JP6253930B2 - Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container - Google Patents
Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container Download PDFInfo
- Publication number
- JP6253930B2 JP6253930B2 JP2013189427A JP2013189427A JP6253930B2 JP 6253930 B2 JP6253930 B2 JP 6253930B2 JP 2013189427 A JP2013189427 A JP 2013189427A JP 2013189427 A JP2013189427 A JP 2013189427A JP 6253930 B2 JP6253930 B2 JP 6253930B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- layer
- container
- radiation shielding
- shielding material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Processing Of Solid Wastes (AREA)
Description
本発明は、特定の積層体からなる放射線遮蔽材及び該放射線遮蔽材を備える放射線廃棄物保管容器、さらに上記放射線廃棄物保管容器の製造方法に関する。 The present invention relates to a radiation shielding material comprising a specific laminate, a radiation waste storage container provided with the radiation shielding material, and a method for producing the radiation waste storage container.
2011年に発生した東日本大震災では原子力発電所事故が発生し、発電所内外の広範囲にわたり放射性物質が飛散した。事故後、放射性物質を含む廃棄物の除去や、土壌や家屋などを対象とした放射線物質の除染が開始され、膨大な放射線廃棄物質が回収されている。回収された放射線廃棄物は袋や箱などの簡易な容器に梱包され、生活圏から離れた地点に集積されている。このような放射線廃棄物の量は、原子力発電所の修理や除染作業の進行に伴って今後ますます増加する。集積された放射線廃棄物は、放射線廃棄物の放射線量が基準値以下になるまで放射線を遮断する容器に密封された状態で長期間保管しなくてはならない。今後は、大量の放射線廃棄物を適切な容器に密封し、大規模な長期保管施設に収納する作業が必要となる。この作業では、まず、高い放射線遮蔽性と、保管中の天候や災害にも耐える耐久性を兼ね備える放射線廃棄物の収納容器が必要である。そして、大量の収納容器をできるだけ最大限に充填する保管施設が必要である。また、放射線廃棄物の処理に要する膨大なコストは国の財政を左右する重要事項である。したがって、膨大な放射線廃棄物をできる限り低コストで安全に長期保管するための施設や方法が求められている。 In the Great East Japan Earthquake that occurred in 2011, a nuclear power plant accident occurred, and radioactive materials were scattered over a wide area inside and outside the power plant. After the accident, the removal of waste containing radioactive materials and the decontamination of radioactive materials targeting soil, houses, etc. have been started, and a large amount of radioactive waste materials have been recovered. The collected radioactive waste is packed in simple containers such as bags and boxes and collected at a point away from the living area. The amount of such radioactive waste will continue to increase as the nuclear power plant is repaired and decontaminated. The accumulated radioactive waste must be stored for a long time in a sealed state in a container that blocks the radiation until the radiation dose of the radioactive waste is below the reference value. In the future, it will be necessary to seal a large amount of radioactive waste in a suitable container and store it in a large-scale long-term storage facility. In this work, first, a radioactive waste storage container that has both high radiation shielding properties and durability to withstand weather and disasters during storage is required. A storage facility that fills a large number of storage containers as much as possible is required. In addition, the enormous cost required for the treatment of radioactive waste is an important matter affecting the national finance. Therefore, there is a need for a facility and method for safely storing long-term radioactive waste at the lowest possible cost.
特許文献1には、放射線廃棄物を収容した袋体の保管施設について記載されている。特許文献1に記載された保管施設は、保管施設の基礎部、各層、外郭の構造を工夫することによって放射線廃棄物を収容した袋体を安全に保管することを目的としている。この保管施設は、放射線廃棄物入りの袋体を長期保管施設に移送するまでの一時保管には適している。しかし、これを放射線廃棄物が無害化するまでの長期保管に用いるには不安がある。長い保管期間の間には保管施設が頻繁な気温変動や地震災害といった過酷な環境にさらされる可能性があることを考慮すれば、放射線廃棄物入りの袋体とこれを覆う構造が十分に堅牢であるとはいえず、保管施設の放射線遮蔽性は決して保証されない。
特許文献2には、耐久性に優れ、製作コストの低い筒状の放射線遮蔽容器が記載されている。しかし、この放射線遮蔽容器は原子力発電所が正常に稼働している際に発生する放射性廃棄物の一時保管を目的としている。現在必要とされている、除染作業で回収された放射線廃棄物の長期保管施設では、放射線廃棄物入りの容器を数万個単位で保管する必要がある。特許文献2に記載されたような、ステンレス鋼や各種連結部品を用いた放射線遮蔽容器は製造コストが高く、大量の放射線廃棄物に用いる資材としては現実的でない。しかも、筒状の容器を並べると隙間ができ、一つの保管施設内に収容できる放射線廃棄物の量が少なくなる。結果的に保管コストが増大するという問題点がある。
特許文献3にも放射線遮蔽用コンクリート容器が記載されている。しかし、特許文献3に記載された放射線遮蔽用コンクリート容器も原子力発電所の正常運転時に発生する比較的少量の放射線廃棄物の保管を目的としており、大量の放射線廃棄物質の保管にはコスト面で問題がある。また、特許文献3に記載された放射線遮蔽用コンクリート容器も代表的には円筒型であり、大量の放射線廃棄物の収容と保管には適さない。
特許文献2、特許文献3に記載されたような、円筒形の放射線廃棄物の収納容器を正方形や直方体に変更すれば、容器を並べた際に隙間ができず、効率的であることは簡単に理解できる。方形の容器は大量の放射線廃棄物の収容に適している。しかし、方形の容器においては、外部からの衝撃力の分散性が悪く、ひずみが生じ易い。このため、容器の破損の危険性が高く、放射線遮蔽性の低下が懸念される。一方、新たに回収される放射線廃棄物質は日増しに増えており、一刻も早く、一時保管中の放射線廃棄物を安全な長期保管施設に移す必要がある。耐久性と放射線遮蔽性のいずれもが優れる方形の容器を、低コストで生産することが、緊急の課題となっている。
If the cylindrical radioactive waste storage container described in
鉄筋コンクリートや硬質樹脂は、強度が高く、しかも大きさや形を自在に変更できるため、長期保管用容器の材料に適している。また、これらは製造コストがステンレスなどの金属製容器に比べて低く、大量の放射線廃棄物の貯蔵用に適している。しかし、鉄筋コンクリート製の容器や硬質樹脂製の容器を現実的な肉厚で製造して放射線廃棄物を密封した場合、容器の放射線遮蔽度は30%程度に過ぎず、放射線を十分に遮蔽することができない。 Reinforced concrete and hard resin are suitable for materials for long-term storage containers because they have high strength and can be freely changed in size and shape. Moreover, these are low in manufacturing cost compared with metal containers such as stainless steel, and are suitable for storing a large amount of radiation waste. However, when a container made of reinforced concrete or a container made of hard resin is manufactured with realistic wall thickness and sealed with radioactive waste, the radiation shielding degree of the container is only about 30% and the radiation should be shielded sufficiently. I can't.
本発明者は、低コストで製造でき、耐久性、放射線遮蔽性のいずれもが優れる放射線廃棄物用容器を求めて鋭意検討した。その結果、特定の積層体が各種容器の放射線遮蔽材として有効であることを見出した。 The inventor has intensively studied for a container for radiation waste that can be manufactured at low cost and has excellent durability and radiation shielding properties. As a result, it was found that the specific laminate is effective as a radiation shielding material for various containers.
すなわち第1の本発明は以下のものである。 That is, the first present invention is as follows.
鉄筋コンクリート製容器の本体と蓋のそれぞれが放射線遮蔽材で被覆されていることを特徴とする放射線廃棄物保管容器であって、A radioactive waste storage container characterized in that each of the main body and the lid of the reinforced concrete container is covered with a radiation shielding material,
上記放射線遮蔽材が以下の層(1)、(2)、(3)からなる積層体からなる、放射線廃棄物保管容器。A radiation waste storage container, wherein the radiation shielding material comprises a laminate comprising the following layers (1), (2), and (3).
(1)鉛板層(1) Lead plate layer
(2)熱硬化性樹脂と鉛化合物とを含む層(2) Layer containing thermosetting resin and lead compound
(3)繊維強化プラスチック(FRP)からなる層(3) Layer made of fiber reinforced plastic (FRP)
(ただし、上記層(1)、(2)、(3)の積層順序は限定されない。上記層(1)、(2)、(3)のうちいずれか1以上を複数層用いることもできる。)(However, the stacking order of the layers (1), (2), and (3) is not limited. Any one or more of the layers (1), (2), and (3) may be used.) )
第2の本発明は以下のものである。 The second aspect of the present invention is as follows.
鉄筋コンクリート製容器の本体と蓋のそれぞれが接着層(4)を介して上記放射線遮蔽材で被覆されていることを特徴とする、発明1の放射線廃棄物保管容器。 The radioactive waste storage container according to
第3の本発明は以下のものである。
鉄筋コンクリート製容器の本体と蓋のそれぞれを、以下の層(1)、(2)、(3)からなる積層体からなる放射線遮蔽材で被覆する工程を含む、放射線廃棄物保管用容器の製造方法。
(1)鉛板層
(2)熱硬化性樹脂と鉛化合物とを含む層。
(3)繊維強化プラスチック(FRP)からなる層。
(ただし、上記層(1)、(2)、(3)の積層順序は限定されない。上記層(1)、(2)、(3)のうちいずれか1以上を複数層用いることもできる。)
The third aspect of the present invention is as follows.
A method for manufacturing a container for storage of radioactive waste, comprising a step of covering each of a main body and a lid of a reinforced concrete container with a radiation shielding material comprising a laminate comprising the following layers (1), (2), and (3): .
(1) Lead plate layer
(2) A layer containing a thermosetting resin and a lead compound.
(3) A layer made of fiber reinforced plastic (FRP).
(However, the stacking order of the layers (1), (2), and (3) is not limited. Any one or more of the layers (1), (2), and (3) may be used.) )
本発明の放射線遮蔽材は、放射線遮蔽性に優れるとともに、比較的軽量で、製造コストが低く、耐久に優れる。その結果、本発明の放射線遮蔽材を備える容器は高い放射線遮蔽性を示すと同時に、耐久性にも優れる。 The radiation shielding material of the present invention has excellent radiation shielding properties, is relatively lightweight, has a low production cost, and is excellent in durability. As a result, the container provided with the radiation shielding material of the present invention exhibits high radiation shielding properties and is excellent in durability.
[鉛板層(1)]
本発明の放射線遮蔽材は、鉛板層(1)を有する。鉛板層(1)は、放射線遮蔽層として機能する。鉛板層(1)としては鉛の薄板を用いる。鉛板層の厚みは0.5〜4mmであり、遮蔽すべき放射線のレベルに応じて調節できる。一時保管中の除染ゴミには様々なレベルの放射線量を示す廃棄物が混在しているため、比較的強い放射線当量でも遮蔽できるような鉛板層の厚みを設定することが好ましい。したがって、鉛板層の厚みは1〜3mmが好ましい。
[Lead plate layer (1)]
The radiation shielding material of the present invention has a lead plate layer (1). The lead plate layer (1) functions as a radiation shielding layer. A thin lead plate is used as the lead plate layer (1). The thickness of the lead plate layer is 0.5-4 mm and can be adjusted according to the level of radiation to be shielded. Since wastes having various levels of radiation dose are mixed in decontamination waste during temporary storage, it is preferable to set the thickness of the lead plate layer so that even a relatively strong radiation equivalent can be shielded. Therefore, the thickness of the lead plate layer is preferably 1 to 3 mm.
[熱硬化性樹脂と鉛化合物とを含む層(2)]
本発明の放射線遮蔽材は、熱硬化性樹脂と鉛化合物とを含む層(2)を有する。上記層(2)は、熱硬化性樹脂、硬化剤、鉛化合物を含む熱硬化性樹脂組成物を硬化させて得られる層である。層(2)は鉛化合物を含むため、層(2)も放射線遮蔽層として機能する。
本発明の放射線遮蔽材で放射線廃棄物保管容器が被覆される場合には、層(2)は、また、放射線廃棄物保管容器の耐衝撃性や密閉性を向上する機能も有する。
[Layer containing thermosetting resin and lead compound (2)]
The radiation shielding material of the present invention has a layer (2) containing a thermosetting resin and a lead compound. The layer (2) is a layer obtained by curing a thermosetting resin composition containing a thermosetting resin, a curing agent, and a lead compound. Since the layer (2) contains a lead compound, the layer (2) also functions as a radiation shielding layer.
When the radiation waste storage container is covered with the radiation shielding material of the present invention, the layer (2) also has a function of improving the impact resistance and sealing performance of the radiation waste storage container.
上記熱硬化性樹脂は、繊維強化プラスチック(FRP)の母材となる樹脂であり、不飽和ポリエステル、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂が用いられる。本発明ではコストや強度の点から、不飽和ポリエステルを用いることが好ましい。硬化剤としては、それぞれの熱硬化性樹脂に適するものを使用できる。硬化剤の配合量は定法に従い適宜決定される。本発明で熱硬化性樹脂として不飽和ポリエステルを用いる場合には、硬化剤として各種有機過酸化物を使用する。硬化時間の調節のため、硬化促進剤を配合することもできる。上記層(2)の厚みは0.5〜3cmであり、好ましくは1〜2cmである。 The thermosetting resin is a resin that becomes a base material of fiber reinforced plastic (FRP), and unsaturated polyester, epoxy resin, polyamide resin, and phenol resin are used. In the present invention, it is preferable to use unsaturated polyester from the viewpoint of cost and strength. As a hardening | curing agent, what is suitable for each thermosetting resin can be used. The compounding quantity of a hardening | curing agent is suitably determined according to a usual method. In the present invention, when an unsaturated polyester is used as the thermosetting resin, various organic peroxides are used as a curing agent. In order to adjust the curing time, a curing accelerator can be blended. The layer (2) has a thickness of 0.5 to 3 cm, preferably 1 to 2 cm.
上記熱硬化性樹脂には鉛化合物を混合する。鉛化合物は粉末状のものが分散性に優れるため好ましい。そのような鉛化合物としては、取り扱い性が容易な鉛酸化物が好ましく用いられる。鉛酸化物として、例えば一酸化鉛(PbO)、二酸化鉛(PbO2)、四酸化三鉛(Pb(II)2Pb(IV)O4)、三酸化二鉛(Pb(II)Pb(IV)O3)およびこれらの混合物が用いられる。鉛化合物の配合量は適宜変更可能である。鉛化合物の配合量が多いと、層(2)の放射線遮蔽性が高くなる。上記鉛酸化物を用いる場合には、熱硬化性樹脂と鉛化合物とを、5:1〜1:5(重量比)、好ましくは3:1〜1:3(重量比)の割合で混合することによって、熱硬化性樹脂の性能を損なうことなく、一時保管されている放射線廃棄物に対して十分な放射線遮蔽性が得られる。 A lead compound is mixed in the thermosetting resin. A lead compound is preferable because it is excellent in dispersibility. As such a lead compound, a lead oxide that is easy to handle is preferably used. Examples of the lead oxide include lead monoxide (PbO), lead dioxide (PbO 2 ), trilead tetroxide (Pb (II) 2 Pb (IV) O 4 ), and dilead trioxide (Pb (II) Pb (IV) ) O 3 ) and mixtures thereof are used. The compounding quantity of a lead compound can be changed suitably. When there is much compounding quantity of a lead compound, the radiation shielding property of a layer (2) will become high. When the lead oxide is used, the thermosetting resin and the lead compound are mixed at a ratio of 5: 1 to 1: 5 (weight ratio), preferably 3: 1 to 1: 3 (weight ratio). Thus, a sufficient radiation shielding property can be obtained for radiation waste temporarily stored without impairing the performance of the thermosetting resin.
[繊維強化プラスチック(FRP)からなる層(3)]
本発明の放射線遮蔽材は、繊維強化プラスチック(FRP)からなる層(3)も有する。層(3)は、本発明の放射線遮蔽材の耐久性を向上させる。上記FRPとしては、一般的なもの、すなわち、熱硬化性樹脂を高強度繊維に含浸させて硬化させたものが用いられる。熱硬化性樹脂としては層(2)で用いたものと同様のものが用いられ、本発明ではコストや強度の点から、不飽和ポリエステルを用いることが好ましい。硬化剤も層(2)で用いたものと同様のものが用いられる。必要に応じて硬化促進剤を熱硬化性樹脂に配合することもできる。硬化促進剤は層(2)で用いたものと同様のものが用いられる。上記高強度繊維はFRP用に一般的なものでよく、具体的には、ガラス繊維や炭素繊維、樹脂繊維が用いられる。本発明では取り扱い性やコスト、強度のバランスからみてガラス繊維を用いることが好ましく、特にガラスチョップドストランドマットが好ましい。上記層(3)の厚みは0.5〜3cmであり、好ましくは1〜2cmである。
[Layer made of fiber reinforced plastic (FRP) (3)]
The radiation shielding material of the present invention also has a layer (3) made of fiber reinforced plastic (FRP). The layer (3) improves the durability of the radiation shielding material of the present invention. As the FRP, a general one, that is, one obtained by impregnating a thermosetting resin into a high-strength fiber and curing it is used. The same thermosetting resin as that used in the layer (2) is used. In the present invention, it is preferable to use an unsaturated polyester from the viewpoint of cost and strength. The same curing agent as that used in the layer (2) is used. If necessary, a curing accelerator can be added to the thermosetting resin. The same curing accelerator as that used in the layer (2) is used. The high-strength fiber may be a general fiber for FRP, and specifically, glass fiber, carbon fiber, or resin fiber is used. In the present invention, it is preferable to use glass fibers in view of balance of handleability, cost, and strength, and a glass chopped strand mat is particularly preferable. The layer (3) has a thickness of 0.5 to 3 cm, preferably 1 to 2 cm.
[積層体]
本発明の放射線遮蔽材は、少なくとも上記層(1)、層(2)、層(3)が積層された積層体からなる。層(1)、(2)、(3)の積層順序は限定されない。層(1)、(2)、(3)のうちいずれか1以上を複数層用いることもできる。鉛を含有する層(1)、層(2)の層数が増えれば放射線遮蔽性が向上するが、本発明では層(1)、(2)、(3)をそれぞれ1層ずつ積層した場合でも十分な放射線遮蔽性が得られる。また、熱硬化性樹脂を主材料とする層(2)、層(3)の層数が増えれば鉄筋コンクリート部材の耐久性が向上するが、本発明では層(1)、(2)、(3)をそれぞれ1層ずつ積層した場合でも十分な耐久性が得られる。各層の密着性やコストからみて、上記層(1)、層(2)、層(3)がこの順で積層された積層体が好ましい。少なくとも上記層(1)、層(2)、層(3)が積層された積層体の表面には、さらに、各種塗料からなる塗装層および/又は透明材料からなる保護層などの最外層を設けることができる。
[Laminate]
The radiation shielding material of the present invention comprises a laminate in which at least the above layer (1), layer (2), and layer (3) are laminated. The stacking order of the layers (1), (2), and (3) is not limited. Any one or more of the layers (1), (2), and (3) can be used. When the number of layers (1) and (2) containing lead is increased, radiation shielding properties are improved. In the present invention, layers (1), (2), and (3) are laminated one by one. But sufficient radiation shielding can be obtained. Further, if the number of layers (2) and (3) containing thermosetting resin as a main material is increased, the durability of the reinforced concrete member is improved. In the present invention, the layers (1), (2), (3 ) Sufficient durability can be obtained even when each layer is laminated. From the viewpoint of adhesion and cost of each layer, a laminate in which the above layer (1), layer (2), and layer (3) are laminated in this order is preferable. On the surface of the laminate on which at least the above layer (1), layer (2), and layer (3) are laminated, an outermost layer such as a coating layer made of various paints and / or a protective layer made of a transparent material is further provided. be able to.
[放射線廃棄物保管容器とその製造方法]
本発明の放射線遮蔽材を、放射線廃棄物保管容器の被覆材として用いることができる。基体である容器の所定の面に、層(1)、層(2)、層(3)を密着させることにより、本発明の放射線遮蔽材で被覆された容器が得られる。予め鉛板を所定の大きさに裁断することによって、様々な大きさの面に層(1)を密着することができる。層(1)は接着剤を用いることにより、金属、プラスチック、セラミック、コンクリートなどのいずれの材質の容器にも密着させることができる。また、硬化前の熱構成樹脂を含む層(2)、(3)の材料をローラーやはけで塗布することによって層(2)、層(3)を密着することができる。このように、本発明の少なくとも上記層(1)、層(2)、層(3)が積層された積層体からなる放射線遮蔽材は、曲面、平面のいずれにも密着する。したがって、本発明の放射線遮蔽材は多様な形状、材質の放射線廃棄物保管容器に用いることができる。放射線廃棄物の収納効率からみると、放射線廃棄物保管容器の容量としては0.5〜5m3、その形状は隙間なく積載できる直方体状あるいは六角柱状の形状、材質は安価なコンクリートを主体とするものが好ましい。また、容器のうち放射線遮蔽性の弱い部分に本発明の放射線遮蔽材を取り付け、容器全体の放射線遮蔽性を向上させることもできる。一般的には、容器の蓋と本体のそれぞれに本発明の放射線遮蔽材を取り付け、容器内容物が発する放射線を全方向で遮蔽する。
[Radiation waste storage container and its manufacturing method]
The radiation shielding material of the present invention can be used as a coating material for a radiation waste storage container. By bringing the layer (1), the layer (2), and the layer (3) into close contact with a predetermined surface of the container, which is a substrate, a container coated with the radiation shielding material of the present invention is obtained. By cutting the lead plate into a predetermined size in advance, the layer (1) can be adhered to the surfaces of various sizes. The layer (1) can be adhered to a container made of any material such as metal, plastic, ceramic and concrete by using an adhesive. Moreover, a layer (2) and a layer (3) can be closely_contact | adhered by apply | coating the material of the layer (2) and (3) containing the heat | fever constituent resin before hardening with a roller or a brush. Thus, the radiation shielding material comprising a laminate in which at least the layer (1), the layer (2), and the layer (3) of the present invention are laminated adheres to both a curved surface and a flat surface. Therefore, the radiation shielding material of the present invention can be used for radiation waste storage containers having various shapes and materials. From the viewpoint of storage efficiency of radioactive waste, the capacity of the radioactive waste storage container is 0.5-5m 3 , its shape is a rectangular parallelepiped or hexagonal column that can be loaded without any gaps, and the material is mainly cheap concrete Those are preferred. Moreover, the radiation shielding material of this invention can be attached to a part with a weak radiation shielding property among containers, and the radiation shielding property of the whole container can also be improved. Generally, the radiation shielding material of the present invention is attached to each of the lid and the main body of the container to shield the radiation emitted from the container contents in all directions.
層(1)、層(2)、層(3)をこの順で基体となる容器に積層する場合には、基体上に予め接着剤を塗布するか、あるいは層(1)の基体と接する面に予め接着剤を塗布することが好ましい。接着剤は、基体の材質に応じて適宜選択される、一般的には、合成ゴム・皮革・金属板・布・木・陶磁器・プラスチックなどと、木材・スレート・PC板・コンクリートの接着に適した建築・建設用接着剤が用いられる。中でも、ゴム系接着剤は、乾燥後の接着剤自体に弾力があり、本発明の放射線廃棄物保管容器の耐久力を向上する機能を有しているため、好ましい。 When the layer (1), the layer (2), and the layer (3) are laminated in this order on the container serving as the base, an adhesive is applied on the base in advance, or the surface of the layer (1) that contacts the base It is preferable to apply an adhesive in advance. Adhesive is appropriately selected according to the material of the substrate. Generally, it is suitable for bonding of synthetic rubber, leather, metal plate, cloth, wood, ceramics, plastic, etc. to wood, slate, PC board, concrete. Adhesives for construction and construction are used. Among them, the rubber-based adhesive is preferable because the adhesive itself after drying has elasticity and has a function of improving the durability of the radiation waste storage container of the present invention.
コストや取扱性、耐久性の面では、鉄筋コンクリート製の蓋と本体のそれぞれに本発明の放射線遮蔽材を設けた容器が、本発明の放射線廃棄物保管容器として好ましい。鉄筋コンクリートは、セメント、骨材、水を含むセメント組成物の硬化物を鉄筋で補強したものである。上記セメント組成物に配合するセメントは公知のものでよく、具体的には、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐酸性塩ポルトランドセメントなどのポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメントなどの混合セメント、エコセメントなどのその他のセメント、さらに白色ポルトランドセメントなどの特殊なセメントなどである。上記セメント組成物に使用する骨材は公知のものでよく、具体的には、川砂、川砂利、海砂、海砂利、山砂、山砂利などの天然骨材、砕砂、砕意思などの半人口骨材、高炉スラグ骨材や人口軽量骨材などの軽量骨材である。上記セメント組成物には、さらに、公知のセメント添加剤を配合することができる。添加剤は、例えば、セメント分散剤、減水剤、速硬剤、遅硬剤、低比重化剤、高比重化剤などである。添加剤は、工期やコストに応じて適宜配合する。鉄筋コンクリート製の蓋と本体は、いずれも、打設鉄筋コンクリートの一般的製造方法によって製造される。すなわち、セメント、骨材、水などの成分を混練し、セメント、骨材、水を含むセメント組成物を製造し、このセメント組成物を予め鉄筋が固定された型枠内に注入する。次に、型枠内でセメント組成物を硬化させる。最後に、硬化後の鉄筋コンクリート構造物を型枠から打ち抜き、本発明の鉄筋コンクリート製容器が完成する。蓋と本体とを別々の型枠を用いて製造することができる。最終的な鉄筋コンクリート容器の厚みは、蓋、本体のいずれもで、10〜30cmが好ましい。特に、12〜20cmの範囲が好ましい。 In terms of cost, handleability, and durability, a container provided with the radiation shielding material of the present invention on each of a reinforced concrete lid and a main body is preferable as the radiation waste storage container of the present invention. Reinforced concrete is obtained by reinforcing a cured product of a cement composition containing cement, aggregate, and water with reinforcing bars. The cement to be blended with the above cement composition may be a known one. Specifically, ordinary Portland cement, early-strength Portland cement, ultra-early strength Portland cement, medium heat Portland cement, low heat Portland cement, acid salt salt Portland cement, etc. Portland cement, blast furnace cement, fly ash cement, mixed cement such as silica cement, other cement such as eco-cement, and special cement such as white Portland cement. Aggregates used in the cement composition may be known ones, specifically, natural aggregates such as river sand, river gravel, sea sand, sea gravel, mountain sand, mountain gravel, half sand such as crushed sand and intention to crushed. Lightweight aggregates such as artificial aggregate, blast furnace slag aggregate and artificial lightweight aggregate. The cement composition may further contain a known cement additive. Examples of the additive include a cement dispersant, a water reducing agent, a quick hardener, a slow hardener, a low specific gravity agent, and a high specific gravity agent. Additives are appropriately blended according to the construction period and cost. Both the reinforced concrete lid and the main body are manufactured by a general manufacturing method of cast reinforced concrete. That is, components such as cement, aggregate, and water are kneaded to produce a cement composition containing cement, aggregate, and water, and this cement composition is poured into a mold in which reinforcing bars are fixed in advance. Next, the cement composition is cured in the mold. Finally, the hardened reinforced concrete structure is punched out of the mold, and the reinforced concrete container of the present invention is completed. The lid and the main body can be manufactured using different molds. The final thickness of the reinforced concrete container is preferably 10 to 30 cm for both the lid and the main body. The range of 12-20 cm is particularly preferable.
また、容器の本体と蓋が、フェノール樹脂やメラミン樹脂など選ばれる硬質樹脂製であってもよい。フェノール樹脂やメラミン樹脂などの硬質樹脂は、コンクリートや金属に比べて軽量であり、しかも耐久性に優れるため、好ましい。 Further, the main body and the lid of the container may be made of hard resin selected such as phenol resin and melamine resin . A hard resin such as a phenol resin or a melamine resin is preferable because it is lighter than concrete and metal and has excellent durability.
また、ゴムや熱可塑性エラストマーなどの弾性材料は、衝撃や振動に対して耐久性があるため、放射線廃棄物保管用容器の材料として有用である。ただし、これらは容器の積載時の強度では鉄筋コンクリートや硬質樹脂、金属に比べて劣るため、鉄筋コンクリートや硬質樹脂、金属などと組み合わせて用いる。 In addition, since elastic materials such as rubber and thermoplastic elastomer are durable against impact and vibration, they are useful as materials for radioactive waste storage containers. However, since these are inferior to reinforced concrete, hard resin, and metal in strength when the container is loaded, they are used in combination with reinforced concrete, hard resin, metal, and the like .
接着剤を適宜選択することによって、コンクリート、硬質樹脂、ゴム、金属などのいずれの容器のいずれの表面にも本発明の放射線遮蔽材を被覆することができる。 By appropriately selecting the adhesive, any surface of any container such as concrete, hard resin, rubber, metal, etc. can be coated with the radiation shielding material of the present invention.
(実施例1)
鉄筋コンクリート製の、放射線遮蔽材が被覆される前の容器の本体を製造した。すなわち、表1に示す材料を混練してセメント組成物を調整した。上記セメント組成物は、JIS R 5201、 JIS R 5202、JIS R 5203、JIS R 5204に定める密度、凝結性、安定性、圧縮強さ、水和熱、化学成分の規格を満たしている。
Example 1
The main body of the container made of reinforced concrete before being coated with the radiation shielding material was manufactured. That is, the materials shown in Table 1 were kneaded to prepare a cement composition. The cement composition satisfies the standards of density, setting property, stability, compressive strength, heat of hydration, and chemical composition defined in JIS R 5201, JIS R 5202, JIS R 5203, and JIS R 5204.
埋込金物によってワイヤーメッシュが固定されたコンクリート型枠このセメント組成物を注入し、硬化させ、硬化物を打ち抜いた。打ち抜き後の本体は、縦95cmx横105cmx高さ108cmの箱型である。各面の厚みは15cmである。本体の概略形状を図1、図2に示す。 A concrete mold with a wire mesh fixed by an embedded metal, this cement composition was poured and cured, and the cured product was punched out. The main body after punching has a box shape of 95 cm long × 105 cm wide × 108 cm high. The thickness of each surface is 15 cm. The schematic shape of the main body is shown in FIGS.
表1に示す材料を用いて、上記本体と同様の手順で、鉄筋コンクリート製の、放射線遮蔽材が被覆される前の容器の蓋を製造した。蓋は縦95cmx横105cmの突出部を有する板状であり、厚みは肉薄部で15cm、肉厚部で20cmである。蓋の概略形状を図3、図4に示す。 Using the materials shown in Table 1, a container lid made of reinforced concrete before being coated with the radiation shielding material was manufactured in the same procedure as the above-mentioned main body. The lid has a plate shape having a projection of 95 cm in length and 105 cm in width, and the thickness is 15 cm at the thin part and 20 cm at the thick part. The schematic shape of the lid is shown in FIGS.
表2に示す材料からなる鉛板層(1)、熱硬化性樹脂と鉛とを含む層(2)、繊維強化プラスチック(FRP)からなる層(3)を、この順で上記本体に被覆した。 The main body was coated with a lead plate layer (1) made of the material shown in Table 2, a layer (2) containing thermosetting resin and lead, and a layer (3) made of fiber reinforced plastic (FRP) in this order. .
すなわち、本体の外側面、外底面、上端面に、接着剤(コニシ株式会社製「ボンド G17Z」)をローラーで塗布し、層(1)として、鉛板を各面の形状に裁断したものを塗布面に接着した。次に、層(2)として、熱硬化性樹脂、硬化剤、PbO粉末を混練したものを、鉛板の表面にローラーで塗布した。塗布後直ちに塗布面上に、層(3)の形成のため、450g/m2のサイズのガラスチョップドストランドマットを押圧接着した。そして、熱硬化性樹脂、硬化剤を混練したものを、ローラーでガラスチョップドストランドマットに塗布し、混練物をガラスチョップドストランドマットに含浸させた。その後、熱硬化性樹脂が硬化するまで静置した。層(1)、(2)、(3)からなる積層体で被覆された容器本体の上端部の概略を図5に示す。
That is, an adhesive ("Bond G17Z" manufactured by Konishi Co., Ltd.) is applied to the outer side surface, outer bottom surface, and upper end surface of the main body with a roller, and the lead plate is cut into the shape of each surface as a layer (1). Adhered to the coated surface. Next, what knead | mixed the thermosetting resin, the hardening | curing agent, and PbO powder as a layer (2) was apply | coated to the surface of the lead plate with the roller. Immediately after coating, a glass chopped strand mat having a size of 450 g /
表2に示す材料からなる鉛板層(1)、熱硬化性樹脂と鉛化合物とを含む層(2)、繊維強化プラスチック(FRP)からなる層(3)を、この順で上記蓋に被覆した。すなわち、蓋の下面に、接着剤(コニシ株式会社製「ボンド G17Z」)をローラーで塗布し、層(1)として鉛板を各面の形状に裁断したものを塗布面に接着した。次に、層(2)として、熱硬化性樹脂、硬化剤、鉛化合物を混練したものを、ローラーで鉛板の表面に塗布した。塗布後直ちに塗布面上に、層(3)の形成のため、ガラスチョップドストランドマットを押圧接着した。そして、熱硬化性樹脂、硬化剤を混練したものを、ガラスチョップドストランドマットに塗布し、混練物をガラスチョップドストランマットに含浸させた。ローラーで塗布して、熱硬化性樹脂がガラスチョップドストランドマットに含浸した層を形成した。その後、熱硬化性樹脂が硬化するまで静置した。層(1)、(2)、(3)からなる積層体で被覆された蓋の端部の概略を図6に示す。 Cover the lid with a lead plate layer (1) made of the materials shown in Table 2, a layer (2) containing a thermosetting resin and a lead compound, and a layer (3) made of fiber reinforced plastic (FRP) in this order. did. That is, an adhesive (“Bond G17Z” manufactured by Konishi Co., Ltd.) was applied to the lower surface of the lid with a roller, and the lead plate cut into the shape of each surface as a layer (1) was adhered to the application surface. Next, what knead | mixed thermosetting resin, the hardening | curing agent, and the lead compound as a layer (2) was apply | coated to the surface of the lead plate with the roller. Immediately after coating, a glass chopped strand mat was pressed and adhered on the coated surface to form a layer (3). And what knead | mixed the thermosetting resin and the hardening | curing agent was apply | coated to the glass chopped strand mat, and the kneaded material was impregnated to the glass chopped strand mat. It was applied with a roller to form a layer in which a glass chopped strand mat was impregnated with a thermosetting resin. Thereafter, it was allowed to stand until the thermosetting resin was cured. FIG. 6 shows an outline of the end of the lid covered with the laminate composed of the layers (1), (2), and (3).
以上のようにして層(1)、(2)、(3)からなる放射線遮蔽材を備える鉄筋コンクリート製箱型容器が完成した。この容器に放射線廃棄物を収容した場合の側断面図を図7に示す。図7に示すように、上記容器に放射線廃棄物を収納し、本体に蓋を積載すると、比較的柔軟性のある放射線遮蔽材を介して鉄筋コンクリート製で高重量の蓋が本体に隙間なく密着し、安定する。そして、廃棄物の全周囲を上記放射線遮蔽材で遮蔽することができる。 As described above, a reinforced concrete box-type container including the radiation shielding material composed of the layers (1), (2), and (3) was completed. FIG. 7 shows a side sectional view when the radioactive waste is accommodated in this container. As shown in FIG. 7, when radioactive waste is stored in the container and the lid is loaded on the main body, the heavyweight lid made of reinforced concrete adheres to the main body without a gap through a relatively flexible radiation shielding material. ,Stabilize. And the whole circumference | surroundings of waste can be shielded with the said radiation shielding material.
別途、上記容器に用いたセメント組成物の硬化物の呼び強度を測定したところ、24という十分な強度を示した。したがって、この容器は放射線廃棄物の長期保管用容器に適した強度を有すると言える。 Separately, when the nominal strength of the cured product of the cement composition used in the container was measured, it showed a sufficient strength of 24. Therefore, it can be said that this container has a strength suitable for a long-term storage container for radiation waste.
得られた放射線廃棄物保管容器の放射線遮蔽性を測定した。図8に示すように、容器内部に線源(137Cs 3.7MBq)を固定して容器を密閉した。容器の外側の6点で線量を測定した。6つの測定点は、蓋上面(上部)、本体の底面(下部)、本体の4つの側面(側面1,2,3,4)のそれぞれの中心で、各面から1cmの地点である。各測定点における線量の測定結果を表3に示す。表3中、低減率は測定結果からバックグラウンド(BG、0.07μSv/h)を差し引いて算出した。
The radiation shielding property of the obtained radioactive waste storage container was measured. As shown in FIG. 8, the radiation source (137Cs 3.7MBq) was fixed inside the container, and the container was sealed. Dose was measured at six points outside the container. The six measurement points are the center of each of the top surface (upper part) of the lid, the bottom surface (lower part) of the main body, and the four side surfaces (side surfaces 1, 2, 3, 4) of the main body, and a
表3の結果から、本発明の放射線廃棄物保管容器では、80〜90%という高い放射線遮蔽率を示すことが分かる。 From the results of Table 3, it can be seen that the radiation waste storage container of the present invention exhibits a high radiation shielding rate of 80 to 90%.
(参考例2)
フェノール樹脂からなる部材と合成ゴムからなる部材を用いて幅130cm、高さ150cm、蓋の厚みが肉薄部で15cm、肉厚部で20cmの六角柱状の容器を製造した。全体の形状の概要を表10に示す。図11は放射線遮蔽材の被覆前の本体を上から見た概略図である。蓋、本体共に、ラバーの板をフェノール樹脂層で被覆した板材で形成されている。この容器の本体の外周面と、蓋の下面に、実施例1で用いたものと同じ材料を用いて、接着剤層(1)、(2)、(3)からなる放射線遮蔽材を被覆した。この容器についても実施例1と同様に放射線遮蔽率を測定したところ、上部、下部、6つの側面のいずれでも80〜90%という高い放射線遮蔽率を示した。このような六角柱状の放射線廃棄物保管容器は、図11に示すようにハニカム構造をとって積載できるため、充填効率が高く、外部からの衝撃に対して堅牢である。
( Reference Example 2)
Using a member made of phenol resin and a member made of synthetic rubber, a hexagonal columnar container having a width of 130 cm, a height of 150 cm, a lid thickness of 15 cm at the thin part, and a thickness of 20 cm was produced. A summary of the overall shape is shown in Table 10. FIG. 11 is a schematic view of the main body before coating with the radiation shielding material as seen from above. Both the lid and the main body are formed of a plate material in which a rubber plate is covered with a phenol resin layer. The outer peripheral surface of the main body of the container and the lower surface of the lid were covered with a radiation shielding material composed of the adhesive layers (1), (2), and (3) using the same material as that used in Example 1. . When the radiation shielding rate of this container was measured in the same manner as in Example 1, it showed a high radiation shielding rate of 80 to 90% on any of the upper, lower, and six side surfaces. Since such a hexagonal column-shaped radioactive waste storage container can be loaded with a honeycomb structure as shown in FIG. 11, the filling efficiency is high and it is robust against external impacts.
本発明の放射線遮蔽材は、高い放射線遮蔽性を有し、様々な基体を被覆することができる。したがって本発明の放射線遮蔽材を用いて、様々な形状、材質の放射線廃棄物保管容器を製造することができ、これら放射線廃棄物保管容器は高い放射線遮蔽性を有する。例えば、鉄筋コンクリート、金属、硬質樹脂などからなる、それ自体は放射線遮蔽性が十分でない容器であっても、本発明の放射線被覆材をこれら容器に被覆することによって、放射線廃棄物の長期保管に適する放射線遮蔽性が得られる。このため、本発明の放射線遮蔽材を用いれば、特殊な容器を製造することなく、既存の容器、コンテナ、水槽、タンクを転用・応用して、高性能の放射線廃棄物保管容器を製造することができる。このような本発明の放射線遮蔽材は、目下緊急の課題である、大量の放射線廃棄物の長期保存に大きく貢献する。さらに、本発明の放射線遮蔽材は、様々な形状の面に密着する積層体であるから、放射線廃棄物保管施設の建材、原子力発電所の作業員の被曝防止用部材、放射線廃棄物保管施設や放射線保管容器の補修材にも用いることができる。 The radiation shielding material of the present invention has high radiation shielding properties and can coat various substrates. Therefore, radiation waste storage containers of various shapes and materials can be manufactured using the radiation shielding material of the present invention, and these radiation waste storage containers have high radiation shielding properties. For example, even if the container itself is made of reinforced concrete, metal, hard resin, etc. and has insufficient radiation shielding property, it is suitable for long-term storage of radiation waste by covering the container with the radiation coating material of the present invention. Radiation shielding is obtained. For this reason, if the radiation shielding material of the present invention is used, a high-performance radiation waste storage container can be manufactured by diverting and applying existing containers, containers, water tanks, and tanks without manufacturing special containers. Can do. Such a radiation shielding material of the present invention greatly contributes to the long-term storage of a large amount of radiation waste, which is an urgent issue at present. Furthermore, since the radiation shielding material of the present invention is a laminate that adheres to surfaces of various shapes, it is a building material for radiation waste storage facilities, a member for preventing exposure of workers of nuclear power plants, a radiation waste storage facility, It can also be used as a repair material for radiation storage containers.
1 コンクリート製側面
2 鉄筋固定用埋込金物
3 鉄筋
4 外表面
5 内表面
6 放射線遮蔽材被覆前の本体上端部
7 放射線遮蔽材被覆前の本体底端部
8 蓋肉厚部(点線は肉厚部と肉薄部の境界線で実際には見えない。)
9 蓋肉薄部(点線は肉厚部と肉薄部の境界線で実際には見えない。)
10 蓋上部
11 蓋と本体との嵌合部
12 蓋下部
13 放射線遮蔽材被覆後の本体上端部
14 放射線遮蔽材
15 鉛板層(1)
16 熱硬化性樹脂と鉛化合物とを含む層(2)
17 繊維強化プラスチック(FRP)からなる層(3)
18 放射線廃棄物保管容器の蓋
19 放射線廃棄物保管容器の本体
20 放射線廃棄物
21 鉄筋コンクリート
22 線源
23 測定器
24 フェノール樹脂製部材
25 合成ゴム製部材
26 放射線廃棄物保管容器(点線は蓋の肉厚部と肉薄部の境界線で実際には見えない)
DESCRIPTION OF
9 Thin lid part (The dotted line is not actually visible at the boundary between thick part and thin part.)
DESCRIPTION OF
16 Layer containing thermosetting resin and lead compound (2)
17 Layer made of fiber reinforced plastic (FRP) (3)
18 Radiation waste
Claims (3)
上記放射線遮蔽材が以下の層(1)、(2)、(3)からなる積層体からなる、放射線廃棄物保管容器。A radiation waste storage container, wherein the radiation shielding material comprises a laminate comprising the following layers (1), (2), and (3).
(1)鉛板層(1) Lead plate layer
(2)熱硬化性樹脂と鉛化合物とを含む層(2) Layer containing thermosetting resin and lead compound
(3)繊維強化プラスチック(FRP)からなる層(3) Layer made of fiber reinforced plastic (FRP)
(ただし、上記層(1)、(2)、(3)の積層順序は限定されない。上記層(1)、(2)、(3)のうちいずれか1以上を複数層用いることもできる。)(However, the stacking order of the layers (1), (2), and (3) is not limited. Any one or more of the layers (1), (2), and (3) may be used.) )
(1)鉛板層(1) Lead plate layer
(2)熱硬化性樹脂と鉛化合物とを含む層。(2) A layer containing a thermosetting resin and a lead compound.
(3)繊維強化プラスチック(FRP)からなる層。(3) A layer made of fiber reinforced plastic (FRP).
(ただし、上記層(1)、(2)、(3)の積層順序は限定されない。上記層(1)、(2)、(3)のうちいずれか1以上を複数層用いることもできる。)(However, the stacking order of the layers (1), (2), and (3) is not limited. Any one or more of the layers (1), (2), and (3) may be used.) )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013189427A JP6253930B2 (en) | 2013-09-12 | 2013-09-12 | Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013189427A JP6253930B2 (en) | 2013-09-12 | 2013-09-12 | Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015055562A JP2015055562A (en) | 2015-03-23 |
JP6253930B2 true JP6253930B2 (en) | 2017-12-27 |
Family
ID=52820049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013189427A Expired - Fee Related JP6253930B2 (en) | 2013-09-12 | 2013-09-12 | Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6253930B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101661115B1 (en) * | 2015-04-06 | 2016-09-30 | 재단법인 포항산업과학연구원 | Method of preparing fabric used for radiation shield and container bag for the radioactive waste using the same |
CN105178643B (en) * | 2015-08-19 | 2018-08-31 | 盐城工业职业技术学院 | It prevents nuclear proliferation nuclear power station owner's room body of pollution |
HRP20220741T1 (en) * | 2015-10-09 | 2022-10-28 | Hazprotect Pty Ltd | Container encapsulating radioactive and/or hazardous waste |
JP6741234B2 (en) * | 2016-10-26 | 2020-08-19 | 昭和電工株式会社 | Radioactive water treatment method |
CN109712735B (en) * | 2018-12-11 | 2020-11-06 | 中广核核电运营有限公司 | Ionization radiation prevention container and preparation method thereof |
JP2021183907A (en) * | 2020-03-17 | 2021-12-02 | 勝 狩野 | Radioactive waste storage container and manufacturing method therefor |
JP7468891B2 (en) * | 2020-05-27 | 2024-04-16 | 日之出水道機器株式会社 | Measurement system and method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58208699A (en) * | 1982-05-29 | 1983-12-05 | 浅沼 芳夫 | Frp and high polymer laminate molding structure for shielding and controlling radiation |
JPS5924296A (en) * | 1982-08-02 | 1984-02-07 | 吉浜 丞 | Reinforced plastic and high-polymer processing structure for shielding and moderating and controlling radiation |
JPS59183399A (en) * | 1983-04-04 | 1984-10-18 | 佐藤 昌 | Radiation shielding plate |
JPS60152573A (en) * | 1984-01-23 | 1985-08-10 | Kansai Paint Co Ltd | Thermosetting paint |
JPS60131900U (en) * | 1984-02-14 | 1985-09-03 | 大日本印刷株式会社 | Transfer sheet for radiation shielding |
JPS62142299A (en) * | 1985-12-02 | 1987-06-25 | 東電環境エンジニアリング株式会社 | Radioactive waste processing body |
US5733066A (en) * | 1992-09-14 | 1998-03-31 | Myers; Lawrence S. | Apparatus and method for disposal of nuclear and other hazardous wastes |
US6372157B1 (en) * | 1997-03-24 | 2002-04-16 | The United States Of America As Represented By The United States Department Of Energy | Radiation shielding materials and containers incorporating same |
JP5807869B2 (en) * | 2011-04-18 | 2015-11-10 | 公益財団法人ヒューマンサイエンス振興財団 | Radiation protector |
US8678322B2 (en) * | 2011-04-27 | 2014-03-25 | Alliant Techsystems Inc. | Multifunctional chambered radiation shields and systems and related methods |
JP2013117499A (en) * | 2011-10-31 | 2013-06-13 | Junichi Iwamura | Radiation shield material |
JP2013160515A (en) * | 2012-02-01 | 2013-08-19 | Alto Kogei Co Ltd | Method for forming radiation shield material |
JP2013160754A (en) * | 2012-02-07 | 2013-08-19 | Kawai Kaken Kogyo:Kk | Treatment method for waste containing radioactive substance and corrosion resistant tank used in treatment method |
JP5882078B2 (en) * | 2012-02-13 | 2016-03-09 | 株式会社サンメック | Radiation shielding mounting body and radiation shielding container using the radiation shielding mounting body |
JP6021244B2 (en) * | 2012-02-15 | 2016-11-09 | ゴトウコンクリート株式会社 | Method for producing concrete box for radioactive waste |
-
2013
- 2013-09-12 JP JP2013189427A patent/JP6253930B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015055562A (en) | 2015-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6253930B2 (en) | Radiation shielding material, radiation waste storage container, and method for manufacturing radiation waste storage container | |
Saleh et al. | Innovative cement-based materials for environmental protection and restoration | |
US20100258751A1 (en) | Borated Concrete-Rubber | |
KR20110084416A (en) | Radiation shielding structure composition | |
US20180025799A1 (en) | Radiation shielding material | |
JPH085793A (en) | Sealed article, sealing device and manufacture thereof | |
US20150206608A1 (en) | Radiation absorbing composition | |
CN109024247A (en) | A kind of the antidetonation bridge column structure system and implementation method of novel prefabricated disassembled reparation | |
US20160260510A1 (en) | Design and mixture for anti-radiation pozzolon-polymeric cementitious material | |
CN103193439B (en) | High integrity container sealing material and preparation method thereof and application | |
KR101688646B1 (en) | Dual Layered Concrete for High-level Neutron Shielding Method for Manufacturing the Same | |
JP6057514B2 (en) | Radioactive waste storage container | |
JP5832019B2 (en) | Method for producing radiation shielding mortar and method for producing radiation shielding container | |
JP2020129009A (en) | Public exposure protection, occupational exposure protection and medical exposure protection using rock wall material and radiation shielding reduction body which is compact of rock wall material, and radioactive water treatment | |
JP2013210221A (en) | Solidified waste and radioactive waste disposal method | |
GB1216171A (en) | Method of manufacturing flat or curved units, wall panels or the like | |
ES2440116B2 (en) | Procedure for obtaining anti-radiation structural concrete | |
JP4918727B2 (en) | Neutron beam shield | |
JP2015152463A (en) | Radiation shield body and radiation shield structure | |
JP2013195416A (en) | Radiation shieling construction and/or radiation shielding structure | |
JP2021183907A (en) | Radioactive waste storage container and manufacturing method therefor | |
JP2014194405A (en) | Radiation shield, radiation shield forming material, and method of forming radiation shield | |
JP2017125828A (en) | Public exposure protection using radiation shielding reducer which is rock wool material and molded body thereof, vocational exposure protection, medical exposure protection and radioactive waste disposal | |
JP2022106450A (en) | Radioactive waste storage container, and manufacturing method of the same | |
JP2015152464A (en) | Radiation shield body and radiation shield structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6253930 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314805 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |