JP6251590B2 - Arsenic oxidation method - Google Patents
Arsenic oxidation method Download PDFInfo
- Publication number
- JP6251590B2 JP6251590B2 JP2014025141A JP2014025141A JP6251590B2 JP 6251590 B2 JP6251590 B2 JP 6251590B2 JP 2014025141 A JP2014025141 A JP 2014025141A JP 2014025141 A JP2014025141 A JP 2014025141A JP 6251590 B2 JP6251590 B2 JP 6251590B2
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- catalyst
- platinum particles
- platinum
- trivalent arsenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052785 arsenic Inorganic materials 0.000 title claims description 86
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims description 83
- 238000007254 oxidation reaction Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 32
- 230000003647 oxidation Effects 0.000 title claims description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 155
- 239000002245 particle Substances 0.000 claims description 58
- 229910052697 platinum Inorganic materials 0.000 claims description 57
- 239000003054 catalyst Substances 0.000 claims description 46
- 239000007788 liquid Substances 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 239000006185 dispersion Substances 0.000 claims description 12
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 21
- 229910010413 TiO 2 Inorganic materials 0.000 description 16
- 150000001495 arsenic compounds Chemical class 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000007664 blowing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 230000033116 oxidation-reduction process Effects 0.000 description 5
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 4
- 125000000223 arsonoyl group Chemical group [H][As](*)(*)=O 0.000 description 4
- 239000002574 poison Substances 0.000 description 4
- 231100000614 poison Toxicity 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- -1 arsenic sulfides Chemical class 0.000 description 3
- GCPXMJHSNVMWNM-UHFFFAOYSA-N arsenous acid Chemical compound O[As](O)O GCPXMJHSNVMWNM-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229940093920 gynecological arsenic compound Drugs 0.000 description 3
- 150000002506 iron compounds Chemical class 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical class [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- NDBYXKQCPYUOMI-UHFFFAOYSA-N platinum(4+) Chemical compound [Pt+4] NDBYXKQCPYUOMI-UHFFFAOYSA-N 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229940000489 arsenate Drugs 0.000 description 1
- 229910052964 arsenopyrite Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Description
本発明は、ヒ素の酸化方法に関する。 The present invention relates to a method for oxidizing arsenic.
ヒ素化合物は、自然界に単体、ヒ化物(例:FeAs)、硫ヒ化物(例:FeAsS)、ヒ酸塩(例:FeAsO4)等の種々の形態で存在し、ヒ素は、−3〜+5まで幅広い価数をもち、中でも、3価ヒ素及び5価ヒ素が知られている。 Arsenic compounds exist in nature in various forms such as simple substances, arsenides (eg, FeAs), arsenic sulfides (eg: FeAsS), arsenates (eg: FeAsO 4 ), and arsenic is −3 to +5. In particular, trivalent arsenic and pentavalent arsenic are known.
5価ヒ素化合物は、FeやCa、Cu、希土類等、アルカリ金属を除く多くの金属イオンと水に不溶性のヒ酸塩の沈澱を形成し、安定化することが知られている。一方、3価ヒ素化合物は、金属イオンと溶解度が低い安定な塩を形成しにくく、仮に形成することができても亜ヒ酸自体が弱酸であるため、酸やアルカリで容易に分解し、溶解してしまう。そこで、3価ヒ素化合物の状態のままでの安定化は困難であり、安定化処理前に、一旦、3価ヒ素化合物を5価ヒ素化合物に変換する必要がある。 It is known that pentavalent arsenic compounds stabilize and form a precipitate of water-insoluble arsenate, such as Fe, Ca, Cu, and rare earths, excluding alkali metals. On the other hand, trivalent arsenic compounds are difficult to form metal ions and stable salts with low solubility, and even if they can be formed, arsenous acid itself is a weak acid, so it easily decomposes and dissolves with acids and alkalis. Resulting in. Therefore, it is difficult to stabilize the trivalent arsenic compound as it is, and it is necessary to convert the trivalent arsenic compound to a pentavalent arsenic compound before the stabilization treatment.
ところが、3価ヒ素化合物から5価ヒ素化合物に酸化する際の反応速度は非常に遅いことが知られている。そこで、工業的には、酸素又は空気の共存下で大過剰のFeイオンと沈澱を形成させることで、下記反応式(1)の平衡を強制的に右に進める方法のほか、酸素や空気の代わりに、より高速で酸化反応を推進できる過酸化水素、オゾン等の強酸化剤を使用する方法が用いられている。
Fe3++AsO2−+H2O+(O)→ FeAsO4↓+2H+・・・(1)
However, it is known that the reaction rate when oxidizing from a trivalent arsenic compound to a pentavalent arsenic compound is very slow. Therefore, industrially, in addition to the method of forcing the equilibrium of the following reaction formula (1) to the right by forming a precipitate with a large excess of Fe ions in the presence of oxygen or air, Instead, a method using a strong oxidizing agent such as hydrogen peroxide or ozone that can promote the oxidation reaction at a higher speed is used.
Fe 3+ + AsO 2 − + H 2 O + (O) → FeAsO 4 ↓ + 2H + (1)
しかしながら、過剰のFeイオンを使用する方法では、過剰量のFe化合物使用による処理費の上昇に加え、反応後にはAsの存在量に対して多くのゲーサイト(FeOOH)や塩基性鉄塩類等の沈殿物が副生し、As含有物の重量及び体積が大幅に増えることにより保管や処理を困難とするという問題点があった。また、強酸化剤を使用する方法では、強酸化剤を大量に保有する必要があり、As処理費用の増大を招くため、商業的な利用は進まなかった。 However, in the method using an excessive amount of Fe ions, in addition to the increase in treatment cost due to the use of an excessive amount of Fe compound, after the reaction, a large amount of goethite (FeOOH), basic iron salts, etc. with respect to the amount of As present. There was a problem that precipitates were produced as by-products and the weight and volume of the As-containing material increased significantly, making storage and processing difficult. Further, in the method using a strong oxidant, it is necessary to store a large amount of strong oxidant, which causes an increase in As treatment costs, and thus commercial use has not progressed.
そこで、別のアプローチとして、触媒を用いて3価ヒ素化合物の酸化速度を高めることが求められている。しかしながら、無機化合物の酸化においては、酸化還元電位の差が大きく、触媒自体が有効に作用する酸化還元電位を超える場合が多いために困難とされ、検討例は極めて少ない。 Therefore, as another approach, it is required to increase the oxidation rate of the trivalent arsenic compound using a catalyst. However, in the oxidation of inorganic compounds, the difference in redox potential is large and often exceeds the redox potential at which the catalyst itself effectively acts.
例えば、特許文献1では、メッキ液中に含まれる2価鉄化合物を白金触媒の存在下で酸素を吹き込むことにより3価鉄に変換することが提案されている。 For example, Patent Document 1 proposes converting a divalent iron compound contained in a plating solution into trivalent iron by blowing oxygen in the presence of a platinum catalyst.
しかしながら、特許文献1の方法は、ヒ素や硫黄等、白金族元素に対して触媒毒として作用すると考えられている系に対しては適用することができない。 However, the method of Patent Document 1 cannot be applied to a system that is considered to act as a catalyst poison for platinum group elements such as arsenic and sulfur.
本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、過剰の鉄化合物や高価な酸化剤を使用することなく、3価ヒ素化合物から5価ヒ素化合物への酸化を、触媒を用いて効率的に進める方法を提供することである。 The present invention has been made in view of the above circumstances, and its object is to oxidize a trivalent arsenic compound to a pentavalent arsenic compound without using an excessive iron compound or an expensive oxidizing agent. Is to provide a method of efficiently proceeding using a catalyst.
本発明者らは、上記課題を解決するために鋭意研究を重ねたところ、3価ヒ素を含有する3価ヒ素含有液に対し、酸素含有ガスを白金粒子の共存下で供給することを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to solve the above problems, and found that an oxygen-containing gas is supplied in the presence of platinum particles to a trivalent arsenic-containing liquid containing trivalent arsenic, The present invention has been completed.
具体的には、以下のようなものを提供する。 Specifically, the following are provided.
(1)本発明は、3価ヒ素を含有する3価ヒ素含有液に対し、酸素含有ガスを白金粒子の共存下で供給する、ヒ素の酸化方法である。 (1) The present invention is an arsenic oxidation method in which an oxygen-containing gas is supplied to a trivalent arsenic-containing liquid containing trivalent arsenic in the presence of platinum particles.
(2)また、本発明は、前記3価ヒ素含有液のpHが7以上である、(1)に記載のヒ素の酸化方法である。 (2) Moreover, this invention is an arsenic oxidation method as described in (1) whose pH of the said trivalent arsenic containing liquid is 7 or more.
(3)また、本発明は、前記白金粒子が固定される担体が二酸化チタン又は二酸化ジルコニウムである、(1)又は(2)に記載のヒ素の酸化方法である。 (3) Further, the present invention is the arsenic oxidation method according to (1) or (2), wherein the carrier on which the platinum particles are fixed is titanium dioxide or zirconium dioxide.
(4)また、本発明は、前記白金粒子が担体に担持された触媒であり、COパルス吸着法にしたがって測定したときの前記白金粒子の分散度が20%以下である、(1)から(3)のいずれかに記載のヒ素の酸化方法である。 (4) Further, the present invention is a catalyst in which the platinum particles are supported on a carrier, and the degree of dispersion of the platinum particles when measured according to a CO pulse adsorption method is 20% or less. The method for oxidizing arsenic according to any one of 3).
(5)また、本発明は、前記白金粒子が担体に担持された触媒であり、COパルス吸着法にしたがって測定したときの前記白金粒子の分散度から触媒に存在する白金1gあたりの比表面積を計算し、この比表面積と白金の重量とから、白金粒子を球体とした場合の直径を求めることによって得られる前記白金粒子の平均粒子径が5nm以上である、(1)から(4)のいずれかに記載のヒ素の酸化方法である。 (5) Further, the present invention is a catalyst in which the platinum particles are supported on a carrier, and the specific surface area per 1 g of platinum present in the catalyst is determined from the dispersion degree of the platinum particles when measured according to a CO pulse adsorption method. Any one of (1) to (4), wherein the average particle diameter of the platinum particles obtained by calculating and obtaining the diameter when the platinum particles are made into spheres from the specific surface area and the weight of platinum is 5 nm or more. A method for oxidizing arsenic according to claim 1.
本発明によると、過剰の鉄化合物や高額な酸化剤を使用せず、3価ヒ素から5価ヒ素に効率よく酸化できる。 According to the present invention, it is possible to efficiently oxidize trivalent arsenic to pentavalent arsenic without using an excess iron compound or an expensive oxidizing agent.
以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. Can do.
本発明は、3価ヒ素を含有する3価ヒ素含有液に対し、酸素含有ガスを白金粒子の共存下で供給する工程を含む。 The present invention includes a step of supplying an oxygen-containing gas in the presence of platinum particles to a trivalent arsenic-containing liquid containing trivalent arsenic.
<3価ヒ素>
3価ヒ素化合物の代表的な例として、亜ヒ酸が挙げられる。亜ヒ酸が酸化するとき、下記化学式(2)に示すとおり、水酸化物イオンを消費する。そのため、pHが高いほど反応は促進される。このことから、3価ヒ素含有液のpH値は特に限定されるものでないが、アルカリ性、すなわち、pHが7以上であることが好ましい。
AsO2−+2OH−+(O)→AsO4 3−+H2O・・・(2)
<Trivalent arsenic>
A typical example of the trivalent arsenic compound is arsenous acid. When arsenous acid is oxidized, hydroxide ions are consumed as shown in the following chemical formula (2). Therefore, the reaction is promoted as the pH increases. From this, the pH value of the trivalent arsenic-containing liquid is not particularly limited, but is preferably alkaline, that is, the pH is 7 or more.
AsO 2− + 2OH − + (O) → AsO 4 3− + H 2 O (2)
<白金粒子>
本発明は、酸素を触媒により活性化することにより3価ヒ素イオンの高速な酸化を実現するものである。一般的に酸化を促す触媒として、白金族元素や酸化モリブデン等が知られており、白金族元素として、Ptのほか、Pd等が挙げられる。しかしながら、水溶液中の無機イオンの酸化に用いる場合、PdはPtに比べて活性が低く、あまり効果的ではない。また、酸化モリブデンでは、触媒としての効果をほとんど発揮しない。
<Platinum particles>
The present invention realizes high-speed oxidation of trivalent arsenic ions by activating oxygen with a catalyst. In general, platinum group elements, molybdenum oxides, and the like are known as catalysts that promote oxidation, and examples of platinum group elements include Pd and the like in addition to Pt. However, when used for oxidation of inorganic ions in an aqueous solution, Pd is less effective than Pt and is not very effective. Further, molybdenum oxide exhibits little effect as a catalyst.
このため、本発明では、触媒として、Ptを用いることが好ましい。ここで、ヒ素は一般にPtの触媒毒であるとされている。しかしながら、本発明者は、触媒毒となるのは、Ptと共に合金やヒ化物を形成した場合に限られることを初めて見出し、3価ヒ素化合物や5価ヒ素化合物そのもののほか、これらの水溶液では、Pt−As間の化合物を形成せず、Pt触媒への影響を及ぼさないことを見出した。したがって、本発明のように、3価ヒ素を含有する3価ヒ素含有液に対し、酸素含有ガスを白金粒子の共存下で供給する場合、ヒ素がPtの触媒毒になることはない。 For this reason, in this invention, it is preferable to use Pt as a catalyst. Here, arsenic is generally considered to be a catalyst poison of Pt. However, the present inventor found for the first time that the catalyst poison is limited to the case where an alloy or arsenide is formed with Pt. In addition to the trivalent arsenic compound and pentavalent arsenic compound itself, in these aqueous solutions, It was found that a compound between Pt and As was not formed and the Pt catalyst was not affected. Therefore, as in the present invention, when an oxygen-containing gas is supplied to a trivalent arsenic-containing liquid containing trivalent arsenic in the presence of platinum particles, arsenic does not become a catalyst poison of Pt.
白金粒子は担体に担持されていることが好ましい。3価ヒ素含有液のpHが7以上である場合、アルカリ性領域で担体が溶解することによって、担持されたPt粒子が担体から脱落することを防ぐため、担体は、二酸化チタン(TiO2)、二酸化ジルコニウム(ZrO2)、酸化マグネシウム(MgO)、アルカリ土類金属の酸化物又はこれらの複合酸化物(例えば、ZrO2−MgO等)であることが好ましい。一方、3価ヒ素含有液のpHが7未満である場合、酸性性領域で担体が溶解することによって、担持されたPt粒子が担体から脱落することを防ぐため、担体は、二酸化ケイ素(SiO2)、三酸化二アルミニウム(Al2O3)、二酸化ジルコニウム(ZrO2)、二酸化チタン(TiO2)、三酸化二ホウ素(B2O3)又はこれらの複合酸化物(SiO2−Al2O3、SiO2−ZrO2等)、珪藻土、各種ゼオライト、各種リン酸塩等が好ましい。 The platinum particles are preferably supported on a carrier. When the pH of the trivalent arsenic-containing liquid is 7 or more, the support is dissolved in titanium dioxide (TiO 2 ), dioxide dioxide to prevent the supported Pt particles from falling off the support by dissolving in the alkaline region. Zirconium (ZrO 2 ), magnesium oxide (MgO), an alkaline earth metal oxide, or a composite oxide thereof (eg, ZrO 2 —MgO) is preferable. On the other hand, when the pH of the trivalent arsenic-containing liquid is less than 7, the carrier is dissolved in silicon dioxide (SiO 2) in order to prevent the supported Pt particles from falling off the carrier due to dissolution in the acidic region. ), Dialuminum trioxide (Al 2 O 3 ), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), diboron trioxide (B 2 O 3 ), or a composite oxide thereof (SiO 2 —Al 2 O) 3 , SiO 2 —ZrO 2 ), diatomaceous earth, various zeolites, various phosphates and the like are preferable.
ところで、COパルス吸着法にしたがって測定したときの白金粒子の分散度は、20%以下であることが好ましい。分散度が大きい場合として、白金粒子の品位が低すぎる場合と、白金粒子の品位が高すぎる場合との両方が考えられるが、白金粒子の品位が低すぎる場合、3価ヒ素から5価ヒ素への反応率が下がるため、3価ヒ素を好適に酸化できないものと考えられる。一方、白金粒子の品位が高すぎる場合、白金粒子の形態が変化し、イオン状態の白金比率が増えて反応性が次第に低下し、酸化効率が低下するため、3価ヒ素を好適に酸化できないものと考えられる。 By the way, it is preferable that the dispersion degree of platinum particles when measured according to the CO pulse adsorption method is 20% or less. As the case where the degree of dispersion is large, both the case where the quality of the platinum particles is too low and the case where the quality of the platinum particles are too high can be considered, but if the quality of the platinum particles is too low, the trivalent arsenic is changed to pentavalent arsenic. It is considered that trivalent arsenic cannot be suitably oxidized because of the lowering of the reaction rate. On the other hand, when the quality of the platinum particles is too high, the form of the platinum particles changes, the platinum ratio in the ionic state increases, the reactivity gradually decreases, and the oxidation efficiency decreases, so that trivalent arsenic cannot be suitably oxidized it is conceivable that.
また、COパルス吸着法にしたがって測定したときの前記白金粒子の分散度から触媒に存在する白金1gあたりの比表面積を計算し、この比表面積と白金の重量とから、白金粒子を球体とした場合の直径を求めることによって得られる白金粒子の平均粒子径は、5nm以上であることが好ましい。平均粒子径が小さい場合として、白金粒子の品位が低すぎる場合と、白金粒子の品位が高すぎる場合との両方が考えられるが、白金粒子の品位が低すぎる場合、3価ヒ素から5価ヒ素への反応率が下がるため、3価ヒ素を好適に酸化できないものと考えられる。一方、白金粒子の品位が高すぎる場合、白金粒子の形態が変化し、イオン状態の白金比率が増えて反応性が次第に低下し、酸化効率が低下するため、3価ヒ素を好適に酸化できないものと考えられる。 Further, when the specific surface area per 1 g of platinum present in the catalyst is calculated from the dispersion degree of the platinum particles measured according to the CO pulse adsorption method, and the platinum particles are made into spheres from the specific surface area and the weight of platinum. It is preferable that the average particle diameter of the platinum particle obtained by calculating | requiring the diameter of is 5 nm or more. As the case where the average particle size is small, both the case where the quality of the platinum particles is too low and the case where the quality of the platinum particles are too high can be considered, but if the quality of the platinum particles is too low, the trivalent arsenic to the pentavalent arsenic It is considered that trivalent arsenic cannot be suitably oxidized because the reaction rate to the lowers. On the other hand, when the quality of the platinum particles is too high, the form of the platinum particles changes, the platinum ratio in the ionic state increases, the reactivity gradually decreases, and the oxidation efficiency decreases, so that trivalent arsenic cannot be suitably oxidized it is conceivable that.
以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all in these description.
<予備試験>
〔SiO2担持Pt触媒の調製〕
Ptを0.05g含有するジニトロアンミン白金(IV)水溶液10mlにSiO2(製品名:JRC‐SIO‐8,触媒学会参照触媒)10gを添加し、スターラーで撹拌しながら75℃で2時間かけて水分を蒸発させた。その後、さらに80℃で真空乾燥し、次いで大気中で500℃維持し2時間かけて焼成することにより、SiO2担持Pt触媒を得た。
<Preliminary test>
[Preparation of SiO 2 -supported Pt catalyst]
S iO 2 to Jinitoroanmin platinum (IV) solution 10ml of a Pt containing 0.05 g (product name: JRC- S IO-8, Catalysis Society reference catalyst) was added 10 g, 2 hours at 75 ° C. with stirring with a stirrer The water was evaporated. Thereafter, it was further vacuum-dried at 80 ° C., and then maintained at 500 ° C. in the atmosphere and calcined for 2 hours to obtain a SiO 2 -supported Pt catalyst.
〔ヒ素含有液の酸化の程度と酸化還元電位との関係〕
0.001mmol/LのHAsO2水溶液200mlに、上記SiO2担持Pt触媒0.5gを添加し、80℃に維持しつつ5時間かけて加熱しながら、酸素を57ml/min吹き込みつつ攪拌混合した。3価ヒ素から5価ヒ素への酸化の程度を確認するため、溶媒抽出法により3価のヒ素のみを選択的に抽出分離して5価のヒ素を抽残液中に残留させ、得た抽出液と抽出残液それぞれを、ICPを用いて定量分析し、得た分析値から酸化率の評価を行ったところ、ヒ素全体の23%が3価から5価に酸化していることが確認された。
[Relationship between oxidation degree and oxidation-reduction potential of arsenic-containing liquid]
To 200 ml of a 0.001 mmol / L HAsO 2 aqueous solution, 0.5 g of the above-mentioned SiO 2 -supported Pt catalyst was added, and the mixture was stirred and mixed while blowing oxygen at 57 ml / min while heating for 5 hours while maintaining at 80 ° C. In order to confirm the degree of oxidation from trivalent arsenic to pentavalent arsenic, only trivalent arsenic was selectively extracted and separated by solvent extraction to leave pentavalent arsenic in the extraction residue, and the obtained extraction Each of the liquid and the extraction residual liquid was quantitatively analyzed using ICP, and the oxidation rate was evaluated from the obtained analytical value. As a result, it was confirmed that 23% of the entire arsenic was oxidized from trivalent to pentavalent. It was.
加えて、反応前と反応後の酸化還元電位(ORP)(参照電極は、KCl飽和Ag/AgCl電極である。)を測定した。その結果、反応前の酸化還元電位は325mVであり、反応後の酸化還元電位は347mVであった。このことから、反応前後の酸化還元電位の差から酸化状態を把握できることが確認された。 In addition, the oxidation-reduction potential (ORP) before and after the reaction (the reference electrode is a KCl saturated Ag / AgCl electrode) was measured. As a result, the oxidation-reduction potential before the reaction was 325 mV, and the oxidation-reduction potential after the reaction was 347 mV. From this, it was confirmed that the oxidation state can be grasped from the difference in redox potential before and after the reaction.
なお、ヒ素含有水溶液のpHは、反応前の4.55から3.14に低下していた。このことからも、弱酸であるHAsO2がH3AsO4に酸化されていることが裏付けられる。 The pH of the arsenic-containing aqueous solution was lowered from 4.55 before the reaction to 3.14. This also confirms that the weak acid HAsO 2 is oxidized to H 3 AsO 4 .
<実施例1:ヒ素含有液のpHの比較>
〔実施例1−1〕
上記<予備試験>で用いたSiO2担持Pt触媒を用い、上記<予備試験>と同様の手法にて、ヒ素含有液に含まれる3価ヒ素を酸化させた。酸化反応時間が5時間及び6時間であるときの反応前後の酸化還元電位の差を表2に示す。
[Example 1-1]
Trivalent arsenic contained in the arsenic-containing liquid was oxidized using the SiO 2 -supported Pt catalyst used in the above <preliminary test> in the same manner as in the above <preliminary test>. Table 2 shows the difference in redox potential before and after the reaction when the oxidation reaction time is 5 hours and 6 hours.
〔実施例1−2〕
〔TiO2担持Pt触媒の調製〕
Ptを0.05g含有するジニトロアンミン白金(IV)水溶液10mlにTiO2担体を、上記〔SiO2担持Pt触媒の調製〕の記載と同じ方法を用いてTiO2担持Pt触媒を得た。
[Example 1-2]
[Preparation of TiO 2 supported Pt catalyst]
The TiO 2 carrier Jinitoroanmin platinum (IV) solution 10ml containing 0.05g of Pt, to give a TiO 2 supported Pt catalyst using the same method as described above [Preparation of SiO 2 supported Pt catalyst].
〔ヒ素含有液の酸化〕
続いて、0.001mmol/LのHAsO2水溶液200mlにNaOHを添加し、pHを14に調整した液に、上記のTiO2担持Pt触媒を4mg添加し、80℃に維持しつつ5時間、純酸素を57ml/min吹き込みつつ混合した。そして、反応前後の酸化還元電位の差を測定した後、さらに酸化反応を6時間まで継続した。酸化反応時間が5時間及び6時間であるときの反応前後の酸化還元電位の差を表2に示す。
[Oxidation of arsenic-containing liquid]
Subsequently, NaOH was added to 200 ml of a 0.001 mmol / L HAsO 2 aqueous solution, and 4 mg of the above TiO 2 -supported Pt catalyst was added to a solution adjusted to pH 14 and maintained at 80 ° C. for 5 hours. Oxygen was mixed while blowing 57 ml / min. Then, after measuring the difference in oxidation-reduction potential before and after the reaction, the oxidation reaction was continued for 6 hours. Table 2 shows the difference in redox potential before and after the reaction when the oxidation reaction time is 5 hours and 6 hours.
〔比較例1−1〕
Pt触媒を用いていないことをほかは、実施例1−1と同様の手法にて、ヒ素含有液に含まれる3価ヒ素を酸化させた。酸化反応時間が5時間及び6時間であるときの反応前後の酸化還元電位の差を表2に示す。
[Comparative Example 1-1]
Trivalent arsenic contained in the arsenic-containing liquid was oxidized by the same method as in Example 1-1 except that no Pt catalyst was used. Table 2 shows the difference in redox potential before and after the reaction when the oxidation reaction time is 5 hours and 6 hours.
〔比較例1−2〕
Pt触媒を用いていないことをほかは、実施例1−2と同様の手法にて、ヒ素含有液に含まれる3価ヒ素を酸化させた。酸化反応時間が5時間及び6時間であるときの反応前後の酸化還元電位の差を表2に示す。
[Comparative Example 1-2]
Trivalent arsenic contained in the arsenic-containing liquid was oxidized by the same method as in Example 1-2 except that no Pt catalyst was used. Table 2 shows the difference in redox potential before and after the reaction when the oxidation reaction time is 5 hours and 6 hours.
表2から、3価ヒ素を含有する3価ヒ素含有液に対し、酸素含有ガスを白金粒子の共存下で供給することで、3価ヒ素を好適に酸化できることが確認された(実施例)。特に、3価ヒ素含有液をアルカリ性にすることで、3価ヒ素をより好適に酸化できることが確認された(実施例1−2)。 From Table 2, it was confirmed that trivalent arsenic can be suitably oxidized by supplying an oxygen-containing gas in the presence of platinum particles to a trivalent arsenic-containing liquid containing trivalent arsenic (Example). In particular, it was confirmed that trivalent arsenic can be oxidized more suitably by making the trivalent arsenic-containing liquid alkaline (Example 1-2).
一方、3価ヒ素を含有する3価ヒ素含有液に対して酸素含有ガスを供給したとしても、触媒不存在下では、3価ヒ素をほとんど酸化できないことが確認された(比較例)。このことは、溶媒抽出法により3価のヒ素のみを選択的に抽出分離して5価のヒ素を抽残液中に残留させ、得た抽出液と抽出残液それぞれを、ICPを用いて定量分析し、得た分析値から酸化率の評価を行った結果からも裏付けることができた。該分析の結果、3価ヒ素の酸化率は検出下限以下の2%未満にとどまった。 On the other hand, even if oxygen-containing gas was supplied to the trivalent arsenic-containing liquid containing trivalent arsenic, it was confirmed that trivalent arsenic could hardly be oxidized in the absence of a catalyst (Comparative Example). This means that only trivalent arsenic is selectively extracted and separated by the solvent extraction method to leave pentavalent arsenic in the extraction residual liquid, and the obtained extraction liquid and the extraction residual liquid are quantified using ICP. The results of the analysis and the evaluation of the oxidation rate from the analytical values obtained were also supported. As a result of the analysis, the oxidation rate of trivalent arsenic was less than 2% below the lower limit of detection.
<実施例2:触媒量及び酸素吹き込み量の比較>
〔実施例2−1〕
上記〔実施例1−2〕と同様の手法にて、ヒ素含有液に含まれる3価ヒ素を酸化させた。酸化反応時間が5時間及び6時間であるときの反応前後の酸化還元電位の差を表4に示す。
[Example 2-1]
Trivalent arsenic contained in the arsenic-containing liquid was oxidized by the same method as in [Example 1-2] above. Table 4 shows the difference in redox potential before and after the reaction when the oxidation reaction time is 5 hours and 6 hours.
〔実施例2−2〕
TiO2担持Pt触媒の使用量が40mgであり、3価ヒ素含有液への酸素の吹き込み量が200ml/minであることのほかは、実施例1−1と同様の手法にて、ヒ素含有液に含まれる3価ヒ素を酸化させた。酸化反応時間が2時間であるときの反応前後の酸化還元電位の差を表4に示す。
[Example 2-2]
The arsenic-containing liquid was prepared in the same manner as in Example 1-1 except that the amount of the TiO 2 -supported Pt catalyst was 40 mg and the amount of oxygen blown into the trivalent arsenic-containing liquid was 200 ml / min. The trivalent arsenic contained in was oxidized. Table 4 shows the difference in redox potential before and after the reaction when the oxidation reaction time is 2 hours.
表4から、TiO2担体触媒量を40mgに増量し、酸素吹き込み量を200ml/minに増量すると、反応速度がさらに上昇し、2時間経過後の酸化還元電位の差が260mVであることが確認された(実施例2−2)。この状態は、平衡状態である。 From Table 4, it is confirmed that when the amount of TiO 2 carrier catalyst is increased to 40 mg and the oxygen blowing amount is increased to 200 ml / min, the reaction rate further increases, and the difference in redox potential after 2 hours is 260 mV. (Example 2-2). This state is an equilibrium state.
<実施例3:触媒におけるPt品位の比較>
〔実施例3−1〜3−6に係るTiO2担持Pt触媒の調製〕
Ptを0.05g含有するジニトロアンミン白金(IV)水溶液10mlにTiO2担体(和光純薬工業社製)を、Pt品位が触媒100質量部に対して表5に記載の値になるように添加し、スターラーで撹拌しながら75℃で2時間かけて水分を蒸発させた。その後、さらに80℃で真空乾燥し、次いで大気中で500℃維持し2時間かけて焼成することにより、実施例3−1〜3−6に係るTiO2担持Pt触媒を得た。
[Preparation of TiO 2 -supported Pt catalyst according to Examples 3-1 to 3-6]
Add TiO 2 carrier (manufactured by Wako Pure Chemical Industries, Ltd.) to 10 ml of dinitroammineplatinum (IV) aqueous solution containing 0.05 g of Pt so that the Pt quality becomes the value shown in Table 5 with respect to 100 parts by mass of the catalyst. Then, the water was evaporated at 75 ° C. for 2 hours while stirring with a stirrer. Thereafter, further dried in vacuo at 80 ° C., followed by calcination over 500 ° C. maintained for 2 hours in air to obtain a TiO 2 supported Pt catalyst according to Example 3-1 to 3-6.
〔実施例3−7〜3−12に係るTiO2担持Pt触媒の調製〕
TiO2担体が日本アエロジル社製のP25であること以外は、「〔実施例3−1〜3−6に係るTiO2担持Pt触媒の調製〕」と同様の手法にて、実施例3−7〜3−12に係るTiO2担持Pt触媒を得た。
[Preparation of TiO 2 -supported Pt catalyst according to Examples 3-7 to 3-12]
Example 3-7 was prepared in the same manner as in “[Preparation of TiO 2 -supported Pt catalyst according to Examples 3-1 to 3-6]” except that the TiO 2 carrier was P25 manufactured by Nippon Aerosil Co., Ltd. A TiO 2 -supported Pt catalyst according to ˜3-12 was obtained.
〔ヒ素含有液の酸化〕
続いて、1.0mmol/LのHAsO2水溶液200mlにNaOHを添加し、pHを14に調整した液に、それぞれのTiO2担持Pt触媒をPt重量が一定(0.2mg)になるように、表5及び表6に示す量だけ添加し、80℃に維持しつつ140分間、純酸素を57ml/min吹き込みつつ混合した。反応前後の酸化還元電位の差を表7及び表8に示す。
[Oxidation of arsenic-containing liquid]
Subsequently, NaOH was added to 200 ml of 1.0 mmol / L HAsO 2 aqueous solution, and the pH was adjusted to 14 so that the Pt weight of each TiO 2 -supported Pt catalyst was constant (0.2 mg). The amounts shown in Table 5 and Table 6 were added, and mixing was performed while blowing pure oxygen at 57 ml / min for 140 minutes while maintaining the temperature at 80 ° C. Tables 7 and 8 show the difference in redox potential before and after the reaction.
〔TiO2担持Pt白金粒子の分散度及び粒子径〕
TiO2担持Pt白金粒子の分散度を、公知手法であるCOパルス吸着法にしたがって測定した。結果を表7及び表8に示す。加えて、この分散度から触媒に存在するPt1gあたりの比表面積を計算し、この比表面積とPtの重量とから、Pt粒子を球体とした場合の直径を求め、これをPt平均粒子径とした。結果を表7及び表8に示す。
[Dispersion degree and particle diameter of TiO 2 -supported Pt platinum particles]
The degree of dispersion of the TiO 2 -supported Pt platinum particles was measured according to a CO pulse adsorption method which is a known method. The results are shown in Table 7 and Table 8. In addition, the specific surface area per gram of Pt present in the catalyst is calculated from the degree of dispersion, and the diameter when the Pt particles are made into spheres is obtained from the specific surface area and the weight of Pt, and this is defined as the Pt average particle diameter. . The results are shown in Table 7 and Table 8.
表7及び表8から、触媒100質量部に含まれるPtの品位によって3価ヒ素の酸化の程度が異なることが確認された。特に、3価ヒ素の酸化の程度は、COパルス吸着法にしたがって測定したときの白金粒子の分散度、あるいは、COパルス吸着法にしたがって測定したときの白金粒子の分散度から触媒に存在する白金1gあたりの比表面積を計算し、この比表面積と白金の重量とから、白金粒子を球体とした場合の直径を求めることによって得られる白金粒子の平均粒子径と相関しており、上記分散度が20%以下である場合、あるいは上記平均粒子径が5nm以上である場合、酸化還元電位の差が顕著に大きく、このことから、3価ヒ素を顕著に酸化できるといえる(実施例3−3、3−9〜3−12)。 From Tables 7 and 8, it was confirmed that the degree of oxidation of trivalent arsenic differs depending on the quality of Pt contained in 100 parts by mass of the catalyst. In particular, the degree of oxidation of trivalent arsenic is determined based on the degree of platinum particle dispersion measured according to the CO pulse adsorption method or the amount of platinum particle dispersion measured according to the CO pulse adsorption method. The specific surface area per gram is calculated, and from this specific surface area and the weight of platinum, it is correlated with the average particle diameter of the platinum particles obtained by determining the diameter when the platinum particles are spheres. When the average particle diameter is 20% or less, or when the average particle diameter is 5 nm or more, the difference in redox potential is remarkably large. From this, it can be said that trivalent arsenic can be significantly oxidized (Example 3-3, 3-9 to 3-12).
また、表7及び表8から、白金粒子の品位が低すぎる場合と、白金粒子の品位が高すぎる場合のいずれにおいても、分散度あるいは平均粒子径が好適な範囲から外れることが分かる。白金粒子の品位が低すぎる場合、3価ヒ素から5価ヒ素への反応率が下がるため、3価ヒ素を好適に酸化できないものと考えられる。一方、白金粒子の品位が高すぎる場合、白金粒子の形態が変化し、イオン状態の白金比率が増えて反応性が次第に低下し、酸化効率が低下するため、3価ヒ素を好適に酸化できないものと考えられる。 Moreover, it can be seen from Tables 7 and 8 that the dispersity or the average particle diameter deviates from the preferred range both when the quality of the platinum particles is too low and when the quality of the platinum particles is too high. If the quality of the platinum particles is too low, the reaction rate from trivalent arsenic to pentavalent arsenic is lowered, so that it is considered that trivalent arsenic cannot be suitably oxidized. On the other hand, when the quality of the platinum particles is too high, the form of the platinum particles changes, the platinum ratio in the ionic state increases, the reactivity gradually decreases, and the oxidation efficiency decreases, so that trivalent arsenic cannot be suitably oxidized it is conceivable that.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014025141A JP6251590B2 (en) | 2014-02-13 | 2014-02-13 | Arsenic oxidation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014025141A JP6251590B2 (en) | 2014-02-13 | 2014-02-13 | Arsenic oxidation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015151289A JP2015151289A (en) | 2015-08-24 |
JP6251590B2 true JP6251590B2 (en) | 2017-12-20 |
Family
ID=53893932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014025141A Active JP6251590B2 (en) | 2014-02-13 | 2014-02-13 | Arsenic oxidation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6251590B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09327694A (en) * | 1996-06-07 | 1997-12-22 | Japan Organo Co Ltd | Removal of arsenic in water |
US20100193449A1 (en) * | 2009-02-02 | 2010-08-05 | Jian-Ku Shang | Materials and methods for removing arsenic from water |
JP2014157094A (en) * | 2013-02-15 | 2014-08-28 | Sumika Chemical Analysis Service Ltd | Metal particle measurement method, and application thereof |
-
2014
- 2014-02-13 JP JP2014025141A patent/JP6251590B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015151289A (en) | 2015-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI732752B (en) | Visible light response type photocatalyst titanium oxide microparticle dispersion liquid, its production method, and member having a photocatalyst film on the surface | |
JP4942738B2 (en) | Production of Cu / Zn / Al catalyst via formate ester | |
US9833776B2 (en) | Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof | |
TWI746633B (en) | Visible light responsive photocatalyst titanium oxide microparticle mixture, its dispersion, method for producing the dispersion, photocatalyst film, and member with photocatalyst film on the surface | |
JP6154036B1 (en) | Coating agent containing antibacterial catalyst and method for producing the same | |
CN102639242A (en) | Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof | |
US20160200604A1 (en) | Method of advanced removal of persistent organic pollutants and heavy metals in water body | |
CN107126962B (en) | A kind of ammonia nitrogen waste water catalysts for treating and its preparation method and application | |
JP6251590B2 (en) | Arsenic oxidation method | |
CN105685100A (en) | Titanium oxide carrying BiVO4, manufacture method and composition for resisting virus | |
JP4058072B2 (en) | Superoxide anion decomposer | |
JP5137232B2 (en) | Method for producing porous iron oxide and method for treating water to be treated | |
CN104556150B (en) | A kind of by the method for Fenton reagent synthesis metal cyanides | |
JP4591920B2 (en) | Photocatalyst and method for producing the same | |
JP6446229B2 (en) | Method for producing crystalline iron arsenate from a solution containing pentavalent arsenic | |
Li et al. | Promotion effect of KMnO4 on the oxidation of As (III) by air in alkaline solution | |
US10814313B2 (en) | Method for the preparation of metal oxide hollow nanoparticles | |
JP6854478B2 (en) | How to oxidize arsenic in solution | |
JP2016190221A (en) | Selenate reduction catalyst, production method of selenate reduction catalyst and reduction method of selenate solution | |
JP7572671B2 (en) | Method for reducing selenium (VI) compounds and method for recovering selenium | |
JP2009247940A (en) | Treatment method of sulfate solution | |
CN112047450A (en) | Preparation method and application of composite oxidant | |
EP3297985B1 (en) | Process for oxidation of alcohols using oxygen-containing gases | |
JP2015077593A (en) | Goethite photocatalyst and production method thereof | |
JP2020182918A (en) | Method for producing titanium oxide composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6251590 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |