement points, “△”
If the water absorption time is more than 30 seconds and less than 60 seconds at 1 to 4 points out of 5 points, “▲”
If the water absorption time at all five measurement points is more than 60 seconds, “×”
<Test method 2>
Further, a water absorption test was repeatedly performed. A fully automatic washing machine (manufactured by Toshiba Corporation, AW-421S) was prepared, the amount of washing water was set to 45 L , and the test pieces prepared above (Examples 1 to 3 , 5 to 13, Modification Example 4, Comparative Example 1) ~ 2) was added. After washing for 13 minutes and dehydration for 7 minutes, the test piece was dried. In order to evaluate the durability of the test piece (whether the water absorption can be maintained), the water absorption was evaluated by repeating the washing step once. The obtained results are shown in Table 1. The method for evaluating water absorption is as described above.
Moreover, the durability of the test pieces (Examples 1, 7, 9, 11 and Comparative Examples 1 and 2) was evaluated by repeatedly performing the washing test. The results before and after washing were evaluated 1 to 3 times and the water absorption was evaluated. The results obtained are shown in Table 4. The method for evaluating water absorption is as described above.

表4に示すように、水溶性ポリマー用架橋剤を適量含む実施例1の樹脂発泡体は、3回の洗濯工程後も非常に良好な吸水性を保っていた。このことから、適量の架橋剤の添加により水溶性ポリマーと樹脂ポリマーとの結合力が強くなり、水溶性ポリマーの脱落が抑制され、樹脂発泡体が長期間高い吸水性を維持できることがわかった。また、水溶性ポリマー用架橋剤の添加量が少ない実施例9の樹脂発泡体は、1回の洗濯工程後には吸水率がやや低下した。更に水溶性ポリマー用架橋剤の添加量が少ない実施例11の樹脂発泡体は、1回の洗濯工程後には吸水率がやや低下し、2回の洗濯工程後では吸水性が低下した。このことから、少量でも水溶性ポリマー用架橋剤を添加することで、ある程度水溶性ポリマーの脱落が抑制されているものの、その効果は適量添加した場合よりも劣ることがわかった。一方、水溶性ポリマーを噴霧した比較例1、水溶性ポリマーを含浸させた比較例2では、1回の洗濯工程後に吸水性が大きく低下した。このことから、水溶性ポリマー用架橋剤を添加しない場合には、水溶性ポリマーが脱落しやすくなり、水溶性ポリマー用架橋剤を添加したものと比較して、長期間高い吸水性を維持することは難しいことがわかった。尚、同様に水溶性ポリマー用架橋剤を添加していない実施例7は、洗濯工程後に吸水性が低下するが、3回の洗濯工程後にも、ある程度の吸水性を有するものであった。   As shown in Table 4, the resin foam of Example 1 containing an appropriate amount of the water-soluble polymer crosslinking agent maintained very good water absorption even after three washing steps. From this, it was found that by adding an appropriate amount of the crosslinking agent, the binding force between the water-soluble polymer and the resin polymer was strengthened, the drop-off of the water-soluble polymer was suppressed, and the resin foam could maintain high water absorption for a long time. Moreover, the water absorption rate of the resin foam of Example 9 having a small amount of the water-soluble polymer cross-linking agent slightly decreased after one washing step. Further, the resin foam of Example 11 with a small amount of the water-soluble polymer crosslinking agent added had a slight decrease in water absorption after one washing step, and the water absorption decreased after two washing steps. From this, it was found that the addition of the water-soluble polymer cross-linking agent is suppressed to a certain extent by adding the water-soluble polymer crosslinking agent, but the effect is inferior to that in the case of adding an appropriate amount. On the other hand, in Comparative Example 1 in which the water-soluble polymer was sprayed and in Comparative Example 2 in which the water-soluble polymer was impregnated, the water absorption was greatly reduced after one washing step. For this reason, when the water-soluble polymer crosslinking agent is not added, the water-soluble polymer is likely to fall off and maintain high water absorption for a long period of time compared to the case where the water-soluble polymer crosslinking agent is added. Found it difficult. Similarly, in Example 7 in which the crosslinking agent for the water-soluble polymer was not added, the water absorption decreased after the washing process, but it had a certain degree of water absorption after the three washing processes.

[参考例]
次に、参考例及び参考比較例を説明するが、本発明は、これらの例によって何ら限定されるものではない。
[Reference example]
Next, reference examples and reference comparative examples will be described, but the present invention is not limited to these examples.

≪原料≫
まず、参考例及び参考比較例においては、下記の原料を使用した。尚、下記において、水分散性樹脂の安定分散型又は不安定分散型の判別方法(析出率の算出方法)及びHLB値の測定方法は、上述の方法に従うものとする。また、引張破断強度は、JIS K6400に準じて、試験片を2号のダンベル状に打ち抜いて測定した。引張破断伸びは、JIS K6400に準じて、試験片を2号のダンベル状に打ち抜いて測定した。軟化点は、JIS K2207に準じて、測定した。粘度は、JIS K7117に準じて、単一円筒形回転粘度計(B形粘度計)を用いて測定した。表面張力は、Wilhelmy法により、表面張力計(協和科学社製、ESB−V型)を用いて測定した。ポリマーガラス転移温度(Tg)は、JIS K7121に準じて、示差走査熱量測定(DSC)を用いて測定した。
<水分散性樹脂>
・水分散性樹脂1
カーボネート系ウレタンエマルジョン(安定分散型水分散性樹脂;析出率0.8%)、pH8、親水基;スルホン酸基、固形分40%、引張破断強度50MPa、引張破断伸び600%、軟化点200−220℃
・水分散性樹脂2
アクリルエマルジョン(安定分散型水分散性樹脂;析出率4.9%)、pH610、固形分40%、引張破断強度25MPa、引張破断伸び300%、軟化点100−120℃
・水分散性樹脂3
カーボネート系ウレタンエマルジョン(安定分散型水分散性樹脂;析出率0.8%)、pH8、親水基;カルボキシル基、固形分40%、引張破断強度20MPa、引張破断伸び700%、軟化点170−200℃
・水分散性樹脂4
エーテル系ウレタンエマルジョン(安定分散型水分散性樹脂;析出率1.1%)、pH8、固形分40%、引張破断強度20MPa、引張破断伸び500%、軟化点200−220℃
・水分散性樹脂5
アクリロニトリル-ブタジエンゴムラテックス(不安定分散型水分散性樹脂;析出率33%)、pH11、固形分40%、中高ニトリル、粘度300mPa・s、表面張力34mN/m、Tg−12℃
・水分散性樹脂6
スチレン-ブタジエンゴムラテックス(不安定分散型水分散性樹脂;析出率38%)、pH10、固形分40%、粘度440mPa・s、表面張力32mN/m、Tg−63℃
・水分散性樹脂7
天然ゴムラテックス(不安定分散型水分散性樹脂;析出率35%)、pH10、固形分40%、粘度300mPa・s、表面張力34mN/m、Tg−75℃
<アニオン性界面活性剤>
・アニオン性界面活性剤1(牛脂由来のアルキルスルホコハク酸ナトリウム)
分散媒;水、pH9.4、固形分30%、HLB39.7
・アニオン性界面活性剤2(ステアリン酸アンモニウム)
分散媒;水、pH11、固形分30%、HLB25.5
・アニオン性界面活性剤3(オレイン酸カリウム石鹸)
分散媒;水、pH11.2、固形分30%、HLB18.3
・アニオン性界面活性剤4(アルキルジフェニルエーテルスルホン酸ナトリウム)
分散媒;水、pH8.5、固形分30%、HLB9.0
<金属カチオン源>
・金属カチオン源1(硝酸カルシウム)
溶解度138g/100g水
・金属カチオン源2(硫酸アルミニウム)
溶解度38.6g/100g水
・金属カチオン源3(硫酸マグネシウム)
溶解度36.3g/100g水
・金属カチオン源4(クエン酸カルシウム)
溶解度0.0259g/100g水
・金属カチオン源5(炭酸カルシウム)
溶解度0.81g/100g水
・金属カチオン源6(第1リン酸カルシウム)
溶解度1.8g/100g水
<硬化剤>
・硬化剤
疎水系HDIイソシアヌレート(官能基数3.5、3量体)
<加硫系ペースト>
・加硫系ペースト
10質量部の加硫剤、6質量部のチアゾール系加硫促進剤、18質量部の酸化亜鉛2種、13質量部の老化防止剤、及び3質量部の分散剤を50質量部のイオン交換水中に加えてボールミルにて48時間分散して調製
<ゲル化剤>
・ゲル化剤1
ケイ弗化ナトリウム
・ゲル化剤2
ポリエーテル変性シリコーンオイル
<水溶性ポリマー>
・水溶性ポリマー
アクリル酸/スルホン酸共重合体、分子量3000、固形分40%
≪Raw material≫
First, in the reference example and the reference comparative example, the following raw materials were used. In the following description, the method for determining the stable dispersion type or the unstable dispersion type of water-dispersible resin (calculation method for the precipitation rate) and the method for measuring the HLB value are the same as those described above. The tensile strength at break was measured by punching the test piece into a No. 2 dumbbell shape according to JIS K6400. The tensile elongation at break was measured by punching a test piece into a No. 2 dumbbell shape according to JIS K6400. The softening point was measured according to JIS K2207. The viscosity was measured using a single cylindrical rotational viscometer (B-type viscometer) according to JIS K7117. The surface tension was measured by a Wilhelmy method using a surface tension meter (Kyowa Kagaku Co., Ltd., ESB-V type). The polymer glass transition temperature (Tg) was measured using differential scanning calorimetry (DSC) according to JIS K7121.
<Water dispersible resin>
・ Water dispersible resin 1
Carbonate urethane emulsion (stable dispersion type water-dispersible resin; precipitation rate 0.8%), pH 8, hydrophilic group; sulfonic acid group, solid content 40%, tensile breaking strength 50 MPa, tensile breaking elongation 600%, softening point 200- 220 ° C
・ Water dispersible resin 2
Acrylic emulsion (stable dispersion type water-dispersible resin; precipitation rate 4.9%), pH 610, solid content 40%, tensile breaking strength 25 MPa, tensile breaking elongation 300%, softening point 100-120 ° C.
・ Water-dispersible resin 3
Carbonate urethane emulsion (stable dispersion type water dispersible resin; precipitation rate 0.8%), pH 8, hydrophilic group; carboxyl group, solid content 40%, tensile breaking strength 20 MPa, tensile breaking elongation 700%, softening point 170-200 ℃
・ Water dispersible resin 4
Ether urethane emulsion (stable dispersion type water-dispersible resin; precipitation rate 1.1%), pH 8, solid content 40%, tensile breaking strength 20 MPa, tensile breaking elongation 500%, softening point 200-220 ° C.
・ Water dispersible resin 5
Acrylonitrile-butadiene rubber latex (unstable dispersion type water-dispersible resin; precipitation rate 33%), pH 11, solid content 40%, medium-high nitrile, viscosity 300 mPa · s, surface tension 34 mN / m, Tg-12 ° C.
・ Water dispersible resin 6
Styrene-butadiene rubber latex (unstable dispersion type water-dispersible resin; precipitation rate 38%), pH 10, solid content 40%, viscosity 440 mPa · s, surface tension 32 mN / m, Tg-63 ° C.
・ Water dispersible resin 7
Natural rubber latex (unstable dispersion type water-dispersible resin; precipitation rate 35%), pH 10, solid content 40%, viscosity 300 mPa · s, surface tension 34 mN / m, Tg-75 ° C.
<Anionic surfactant>
・ Anionic surfactant 1 (sodium alkylsulfosuccinate derived from beef tallow)
Dispersion medium: water, pH 9.4, solid content 30%, HLB39.7
・ Anionic surfactant 2 (ammonium stearate)
Dispersion medium: water, pH 11, solid content 30%, HLB 25.5
・ Anionic surfactant 3 (potassium oleate soap)
Dispersion medium: water, pH 11.2, solid content 30%, HLB18.3
・ Anionic surfactant 4 (sodium alkyldiphenyl ether sulfonate)
Dispersion medium: water, pH 8.5, solid content 30%, HLB 9.0
<Metal cation source>
・ Metal cation source 1 (calcium nitrate)
Solubility 138g / 100g Water / Metal Cation Source 2 (Aluminum Sulfate)
Solubility 38.6 g / 100 g Water / metal cation source 3 (magnesium sulfate)
Solubility 36.3g / 100g Water / Metal Cation Source 4 (Calcium Citrate)
Solubility 0.0259g / 100g Water / Metal Cation Source 5 (Calcium Carbonate)
Solubility 0.81g / 100g Water / Metal Cation Source 6 (Primary Calcium Phosphate)
Solubility 1.8 g / 100 g water <curing agent>
・ Hardening agent Hydrophobic HDI isocyanurate (functional group number 3.5, trimer)
<Vulcanization paste>
・ Vulcanization paste 50 parts of 10 parts by weight of vulcanizing agent, 6 parts by weight of thiazole vulcanization accelerator, 18 parts by weight of zinc oxide, 13 parts by weight of anti-aging agent, and 3 parts by weight of dispersant. Prepared by dispersing in a ball mill for 48 hours in addition to parts by mass of ion-exchanged water <Gelating agent>
-Gelling agent 1
Sodium silicofluoride gelling agent 2
Polyether-modified silicone oil <water-soluble polymer>
Water-soluble polymer Acrylic acid / sulfonic acid copolymer, molecular weight 3000, solid content 40%

≪発泡体の形成≫
<参考例1>
(原料調製工程)
ポリマー水分散体1のウレタンエマルジョンを主剤として使用し、主剤100質量部に対し、8.6質量部のアニオン性界面活性剤1、2.4質量部の金属カチオン源1、6.0質量部の硬化剤1を混合して樹脂発泡体原料とした。
(撹拌工程)
当該樹脂発泡体原料にエアー又は窒素ガス等の不活性ガスを加えて、(発泡条件100〜1000rpmにて)発泡させた。
(加熱工程)
オーブン又は乾燥炉等にて加熱処理することで、厚さ1mmの樹脂発泡体を得た。
(発泡後の液粘度)
JIS K7117‐1に準じて、単一円筒形回転粘度計(B形粘度計)を用いて室温で発泡後の液粘度を測定したところ、3000mPa・sであった。
<< Formation of foam >>
<Reference Example 1>
(Raw material preparation process)
The urethane emulsion of polymer water dispersion 1 is used as a main agent, and 8.6 parts by mass of anionic surfactant 1, 2.4 parts by mass of metal cation source 1, 6.0 parts by mass with respect to 100 parts by mass of the main agent. The curing agent 1 was mixed to obtain a resin foam raw material.
(Stirring process)
An inert gas such as air or nitrogen gas was added to the resin foam raw material to cause foaming (at a foaming condition of 100 to 1000 rpm).
(Heating process)
A resin foam having a thickness of 1 mm was obtained by heat treatment in an oven or a drying furnace.
(Liquid viscosity after foaming)
When the liquid viscosity after foaming was measured at room temperature using a single cylindrical rotational viscometer (B-type viscometer) according to JIS K7117-1, it was 3000 mPa · s.

<参考例2−38、参考比較例1−8の調製>
表5〜9に示す配合に従って、参考例1と同様にして樹脂発泡体を得た。尚、液粘度に関しては、参考例2〜38、及び参考比較例1〜8に関しても、参考例1と同程度となった。
<Preparation of Reference Example 2-38 and Reference Comparative Example 1-8>
Resin foams were obtained in the same manner as in Reference Example 1 according to the formulations shown in Tables 5-9. In addition, about liquid viscosity, it became comparable as the reference example 1 also about the reference examples 2-38 and the reference comparative examples 1-8.

≪樹脂発泡体の評価方法≫
次に、下記に従って、参考例1−38、参考比較例1−8に係る樹脂発泡体の評価を行った。その結果(特に、外観及びセル径の分布)を表5〜9に示す。
<外観>
目視にて、セルの状態及び樹脂発泡体の表面を評価した。セルが均一である場合「○」と、セルが荒い場合「△」と、セルが非常に荒い場合、及びセルが、形成されていない(発泡していない)場合「×」と評価した。尚、図1は参考例1に係る樹脂発泡体のSEM写真であり、図2は、参考例19に係る樹脂発泡体のSEM写真であり、図3は、参考比較例1に係る樹脂発泡体のSEM写真である。
<密度>
JIS K6400に準じて、見掛け密度として室温で測定した。参考例1の試験結果は150kg/mであった。参考例2〜38、及び参考比較例1〜8に関しても、同程度となった。
<平均セル径及びセル径の分布>
走査型電子顕微鏡(SEM、株式会社キーエンス製、VHXD−500)を用いて、樹脂発泡体の断面のセル写真を撮影した。その後、画像処理ソフトImage−Pro PLUS(Media Cybernetics社製、6.3ver)を用いて、各セル径を計測した。参考例1で得られた樹脂発泡体(厚み1mm)の樹脂発泡体の断面のセル写真(200倍)を撮影し、画像処理ソフトImage−Pro PLUSで各セル径を計測した。より詳細には、まず、走査型電子顕微鏡(SEM、株式会社キーエンス製、VHXD−500)を用いて、樹脂発泡体の断面のセル写真(200倍)を撮影する(図1)。その後、画像処理ソフトImage−Pro PLUS(Media Cybernetics社製、6.3ver)を用いて、SEM画像を読み取り、空間較正を行う(図4)。次に、コントラストでセルを認識するため、コントラストを調節する(図5)。次に、画像処理でセルの形状を読み取る{真円ではなく、形状をそのまま認識する(図6)}。次に、測定項目として「直径(平均)」を選択する(図7)。次に、オブジェクトの重心を通る径を2度刻みで測定しそれを平均した値として、各セル径を算出する(図8)。測定結果としては、平均セル径は69.8μm、セル数は295個であった。次に、得られた値よりセル径の分布を測定したところ、全てのセルのセル面積の合計値Sと、セル径が1〜100μmであるセル面積の合計値Sxとにおいて、Sx/S=0.52となった。その他の参考例及び参考比較例に関しても同様の測定を行い、Sx/S≧0.3のものを「○」、0.3>Sx/S≧0.1のものを「△」、0.1>Sx/Sのものを「×」と評価した。尚、参考例19(図2)においては、平均セル径サイズは71.8μm、セル数は175個、Sx/S=0.18であった。また、参考比較例1(図3)においては、平均セル径サイズは91.2μm、セル数は37個、Sx/S=0.06であった。
≪Method for evaluating resin foam≫
Next, the resin foam according to Reference Example 1-38 and Reference Comparative Example 1-8 was evaluated in accordance with the following. The results (particularly the appearance and cell diameter distribution) are shown in Tables 5-9.
<Appearance>
The state of the cell and the surface of the resin foam were evaluated visually. When the cell was uniform, it was evaluated as “◯”, when the cell was rough, “Δ”, when the cell was very rough, and when the cell was not formed (not foamed), it was evaluated as “x”. 1 is a SEM photograph of the resin foam according to Reference Example 1, FIG. 2 is a SEM photograph of the resin foam according to Reference Example 19, and FIG. 3 is a resin foam according to Reference Comparative Example 1. It is a SEM photograph of.
<Density>
According to JIS K6400, the apparent density was measured at room temperature. The test result of Reference Example 1 was 150 kg / m 3 . It became the same grade also about the reference examples 2-38 and the reference comparative examples 1-8.
<Average cell diameter and cell diameter distribution>
Using a scanning electron microscope (SEM, manufactured by Keyence Corporation, VHXD-500), a cell photograph of a cross section of the resin foam was taken. Then, each cell diameter was measured using image processing software Image-Pro PLUS (Media Cybernetics company make, 6.3 ver). A cell photograph (200 times) of a cross section of the resin foam of the resin foam (thickness 1 mm) obtained in Reference Example 1 was taken, and each cell diameter was measured with image processing software Image-Pro PLUS. More specifically, first, using a scanning electron microscope (SEM, manufactured by Keyence Corporation, VHXD-500), a cell photograph (200 times) of a cross section of the resin foam is taken (FIG. 1). Thereafter, using the image processing software Image-Pro PLUS (Media Cybernetics, 6.3 ver), the SEM image is read and spatial calibration is performed (FIG. 4). Next, in order to recognize the cell by contrast, the contrast is adjusted (FIG. 5). Next, the shape of the cell is read by image processing {not a perfect circle but the shape is recognized as it is (FIG. 6)}. Next, “diameter (average)” is selected as a measurement item (FIG. 7). Next, the diameter passing through the center of gravity of the object is measured in increments of 2 degrees, and each cell diameter is calculated as an average value (FIG. 8). As a measurement result, the average cell diameter was 69.8 μm, and the number of cells was 295. Next, when the distribution of the cell diameter was measured from the obtained value, the total cell area S of all the cells and the total cell area Sx having a cell diameter of 1 to 100 μm, Sx / S = It was 0.52. The same measurement was performed for the other reference examples and the reference comparative example, “O” when Sx / S ≧ 0.3, “Δ” when 0.3> Sx / S ≧ 0.1, 1> Sx / S was evaluated as “x”. In Reference Example 19 (FIG. 2), the average cell size was 71.8 μm, the number of cells was 175, and Sx / S = 0.18. In Reference Comparative Example 1 (FIG. 3), the average cell size was 91.2 μm, the number of cells was 37, and Sx / S = 0.06.

Claims (4)

分散質として水分散性樹脂と、起泡剤としてアニオン性界面活性剤と、分散媒として水又は水と水溶性溶剤との混合物と、を含有する水系液体媒体に気体を混合して撹拌させることにより前記水系液体媒体を発泡させて発泡水系液体媒体を得、前記発泡水系液体媒体を加熱して前記分散媒を蒸発させて吸水性樹脂発泡体を製造する方法であって、前記水系液体媒体が、前記分散媒に溶解する水溶性ポリマーを更に含有し、前記水溶性ポリマーが、スルホニル基含有ポリマーであることを特徴とする吸水性樹脂発泡体の製造方法。 Mixing and stirring a gas in an aqueous liquid medium containing a water-dispersible resin as a dispersoid, an anionic surfactant as a foaming agent, and water or a mixture of water and a water-soluble solvent as a dispersion medium The aqueous liquid medium is foamed to obtain a foamed aqueous liquid medium, and the foamed aqueous liquid medium is heated to evaporate the dispersion medium to produce a water absorbent resin foam, wherein the aqueous liquid medium is A method for producing a water-absorbent resin foam, further comprising a water-soluble polymer dissolved in the dispersion medium , wherein the water-soluble polymer is a sulfonyl group-containing polymer . 分散質として水分散性樹脂と、起泡剤としてアニオン性界面活性剤と、分散媒として水又は水と水溶性溶剤との混合物と、を含有する水系液体媒体に気体を混合して撹拌させることにより前記水系液体媒体を発泡させて発泡水系液体媒体を得、前記発泡水系液体媒体を加熱して前記分散媒を蒸発させて吸水性樹脂発泡体を製造する方法であって、前記水系液体媒体が、前記分散媒に溶解する水溶性ポリマーを更に含有し、前記水溶性ポリマーが、スルホニル基含有ポリマーとカルボキシル基含有ポリマーとの共重合体であることを特徴とする吸水性樹脂発泡体の製造方法。Mixing and stirring a gas in an aqueous liquid medium containing a water-dispersible resin as a dispersoid, an anionic surfactant as a foaming agent, and water or a mixture of water and a water-soluble solvent as a dispersion medium The aqueous liquid medium is foamed to obtain a foamed aqueous liquid medium, and the foamed aqueous liquid medium is heated to evaporate the dispersion medium to produce a water absorbent resin foam, wherein the aqueous liquid medium is And a water-soluble polymer that is soluble in the dispersion medium, wherein the water-soluble polymer is a copolymer of a sulfonyl group-containing polymer and a carboxyl group-containing polymer. . 前記水溶性ポリマーの重量平均分子量が、500以上1000000以下である、請求項1又は2記載の吸水性樹脂発泡体の製造方法。 The method for producing a water-absorbent resin foam according to claim 1 or 2 , wherein the water-soluble polymer has a weight average molecular weight of 500 or more and 1000000 or less. 前記水系液体媒体が、前記水分散性樹脂と前記水溶性ポリマーとを架橋させるための架橋剤を含む、請求項1〜のいずれか一項記載の吸水性樹脂発泡体の製造方法。 The method for producing a water-absorbent resin foam according to any one of claims 1 to 3 , wherein the aqueous liquid medium contains a crosslinking agent for crosslinking the water-dispersible resin and the water-soluble polymer.
JP2014054154A 2014-03-17 2014-03-17 Water absorbent resin foam and method for producing the same Expired - Fee Related JP6257392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054154A JP6257392B2 (en) 2014-03-17 2014-03-17 Water absorbent resin foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054154A JP6257392B2 (en) 2014-03-17 2014-03-17 Water absorbent resin foam and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015174971A JP2015174971A (en) 2015-10-05
JP6257392B2 true JP6257392B2 (en) 2018-01-10

Family

ID=54254450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054154A Expired - Fee Related JP6257392B2 (en) 2014-03-17 2014-03-17 Water absorbent resin foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP6257392B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425439B2 (en) * 2014-07-11 2018-11-21 株式会社イノアック技術研究所 Water absorption sheet
EP3412710B1 (en) 2016-12-23 2021-11-10 LG Chem, Ltd. Method for producing porous superabsorbent polymer
KR102329884B1 (en) * 2019-10-28 2021-11-22 (주)구스텍 Coating solution having water absorbability for glass fiber in optical cable, glass fiber for optical cable having coating layer formed therefrom and optical cable having the same
EP4186945A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Super absorbent polymer, and preparation method thereof
US20230374232A1 (en) * 2020-12-18 2023-11-23 Lg Chem, Ltd. Super Absorbent Polymer and Preparation Method Thereof
JP2023543307A (en) * 2020-12-18 2023-10-13 エルジー・ケム・リミテッド Manufacturing method of super absorbent resin
JP7520450B2 (en) * 2020-12-18 2024-07-23 エルジー・ケム・リミテッド Manufacturing method of superabsorbent resin
WO2022131834A1 (en) * 2020-12-18 2022-06-23 주식회사 엘지화학 Method for preparing super absorbent polymer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116736A (en) * 1979-03-02 1980-09-08 Kanebo Ltd Flexible foam having improved water absorption and its production
JPH01259043A (en) * 1987-12-26 1989-10-16 Dainippon Ink & Chem Inc Foamed sheet and article using said sheet
DE4124560A1 (en) * 1991-07-24 1993-01-28 Wacker Chemie Gmbh COATING AGENTS FOR THE PRODUCTION OF WATERPROOF, VAPOR-PERMEABLE AND FLAME-RETARDANT COATINGS
JP2001303445A (en) * 2000-04-14 2001-10-31 Koatsu Cloth Kk Air-permeable base fabric and method for producing the same, air-permeable sheet structure and leathery sheet structure
TW200517426A (en) * 2003-08-25 2005-06-01 Dow Global Technologies Inc Aqueous dispersion, its production method, and its use
DE102006016638A1 (en) * 2006-04-08 2007-10-11 Bayer Materialscience Ag Microporous coating based on polyurethane-polyurea

Also Published As

Publication number Publication date
JP2015174971A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6257392B2 (en) Water absorbent resin foam and method for producing the same
JP6328453B2 (en) Resin foam and method for producing the same
JP2016016667A (en) Water absorbing sheet
CN109310169B (en) Method for producing glove, and emulsion composition for glove
EP3459375B1 (en) Glove dipping composition, method for manufacturing gloves, and gloves
JP2020019925A (en) Aerogel composite and manufacturing method therefor
JP6860698B2 (en) Dip molding composition, glove manufacturing method and gloves
TW200840827A (en) Process for producing mechanically stable water-absorbing polymer particles
KR20140016226A (en) Microgel-containing vulcanisable composition
TWI806958B (en) Latex and foam rubber for foam rubber
US11926724B2 (en) Method for manufacturing foam rubber
JP3694772B2 (en) Immersion molding composition
KR102651970B1 (en) How to manufacture foam rubber
EP3917433B1 (en) Polymer latex and elastomeric film made therefrom having self-healing properties
JP7428602B2 (en) Emulsion composition and its foam sheet
JP7381499B2 (en) Latex for foam rubber and foam rubber
JP4385861B2 (en) Aqueous resin dispersion for processing decorative decorative paper, and decorative decorative paper obtained using the same
Ninjan et al. Thermally assisted healable film based on modified natural rubber-bearing benzyl chloride functionality.
JP4741837B2 (en) Copolymer latex for cosmetic puffs
JP6113566B2 (en) Latex foam and method for producing the same
EP4063435A1 (en) Dip-formed article comprising layer derived from latex composition for dip-forming
CN116888159A (en) Process for producing modified conjugated diene polymer latex
JP2024033559A (en) Copolymer latex for carbon dioxide separation membrane, composition for carbon dioxide separation membrane, carbon dioxide separation membrane, and method for preparing carbon dioxide separation membrane
WO2024014452A1 (en) Rubber reinforcement fiber treatment agent, rubber reinforcement fiber treatment agent kit, rubber reinforcement fiber manufacturing method, rubber reinforcement fiber, and rubber product
EP1674519A1 (en) Polymer alloy, crosslinked object, and industrial part

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6257392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees