[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6121292B2 - High-strength steel sheet having high yield ratio and formability and manufacturing method thereof - Google Patents

High-strength steel sheet having high yield ratio and formability and manufacturing method thereof Download PDF

Info

Publication number
JP6121292B2
JP6121292B2 JP2013183894A JP2013183894A JP6121292B2 JP 6121292 B2 JP6121292 B2 JP 6121292B2 JP 2013183894 A JP2013183894 A JP 2013183894A JP 2013183894 A JP2013183894 A JP 2013183894A JP 6121292 B2 JP6121292 B2 JP 6121292B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
yield ratio
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013183894A
Other languages
Japanese (ja)
Other versions
JP2015052132A (en
Inventor
エライジャ 柿内
エライジャ 柿内
村上 俊夫
俊夫 村上
梶原 桂
桂 梶原
二村 裕一
裕一 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013183894A priority Critical patent/JP6121292B2/en
Priority to PCT/JP2014/073390 priority patent/WO2015034021A1/en
Publication of JP2015052132A publication Critical patent/JP2015052132A/en
Application granted granted Critical
Publication of JP6121292B2 publication Critical patent/JP6121292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車部品等に用いられる高い降伏比と成形性を有する高強度鋼板に関する。   The present invention relates to a high-strength steel sheet having a high yield ratio and formability used for automobile parts and the like.

周知の通り、自動車用部品に供される鋼板は、燃費改善を実現するために薄肉化が求められており、薄肉化及び部品強度確保を両立するために鋼板の高強度化が求められている。そのため、具体的には鋼板の引張強度(TS)を590MPa以上に高強度化することが要請されている。さらに、衝突安全性を確保する観点から、鋼板の降伏強度(YS)を高めることも要求されており、具体的には降伏比(YR=YS/TS)が0.70以上の鋼板が求められている。また、鋼板には形状の複雑な部品に加工するために優れた成形加工性も要求される。このため、TSが590MPa以上の強度において、TSと全伸び(EL)との積(TS×EL)が25000MPa%以上のものが要望されている。加えて、部品の成形プロセスの観点から、ELのみでなく、穴拡げ率(λ)までもが同時に優れた鋼板が望まれており、具体的にはλ60%以上、好ましくはλ70%以上の鋼板が切望されている。   As is well known, steel sheets used for automobile parts are required to be thin in order to improve fuel efficiency, and high strength steel sheets are required to achieve both thinning and securing of component strength. . Therefore, specifically, it is required to increase the tensile strength (TS) of the steel plate to 590 MPa or more. Furthermore, from the viewpoint of ensuring collision safety, it is also required to increase the yield strength (YS) of the steel sheet. Specifically, a steel sheet having a yield ratio (YR = YS / TS) of 0.70 or more is required. ing. Steel sheets are also required to have excellent formability in order to process into complicated parts. For this reason, when the strength of TS is 590 MPa or more, the product of TS and total elongation (EL) (TS × EL) is required to be 25000 MPa% or more. In addition, from the viewpoint of the part forming process, not only EL but also a steel sheet excellent in not only the hole expansion ratio (λ) but also λ60% or more, preferably λ70% or more is desired. Is anxious.

従来、これらの要請に応えるものとして、特許文献1等を挙げることができ、同文献には高い降伏比を有し、且つ、成形性に優れたTSが590MPa以上の高強度冷延鋼板が開示されている。
しかしながら、この文献に開示される鋼板は、TS、YR及びλなど個々の特性は前記水準を満足するが、TSと全伸び(EL)との積(TS×EL)が不足しており、強度と成形性が同時に高いレベルに維持された鋼板に対する要求には十分に対応できない問題を有する。
Conventionally, Patent Document 1 and the like can be cited as a response to these demands, and this document discloses a high-strength cold-rolled steel sheet having a high yield ratio and excellent formability of TS of 590 MPa or more. Has been.
However, the steel sheet disclosed in this document satisfies the above-mentioned levels of individual properties such as TS, YR and λ, but the product of TS and total elongation (EL) (TS × EL) is insufficient, and the strength At the same time, it has a problem that it cannot sufficiently meet the demand for a steel sheet whose formability is maintained at a high level.

一方、従来、TS×ELに優れた鋼板として残留γの加工誘起マルテンサイト変態を利用したTRIP鋼が知られている。一般的にTRIP鋼は連続焼鈍ライン(CAL)にて製造され、CALの均熱帯にてオーステナイトを生成させた後、所定の温度まで冷却し、過時効帯にて該所定温度で保持する(オーステンパー)ことで一部のオーステナイトをベイナイト変態させて残りのオーステナイトにCを濃化させ、最終冷却の後、残留γを得る。
しかし、このCALにより得られる鋼板は、上記製造工程での最終冷却の際に、一部のオーステナイトはマルテンサイト変態し、最終組織に焼戻されていないマルテンサイト(以下、単にマルテンサイトと表記する)が含まれる。このマルテンサイト変態時の膨張により母相に可動転位が導入されるためYRが低下し、また、マルテンサイトは非常に硬質なため破壊の起点となりλを低下させる。従い、YR及びλにおいても高いレベルの鋼板に対する要請には十分に応えられない問題を有する。
On the other hand, a TRIP steel that uses a work-induced martensitic transformation of residual γ is conventionally known as a steel plate excellent in TS × EL. In general, TRIP steel is manufactured in a continuous annealing line (CAL), and after austenite is generated in the CAL soaking zone, it is cooled to a predetermined temperature and held at the predetermined temperature in an overaging zone (aus) Temper), a part of austenite is transformed into bainite, C is concentrated in the remaining austenite, and after final cooling, residual γ is obtained.
However, in the steel sheet obtained by this CAL, a part of austenite undergoes martensite transformation at the time of final cooling in the production process, and martensite (hereinafter simply referred to as martensite) that has not been tempered to the final structure. ) Is included. Due to the expansion during the martensitic transformation, movable dislocations are introduced into the matrix phase, so that YR is lowered, and martensite is very hard and thus becomes the starting point of fracture and lowers λ. Therefore, even in YR and λ, there is a problem that the demand for a high level steel sheet cannot be fully met.

特開2008−156680号公報JP 2008-156680 A

そこで、本発明の目的(課題)は、上述の従来技術の問題点を解消し、降伏強度(YS)、引張強度(TS)、降伏比(YR)、全伸び(EL)、穴拡げ率(λ)及び引張強度(TS)と全伸び(EL)との積(TS×EL)が何れも高いレベルを備える高降伏比で成形性に優れた高強度冷延鋼板およびその製造方法を提供することにある。   Therefore, the object (problem) of the present invention is to solve the above-mentioned problems of the prior art, yield strength (YS), tensile strength (TS), yield ratio (YR), total elongation (EL), hole expansion rate ( A high-strength cold-rolled steel sheet having a high yield ratio and excellent formability with a high level of (λ) and the product (TS × EL) of tensile strength (TS) and total elongation (EL), and a method for producing the same. There is.

請求項1に記載の発明は、
C:0.10〜0.30%(質量%の意味。以下同じ)、
Si:0.50〜2.50%、
Mn:1.00%未満(0%を含む)
P:0.100%以下(0%を含む)、
S:0.010%以下(0%を含む)、
Al:0.50〜3.00%、
N:0.0020〜0.0100%、
残部が鉄及び不可避不純物からなり、
鋼組織が
フェライト分率:60〜90%
ベイニティックフェライト分率:10%以下(0%含む)
残留γ分率:5%以上
焼戻しマルテンサイト分率 5%〜30%、
マルテンサイト分率 5%以下(0%含む)
焼戻しマルテンサイト内に存在するセメンタイトの円相当直径の平均粒径が200nm以下、かつ、その数密度が10個/μm以上、
であることを特徴とする高い降伏比と成形性を有する高強度鋼板である。
The invention described in claim 1
C: 0.10 to 0.30% (meaning mass%, the same shall apply hereinafter)
Si: 0.50 to 2.50%,
Mn: less than 1.00% (including 0%)
P: 0.100% or less (including 0%),
S: 0.010% or less (including 0%),
Al: 0.50 to 3.00%,
N: 0.0020 to 0.0100%,
The balance consists of iron and inevitable impurities,
Steel structure Ferrite fraction: 60-90%
Bainitic ferrite fraction: 10% or less (including 0%)
Residual γ fraction: 5% or more Tempered martensite fraction 5% to 30%,
Martensite fraction 5% or less (including 0%)
The average particle diameter of the equivalent circle diameter of cementite present in the tempered martensite is 200 nm or less, and the number density is 10 / μm 2 or more,
It is a high-strength steel sheet having a high yield ratio and formability characterized by being.

請求項2に記載の発明は、焼戻しマルテンサイト内に存在する円相当直径200nm以上のセメンタイト粒子の数密度が1個/μm以下である請求項1に記載の高い降伏比と成形性を有する高強度鋼板。 The invention according to claim 2 has a high yield ratio and formability according to claim 1, wherein the number density of cementite particles having an equivalent circle diameter of 200 nm or more present in the tempered martensite is 1 piece / μm 2 or less. High strength steel plate.

請求項3に記載の発明は、
更に、
V:0.01〜1.00%、
Ti:0.01〜0.30%、
Nb:0.01〜0.30%、
の1種もしくは2種以上を含む請求項1または2に記載の高い降伏比と成形性を有する高強度鋼板である。
The invention according to claim 3
Furthermore,
V: 0.01-1.00%,
Ti: 0.01-0.30%,
Nb: 0.01-0.30%
A high-strength steel sheet having a high yield ratio and formability according to claim 1 or 2, comprising one or more of the above.

請求項4に記載の発明は、
更に、
Cr:0.01〜3.00%、
Mo:0.01〜1.00%、
Cu:0.01〜2.00%、
Ni:0.01〜2.00%、
B:0.0001%〜0.005%、
の1種もしくは2種以上を含む請求項1〜3のいずれかに記載の高い降伏比と成形性を有する高強度鋼板である。
The invention according to claim 4
Furthermore,
Cr: 0.01 to 3.00%,
Mo: 0.01 to 1.00%,
Cu: 0.01-2.00%,
Ni: 0.01 to 2.00%,
B: 0.0001% to 0.005%,
A high-strength steel sheet having a high yield ratio and formability according to any one of claims 1 to 3, comprising one or more of the following.

請求項5に記載の発明は、
更に、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0001〜0.01%、
の1種もしくは2種以上を含む請求項1〜4のいずれかに記載の高い降伏比と成形性を有する高強度鋼板である。
The invention described in claim 5
Furthermore,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: 0.0001 to 0.01%,
A high-strength steel sheet having a high yield ratio and formability according to any one of claims 1 to 4, comprising one or more of the above.

請求項6に記載の発明は、
請求項1〜5のいずれかに示す成分組成を有する鋼材に、熱間圧延及び冷間圧延を施して得た鋼板を、
[0.6Ac1+0.4Ac3]以上の温度に加熱し、該温度で10〜1000s保持する均熱を行った後、15℃/s以下の冷却速度で750〜550℃まで冷却し、次いで100℃/s以上の冷却速度で常温まで冷却し、
さらに、該鋼板を、300〜480℃に再加熱し、該温度で10〜1000s保持する焼戻しを行った後、常温まで冷却することを特徴とする高い降伏比と成形性を有する高強度鋼板の製造方法である。
The invention described in claim 6
A steel sheet obtained by subjecting a steel material having the composition shown in any one of claims 1 to 5 to hot rolling and cold rolling,
After heating to a temperature of [0.6Ac1 + 0.4Ac3] or higher and soaking for 10 to 1000 s at that temperature, it is cooled to 750 to 550 ° C at a cooling rate of 15 ° C / s or less, and then 100 ° C / cooling to room temperature at a cooling rate of s or more,
Furthermore, the steel sheet is reheated to 300 to 480 ° C., tempered to hold at the temperature for 10 to 1000 s, and then cooled to room temperature. A high strength steel sheet having a high yield ratio and formability, It is a manufacturing method.

請求項7に記載の発明は、
請求項1〜5のいずれかに示す成分組成を有する鋼材に、熱間圧延及び冷間圧延を施して得た鋼板を、
[0.6Ac1+0.4Ac3]以上の温度に加熱し、該温度で10〜1000s保持する均熱を行った後、15℃/s以下の冷却速度で750〜550℃まで冷却し、次いで100℃/s以上の冷却速度で常温まで冷却し、
さらに、該鋼板を、8℃/s以上の加熱速度で480〜580℃に再加熱し、該温度若しくは該温度から10℃以下の温度降下の範囲内の温度において20s以下保持する焼戻しを行った後、5℃/sを超える冷却速度で常温まで冷却することを特徴とする高い降伏比と成形性を有する高強度鋼板の製造方法である。
The invention described in claim 7
A steel sheet obtained by subjecting a steel material having the composition shown in any one of claims 1 to 5 to hot rolling and cold rolling,
After heating to a temperature of [0.6Ac1 + 0.4Ac3] or higher and soaking for 10 to 1000 s at that temperature, it is cooled to 750 to 550 ° C at a cooling rate of 15 ° C / s or less, and then 100 ° C / cooling to room temperature at a cooling rate of s or more,
Further, the steel sheet was reheated to 480 to 580 ° C. at a heating rate of 8 ° C./s or more, and tempered to hold it for 20 s or less at the temperature or within a temperature drop range of 10 ° C. or less from the temperature. Then, it is the manufacturing method of the high strength steel plate which has a high yield ratio and a formability characterized by cooling to normal temperature with the cooling rate over 5 degrees C / s.

本発明によれば、降伏強度(YS)、引張強度(TS)、降伏比(YR)、全伸び(EL)、穴拡げ率(λ)及び引張強度(TS)と全伸び(EL)との積(TS×EL)が何れも高いレベルを備える高降伏比で成形性に優れた高強度冷延鋼板を得ることができる。具体的には、YSが420MPa以上、TSが590MPa以上、YRが0.70以上、λが60%以上及び(TS×EL)が25000MPa%以上の特性を有する高強度冷延鋼板を提供することができる。
また、本発明によれば上記高強度冷延鋼板を、特に新たな製造工程を付加することなく既存の連続焼鈍ライン(CAL)により比較的容易に製造することができ、コスト面、実用面でも有利である。
According to the present invention, the yield strength (YS), tensile strength (TS), yield ratio (YR), total elongation (EL), hole expansion ratio (λ), and tensile strength (TS) and total elongation (EL) A high-strength cold-rolled steel sheet having a high yield ratio and excellent formability can be obtained with a high product (TS × EL). Specifically, to provide a high-strength cold-rolled steel sheet having the characteristics that YS is 420 MPa or more, TS is 590 MPa or more, YR is 0.70 or more, λ is 60% or more, and (TS × EL) is 25000 MPa% or more. Can do.
In addition, according to the present invention, the high-strength cold-rolled steel sheet can be manufactured relatively easily by an existing continuous annealing line (CAL) without adding a new manufacturing process. It is advantageous.

最初に本発明の特異な技術思想につき従来のTRIP鋼と対比しながら述べることにする。
本発明者等は、従来の残留γを活用するTRIP鋼をベースにYRおよびλを改善し、さらにTS×ELをも向上させることを念頭において鋭意検討を行なった。前述のように、本鋼では過時効帯におけるオーステンパー後の最終冷却でマルテンサイトが生成するために、可動転位が導入されYRが低下し、また、硬質なマルテンサイトが破壊の起点となるためλが低下することから、可動転位が容易に移動することを防止することでYRを向上させ、またマルテンサイトを軟質化させることでλを向上させることができるのではないかと考えた。また、更に本鋼に含まれているベイニティックフェライトをマルテンサイトラス程度のサイズに微細化させれば、微細化効果によりTS×ELバランスを向上させることができるのではないかと考えた。
First, the specific technical idea of the present invention will be described in comparison with the conventional TRIP steel.
The inventors of the present invention have made extensive studies with a view to improving YR and λ and further improving TS × EL based on the conventional TRIP steel utilizing residual γ. As described above, in this steel, martensite is generated in the final cooling after austempering in the overaging zone, so that movable dislocations are introduced and YR is lowered, and hard martensite is the starting point of fracture. Since λ decreased, it was thought that YR could be improved by preventing the movable dislocations from moving easily, and λ could be improved by softening martensite. Furthermore, it was thought that if the bainitic ferrite contained in the steel was refined to a size of about martensite, the TS × EL balance could be improved by the refinement effect.

本TRIP鋼は主にフェライト+ベイニティックフェライト+マルテンサイト+残留γからなる組織を有するが、上記の着想にもとづき検討を進めた結果、この組織を主にフェライト+焼戻しマルテンサイト+残留γからなる組織に変える工夫をすることで、YR、λを改善し、同時にTS×ELバランスまでも向上できるとの確信に至った。   This TRIP steel has a structure mainly composed of ferrite + bainitic ferrite + martensite + residual γ. As a result of investigation based on the above idea, this structure is mainly composed of ferrite + tempered martensite + residual γ. By contriving to change the organization, YR and λ can be improved, and at the same time, TS x EL balance can be improved.

そして、この鋼組織を得る基本的な手段(熱処理による組織制御)として、YR及びλの向上に対しては、マルテンサイトが導入された後に焼戻しを行えばよい。すなわち、焼戻しにより可動転位が固着されることで高い応力がかかるまで転位の移動が抑制されてYRが向上し、また、マルテンサイトが焼戻され固溶Cがセメンタイトとして適切に析出することでマルテンサイトの変形能が向上し、破壊の起点となりにくくなるためλが向上する。   And as a basic means for obtaining this steel structure (structural control by heat treatment), the improvement of YR and λ may be tempered after the introduction of martensite. That is, when the dislocations are fixed by tempering, the movement of dislocations is suppressed until high stress is applied and YR is improved, and martensite is tempered and solid solution C is appropriately precipitated as cementite, thereby martensite. Since the deformability of the site is improved and it becomes difficult to become a starting point of destruction, λ is improved.

しかしながら、かかる従来のTRIP鋼で上記組織制御によりYRおよびλを向上させるためには、鋼板の製造に当って既存のCALにおけるオーステンパー後の最終冷却の後に焼戻し工程を追加する必要があり、多大なコスト上昇を招き、実用化が困難である。また、従来のTRIP鋼のようにオーステンパー中のベイナイト変態を活用してオーステナイト中にCを濃化させ残留γを作りこむ思想では、最終組織中にベイニティックフェライトが多量に含まれるため、マルテンサイトラス程度のサイズの微細組織に比べてTS×ELバランスが劣ることになる。   However, in order to improve YR and λ by the above-described structure control in such conventional TRIP steel, it is necessary to add a tempering step after final cooling after austempering in existing CAL in the production of a steel sheet. Cost increases and practical application is difficult. Also, in the idea of concentrating C in austenite to create residual γ by utilizing the bainite transformation in austemper as in conventional TRIP steel, a large amount of bainitic ferrite is contained in the final structure. The TS × EL balance is inferior to a fine structure having a size of about martensite.

このように、従来のTRIP鋼をベースとして、この鋼組織を前記の主にフェライト+焼戻しマルテンサイト+残留γからなる組織に転換するとともに、このために焼き戻しを付加するという着想は、前記諸特性を満足する鋼板を実際に作り込む段階において、新たな問題に直面した。   Thus, based on the conventional TRIP steel, this steel structure is converted into the structure mainly composed of ferrite + tempered martensite + residual γ, and the idea of adding tempering for this purpose is the We faced new problems in the stage of actually making steel sheets that satisfy the characteristics.

その後、発明者等は上記の問題を有利に解決すべく、引き続き、検討を重ねたところ、ベイナイト変態以外の手段でオーステナイト中にCを多量に濃化させることが可能であることを知見した。すなわち、鋼の成分組成の適切な調整を施すことにより、特にMn量及びAl量を調整することで、α−γの2相域加熱において十分量のCをオーステナイト中に濃化させられることを見出した。この組織を室温まで急冷することにより、一部のオーステナイトはマルテンサイト変態し、主にフェライト、マルテンサイト、残留γからなる組織が得られ、これを焼戻すことで、主にフェライト、焼戻しマルテンサイト、残留γからなる組織が得られ、所望のYR、TS×EL、λが得られることを確認した。   After that, the inventors continued to study in order to advantageously solve the above problems, and as a result, they found that it was possible to concentrate a large amount of C in austenite by means other than bainite transformation. That is, by adjusting the steel component composition appropriately, especially by adjusting the amount of Mn and Al, a sufficient amount of C can be concentrated in austenite in α-γ two-phase heating. I found it. By rapidly cooling this structure to room temperature, some austenite undergoes martensite transformation, and a structure mainly composed of ferrite, martensite and residual γ is obtained. By tempering this structure, mainly ferrite and tempered martensite are obtained. It was confirmed that a structure composed of residual γ was obtained and desired YR, TS × EL, and λ were obtained.

しかも、本組織制御のために必須となる焼き戻しは、CALのオーステンパー後の最終冷却の後に行うものでなく、過時効帯にて行うことができるため、焼戻しのための追加工程は必要なく、従って、既存のCAL工程内で比較的容易に作り込むことができ製造コストの問題も解消されることになった。   Moreover, tempering, which is indispensable for the present structure control, is not performed after the final cooling after CAL austempering, and can be performed in an overaged zone, so there is no need for additional steps for tempering. Therefore, it can be relatively easily built in the existing CAL process, and the problem of the manufacturing cost is also solved.

さらに、発明者等はこの新たな着想、知見、基本的な組織制御手段に基づき、前記諸特性が何れも高レベルを備える高い降伏比と成形性を有する高強度鋼板得るための具体的な鋼板の成分組成及び組織条件、製造条件について実験、検証を繰り返してこれを究明して本発明を完成するに至ったものである。以下、本発明について詳述する。   Furthermore, the inventors based on this new idea, knowledge, and basic structure control means, a specific steel sheet for obtaining a high strength steel sheet having a high yield ratio and formability, all of which have a high level of the above-mentioned characteristics. The present inventors have completed the present invention by repeating experiments and verifications on the component composition, structure conditions, and production conditions of the above. Hereinafter, the present invention will be described in detail.

[本鋼板の成分組成]
先ず、鋼板の成分組成についてその基本となる元素から説明する。これらの元素は本発明の目的(課題)とする諸特性すなわち、降伏強度(YS)、引張強度(TS)、降伏比(YR)、全伸び(EL)、穴拡げ率(λ)及び引張強度(TS)と全伸び(EL)との積(TS×EL)を達成するための必須の成分組成として位置付けられるものである。
なお、成分組成について単位の%表示は、すべて質量%を意味する。
[Component composition of this steel sheet]
First, the component composition of the steel sheet will be described from the basic elements. These elements are the objectives (problems) of the present invention: yield strength (YS), tensile strength (TS), yield ratio (YR), total elongation (EL), hole expansion ratio (λ), and tensile strength. It is positioned as an essential component composition for achieving the product (TS × EL) of (TS) and total elongation (EL).
In addition, unit% display of a component composition means the mass% altogether.

C:0.10〜0.30%
Cは所望の組織(焼戻しマルテンサイト+残留γ)を得て、高い(TS×EL)を確保するために必須の元素であり、このような作用を有効に発揮させるためには0.10%以上添加する必要がある。ただし、0.30%超は溶接に適さない。好ましくは0.13%以上、さらに好ましくは0.15%以上である。また、好ましくは0.25%以下である。
C: 0.10 to 0.30%
C is an essential element for obtaining a desired structure (tempered martensite + residual γ) and ensuring high (TS × EL), and 0.10% for effectively exhibiting such an action. It is necessary to add more. However, more than 0.30% is not suitable for welding. Preferably it is 0.13% or more, More preferably, it is 0.15% or more. Moreover, Preferably it is 0.25% or less.

Si:0.50〜2.50%以下
Siは固溶強化元素として有用であり、高強度化に寄与する。また、残留γの確保にも有効でありTS×ELを高める。このような作用を有効に発揮させるためには0.50%以上添加する必要がある。ただし、2.50%超では過度な固溶強化のためにTS×ELが低下する。好ましくは0.80〜2.20%、さらに好ましくは1.00〜2.00%である。
Si: 0.50 to 2.50% or less Si is useful as a solid solution strengthening element and contributes to high strength. It is also effective in securing residual γ and increases TS × EL. In order to exhibit such an action effectively, it is necessary to add 0.50% or more. However, if it exceeds 2.50%, TS × EL decreases due to excessive solid solution strengthening. Preferably it is 0.80 to 2.20%, More preferably, it is 1.00 to 2.00%.

Mn:1.00%未満(0%含む)
Mnは本発明において特に注意を要する重要な元素で、固溶強化元素として作用するが、Mn固溶量が高い場合、フェライト−オーステナイト2相域におけるオーステナイト中に濃化し得るC量が低下し、そこからの急冷により得られる残留γの量が低下してTS×ELが低下する。フェライト−オーステナイト2相域でオーステナイト中のC濃度を十分に高めるにはMn量を1.00%未満に制限する必要がある。好ましくは0.50%未満(0%含む)、より好ましくは0.10%未満(0%含む)である。
Mn: Less than 1.00% (including 0%)
Mn is an important element that requires special attention in the present invention, and acts as a solid solution strengthening element. However, when the amount of Mn solid solution is high, the amount of C that can be concentrated in austenite in the ferrite-austenite two-phase region decreases, The amount of residual γ obtained by rapid cooling from there decreases, and TS × EL decreases. In order to sufficiently increase the C concentration in austenite in the ferrite-austenite two-phase region, it is necessary to limit the amount of Mn to less than 1.00%. It is preferably less than 0.50% (including 0%), more preferably less than 0.10% (including 0%).

P:0.1%以下(0%を含む)
0.1%を超えて添加するとEL、λが劣化する。好ましくは0.03%以下である。
P: 0.1% or less (including 0%)
If it exceeds 0.1%, EL and λ deteriorate. Preferably it is 0.03% or less.

S:0.01%以下(0%を含む)
Sは不純物元素として不可避的に存在し、MnS等の硫化物系介在物を形成し、割れの起点となってλを低下させる元素である。好ましくは0.005%以下である。
S: 0.01% or less (including 0%)
S is inevitably present as an impurity element, forms sulfide inclusions such as MnS, and is an element that lowers λ as a starting point of cracking. Preferably it is 0.005% or less.

Al:0.50〜3.00%
Alは本発明において特に重要な元素で、フェライト−オーステナイト2相域におけるオーステナイト中に濃化し得るC量を増加させ、そこからの急冷により得られる残留γの量を増加させてTS×ELを向上させる。このような作用を有効に発揮させるためには、Alを0.50%以上添加する必要がある。ただし、3.00%を超えると均熱のオーステナイト化温度が高温化しすぎる他、鋳造自体が困難になる。好ましくは0.60%以上、さらに好ましくは0.70%以上である。また、好ましくは2.00%以下、さらに好ましくは1.00%以下である。
Al: 0.50 to 3.00%
Al is a particularly important element in the present invention. The amount of C that can be concentrated in austenite in the ferrite-austenite two-phase region is increased, and the amount of residual γ obtained by quenching from there is increased, thereby improving TS × EL. Let In order to exhibit such an action effectively, it is necessary to add 0.50% or more of Al. However, if it exceeds 3.00%, the soaking austenitizing temperature becomes too high, and casting itself becomes difficult. Preferably it is 0.60% or more, more preferably 0.70% or more. Moreover, Preferably it is 2.00% or less, More preferably, it is 1.00% or less.

N:0.0020〜0.0100%
Nは、不可避的に存在する元素であるが、Alなどの炭窒化物形成元素と結びつくことで析出物を形成し、強度向上や組織の微細化に寄与する。このような作用を有効に発揮させるためには、Nは0.0020%以上含有させる必要がある。一方、N含有量が多すぎると、固溶Al量が低下して残留γ量が低下するので上限を0.0100%に制限する。
N: 0.0020 to 0.0100%
N is an element that is inevitably present, but forms a precipitate when combined with a carbonitride-forming element such as Al, and contributes to improvement in strength and refinement of the structure. In order to effectively exhibit such an action, N needs to be contained in an amount of 0.0020% or more. On the other hand, if the N content is too large, the amount of dissolved Al decreases and the amount of residual γ decreases, so the upper limit is limited to 0.0100%.

以上の基本となる成分組成に加えて、本発明の目的(課題)とする前記諸特性を更に向上させるためそれらの元素群から1種もしくは2種以上を含有させることができる望ましい選択元素について以下に説明する。   In addition to the above basic component composition, in order to further improve the above-described various characteristics as the object (problem) of the present invention, desirable selective elements that can contain one or more of these element groups are as follows: Explained.

V:0.01〜1.00%、
Ti:0.01〜0.30%、
Nb:0.01〜0.30%、
これらの元素(群)は、析出強化、組織の微細化作用により、高強度(TS、YS)を確保するために有効な選択元素である。それぞれ、下限未満では十分な強度が得られず、また上限を超えると成形性が低下してEL、λが不足する。そして、それぞれの範囲の添加量を外れると所望のYRや(TS×EL)も達成できなくなる。好ましくは、Vが0.02〜0.50%、Tiが0.02〜0.20%及びNbが0.02〜0.20%である。
V: 0.01-1.00%,
Ti: 0.01-0.30%,
Nb: 0.01-0.30%
These elements (groups) are effective selection elements for securing high strength (TS, YS) by precipitation strengthening and refinement of the structure. If each is less than the lower limit, sufficient strength cannot be obtained, and if it exceeds the upper limit, the moldability is lowered and EL and λ are insufficient. If the addition amount is out of each range, desired YR and (TS × EL) cannot be achieved. Preferably, V is 0.02 to 0.50%, Ti is 0.02 to 0.20%, and Nb is 0.02 to 0.20%.

Cr:0.01〜3.00%、
Mo:0.01〜1.00%、
Cu:0.01〜2.00%、
Ni:0.01〜2.00%、
B:0.0001〜0.005%、
これらの元素(群)も、強化元素であり、所望の(TS、YS)を確保するために有用な選択元素である。それぞれ、下限未満では十分な強度が得られず、また上限を超えると成形性が低下してEL、λが不足する。そして、それぞれの範囲の添加量を外れると所望のYRや(TS×EL)も達成できなくなる。好ましくは、Crが0.02〜1.00%、Moが0.02〜0.50%、Cuが0.02〜0.50%、Niが0.02〜0.50%及びBが0.0003〜0.001%である。
Cr: 0.01 to 3.00%,
Mo: 0.01 to 1.00%,
Cu: 0.01-2.00%,
Ni: 0.01 to 2.00%,
B: 0.0001 to 0.005%,
These elements (groups) are also reinforcing elements and are useful selection elements for securing desired (TS, YS). If each is less than the lower limit, sufficient strength cannot be obtained, and if it exceeds the upper limit, the moldability is lowered and EL and λ are insufficient. If the addition amount is out of each range, desired YR and (TS × EL) cannot be achieved. Preferably, Cr is 0.02 to 1.00%, Mo is 0.02 to 0.50%, Cu is 0.02 to 0.50%, Ni is 0.02 to 0.50%, and B is 0. 0.003 to 0.001%.

Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0001〜0.01%、
これらの元素(群)は硫化物などの介在物の形態をコントロールし、成形性(El、λ)を高めるために有効な元素で、それぞれ下限未満では十分な成形性が得られず、また上限を超えるとその効果が飽和し無駄になる。好ましくは、Caが0.001〜0.005%、Mgが0.001〜0.005%、REMが0.0005〜0.005%である。
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: 0.0001 to 0.01%,
These elements (groups) are effective elements for controlling the form of inclusions such as sulfides and improving moldability (El, λ), and sufficient moldability cannot be obtained below the lower limit. If it exceeds, the effect is saturated and wasted. Preferably, Ca is 0.001 to 0.005%, Mg is 0.001 to 0.005%, and REM is 0.0005 to 0.005%.

[本鋼板の組織]
次に、本発明において新規且つ特徴的な鋼板の組織(鋼組織)について説明する。なお、各組織の分率は鋼板の圧延方向と垂直な方向(板幅方向)の組織を(板厚)/4の位置で観察した面積分率を示す。組織の測定、評価方法については後述する。
[Structure of this steel sheet]
Next, a novel and characteristic steel sheet structure (steel structure) in the present invention will be described. In addition, the fraction of each structure | tissue shows the area fraction which observed the structure | tissue of the direction (plate width direction) perpendicular | vertical to the rolling direction of a steel plate in the (plate thickness) / 4 position. The method for measuring and evaluating the tissue will be described later.

フェライト分率:60〜90%、
フェライト(α)は軟質相であることからEL、λを高めるために有効であり、また、フェライト−オーステナイト2相域でオーステナイト中にCを濃化させて残留γを得るために高める必要がある。60%未満ではTS×ELが確保できない。90%を超えるとTS590MPa以上が確保できない。好ましくは63〜87%、さらに好ましくは65〜85%である。
Ferrite fraction: 60-90%
Since ferrite (α) is a soft phase, it is effective to increase EL and λ, and it is necessary to increase C to concentrate C in austenite to obtain residual γ in the ferrite-austenite two-phase region. . If it is less than 60%, TS × EL cannot be secured. If it exceeds 90%, TS590 MPa or more cannot be secured. Preferably it is 63 to 87%, more preferably 65 to 85%.

ベイニティックフェライト分率:10%以下(0%を含む)
ベイニティックフェライト(BF)が生成するとより微細なラス組織である焼戻しマルテンサイトが減るためTS×ELバランスが低下する。従って、TS×ELを向上させるには10%以下の少量に制限する必要がある。好ましくは8%以下、さらに好ましくは7%以下である。
Bainitic ferrite fraction: 10% or less (including 0%)
When bainitic ferrite (BF) is generated, tempered martensite, which is a finer lath structure, is reduced, and the TS × EL balance is lowered. Therefore, to improve TS × EL, it is necessary to limit the amount to 10% or less. Preferably it is 8% or less, More preferably, it is 7% or less.

残留γ分率:5%以上
残留γ(γR)は変形時に加工誘起マルテンサイト変態することでTS×ELを高める。好ましくは6%以上、さらに好ましくは8%以上である。残留γは硬質なマルテンサイトに変態するため、過剰に導入するとλが低下する。そのため25%以下、好ましくは20%以下とする。
Residual γ fraction: 5% or more Residual γ (γR) enhances TS × EL by transformation-induced martensite transformation during deformation. Preferably it is 6% or more, More preferably, it is 8% or more. Since the residual γ is transformed into hard martensite, λ decreases when introduced excessively. Therefore, it is 25% or less, preferably 20% or less.

焼戻しマルテンサイト分率:5〜30%
焼戻しマルテンサイト(TM)は微細なラス組織を有しながら適度に軟質化され延性も有するためにTS×ELの向上に寄与する。5%未満ではTS590MPaを確保できない。また、30%超では高強度化し過ぎてTS×ELが低下する。好ましくは8〜25%、さらに好ましくは10〜20%である。
Tempered martensite fraction: 5-30%
Tempered martensite (TM) contributes to the improvement of TS × EL because it has a fine lath structure and is appropriately softened and has ductility. If it is less than 5%, TS590 MPa cannot be secured. On the other hand, if it exceeds 30%, the strength becomes too high and TS × EL is lowered. Preferably it is 8-25%, More preferably, it is 10-20%.

マルテンサイト分率:5%以下(0%含む)
焼戻されていないマルテンサイト(M)は変形時に破壊の起点となるためλを大幅に低下させる必要がある。好ましくは4%以下、さらに好ましくは3%以下である。
Martensite fraction: 5% or less (including 0%)
Since martensite (M) that has not been tempered becomes a starting point of fracture at the time of deformation, it is necessary to significantly reduce λ. Preferably it is 4% or less, More preferably, it is 3% or less.

焼戻しマルテンサイト内に存在するセメンタイト粒子の円相当平均粒径が200nm以下、かつ、その数密度が10個/μm以上
焼戻しマルテンサイト内のセメンタイト粒子の粒径を小さく、またその数を増やすことにより、焼き戻しマルテンサイトの変形能を高めて破壊の起点となることを抑制しλを有効に高めることができる。その円相当平均粒径200nm超、または、その数密度が10個/μm未満ではセメンタイトが粗大化して破壊の起点になったり、固溶Cが高く焼き戻しマルテンサイトの変形能が不足してλが低下するため、それぞれ上記のとおり規定する。
The average equivalent circle diameter of cementite particles present in tempered martensite is 200 nm or less, and the number density thereof is 10 particles / μm 2 or more. The particle size of cementite particles in tempered martensite is reduced and the number thereof is increased. Therefore, it is possible to increase the deformability of the tempered martensite to suppress the starting point of fracture and effectively increase λ. If the circle equivalent average particle diameter exceeds 200 nm or the number density is less than 10 / μm 2 , the cementite becomes coarse and becomes the starting point of fracture, or the solid solution C is high and the deformability of tempered martensite is insufficient. Since λ decreases, each is defined as above.

焼戻しマルテンサイト内に存在する円相当直径200nm以上のセメンタイト粒子の数密度が1個/μm以下
本発明において必須ではないが、上記焼戻しマルテンサイト内に存在するセメンタイトについては、200nm以上の粗大なセメンタイトが破壊の起点となってλを低下させる恐れがあるため上記のように制限することが好ましい。より好ましくは円相当直径200nm以上のものが0.8個/μm以下、さらに好まし0.6個/μm以下である。
The number density of the cementite particles having an equivalent circle diameter of 200 nm or more present in the tempered martensite is 1 / μm 2 or less. Although not essential in the present invention, the cementite present in the tempered martensite is coarser than 200 nm. Since cementite may cause rupture to lower λ, it is preferable to limit as described above. More preferably, those having an equivalent circle diameter of 200 nm or more are 0.8 pieces / μm 2 or less, and more preferably 0.6 pieces / μm 2 or less.

なお、本発明における鋼組織は、以上の説明のとおりだが、上記必須とする組織以外の他の組織(パーライトなど)についてはこれを含まないことが望ましいが、全体の5%以下の極く少量ならばこれを含有することを許容する。   Although the steel structure in the present invention is as described above, it is desirable not to include other structures (such as pearlite) other than the essential structure, but a very small amount of 5% or less of the entire structure. If so, it is allowed to contain it.

[本鋼板の製造方法]
次に、本鋼板の製造方法について説明する。但し、鋼板の素材となる鋼の溶製から鋳造、鋼材(スラブ)の熱延、冷延までは通常採用されている条件によるものであるため、ここでこれを割愛し、本発明の特徴とする冷延後の鋼板の熱処理、すなわち均熱、焼き戻し及びその前後の加熱、冷却に関する諸条件を中心に説明することにする。
[Production method of this steel sheet]
Next, the manufacturing method of this steel plate is demonstrated. However, from the melting of steel, which is the material of the steel plate, to casting, hot rolling and cold rolling of the steel material (slab) are based on the conditions normally adopted, so this is omitted here, and the features of the present invention The following description will focus on various conditions relating to heat treatment of the steel sheet after cold rolling, that is, soaking, tempering, heating before and after, and cooling.

(加熱、均熱条件)
「加熱、均熱温度:[0.6Ac1+0.4Ac3]以上」
先ず、冷延後の鋼板を加熱して均熱(連続焼鈍が好ましいがバッチ焼鈍でも良い)を行うが、[0.6Ac1+0.4Ac3]以上に加熱し、この温度で均熱を実施するする必要がある。つまり、均熱温度(T1)は[0.6Ac1+0.4Ac3]以上とする。この温度未満の低温では、セメンタイトを溶解させてオーステナイト中のC濃度を高めることができず、未固溶セメンタイトが多量に残存して残留γが十分に得られずTS×ELの特性が確保できない。
(Heating and soaking conditions)
“Heating, soaking temperature: [0.6Ac1 + 0.4Ac3] or more”
First, the steel sheet after cold rolling is heated and soaked (continuous annealing is preferable, but batch annealing may be used), but it is necessary to heat to [0.6Ac1 + 0.4Ac3] or more and perform soaking at this temperature. There is. That is, the soaking temperature (T1) is set to [0.6Ac1 + 0.4Ac3] or higher. If the temperature is lower than this temperature, the cementite cannot be dissolved to increase the C concentration in the austenite, and a large amount of undissolved cementite remains, so that sufficient residual γ cannot be obtained and TS × EL characteristics cannot be secured. .

「均熱時間:10〜1000s」
上記均熱温度に保持される均熱時間(t1)は10〜1000sとする。10s未満では未固溶セメンタイトが多量に残存し残留γが十分に得られず(TS×EL)の特性が十分に確保できない。また1000s超では生産性が阻害される不利を招く。
“Soaking time: 10 to 1000 s”
The soaking time (t1) maintained at the soaking temperature is 10 to 1000 s. If it is less than 10 s, a large amount of undissolved cementite remains and a sufficient residual γ cannot be obtained (TS × EL), so that sufficient characteristics cannot be secured. Further, if it exceeds 1000 s, the productivity is hindered.

(均熱後の冷却条件)
「均熱後の15℃/s以下の冷却速度による750〜550℃までの第1冷却」
本発明では均熱後常温まで第1冷却と第2冷却の2段冷却を行う。この第1冷却は均熱後750〜550℃までの温度域、すなわち均熱温度から750〜550℃までの温度域を15℃/s以下の冷却速度(第1冷却速度:CR1))で徐冷する。前記均熱時の高温均熱でセメンタイトを溶解させた後、この徐冷によりフェライト分率を増加させてオーステナイトを室温でも残留γ化するまで高C化させるものである。550℃未満の温度域まで徐冷するとオーステナイトがパーライトに変態するため残留γ量が低下する。15℃/s超ではフェライト変態が十分に起こらずオーステナイトへのC濃化が不十分となり残留γ量が低下する。好ましくは均熱温度から660℃までの温度域を13℃/s以下、さらに好ましくは均熱温度から670℃の温度域を10℃/s以下の冷却速度で冷却する。なお生産性を阻害しないために、冷却速度の下限は0.5℃/sとする。
(Cooling conditions after soaking)
“First cooling to 750 to 550 ° C. at a cooling rate of 15 ° C./s or less after soaking”
In the present invention, after the soaking, two-stage cooling of the first cooling and the second cooling is performed to room temperature. The first cooling is performed in a temperature range from 750 to 550 ° C. after soaking, that is, a temperature range from the soaking temperature to 750 to 550 ° C. at a cooling rate of 15 ° C./s or less (first cooling rate: CR1)). Cool down. After cementite is dissolved by high-temperature soaking at the time of soaking, the ferrite fraction is increased by this slow cooling, and the austenite is made to have a high C until it becomes residual γ even at room temperature. When it is gradually cooled to a temperature range of less than 550 ° C., austenite is transformed into pearlite, so the amount of residual γ decreases. If it exceeds 15 ° C./s, ferrite transformation does not occur sufficiently, and C concentration to austenite becomes insufficient, and the amount of residual γ decreases. Preferably, the temperature range from the soaking temperature to 660 ° C. is 13 ° C./s or less, more preferably the temperature range from the soaking temperature to 670 ° C. is cooled at a cooling rate of 10 ° C./s or less. In order not to impede productivity, the lower limit of the cooling rate is 0.5 ° C./s.

「第1冷却後の100℃/s以上の冷却速度による常温までの第2冷却」
この第2冷却は上記第1冷却後常温までの温度域、すなわち750〜550℃の急冷開始温度(T2)から常温までの温度域を100℃/s以上の冷却速度(第2冷却速度:CR2)で急冷する。この急冷によりパーライト変態・ベイナイト変態を避けながら一部のオーステナイトをマルテンサイト変態させつつ残留γ化させるものである。好ましくは250℃/s以上、さらに好ましくは500℃/s以上の冷却速度で冷却する。
“Second cooling to room temperature at a cooling rate of 100 ° C./s or higher after the first cooling”
In the second cooling, the temperature range from the first cooling to room temperature, that is, the temperature range from 750 to 550 ° C. rapid start temperature (T2) to room temperature is 100 ° C./s or more (second cooling rate: CR2 ) By this rapid cooling, a part of austenite is converted into residual gamma while undergoing martensitic transformation while avoiding pearlite transformation and bainite transformation. The cooling is preferably performed at a cooling rate of 250 ° C./s or more, more preferably 500 ° C./s or more.

(再加熱、焼戻し及び冷却条件)
この再加熱、焼戻し及び冷却条件については二通りの方法がある。従って、これまで述べた加熱、均熱、均熱後の冷却条件は共通するのでこれらの条件に、以下に説明するA、B二通りの再加熱、焼戻し及び冷却条件のうちの一つを選択して組合せて実施すれば良い。条件Aは低温で時間をかけて焼戻す方法のために設定された条件であり、条件Bは高温で短時間に焼戻す方法のために設定された条件である。
(Reheating, tempering and cooling conditions)
There are two methods for this reheating, tempering and cooling conditions. Therefore, since the heating, soaking, and cooling conditions after soaking described above are common, one of the two reheating, tempering and cooling conditions described below is selected for these conditions. And combine them. Condition A is a condition set for a method of tempering at a low temperature over time, and condition B is a condition set for a method of tempering at a high temperature in a short time.

<再加熱、焼戻し及び冷却条件A>
「焼戻し温度:300〜480℃」
上記第2冷却により常温となった鋼板を、更に再加熱して焼戻しを行なうが、その際、300〜480℃に再加熱し、この温度範囲で焼戻しを実施する必要がある。つまり、焼戻し温度は300〜480℃とする。これは、常温までのマルテンサイトを焼戻し、また、マルテンサイト変態時に導入された可動転位を固着するためである。焼戻し温度が300℃未満の低温ではYR、TS×EL、λが共に低下する。同温度が480℃を超える高温ではTSを590MPa以上に確保できないし、また、残留γが分解し、これによりTS×ELを高めることもできなくなる。なお、本条件Aでは、常温から上記焼き戻し温度である300〜480℃まで間の再加熱時の加熱速度(昇温速度速度)については特に限定しないが、この種鋼板の焼き戻しの際において通常用いられている加熱速度例えば1℃/s以上、8℃/s未満で十分であり、後記する条件Bのように高速で加熱する必要はない。
<Reheating, tempering and cooling conditions A>
“Tempering temperature: 300-480 ° C.”
The steel sheet brought to room temperature by the second cooling is further reheated and tempered. At that time, it is necessary to reheat to 300 to 480 ° C. and to temper in this temperature range. That is, the tempering temperature is 300 to 480 ° C. This is because the martensite up to room temperature is tempered and the movable dislocations introduced during the martensite transformation are fixed. At low temperatures where the tempering temperature is less than 300 ° C., YR, TS × EL, and λ all decrease. If the temperature exceeds 480 ° C., TS cannot be secured at 590 MPa or more, and the residual γ is decomposed, thereby making it impossible to increase TS × EL. In addition, in this condition A, although it does not specifically limit about the heating rate (temperature rising rate rate) at the time of reheating from normal temperature to the said tempering temperature 300-480 degreeC, In the case of tempering of this seed steel plate Usually, a heating rate of, for example, 1 ° C./s or more and less than 8 ° C./s is sufficient, and it is not necessary to heat at high speed as in Condition B described later.

「焼戻し時間:100〜300s」
上記した焼戻し温度に保持される焼き戻し時間は100〜300sとする必要がある。これも、焼戻し温度の規定理由と同様に、常温までのマルテンサイトを焼戻し、また、マルテンサイト変態時に導入された可動転位を固着するためである。焼戻し時間が100s未満の短時間ではYR、(TS×EL)、λが共に低下する。同時間が300sを超える長時間となるとTSを590MPa以上に維持することが困難となり、また、残留γが分解し、これにより(TS×EL)の向上も望めなくなる。
"Tempering time: 100-300s"
The tempering time maintained at the above tempering temperature needs to be 100 to 300 s. This is also because the martensite up to room temperature is tempered and the movable dislocations introduced during the martensite transformation are fixed, for the same reason as the tempering temperature. Both YR, (TS × EL), and λ decrease in a short time when the tempering time is less than 100 s. If the same time exceeds 300 s, it becomes difficult to maintain TS at 590 MPa or more, and the residual γ is decomposed, thereby making it impossible to improve (TS × EL).

「焼戻し後の冷却条件」
焼戻し後の冷却条件(第3冷却)については特に限定するものではないが、通常行なわれている徐冷(放冷)で良い。
"Cooling conditions after tempering"
The cooling condition after the tempering (third cooling) is not particularly limited, but the ordinary cooling (relative cooling) may be used.

<再加熱、焼戻し及び冷却条件B>
「再加熱の加熱速度:8℃/s以上」
前記の第2冷却により常温となった鋼板を、条件Aよりも高温域である480〜580℃に再加熱して焼戻しを行なうが、その際の加熱は8℃/s以上の高速加熱とする。粗大セメンタイト粒子が形成されやすい300〜480℃の滞在時間を低減することで、焼戻しマルテンサイト内に存在する円相当直径200nm以上のセメンタイト粒子の数密度を1個/μm以下としてさらにλを高める。加熱速度(昇温速度)が8℃/s未満ではλが低下するので好ましくない。
<Reheating, tempering and cooling conditions B>
“Heating rate of reheating: 8 ° C / s or more”
The steel sheet brought to room temperature by the second cooling is tempered by reheating to 480 to 580 ° C., which is higher than the condition A, and heating at that time is performed at a high speed of 8 ° C./s or more. . By reducing the residence time at 300 to 480 ° C. at which coarse cementite particles are easily formed, the number density of cementite particles having a circle-equivalent diameter of 200 nm or more present in tempered martensite is 1 / μm 2 or less to further increase λ. . A heating rate (temperature increase rate) of less than 8 ° C./s is not preferable because λ decreases.

「焼戻し温度:480〜580℃」
本条件では、480〜580℃の高温焼戻しとする。この理由は粗大セメンタイト粒子の形成をさけるため急速昇温した分、条件Aの焼き戻し温度範囲ではマルテンサイトの焼き戻しが不足して、EL、λが低下するためである。
“Tempering temperature: 480-580 ° C.”
Under these conditions, the temperature is tempered at 480 to 580 ° C. This is because the tempering of martensite is insufficient in the tempering temperature range of Condition A and EL and λ are lowered by the rapid temperature rise to avoid the formation of coarse cementite particles.

「焼戻し時間:焼戻し温度若しくは焼戻し温度から10℃以下の温度降下の範囲内の温度で20s以下」
上記した焼戻し温度に保持される焼き戻し時間は20s以下の短時間とする。但し、この焼き戻し時間は焼戻し温度がその焼戻し開始から終了まで一定の温度に保持されず温度降下がある場合も考慮して焼戻し温度が低下しても10℃以内の範囲であれば上記480〜580℃で選択された焼戻し温度と同等の温度で焼き戻されたものとみなし、この場合も含めて焼き戻し時間は20s以下とする。すなわち、焼戻し開始温度〜焼戻し開始温度−10℃で20s以下保持して焼戻しを終了させることを意味する。
この焼戻し時間が20sを超えると、粗大なセメンタイト粒子が生成してλが低下する。またマルテンサイトが過剰に焼き戻されることでTS590MPaが確保できない。
“Tempering time: 20 s or less at tempering temperature or within a temperature drop range of 10 ° C. or less from tempering temperature”
The tempering time maintained at the above tempering temperature is a short time of 20 s or less. However, if the tempering temperature is within a range of 10 ° C. or less even if the tempering temperature is lowered in consideration of the case where the tempering temperature is not maintained at a constant temperature from the start to the end and there is a temperature drop, the above 480 to 480 It is assumed that the material has been tempered at a temperature equivalent to the tempering temperature selected at 580 ° C., and the tempering time including this case is 20 s or less. That is, it means that the tempering is terminated by holding for 20 seconds or less at a tempering start temperature to a tempering start temperature of −10 ° C.
When this tempering time exceeds 20 s, coarse cementite particles are generated and λ decreases. Moreover, TS590MPa cannot be ensured because martensite is excessively tempered.

「焼戻し後の冷却条件:5℃/sを超える冷却速度で常温まで冷却」
上記焼戻しが終了すると、これを常温まで冷却(第3冷却)するが、このときの冷却速度(第3冷却速度)を5℃/sを超える条件で行なう必要がある。
これは、5℃/s以下の冷却速度では300〜480℃の滞在時間が長時間化することにより粗大セメンタイトが形成されてλが低下するためである。
“Cooling conditions after tempering: Cooling to room temperature at a cooling rate exceeding 5 ° C./s”
When the tempering is completed, it is cooled to room temperature (third cooling), but it is necessary to perform the cooling rate (third cooling rate) at this time under a condition exceeding 5 ° C./s.
This is because when the cooling rate is 5 ° C./s or less, the residence time of 300 to 480 ° C. is prolonged, so that coarse cementite is formed and λ decreases.

[本鋼板組織の測定、評価方法]
(フェライト、ベイニティックフェライト分率)
SEM観察でポリゴナルな黒い部分をフェライト、ラス状でラス幅が0.3μm以上の部分をベイニティックフェライトと定義して面積率を測定。3%ナイタール液で腐食して金属組織を顕出させた後、概略40μm×30μm領域5視野について倍率2000倍の走査型電子顕微鏡(SEM)像を観察し、点算法で1視野につき100点の測定を行って面積を求めた。
[Measurement and evaluation method of steel sheet structure]
(Ferrite, bainitic ferrite fraction)
In SEM observation, the polygonal black part is defined as ferrite, and the lath-shaped part having a lath width of 0.3 μm or more is defined as bainitic ferrite and the area ratio is measured. After corroding with a 3% nital solution to reveal the metal structure, a scanning electron microscope (SEM) image at a magnification of 2000 times was observed for approximately 5 fields of 40 μm × 30 μm region, and 100 points per field of view were calculated by a dot calculation method. Measurements were made to determine the area.

(焼戻しマルテンサイト、マルテンサイト分率)
抽出レプリカサンプルを作成し、2.4μm×1.6μmの領域3視野について倍率50000倍の透過型電子顕微鏡(TEM)像を観察した。ラス幅が0.3μm未満のラス組織中のセメンタイトの有無を確認し、セメンタイトが存在する組織は焼戻しマルテンサイト、セメンタイトが存在しない組織はマルテンサイトとして同定した。
(Tempered martensite, martensite fraction)
An extracted replica sample was prepared, and a transmission electron microscope (TEM) image at a magnification of 50000 times was observed for three fields of view of 2.4 μm × 1.6 μm. The presence or absence of cementite in the lath structure having a lath width of less than 0.3 μm was confirmed. The structure in which cementite was present was identified as tempered martensite, and the structure in which no cementite was present was identified as martensite.

(焼戻しマルテンサイト中のセメンタイトの粒径、数密度)
上記TEMの画像のコントラストから黒い部分をセメンタイト粒子と判別してマーキングし、画像解析ソフトにて、前記マーキングした各セメンタイト粒子の面積Aから円相当直径D(D=2×(A/π)1/2)を算出するとともに、単位面積あたりに存在する所定の粒径のセメンタイト粒子の個数を求めた。
(Particle size and number density of cementite in tempered martensite)
From the contrast of the TEM image, the black portion is discriminated as a cementite particle and marked, and by image analysis software, the equivalent circle diameter D (D = 2 × (A / π) 1 is calculated from the area A of each marked cementite particle. / 2) was calculated, and the number of cementite particles having a predetermined particle size per unit area was determined.

(実施例)
以下、本発明の実施例を挙げ、その優れた効果を実証する。
実験はラボで行った。表1に示す鋼を溶製、鋳造した後、熱間圧延で、板厚30mmのスラブにした後、これを、1150℃に加熱、圧延終了温度900 ℃で板厚 2.9mmに熱延した後、650℃で10s空冷を行い、500℃で保持炉に入れ、炉冷(熱延鋼板の巻取を模擬)を行なった。この熱延鋼板をその後、冷延率 52%で冷間圧延して、1.4mmの冷延鋼板得た。
(Example)
Hereinafter, the Example of this invention is given and the outstanding effect is demonstrated.
The experiment was performed in the lab. After melting and casting the steel shown in Table 1, it was hot rolled into a slab with a plate thickness of 30 mm, and then heated to 1150 ° C. and hot rolled to a plate thickness of 2.9 mm at a rolling end temperature of 900 ° C. Thereafter, air cooling was performed at 650 ° C. for 10 s, and the furnace was placed in a holding furnace at 500 ° C. to perform furnace cooling (simulating winding of a hot-rolled steel sheet). The hot-rolled steel sheet was then cold-rolled at a cold rolling rate of 52% to obtain a 1.4 mm cold-rolled steel sheet.

これら鋼板に表2に示すような各種の条件で熱処理(均熱、冷却、焼戻し)を施し、処理後の機械的特性(YS、TS、YR、EL、λ、TS×EL)を測定、調査した。その結果を熱処理No.、鋼種(成分組成)、組織とともに表3に示す。なお、同表3の組織(面積率)のその他の欄において、Pとあるのはパーライト、Θはセメンタイトを表す。   These steel plates are subjected to heat treatment (soaking, cooling, tempering) under various conditions as shown in Table 2, and the mechanical properties after treatment (YS, TS, YR, EL, λ, TS × EL) are measured and investigated. did. The result is the heat treatment No. Table 3 shows the steel grade (component composition) and structure. In the other columns of the structure (area ratio) in Table 3, P represents pearlite and Θ represents cementite.

そして、同表3の評価の欄には、TS≧590MPa、YR≧0.70、TS×EL≧25000MPa%、及びλ≧60%を全て満足するものに○印、また、TS≧590MPa、YR≧0.70、TS×EL≧25000MPa%、及びλ≧70%を全て満足するものに◎印、また、上記以外のものに×印を付した。   In the evaluation column of Table 3, TS ≧ 590 MPa, YR ≧ 0.70, TS × EL ≧ 25000 MPa%, and λ ≧ 60% are all satisfied with ○, TS ≧ 590 MPa, YR Those satisfying all of ≧ 0.70, TS × EL ≧ 25000 MPa%, and λ ≧ 70% were marked with “◎”, and those other than the above were marked with “x”.

この表3の諸特性から知れるように、本発明に係る冷延鋼板(発明例)は他の冷延鋼板(比較例)に比べて何れも優れた特性を有するとともに、自動車部品としての厳しい要求に十分に応える高品質を備えた鋼板であることが分かる。   As can be seen from the various properties in Table 3, the cold-rolled steel sheet according to the present invention (invention example) has excellent characteristics as compared with other cold-rolled steel sheets (comparative example), and strict requirements for automobile parts. It can be seen that this is a steel plate with high quality that fully meets the requirements.

Claims (7)

C:0.10〜0.30%(質量%の意味。以下同じ)、
Si:0.50〜2.50%、
Mn:1.00%未満(0%を含む)
P:0.100%以下(0%を含む)、
S:0.010%以下(0%を含む)、
Al:0.50〜3.00%、
N:0.0020〜0.0100%、
残部が鉄及び不可避不純物からなり、
鋼組織が
フェライト分率:60〜90%、
ベイニティックフェライト分率:10%以下(0%含む)
残留γ分率:5%以上、
焼戻しマルテンサイト分率 5%〜30%、
マルテンサイト分率 5%以下(0%含む)
焼戻しマルテンサイト内に存在するセメンタイトの円相当直径の平均粒径が200nm以下、かつ、その数密度が10個/μm以上、
であることを特徴とする高い降伏比と成形性を有する高強度鋼板。
C: 0.10 to 0.30% (meaning mass%, the same shall apply hereinafter)
Si: 0.50 to 2.50%,
Mn: less than 1.00% (including 0%)
P: 0.100% or less (including 0%),
S: 0.010% or less (including 0%),
Al: 0.50 to 3.00%,
N: 0.0020 to 0.0100%,
The balance consists of iron and inevitable impurities,
Steel structure has a ferrite fraction of 60-90%,
Bainitic ferrite fraction: 10% or less (including 0%)
Residual γ fraction: 5% or more,
Tempered martensite fraction 5% -30%,
Martensite fraction 5% or less (including 0%)
The average particle diameter of the equivalent circle diameter of cementite present in the tempered martensite is 200 nm or less, and the number density is 10 / μm 2 or more,
A high-strength steel sheet having a high yield ratio and formability.
焼戻しマルテンサイト内に存在する円相当直径200nm以上のセメンタイト粒子の数密度が1個/μm以下である請求項1に記載の高い降伏比と成形性を有する高強度鋼板。 The high-strength steel sheet having a high yield ratio and formability according to claim 1, wherein the number density of cementite particles having an equivalent circle diameter of 200 nm or more present in the tempered martensite is 1 piece / µm 2 or less. 更に、
V:0.01〜1.00%、
Ti:0.01〜0.30%、
Nb:0.01〜0.30%、
の1種もしくは2種以上を含む請求項1または2に記載の高い降伏比と成形性を有する高強度鋼板。
Furthermore,
V: 0.01-1.00%,
Ti: 0.01-0.30%,
Nb: 0.01-0.30%
A high-strength steel sheet having a high yield ratio and formability according to claim 1 or 2, comprising one or more of the following.
更に、
Cr:0.01〜3.00%、
Mo:0.01〜1.00%、
Cu:0.01〜2.00%、
Ni:0.01〜2.00%、
B:0.0001〜0.005%、
の1種もしくは2種以上を含む請求項1〜3のいずれかに記載の高い降伏比と成形性を有する高強度鋼板。
Furthermore,
Cr: 0.01 to 3.00%,
Mo: 0.01 to 1.00%,
Cu: 0.01-2.00%,
Ni: 0.01 to 2.00%,
B: 0.0001 to 0.005%,
A high-strength steel sheet having a high yield ratio and formability according to any one of claims 1 to 3, comprising one or more of the following.
更に、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0001〜0.01%、
の1種もしくは2種以上を含む請求項1〜4のいずれかに記載の高い降伏比と成形性を有する高強度鋼板。
Furthermore,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: 0.0001 to 0.01%,
A high-strength steel sheet having a high yield ratio and formability according to any one of claims 1 to 4, comprising one or more of the following.
請求項1〜5のいずれかに記載の高強度鋼板の製造方法であって、
鋼材に、熱間圧延及び冷間圧延を施して得た鋼板を、
[0.6Ac1+0.4Ac3]以上の温度に加熱し、
該温度で10〜1000s保持する均熱を行った後、
15℃/s以下の冷却速度で750〜550℃まで冷却し、
次いで100℃/s以上の冷却速度で常温まで冷却し、
さらに、該鋼板を、300〜480℃に再加熱し、
該温度で100〜300s保持する焼戻しを行った後、
常温まで冷却する
ことを特徴とする高い降伏比と成形性を有する高強度鋼板の製造方法。
It is a manufacturing method of the high strength steel plate according to any one of claims 1 to 5 ,
A steel plate obtained by subjecting steel material to hot rolling and cold rolling,
Heat to a temperature of [0.6Ac1 + 0.4Ac3] or higher,
After soaking for 10 to 1000 seconds at the temperature,
Cool to 750-550 ° C. at a cooling rate of 15 ° C./s or less,
Next, it is cooled to room temperature at a cooling rate of 100 ° C./s or more,
Furthermore, the steel sheet is reheated to 300 to 480 ° C.,
After tempering for 100-300 s at this temperature,
A method for producing a high-strength steel sheet having a high yield ratio and formability, characterized by cooling to room temperature.
請求項1〜5のいずれかに記載の高強度鋼板の製造方法であって、
鋼材に、熱間圧延及び冷間圧延を施して得た鋼板を、
[0.6Ac1+0.4Ac3]以上の温度に加熱し、
該温度で10〜1000s保持する均熱を行った後、
15℃/s以下の冷却速度で750〜550℃まで冷却し、
次いで100℃/s以上の冷却速度で常温まで冷却し、
さらに、該鋼板を、8℃/s以上の加熱速度で480〜580℃に再加熱し、
該温度若しくは該温度から10℃以下の温度降下の範囲内の温度において20s以下保持する焼戻しを行った後、
5℃/sを超える冷却速度で常温まで冷却する
ことを特徴とする高い降伏比と成形性を有する高強度鋼板の製造方法。
It is a manufacturing method of the high strength steel plate according to any one of claims 1 to 5 ,
A steel plate obtained by subjecting steel material to hot rolling and cold rolling,
Heat to a temperature of [0.6Ac1 + 0.4Ac3] or higher,
After soaking for 10 to 1000 seconds at the temperature,
Cool to 750-550 ° C. at a cooling rate of 15 ° C./s or less,
Next, it is cooled to room temperature at a cooling rate of 100 ° C./s or more,
Furthermore, the steel sheet is reheated to 480 to 580 ° C. at a heating rate of 8 ° C./s or more,
After tempering for 20 seconds or less at the temperature or within a temperature drop range of 10 ° C. or less from the temperature,
A method for producing a high-strength steel sheet having a high yield ratio and formability, characterized by cooling to room temperature at a cooling rate exceeding 5 ° C / s.
JP2013183894A 2013-09-05 2013-09-05 High-strength steel sheet having high yield ratio and formability and manufacturing method thereof Active JP6121292B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013183894A JP6121292B2 (en) 2013-09-05 2013-09-05 High-strength steel sheet having high yield ratio and formability and manufacturing method thereof
PCT/JP2014/073390 WO2015034021A1 (en) 2013-09-05 2014-09-04 High-strength steel sheet having a high yield ratio and moldability, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183894A JP6121292B2 (en) 2013-09-05 2013-09-05 High-strength steel sheet having high yield ratio and formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015052132A JP2015052132A (en) 2015-03-19
JP6121292B2 true JP6121292B2 (en) 2017-04-26

Family

ID=52628484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183894A Active JP6121292B2 (en) 2013-09-05 2013-09-05 High-strength steel sheet having high yield ratio and formability and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6121292B2 (en)
WO (1) WO2015034021A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235621B2 (en) * 2019-08-27 2023-03-08 株式会社神戸製鋼所 Steel plate for low-strength hot stamping, hot stamped parts, and method for manufacturing hot stamped parts
CN111690882A (en) * 2020-07-29 2020-09-22 攀钢集团研究院有限公司 660 MPa-grade high-corrosion-resistance weathering steel and preparation method thereof
WO2024161363A1 (en) * 2023-02-04 2024-08-08 Tata Steel Limited A high-strength hot-rolled wear resistant steel and a method of manufacturing thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463685B2 (en) * 2009-02-25 2014-04-09 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5509909B2 (en) * 2010-02-22 2014-06-04 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet
TWI489000B (en) * 2011-07-29 2015-06-21 Nippon Steel & Sumitomo Metal Corp An alloyed molten zinc plating layer and a steel sheet having the same, and a method for producing the same
CN103857819B (en) * 2011-10-04 2016-01-13 杰富意钢铁株式会社 High tensile steel plate and manufacture method thereof

Also Published As

Publication number Publication date
WO2015034021A1 (en) 2015-03-12
JP2015052132A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6524810B2 (en) Steel plate excellent in spot weld resistance and its manufacturing method
JP6341214B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP6008039B2 (en) High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
CN102822375B (en) Ultra high strength cold rolled steel sheet and method for producing same
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP6466582B2 (en) Yield strength 800 MPa class high strength steel and method for producing the same
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP2008019453A (en) Hot-rolled thin steel plate having superior workability and superior strength and toughness after heat treatment, and manufacturing method therefor
CN103097556A (en) Method for producing a hot-rolled steel product, and a hot-rolled steel
JP5862591B2 (en) High strength steel plate and manufacturing method thereof
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP6811694B2 (en) Steel plate and its manufacturing method
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP5365758B2 (en) Steel sheet and manufacturing method thereof
JP6737419B1 (en) Thin steel sheet and method of manufacturing the same
JP2013108167A (en) Method of producing high strength steel plate of tensile strength of 950 mpa or greater, excellent in weldability and delayed fracture resistance
JP5842748B2 (en) Cold rolled steel sheet and method for producing the same
JP6121292B2 (en) High-strength steel sheet having high yield ratio and formability and manufacturing method thereof
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170329

R150 Certificate of patent or registration of utility model

Ref document number: 6121292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150