[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6124663B2 - 線量率測定装置 - Google Patents

線量率測定装置 Download PDF

Info

Publication number
JP6124663B2
JP6124663B2 JP2013088287A JP2013088287A JP6124663B2 JP 6124663 B2 JP6124663 B2 JP 6124663B2 JP 2013088287 A JP2013088287 A JP 2013088287A JP 2013088287 A JP2013088287 A JP 2013088287A JP 6124663 B2 JP6124663 B2 JP 6124663B2
Authority
JP
Japan
Prior art keywords
dose rate
energy
temperature
radiation detector
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013088287A
Other languages
English (en)
Other versions
JP2014211381A (ja
Inventor
茂木 健一
健一 茂木
俊英 相場
俊英 相場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013088287A priority Critical patent/JP6124663B2/ja
Priority to US13/966,609 priority patent/US9116245B2/en
Publication of JP2014211381A publication Critical patent/JP2014211381A/ja
Application granted granted Critical
Publication of JP6124663B2 publication Critical patent/JP6124663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/023Scintillation dose-rate meters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、原子炉施設、使用済燃料再処理施設等、及びそれら施設周辺に設置される放射線の線量率測定装置に関するものである。
原子炉施設の内外において、自然放射線レベルから原子炉事故時等の高放射線レベルまでの広い範囲に亘る線量率を測定するためには、感度や精度の問題から放射線のレベルに応じた複数の線量率測定装置を使用する必要がある。そこで、単一の線量率測定装置で、広範囲の線量率に対応した測定を可能にすることが求められている。
例えば、特許文献1の広レンジγ線照射線量測定装置では、タリウム活性化ヨウ化ナトリウムNa(Tl)シンチレーション検出器に特殊な構造の鉛遮蔽体を施し、測定場の照射線量率のレベルに応じて、低線量率時の検出器からの入射γ線の照射線量に比例したパルス信号によるDBM測定方式(Discrimination Bias Modelation:波高弁別バイアス変調方式)と、高線量時における電流測定方式による測定とを自動的に選択させることにより、広範囲にわたる照射線量率を単一の測定装置にて測定可能にしている。
具体的には、入射した放射線のエネルギーを吸収し、その吸収したエネルギーに比例する電荷を有する離散的な電流パルスを出力すると共に、直流電流を直流電圧に変換して出力するNa(Tl)シンチレーション検出器と、電流パルス及び直流電圧を入力して線量率に変換して出力する測定部と、を備え、測定部は、電流パルスをアナログ電圧パルスに変換して出力するプリアンプと、そのアナログ電圧パルスを増幅すると共に高周波ノイズを除去するメインアンプと、その増幅されたアナログ電圧パルスを線量率で重み付けし、線量率に比例する繰り返し周波数のパルスを出力するDBM回路と、直流電圧を入力して電圧に比例した繰り返し周波数のパルスに変換して出力する電圧/周波数変換器と、それらのパルスを入力し、切り換えて出力するゲート回路と、そのゲート回路の出力パルスを入力し、バイアス変調波高弁別回路のパルスに基づき低レンジ線量率を、または電圧/周波数変換器のパルスに基づき高線量率を、演算して出力すると共に、設定した線量率でゲート回路を切り換える演算部と、を備えたもので、γ線のエネルギーに依存して発生する誤差としてのエネルギー特性が、低レンジ線量率と高レンジ線量率で異なることにより、また、γ線のエネルギーに依存して低レンジ線量率と高レンジ線量率の最適切換点が異なることに対し、固定した線量率で切り換えることにより、切換点で発生する大きな段差をできるだけ小さくするために、Na(Tl)シンチレーション検出器に特殊な構造の遮蔽体を設けている。
特開昭61−104282号公報
しかしながら、特許文献1のγ線照射線量測定装置では、Na(Tl)シンチレーション検出器に特殊な構造の遮蔽体を設けていることにより、高線量率レンジのエネルギー特性に起因する誤差や、切換点で発生する段差の両方をある程度縮小することができたが、広レンジ化のために低レンジ線量率の本来のエネルギー特性が悪化するという課題があった。
本発明は、上記の課題を解決するためになされたものであり、広レンジ化で低線量率レンジの本来のエネルギー特性を悪化させることなく、かつ低線量率レンジと高線量率レンジの切換点の段差を抑制した良好なエネルギー特性により高精度な線量率測定装置を提供することを目的としている。
上記課題を解決するために、本発明に係る線量率測定装置は、入射された放射線のエネルギーを吸収し、前記エネルギーに比例した電流パルスを出力すると共に、前記エネルギーに比例した直流電圧を出力する放射線検出器と、前記電流パルスが運ぶ電荷をアナログ電圧パルスに変換し、前記アナログ電圧パルスから波高値を抽出して、前記波高値から波高スペクトルを生成して出力する波高スペクトル生成手段と、定周期で、前記波高スペクトルを線量率に変換して低レンジ線量率として演算する低レンジ線量率演算手段と、前記直流電圧のゆらぎを測定して前記放射線の平均エネルギーを推定し、エネルギー補償係数を導出するエネルギー特性補償手段と定周期で、前記直流電圧を線量率に変換し、変換された前記線量率に前記エネルギー補償係数を乗じて高レンジ線量率として演算する高レンジ線量率演算手段と、前記低レンジ線量率と前記高レンジ線量率の比に基づき、前記低レンジ線量率または前記高レンジ線量率のいずれかに切り換えて線量率として出力する線量率切換手段と、前記放射線検出器の基準温度における暗電流に相当する暗電流線量率、あるいは前記放射線検出器の温度を検出する温度センサを備え前記放射線検出器の温度に対応した暗電流線量率を記憶しておくと共に、前記高レンジ線量率から前記暗電流線量率を減算して補償する暗電流補償手段と、を備えたことを特徴とするものである。
本発明の線量率測定装置によれば、低レンジ線量率と高レンジ線量率との最適切換点を低線量率と高線量率の比で判断するようにしたので、測定対象の放射線のエネルギー全体に亘って出力エネルギー特性が良好で、測定レンジの全体において直線性が良好で、切換点の段差を抑制した高精度で広レンジの線量率を測定することができるという効果を奏する。
実施の形態1に係る線量率測定装置の構成を示す図である。 実施の形態1に係る線量率測定装置のエネルギー特性を示す図である。 実施の形態1における放射線の入力線量率と最適切換点の関係を示す図である。 実施の形態2に係る線量率測定装置の演算部の構成を示す図である。 実施の形態3に係る線量率測定装置の構成を示す図である。 実施の形態3における放射線検出器の暗電流の温度特性を示す図である。 実施の形態4に係る線量率測定装置の構成を示す図である。 実施の形態4における放射線検出器のゲインの温度特性を示す図である。
以下、本発明の実施の形態に係る線量率測定装置について図1〜図8を参照して説明する。
実施の形態1.
図1は、実施の形態1に係る線量率測定装置の構成を示す図である。
図1に示すように、線量率測定装置1は、入射した放射線のエネルギーを吸収し、その吸収したエネルギーに比例する電荷を有する離散的な電流パルスと吸収した放射線のエネルギーに比例する直流電流を変換した直流電圧とを出力する放射線検出器2と、放射線検出器2を動作させる高電圧を供給する高圧電源4と、放射線検出器2から電流パルス及び直流電圧を入力してそれぞれ低レンジ線量率、高レンジ線量率に変換し、線量率に応じて低レンジ線量率と高レンジ線量率とを切り換えて出力する測定部3と、で構成されている。
次に、線量率測定装置1の測定部3の構成と動作について詳細に説明する。図1に示すように、測定部3は、プリアンプ31と、メインアンプ32と、アナログ/デジタル変換器(A/D変換器)33と、電圧/周波数変換器(V/F変換器)34と、カウンタ35と、演算部36と、表示・操作部37とを備えており、また、演算部36は、波高スペクトル生成部361と、G(E)関数メモリ362と、低レンジ線量率演算部363と、高レンジ線量率演算部364と、エネルギー特性補償部365と、線量率切換部366とを備えている。
波高スペクトルを生成する手段として、プリアンプ31では、電流パルスが運ぶ電荷がアナログ電圧パルスに変換され、メインアンプ32では、プリアンプ31から出力されたアナログ電圧パルスが増幅されると共に重畳されている高周波ノイズが除去され、アナログ/デジタル変換器(A/D変換器)33では、メインアンプ32で増幅されたアナログ電圧パルスから波高値Vpが測定され、波高スペクトル生成部361では、A/D変換器33から出力された波高値Vpにより波高スペクトルが生成され出力される。
低レンジ線量率GiLを測定する手段として、G(E)関数メモリ362には、例えば、測定エネルギー範囲50〜3000keVを10〜600チャンネル(ch)に分割して、各ch(i)と線量率Gi(nGy/hcpm−1)とを対応させたG(E)関数と呼ばれるテーブルが記憶されており、このテーブルを用いて、低レンジ線量率演算部363において、波高スペクトル生成部361から出力されたスペクトルデータにより、定周期で測定された10〜600chの各ch(i)の線量率Giと計数Niとの積を積算したΣGi・Niを定周期時間で除して、低レンジ線量率GiLとして演算される。
高レンジ線量率演算部364では、カウンタ35の定周期の計数値niを定周期時間Tに亘って積算した積算計数値Σniを定周期時間Tで除して求められた計数率rを出力すると共に、計数率rに線量率換算係数ηを乗じた高レンジ線量率GiHが演算されて出力される。また、エネルギー特性を補償する手段として、エネルギー特性補償部365では、高レンジ線量率演算部364から出力された計数率rについて当該演算周期を含む所定の演算周期数の移動平均計数率ravからの偏差に基づいて標準偏差σが求められ、その標準偏差σからゆらぎのある放射線の平均エネルギーEavが演算され、例えば、予め型式試験に基づき作成された放射線の平均エネルギーEavとエネルギー補償係数βとの対応テーブルが記憶されており、放射線の平均エネルギーEavと対応テーブルのエネルギー補償係数βとが照合されて、高レンジ線量率演算部364からは、演算された高レンジ線量率に、エネルギー補償係数βを乗じてエネルギー補償された高レンジ線量率GiHが出力される。
ここで、計数率rを(cps)、計数率rの標準偏差をσ、測定時間をT(sec)、放射線検出器2で生成される1事象あたりの平均電荷をQ(クーロン)、測定時間Tにおける直流電流の平均値をIavとすると、次式(1)に示すように、計数率rの標準偏差σ、平均電流Iav、測定時間Tから平均電荷Q、すなわち、放射線の平均エネルギーEavを推定することができる。
σ=r・Q/T=Iav・Q/T (1)
線量率を切換える手段として、線量率切換部366では、低レンジ線量率演算部363からの低レンジ線量率GiLとエネルギー補償した高レンジ線量率演算部364からの高レンジ線量率GiHとの比GiH/GiLに基づき、低レンジ線量率GiLとエネルギー補償された高レンジ線量率GiHとを切り換えて出力する。
次に、エネルギー特性補償部365による出力エネルギー特性の補償、線量率切換部366による線量率Giの切換点について説明する。図2は、線量率測定装置1におけるCs(セシウム)−137の出力エネルギー特性の結果を示す例である。横軸は、放射線の入力エネルギーE(MeV)を示し、縦軸は、P点を基準値1とした線量率測定装置1のレスポンス比Hをそれぞれ示す。aは、低レンジ線量率演算部363による出力エネルギー特性である。bは、高レンジ線量率演算部364による補償前の出力エネルギー特性であり、cは、bが補償された後の高レンジ線量率演算部364による出力エネルギー特性である。高レンジ線量率演算部364により補償されていない出力エネルギー特性bでは、特に、低エネルギー領域において大きな歪があることを示しているが、エネルギー特性補償部365により出力エネルギー特性を補償することで、全エネルギー領域において補償された出力エネルギー特性cのように良好な出力エネルギー特性を得ることができる。なお、低レンジ線量率演算部363の出力エネルギー特性は、G(E)関数により波高スペクトルを木目細かく線量率Giに対応させることにより低エネルギー領域において、aと同等の良好な出力エネルギー特性が得られている。補償された出力エネルギー特性cに若干の歪みが残っているのは、放射線検出器2の器差によるものである。
線量率切換部366は、低レンジ線量率演算部363から出力された低レンジ線量率GiLと高レンジ線量率演算部364から出力された高レンジ線量率GiHとの比GiH/GiLに基づき、低レンジ線量率演算部363から高レンジ線量率演算部364への切換は、GiH/GiLが1+k1を超えたら実行され、高レンジ線量率演算部364から低レンジ線量率演算部363への切換は、GiH/GiLが1+k2まで低下したら実行される。ここでは、k1>k2として適度にヒステリシスを持たせている。ここで、k1、k2は、切り替えに伴う段差を最小限に抑えるために設定される値で、許容される段差を精度の範囲内とするため、また、急激な上昇応答時に確実に切換動作が行われるように、正(+)の値とする。
図3は、放射線の入力線量率Giと最適切換点の関係を示すものである。a1及びa2は、Am(アメリシウム)−241の実効エネルギー57keVの線量率Giの入出力応答特性を概念的に示し、a1は、低レンジ線量率演算部363による入出力応答特性で、低線量率側は直線性が良好で、高線量率側は飽和に続いて低下傾向(Am−241の破線)になる。a2は、高レンジ線量率演算部364による入出力応答特性で、低線量側では放射線検出器2の暗電流Id(点線)が支配的であるが、入力線量率の増加に伴い良好な直線性を示す。ここで、A1は、GiH/GiLが1+k1における切換点を示し、A2は、GiH/GiLが1+k2における切換点を示す。
b1及びb2は、Cs−137の実効エネルギー660keVの線量率Giの入出力応答特性を概念的に示し、Am−241の特性に対して高線量率側に直線的に約1桁シフトした形になっている。b1は、低レンジ線量率演算部363による入出力応答特性で、低線量率側は直線性が良好で、高線量率側は飽和に続いて低下傾向(Cs−137の長破線)になる。b2は、高レンジ線量率演算部364による入出力応答特性で、低線量側では放射線検出器2の暗電流Idが支配的であるが、入力線量率の増加に伴い良好な直線性を示す。ここで、B1は、GiH/GiLが1+k1における切換点を示し、B2は、GiH/GiLが1+k2における切換点を示す。このようにして、線量率切換部366は、低レンジ線量率演算部363からの出力である低レンジ線量率GiLと高レンジ線量率演算部364からの出力である高レンジ線量率GiLとの比GiH/GiLに基づき、放射線検出器2に入射される放射線の平均エネルギーEavに応じて変動する最適切換点を検索して切換を実行する。
放射線検出器2としては、NaI(Tl)シンチレーション検出器を代表とする無機シンチレーション検出器、プラスチックシンチレーション検出器あるいはSi半導体検出器を代表とする半導体検出器の適用が可能である。
以上のように、エネルギー特性補償部365において、ゆらぎを測定して得られた平均エネルギーEavに基づいて高レンジ線量率GiHの出力エネルギー特性が補償されることにより、低レンジ線量率GiLと高レンジ線量率GiHの出力エネルギー特性の違いによる差が大幅に縮小される。線量率切換部366は、低レンジ線量率GiLと補償された高レンジ線量率GiHとの比GiH/GiLに基づき、最適な切換点で、低レンジ線量率演算部363から出力される低レンジ線量率GiLと高レンジ線量率演算部364から出力される高レンジ線量率GiHを自動的に切換えるようになっている。
これにより、従来の線量率測定装置のように放射線検出器に鉛フィルタを設けて固定切換点で段差を抑制して切り換える方法においては、低レンジ線量率における本来良好な出力エネルギー特性を悪化させてしまうという問題が生じるのに対して、実施の形態1の線量率測定装置では、そのような問題がなく、測定対象エネルギー全域に亘って出力エネルギー特性が良好であり、また、測定レンジの全体における直線性が良好で、切換点の段差を抑制した高精度の広レンジの線量率の測定を実現できる。さらに、波高スペクトル生成部361は、電流パルスに対応するアナログ電圧パルスの波高値Vpから、低レンジ線量率に対応する波高スペクトルを生成して出力するようにしているので施設事故時等の際に、長期に亘ってCs−134、Cs−137の核種の存在を把握することができる。
このように、実施の形態1に係る線量率測定装置では、低レンジ線量率演算部と高レンジ線量率演算部からの出力の最適切換点を低レンジ線量率と高レンジ線量率の比で判断するようにしたので、測定対象の放射線のエネルギー全体に亘って出力エネルギー特性が良好で、測定レンジの全体において直線性が良好で、切換点の段差を抑制した高精度で広レンジの線量率を測定することができるという顕著な効果がある。
実施の形態2.
図4は、実施の形態2に係る線量率測定装置の演算部の構成を示す図である。実施の形態1の線量率測定装置1の演算部36との相違点は、実施の形態2の演算部236では、暗電流補償部367が設けられており、高レンジ線量率演算部364における高レンジ線量率での放射線検出器2の暗電流分を補償するようにした点であり、他の構成要素は、実施の形態1と同様であり説明を省略する。
次に、暗電流補償部367の動作について説明する。暗電流補償部367には、放射線検出器2の基準温度K0における平均的な暗電流Idに対応した補償すべき線量率Dが予め設定され、表示・操作部37から入力され、記憶されている。高レンジ線量率演算部364では、実施の形態1と同様にして、エネルギー特性補償部365によりエネルギー補償された線量率から、さらに、暗電流分に相当する線量率Dを減算して出力するようにされているので、低レンジ線量率演算部363と高レンジ線量率演算部364の切換点付近の出力エネルギー特性が実施の形態1よりも、さらに良好な高精度の広レンジの線量率の測定が可能となる。
このように、実施の形態2に係る線量率測定装置では、実施の形態1と同様、高レンジ線量率におけるエネルギー補償を行うとともに、放射線検出器の暗電流分に相当する線量率を減算して補償することにより、低レンジ線量率演算部と高レンジ線量率演算部の切換点付近の出力エネルギー特性を改善することができ、さらに、良好な高精度の広レンジの線量率の測定が可能となるという顕著な効果がある。
実施の形態3.
図5は、実施の形態3に係る線量率測定装置の構成を示す図である。図6は、実施の形態3における放射線検出器の暗電流の温度特性を示す図である。実施の形態1の線量率測定装置1との相違点は、実施の形態3の線量率測定装置10では、放射線検出器2の温度を測定する温度センサ5が設けられており、また、温度センサ5から出力された温度に基づいて放射線検出器2の暗電流を測定部30の演算部336に設けられた暗電流温度補償部368により放射線検出器2の温度に依存した暗電流分の線量率を算出し、高レンジ線量率演算部364における高レンジ線量率での暗電流分の線量率を減算して補償するようにした点であり、他の構成要素は、実施の形態1と同様であり説明を省略する。
次に、線量率測定装置10における放射線検出器2の温度Kに依存性した暗電流分の補償について説明する。図5に示すように放射線検出器2の近傍に備えられた温度センサ5からは検出された放射線検出器2の温度Kが出力される。暗電流温度補償部368では、温度Kに基づいて温度に依存した暗電流Idk分の線量率DKが算出され、高レンジ線量率演算部364では、実施の形態1と同様にして、エネルギー特性補償部365によりエネルギー補償された線量率から、さらに、温度Kに依存した暗電流Idk分に相当する線量率DKを減算して出力するようにされているので、低レンジ線量率演算部363と高レンジ線量率演算部364の切換点付近の出力エネルギー特性が、実施の形態1及び実施の形態2によるものよりも、さらに良好な高精度の広レンジの線量率の測定が可能となる。なお、暗電流温度補償部368は、例えば、型式試験により予め図6に示すような放射線検出器2の暗電流Idの温度特性を取得しておき、温度Kと暗電流Idkに相当する線量率DKの対応テーブルを記憶させておく。
このように、実施の形態3に係る線量率測定装置では、実施の形態1と同様、高レンジ線量率におけるエネルギー補償を行うとともに、放射線検出器の温度に依存した暗電流分に相当する線量率を減算して補償することにより、低レンジ線量率演算部と高レンジ線量率演算部の切換点付近の出力エネルギー特性を改善することができ、さらに、良好な高精度の広レンジの線量率の測定が可能となるという顕著な効果がある。
実施の形態4.
図7は、実施の形態4に係る線量率測定装置の構成を示す図であり、図8は、実施の形態4における放射線検出器のゲインの温度特性を示す図である。実施の形態3の線量率測定装置10との相違点は、実施の形態4の線量率測定装置100では、測定部300の演算部436に、ゲイン温度補償部369が設けられており、温度センサ5から出力された温度に基づいて高圧電源の高電圧を制御して、放射線検出器2のゲインの温度依存性も補償するようにした点であり、他の構成要素は、実施の形態3と同様であり説明を省略する。
次に、線量率測定装置100における放射線検出器2の温度に依存性したゲインの補償について説明する。図8に示すように放射線検出器2のゲインGは、放射線検出器2の温度Kに依存している。ゲイン温度補償部369では、温度センサ5で検出された放射線検出器2の温度Kに基づいて、高圧電源4の高電圧Vを放射線検出器2のゲインGの温度依存性が補償されるように制御する。なお、ゲイン温度補償部369には、例えば、型式試験により予め図8に示すような放射線検出器2のゲインGの温度特性を取得しておき、温度Kにおける放射線検出器2のゲインGの温度依存性を補償するゲイン温度補償係数τに対応するゲインGと高電圧Vとの対応テーブルを記憶させておく。ゲイン温度補償部369は、温度センサ5からの放射線検出器2の温度信号に基づいて、高圧電源4の高電圧Vを制御することにより、ゲインGの温度依存性を補償するようされているので、測定レンジ全体において温度特性が良好な高精度の広レンジの線量率測定装置を得ることができる。
このように、実施の形態4に係る線量率測定装置では、実施の形態1から実施の形態3と同様、高レンジ線量率におけるエネルギー補償を行うとともに、放射線検出器の温度に依存したゲインも補償することにより、さらに、良好な高精度の広レンジの線量率の測定が可能となるという顕著な効果がある。
また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
また、図において、同一符号は、同一または相当部分を示す。
1,10,100 線量率測定装置、2 放射線検出器、3,30,300 測定部、36,236,336,436 演算部、361 波高スペクトル生成部、362 G(E)関数メモリ、363 低レンジ線量率演算部、364 高レンジ線量率演算部、365 エネルギー特性補償部、366 線量率切換部、367 暗電流補償部、368 暗電流温度補償部、369 ゲイン温度補償部、37 表示・操作部、4 高圧電源、5 温度センサ。

Claims (2)

  1. 入射された放射線のエネルギーを吸収し、前記エネルギーに比例した電流パルスを出力すると共に、前記エネルギーに比例した直流電圧を出力する放射線検出器と、
    前記電流パルスが運ぶ電荷をアナログ電圧パルスに変換し、前記アナログ電圧パルスから波高値を抽出して、前記波高値から波高スペクトルを生成して出力する波高スペクトル生成手段と、
    定周期で、前記波高スペクトルを線量率に変換して低レンジ線量率として演算する低レンジ線量率演算手段と、
    前記直流電圧のゆらぎを測定して前記放射線の平均エネルギーを推定し、エネルギー補償係数を導出するエネルギー特性補償手段と
    定周期で、前記直流電圧を線量率に変換し、変換された前記線量率に前記エネルギー補償係数を乗じて高レンジ線量率として演算する高レンジ線量率演算手段と、
    前記低レンジ線量率と前記高レンジ線量率の比に基づき、前記低レンジ線量率または前記高レンジ線量率のいずれかに切り換えて線量率として出力する線量率切換手段と、
    前記放射線検出器の基準温度における暗電流に相当する暗電流線量率、あるいは前記放射線検出器の温度を検出する温度センサを備え前記放射線検出器の温度に対応した暗電流線量率を記憶しておくと共に、前記高レンジ線量率から前記基準温度あるいは前記温度の前記暗電流線量率を減算して補償する暗電流補償手段と、
    を備えたことを特徴とする線量率測定装置。
  2. 前記放射線検出器を動作させる高電圧を供給する高圧電源を備え、前記放射線検出器のゲインの温度特性を記憶しておくと共に、前記温度に応じて前記高圧電源の高電圧の出力を制御し、前記放射線検出器のゲインを補償するゲイン温度補償手段を備えたことを特徴とする請求項に記載の線量率測定装置。
JP2013088287A 2013-04-19 2013-04-19 線量率測定装置 Active JP6124663B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013088287A JP6124663B2 (ja) 2013-04-19 2013-04-19 線量率測定装置
US13/966,609 US9116245B2 (en) 2013-04-19 2013-08-14 Dose rate measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088287A JP6124663B2 (ja) 2013-04-19 2013-04-19 線量率測定装置

Publications (2)

Publication Number Publication Date
JP2014211381A JP2014211381A (ja) 2014-11-13
JP6124663B2 true JP6124663B2 (ja) 2017-05-10

Family

ID=51728304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088287A Active JP6124663B2 (ja) 2013-04-19 2013-04-19 線量率測定装置

Country Status (2)

Country Link
US (1) US9116245B2 (ja)
JP (1) JP6124663B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819024B1 (ja) * 2014-08-26 2015-11-18 三菱電機株式会社 線量率測定装置
WO2016174723A1 (ja) * 2015-04-28 2016-11-03 三菱電機株式会社 線量率測定装置
US11081244B2 (en) * 2015-09-08 2021-08-03 Mitsubishi Electric Corporation Incore nuclear instrumentation system
JP6857174B2 (ja) * 2016-04-28 2021-04-14 株式会社堀場製作所 放射線検出装置及び放射線検出用信号処理装置
JP6628701B2 (ja) * 2016-08-05 2020-01-15 三菱電機株式会社 放射線測定装置
CN107247284B (zh) * 2017-07-25 2023-09-22 苏州瑞派宁科技有限公司 一种闪烁探测器的增益校正装置和方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104282A (ja) 1984-10-26 1986-05-22 Japan Atom Energy Res Inst 携帯型広レンジγ線照射線量率測定・記録装置
JPH01250885A (ja) * 1988-03-31 1989-10-05 Toshiba Corp 放射線モニタ
JPH0293393A (ja) * 1988-09-30 1990-04-04 Hitachi Ltd 照射線量率計
JPH0317587A (ja) * 1989-06-14 1991-01-25 Fuji Electric Co Ltd 半導体放射線測定装置
JPH06118176A (ja) * 1992-10-06 1994-04-28 Hitachi Ltd 荷電粒子等の検出装置及びこれを用いた質量分析計
JP2002022839A (ja) * 2000-07-03 2002-01-23 Aloka Co Ltd 放射線測定装置
US7456405B1 (en) * 2004-03-08 2008-11-25 Thermo Fisher Scientific Inc. Portable radiation monitor methods and apparatus
JP4731330B2 (ja) * 2006-01-05 2011-07-20 三菱電機株式会社 放射線モニタ
EP2130063B1 (en) * 2007-03-09 2017-10-18 European Organisation for Nuclear Research CERN Method, apparatus and computer program for measuring the dose, dose rate or composition of radiation
US7737401B2 (en) * 2007-06-19 2010-06-15 Thermo Fisher Scientific Inc. Radiation measurement using multiple parameters
JP5588238B2 (ja) * 2009-11-30 2014-09-10 株式会社東芝 半導体放射線検出器
EP2653890B1 (en) * 2012-04-20 2017-04-12 Canberra France SAS Radiation Detector System and Method

Also Published As

Publication number Publication date
US9116245B2 (en) 2015-08-25
US20140312228A1 (en) 2014-10-23
JP2014211381A (ja) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6124663B2 (ja) 線量率測定装置
JP5819024B1 (ja) 線量率測定装置
JP6184608B2 (ja) 線量率測定装置
JP5171891B2 (ja) 放射線測定装置
FI3637147T3 (fi) Vahvistuksen korjauslaitteisto ja -menetelmä tuikeilmaisimelle
JP6448466B2 (ja) 放射性ガスモニタリング装置
JP6218941B2 (ja) 放射線測定装置
JP6147068B2 (ja) 線量率測定装置
JP3938146B2 (ja) 放射線測定装置
JP6091622B2 (ja) 放射線測定装置
JP2006029986A (ja) 放射線測定装置
JP2016206004A (ja) 臨界警報装置及び方法
JP5951538B2 (ja) 核燃料燃焼度評価装置、その評価方法およびそのプログラム
JP3728220B2 (ja) 比例計数管型中性子検出器のγ線感度試験方法
JPS6045833B2 (ja) 放射線測定装置
Carpentieri et al. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques
JPS61104282A (ja) 携帯型広レンジγ線照射線量率測定・記録装置
JPH0377474B2 (ja)
GB2482950A (en) Low voltage optimized ion chamber
JP2019132632A (ja) 密度測定装置および密度測定方法
Moiseev et al. Application of the MKGB-01 Spectrometer-Radiometer in the KX-gamma coincidences setup at the DI Mendeleyev Institute for Metrology
JPS58100788A (ja) 中性子およびガンマ線測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R151 Written notification of patent or utility model registration

Ref document number: 6124663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151