[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6116157B2 - Device feeding device, in-body device feeding device, and in-body device feeding method - Google Patents

Device feeding device, in-body device feeding device, and in-body device feeding method Download PDF

Info

Publication number
JP6116157B2
JP6116157B2 JP2012183365A JP2012183365A JP6116157B2 JP 6116157 B2 JP6116157 B2 JP 6116157B2 JP 2012183365 A JP2012183365 A JP 2012183365A JP 2012183365 A JP2012183365 A JP 2012183365A JP 6116157 B2 JP6116157 B2 JP 6116157B2
Authority
JP
Japan
Prior art keywords
resonator
coil
power supply
power
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012183365A
Other languages
Japanese (ja)
Other versions
JP2014039665A (en
Inventor
粟井 郁雄
郁雄 粟井
綱四郎 橋本
綱四郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryutech Corporation
Original Assignee
Ryutech Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryutech Corporation filed Critical Ryutech Corporation
Priority to JP2012183365A priority Critical patent/JP6116157B2/en
Publication of JP2014039665A publication Critical patent/JP2014039665A/en
Application granted granted Critical
Publication of JP6116157B2 publication Critical patent/JP6116157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Endoscopes (AREA)

Description

本発明は、機器に対して非接触にて給電する機器給電装置、体内にある内視鏡カプセルや臓器センサー等の体内機器に体外から給電する体内機器給電装置及び体内機器給電方法に関する。 The present invention, non-contact device supply electric location of feed at relates vivo device power supply apparatus and the body device power supply method for supplying power from the endoscope capsule and organ sensors like outside the body device in the body to the device.

従来、特許文献1に記載される電力供給装置が知られている。この電力供給装置は、人の体内に導入された機器であるカプセル型内視鏡に人の体外から非接触にて電力を供給している。具体的には、人の体に巻かれた送電用コイルから発生される交流磁界が体内のカプセル型内視鏡に設けられた受電用コイルに作用し、その交流磁界が作用する受電用コイルにて発生する交流電流がカプセル型内視鏡の各部への給電に利用される。   Conventionally, the electric power supply apparatus described in patent document 1 is known. This power supply device supplies power to a capsule endoscope, which is a device introduced into a human body, in a non-contact manner from outside the human body. Specifically, an AC magnetic field generated from a power transmission coil wound around a human body acts on a power receiving coil provided in a capsule endoscope inside the body, and the power receiving coil on which the AC magnetic field acts The alternating current generated in this way is used to supply power to each part of the capsule endoscope.

特開2007−105218号公報JP 2007-105218 A

上記のような電力供給装置(給電装置)では、人の体に巻きつける等、比較的大きい送電用コイルにて発生する交流磁界を体内のカプセル型内視鏡に設けられるほどの極めて小さい受電用コイルに作用させるため、電力の伝送効率が一般的に良くなく、それを改善することが望まれている。   In the power supply device (power supply device) as described above, for receiving power that is extremely small, such as being wound around a human body, an alternating magnetic field generated by a relatively large power transmission coil is provided in the capsule endoscope in the body. In order to act on the coil, the power transmission efficiency is generally not good, and it is desired to improve it.

本発明は、このような事情に鑑みてなされたもので、機器に対してできるだけ効率よく非接触にて給電することのできる機器給電装置及び機器給電方法、更に、体内にある機器に対してできるだけ効率良く体外から給電することのできる体内機器給電装置を提供するものである。   The present invention has been made in view of such circumstances, and an apparatus power supply apparatus and an apparatus power supply method capable of supplying power to a device in a non-contact manner as efficiently as possible, and further to a device in the body as much as possible. It is an object of the present invention to provide an in-vivo device power supply device that can efficiently supply power from outside the body.

また、本発明に係る体内機器給電装置は、スパイラルコイルである第1のコイルを含む第1の共振器と、該第1のコイルに接続されることなく、当該第1のコイルに対して所定の距離離れて同軸的に配置されるスパイラルコイルである第2のコイルを含む第2の共振器とを備え、交流電流が前記第1のコイルに供給されている状態で、前記第1の共振器と前記第2の共振器とが磁気的に結合して共振する結合共振器と、前記交流電流を前記第1のコイルに供給する電源とを有し、前記第1のコイルと前記第2のコイルとが動物の体を挟んで前記所定距離離れて対向配置され、前記動物の体内に導入された機器に設けられて前記結合共振器に磁気的に結合する第3の共振器を介して前記機器に給電する構成となる。
In addition, the in-vivo device power supply device according to the present invention includes a first resonator including a first coil that is a spiral coil, and a predetermined connection to the first coil without being connected to the first coil. And a second resonator including a second coil which is a spiral coil arranged coaxially at a distance of the first resonance in a state where an alternating current is supplied to the first coil. And a second resonator that magnetically couples and resonates, and a power source that supplies the alternating current to the first coil, the first coil and the second Via a third resonator which is disposed opposite to the animal body with the predetermined distance therebetween and is magnetically coupled to the coupled resonator provided in a device introduced into the animal body. The power is supplied to the device.

このような構成により、結合共振器における第1のコイルに交流電流が供給されると、該第1のコイルに対して所定の距離離れて同軸的に対向配置される第2のコイルに特に交流電流の供給がなされなくても、前記第1のコイルを含む第1の共振器と前記第2のコイルを含む第2の共振器とが磁気的に結合して共振する。その結果、動物の体を挟んで前記所定距離離れて対向配置された前記第1のコイルと前記第2のコイルの間の前記動物の体内には、第1の共振器により生じる磁界と、第2の共振器により生じる磁界とが重畳されて合成磁界が生じる。そして、その体内に導入された機器(例えば、カプセル型内視鏡)に設けられた第3の共振器が前記結合共振器(第1の共振器及び第2の共振器)に磁気的に結合することで、前記第3の共振器の前記合成磁界との電磁作用に基づいて生じ得る電力が前記機器(例えば、カプセル型内視鏡)に供給される。そして、第1のコイル及び第2のコイルが、扁平なスパイラルコイルにて構成されるので、これら第1のコイル及び第2のコイルを動物の体を挟んで対向配置させ易い。
With such a configuration, when an alternating current is supplied to the first coil in the coupled resonator, the alternating current is applied to the second coil that is coaxially disposed opposite to the first coil by a predetermined distance. Even if no current is supplied, the first resonator including the first coil and the second resonator including the second coil are magnetically coupled to resonate. As a result, the animal body between the first coil and the second coil that are opposed to each other with the predetermined distance across the animal body has a magnetic field generated by the first resonator, A magnetic field generated by the two resonators is superimposed to generate a combined magnetic field. And the 3rd resonator provided in the apparatus (for example, capsule type endoscope) introduced into the inside of the body is magnetically coupled with the above-mentioned coupling resonator (the 1st resonator and the 2nd resonator). Thus, electric power that can be generated based on the electromagnetic action of the third resonator with the combined magnetic field is supplied to the device (for example, a capsule endoscope). And since the 1st coil and the 2nd coil are comprised by the flat spiral coil, it is easy to arrange these 1st coils and the 2nd coil oppositely across the animal's body.

また、本発明に係る機器給電装置第1のコイルを含む第1の共振器と、該第1のコイルに接続されることなく、当該第1のコイルに対して所定の距離離れて同軸的に対向配置される第2のコイルを含む第2の共振器とを備え、交流電流が前記第1のコイルに供給されている状態で、前記第1の共振器と前記第2の共振器とが磁気的に結合して共振する結合共振器と、前記交流電流を前記第1のコイルに供給する電源とを有し、前記結合共振器において対応配置される前記第1のコイルと前記第2のコイルとの間に配置される機器に設けられ、前記結合共振器に磁気的に結合する第3の共振器を介して前記機器に給電し、前記結合共振器は、前記第1の共振器と前記第2の共振器とが奇モード周波数をもって共振するよう構成されるFurther, engagement Ru equipment power supply device according to the present invention includes a first resonator including a first coil, without being connected to the first coil, a predetermined distance away relative to the first coil And a second resonator including a second coil disposed coaxially and oppositely, and in a state where an alternating current is supplied to the first coil, the first resonator and the second resonator A coupled resonator that is magnetically coupled to the resonator and resonates; and a power source that supplies the alternating current to the first coil; and the first coil that is disposed correspondingly in the coupled resonator; Power is supplied to the device via a third resonator provided in a device disposed between the second coil and magnetically coupled to the coupled resonator, and the coupled resonator includes the first resonator. and the resonator and the second resonator is configured to resonate with the odd mode frequency.

このような構成により、第1のコイルと第2のコイルとの間での合成磁界強度が比較的大きくなるので、第3の共振器を介して機器により効率的に給電することができる。   With such a configuration, since the combined magnetic field strength between the first coil and the second coil becomes relatively large, power can be efficiently supplied to the device via the third resonator.

本発明によれば、単一の共振器(第1の共振器の第1のコイル)への交流電流(エネルギー)の供給によって、2つの共振器(第1の共振器及び第2の共振器)による合成磁界に基づいた電力が機器(体内に導入された機器)に供給されるので、該機器に対してより効率よく非接触にて給電することができる。   According to the present invention, two resonators (a first resonator and a second resonator) are supplied by supplying an alternating current (energy) to a single resonator (a first coil of the first resonator). ) Is supplied to the device (device introduced into the body) based on the combined magnetic field, so that the device can be more efficiently contactlessly powered.

本発明の実施の形態に係る体内機器給電装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the in-body apparatus electric power feeder which concerns on embodiment of this invention. 図1に示す体内給電装置における第1の給電側共振器の第1の給電側コイルが納められる第1パッドと、第2の給電側共振器が納められる第2パッドとの被験者(人)に対する配置例を示す図である。The subject (person) of the first pad in which the first power supply side coil of the first power supply side resonator and the second pad in which the second power supply side resonator are stored in the in-body power supply device shown in FIG. It is a figure which shows the example of arrangement | positioning. 体内機器に設けられる給電回路の一部を示す回路図である。It is a circuit diagram which shows a part of electric power feeding circuit provided in an in-vivo apparatus. 奇モード周波数foddと偶モード周波数fevnの一例を示す図である。It is a figure which shows an example of the odd mode frequency fodd and the even mode frequency fevn. 偶モード周波数で共振した場合の、2つのコイルR1、R2(共振器)により生じる合成磁界Hc及び合成電界Ecを概念的に示す図である。It is a figure which shows notionally the synthetic | combination magnetic field Hc and the synthetic | combination electric field Ec which are produced | generated by two coils R1, R2 (resonator) at the time of resonating with an even mode frequency. 奇モード周波数で共振した場合の、2つのコイルR1、R2(共振器)により生じる合成磁界Hc及び合成電界Ecを概念的に示す図である。It is a figure which shows notionally the synthetic | combination magnetic field Hc and the synthetic | combination electric field Ec which are produced | generated by two coils R1, R2 (resonator) at the time of resonating with an odd mode frequency. 奇モード共振において、第1の給電側コイルにより生じる磁界H1と、第2の給電側コイルにより生じる磁界H2とそれらの合成磁界Hcを概念的に示す図である。In odd mode resonance, it is a figure which shows notionally the magnetic field H1 produced | generated by the 1st electric power feeding side coil, the magnetic field H2 produced | generated by the 2nd electric power feeding side coil, and those synthetic magnetic fields Hc. 結合マイクロストリップ共振器(オープンリング共振器)を示す図である。It is a figure which shows a coupling | bonding microstrip resonator (open ring resonator). 結合マイクロストリップ共振器(マルチオープンリング共振器)を示す図である。It is a figure which shows a coupling | bonding microstrip resonator (multi-open ring resonator). 結合マイクロストリップ共振器(スパイラル共振器)を示す図である。It is a figure which shows a coupling | bonding microstrip resonator (spiral resonator). LTCC4重マイクロストリップインターディジタル共振器を示す図である。It is a figure which shows the LTCC quadruple microstrip interdigital resonator. 奇モードの磁界分布を概念的に示す図である。It is a figure which shows notionally the magnetic field distribution of odd mode notionally. 奇モードの電界分布を概念的に示す図である。It is a figure which shows notionally the electric field distribution of odd mode. 偶モードの磁界分布を概念的に示す図である。It is a figure which shows notionally magnetic field distribution notionally. 偶モードの電界分布を概念的に示す図である。It is a figure which shows the electric field distribution of even mode notionally. 基本スパイラルコイルを示す図である。It is a figure which shows a basic spiral coil. 単一共振器を示す図である。It is a figure which shows a single resonator. 分割共振器を示す図である。It is a figure which shows a split resonator. デュアル共振器を示す図である。It is a figure which shows a dual resonator. 単一、分割、デュアル共振器の中心軸上磁界分布(シミュレーション)を示す図である。It is a figure which shows the magnetic field distribution (simulation) on the central axis of a single, a division | segmentation, and a dual resonator. 奇モード共振時の単一、分割、デュアル共振器の中心軸上電界振幅分布(シミュレーション)を示す図である。It is a figure which shows the electric field amplitude distribution (simulation) on the central axis of a single, a division, and a dual resonator at the time of odd mode resonance. コイル巻き数nによるインダクタンスL、付加すべき容量Cの変化(共振周波数は1MHz)(シミュレーション)を示す図である。It is a figure which shows the change (resonance frequency is 1 MHz) (simulation) of the inductance L by the coil winding number n, and the capacity | capacitance C which should be added. コイル巻き数nによるインダクタンスL、付加すべき容量Cの変化(共振周波数は1MHz)(測定)を示す図である。It is a figure which shows the change (resonance frequency is 1 MHz) (measurement) of the inductance L by the coil winding number n, and the capacity | capacitance C which should be added. コイル巻き数による無負荷Qの変化(測定)を示す図である。It is a figure which shows the change (measurement) of the no-load Q by the number of coil turns. 受電コイルの形状を示す図である。It is a figure which shows the shape of a receiving coil. コイル巻き数の結合係数への影響(シミュレーション)を示す図である。It is a figure which shows the influence (simulation) on the coupling coefficient of the number of coil turns. コイル巻き数の結合係数への影響(測定)を示す図である。It is a figure which shows the influence (measurement) on the coupling coefficient of the number of coil turns. デュアル共振器の片方をソレノイドに変更したタイプを示す図である。It is a figure which shows the type which changed one side of the dual resonator to the solenoid. スパイラル−ソレノイド結合デュアル共振器の結合係数の中心軸上分布(シミュレーション)を示す図である。It is a figure which shows distribution (simulation) on the central axis of the coupling coefficient of a spiral-solenoid coupling dual resonator. スパイラルコイルの間隔に対するデュアル共振器の最低次モード共振周波数(測定)を示す図である。It is a figure which shows the lowest mode resonance frequency (measurement) of the dual resonator with respect to the space | interval of a spiral coil. 磁界分布の一様性を増加させるスパイラルコイルの巻き方を示す図である。It is a figure which shows how to wind the spiral coil which increases the uniformity of magnetic field distribution. 一様巻きデュアルスパイラル共振器の磁界分布(シミュレーション)を示す図である。It is a figure which shows the magnetic field distribution (simulation) of a uniform winding dual spiral resonator. 不均等巻きデュアルスパイラル共振器の磁界分布(シミュレーション)を示す図である。It is a figure which shows the magnetic field distribution (simulation) of a non-uniform winding dual spiral resonator. 不均等巻きデュアルスパイラル共振器と中心軸上に置かれた受電コイルとの結合係数(シミュレーション)を示す図である。It is a figure which shows the coupling coefficient (simulation) of the non-uniform winding dual spiral resonator and the receiving coil placed on the central axis.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施の形態に係る体内機器給電装置は、図1に示すように構成される。   The in-vivo device electric power feeder which concerns on embodiment of this invention is comprised as shown in FIG.

図1において、この体内機器給電装置は、第1の給電側共振器10(第1の共振器)と第2の給電側共振器20(第2の共振器)とを有している。第1の給電側共振器10は、所定巻き数となるスパイラルコイルで形成された第1の給電側コイル11(第1のコイル)とコンデンサ12とを含むLC回路で構成されている。このLC回路において、第1の給電側コイル11とコンデンサ12とに直列的に交流電源13が接続され、交流電源13から第1の給電側コイル11及びコンデンサ12(第1の給電側共振器10)に交流電流が供給される。   In FIG. 1, the in-vivo device power supply apparatus includes a first power supply side resonator 10 (first resonator) and a second power supply side resonator 20 (second resonator). The first power supply side resonator 10 is configured by an LC circuit including a first power supply side coil 11 (first coil) and a capacitor 12 formed by a spiral coil having a predetermined number of turns. In this LC circuit, an AC power supply 13 is connected in series to a first power supply side coil 11 and a capacitor 12, and the first power supply side coil 11 and the capacitor 12 (the first power supply side resonator 10 are connected from the AC power supply 13. ) Is supplied with an alternating current.

第2の給電側共振器20は、第1の給電側共振器10と同様に、所定巻き数となるスパイラルコイルで形成された第2の給電側コイル21(第2のコイル)とコンデンサ22とを含むLC回路で構成されている。このLC回路には、第1の給電側共振器10と異なり、交流電源が接続されていない。   Similar to the first power supply side resonator 10, the second power supply side resonator 20 includes a second power supply side coil 21 (second coil) formed by a spiral coil having a predetermined number of turns, a capacitor 22, and the like. It is comprised by LC circuit containing. Unlike the first power supply side resonator 10, an AC power source is not connected to this LC circuit.

第1の給電側共振器10における第1の給電側コイル21及びコンデンサ12を含むLC回路は、扁平な形状の第1パッド110に収められ、第2の給電側共振器20における第2の給電側コイル21及びコンデンサ22を含むLC回路もまた、扁平な形状の第2パッド120に収められている。例えば、図2に示すように、第1パッド110は、ベッド200の被験者(人)HMNの背中に対向する位置に置かれ、第2パッド210は、第1パッド110と所定間隔A離れるように被験者HMNの腹部に対向して設置される。これにより、第1パッド110内の第1の給電側コイル11と第2パッド120内の第2の給電側コイル21とが、相互に所定間隔A離れて同軸的に対向配置される。そして、交流電源13からの交流電流が第1の給電側コイル11に供給されている状態で、第1の給電側共振器10と第2の給電側共振器とが磁気的に結合して共振するように、第1の給電側コイル11のインダクタンスL、コンデンサ11の容量、第2の給電側コイル21のインダクタンスL及びコンデンサ21の容量が決められている。このように磁気的に結合して共振する第1の給電側共振器10と第2の給電側共振器20とによって結合共振器が構成される。   The LC circuit including the first feeding side coil 21 and the capacitor 12 in the first feeding side resonator 10 is housed in a flat first pad 110, and the second feeding in the second feeding side resonator 20. The LC circuit including the side coil 21 and the capacitor 22 is also accommodated in the flat second pad 120. For example, as shown in FIG. 2, the first pad 110 is placed at a position facing the back of the subject (person) HMN in the bed 200, and the second pad 210 is separated from the first pad 110 by a predetermined distance A. It is placed facing the abdomen of the subject HMN. As a result, the first power supply side coil 11 in the first pad 110 and the second power supply side coil 21 in the second pad 120 are coaxially opposed to each other with a predetermined distance A therebetween. Then, with the alternating current from the alternating current power supply 13 being supplied to the first power supply side coil 11, the first power supply side resonator 10 and the second power supply side resonator are magnetically coupled to resonate. Thus, the inductance L of the first power supply side coil 11, the capacity of the capacitor 11, the inductance L of the second power supply side coil 21, and the capacity of the capacitor 21 are determined. The first feeding side resonator 10 and the second feeding side resonator 20 that are magnetically coupled and resonated in this way constitute a coupled resonator.

被験者(人)HMNの体内に導入される体内機器(例えば、カプセル型内視鏡、臓器センサ)100には、受電側コイル31を含む受電側共振器30(第3の共振器)が設けられる。この受電側共振器30は、図3に示すように、受電側コイル31(ソレノイド、スパイラルコイル等)及びコンデンサ32を含むLC回路で形成されている。体内機器100では、受電側共振器30にて生成される交流電流が整流回路33によって整流され、直流電流となって各部に供給(給電)される。   A power receiving side resonator 30 (third resonator) including a power receiving side coil 31 is provided in an in-vivo device (for example, capsule endoscope, organ sensor) 100 introduced into the body of a subject (person) HMN. . As shown in FIG. 3, the power receiving side resonator 30 is formed of an LC circuit including a power receiving side coil 31 (solenoid, spiral coil, etc.) and a capacitor 32. In the in-vivo device 100, the alternating current generated by the power receiving resonator 30 is rectified by the rectifier circuit 33 and supplied (powered) to each part as a direct current.

ところで、一般に、2つの共振器(コイル)が電磁気的に結合して共振するモードとして、例えば、図4に示すように、比較的高い周波数fevn(偶モード周波数という)で共振する偶モードと、比較的低い周波数fodd(奇モード周波数という)で共振する奇モードとがある。2つの共振器が偶モードで共振する場合、それら共振器のコイルR1とR2との間の領域には、図5Aに示すように、一方のコイルR1の位置で負値(最小値)となって単調増加して他方のコイルR2の位置で最大値(正値)となる分布の合成磁界Hcが形成されるとともに、一方のコイルR1の位置及び他方のコイルR2の位置の双方で正値となって、2つのコイルR1とR2の中央で最小値となる分布の合成電界Ecとが形成される。また、2つの共振器が奇モードで共振する場合、それら共振器のコイルR1とR2との間の領域には、図5Bに示すように、一方のコイルR1の位置及び他方のコイルR2の位置の双方で正値となって、2つのコイルR1とR2の中央で最小となる分布の合成磁界Hcが形成されるともに、一方のコイルR1の位置で負値(最小値)となって単調増加して他方のコイルR2の位置で最大値(正値)となる分布の合成電界Ecが形成される。   Incidentally, in general, as a mode in which two resonators (coils) are electromagnetically coupled and resonated, for example, as shown in FIG. 4, an even mode that resonates at a relatively high frequency fevn (referred to as an even mode frequency), and There is an odd mode that resonates at a relatively low frequency fodd (referred to as odd mode frequency). When two resonators resonate in the even mode, the region between the coils R1 and R2 of these resonators has a negative value (minimum value) at the position of one coil R1, as shown in FIG. 5A. As a result, a combined magnetic field Hc that is monotonically increased and has a maximum value (positive value) at the position of the other coil R2 is formed, and a positive value is obtained at both the position of one coil R1 and the position of the other coil R2. Thus, a combined electric field Ec having a minimum value at the center of the two coils R1 and R2 is formed. When two resonators resonate in an odd mode, the region between the coils R1 and R2 of the resonators has a position of one coil R1 and a position of the other coil R2, as shown in FIG. 5B. A combined magnetic field Hc having a minimum distribution at the center of the two coils R1 and R2 is formed, and a negative value (minimum value) is monotonically increased at the position of one coil R1. Thus, a combined electric field Ec having a maximum value (positive value) at the position of the other coil R2 is formed.

この実施の形態に係る体内機器給電装置は、第1の給電側共振器10と第2の給電側共振器20との共振によって生じる合成磁界によって電力を被験者HMNに導入された体内機器100に送るものであるので、前述した第1の給電側コイル11のインダクタンスL、コンデンサ11の容量、第2の給電側コイル21のインダクタンスL及びコンデンサ21の容量は同一共振周波数を与えるように設定され、交流電源13の周波数は第1の給電側共振器10と第2の給電側共振器20とが結合によって作る奇モード周波数foddと等しくなるように設定される。   The intracorporeal device power supply apparatus according to this embodiment sends power to the intracorporeal device 100 introduced into the subject HMN by a synthesized magnetic field generated by resonance between the first power supply resonator 10 and the second power supply resonator 20. Therefore, the inductance L of the first feeding side coil 11, the capacitance of the capacitor 11, the inductance L of the second feeding side coil 21, and the capacitance of the capacitor 21 are set so as to give the same resonance frequency. The frequency of the power supply 13 is set to be equal to the odd mode frequency fodd formed by the coupling of the first power supply side resonator 10 and the second power supply side resonator 20.

上述したような構成の体内機器給電装置では、交流電源13からの交流電流が第1の給電側コイル11に供給されると、この第1の給電側コイル11に対して所定距離A離れて同軸的に配置される第2の給電側コイル21に特に交流電流の供給がなされなくても、第1の給電側コイル11を含む第1の給電側共振器10と第2の給電側コイル21を含む第2の給電側共振器20とが磁気的に結合して偶奇モードにて共振する。そこで電源周波数を奇モード周波数(fodd)に合わせることによって、被験者HMNを挟んで所定距離A離れて対向配置された第1の給電側コイル11と第2の給電側コイル21との間の被験者HMNの体内には、図6に示すように、第1の給電側共振器10(第1の給電側コイル11)により生じる磁界H1と、第2の給電側共振器20(第2の給電側コイル21)により生じる磁界H2とが重畳されて比較的大きい強度の合成磁界Hcが生じる。これにより、被験者HMNの体内にある体内機器に設けられた受電側共振器30の受電側コイル31が、例えば、図1に示すように、第1の給電側コイル11と第2の給電側コイル21との間に形成される比較的強度の大きい合成磁界Hc内に置かれた状態になる。   In the in-vivo device power supply apparatus configured as described above, when an alternating current from the alternating current power supply 13 is supplied to the first power supply side coil 11, it is coaxial with a predetermined distance A from the first power supply side coil 11. The first feeding-side resonator 10 including the first feeding-side coil 11 and the second feeding-side coil 21 are not particularly supplied with the second feeding-side coil 21 that is disposed in a regular manner. The second power-feeding-side resonator 20 that is included is magnetically coupled to resonate in an even / odd mode. Therefore, by adjusting the power source frequency to the odd mode frequency (fodd), the subject HMN between the first power supply side coil 11 and the second power supply side coil 21 that are opposed to each other with a predetermined distance A across the subject HMN. 6, the magnetic field H1 generated by the first power supply resonator 10 (first power supply coil 11) and the second power supply resonator 20 (second power supply coil) are formed. 21) is superimposed on the magnetic field H2 generated by 21) to generate a combined magnetic field Hc having a relatively large intensity. Thereby, the power receiving side coil 31 of the power receiving side resonator 30 provided in the in-vivo device in the body of the subject HMN is, for example, as shown in FIG. 1, the first power feeding side coil 11 and the second power feeding side coil. 21 is placed in a synthetic magnetic field Hc formed with a relatively high strength.

そして、受電側コイル31及びコンデンサ32のLC回路にて構成される受電側共振器30が、前記結合共振器(第1の給電側共振器10及び第2の給電側共振器20)に磁気的に結合することで、受電側コイル31(受電側共振器30)の前記合成磁界Hcとの電磁作用に基づいて、受電側共振器30を構成する受電側コイル31及びコンデンサCのLC回路に交流電流が生じる。そして、体内機器100では、前記LC回路にて生じた交流電流が整流回路33によって整流され、直流電流となって各部に供給(給電)される。   The power receiving side resonator 30 constituted by the LC circuit of the power receiving side coil 31 and the capacitor 32 is magnetically coupled to the coupling resonator (the first power feeding side resonator 10 and the second power feeding side resonator 20). Is coupled to the LC circuit of the power receiving side coil 31 and the capacitor C constituting the power receiving side resonator 30 based on the electromagnetic action of the power receiving side coil 31 (power receiving side resonator 30) with the synthetic magnetic field Hc. An electric current is generated. In the in-vivo device 100, the alternating current generated in the LC circuit is rectified by the rectifying circuit 33 and supplied (powered) to each part as a direct current.

前述したような本発明の実施の形態に係る体内機器給電装置によれば、第1の給電側共振器10(単一の共振器)への交流電流(エネルギー)の供給によって、第1の給電側共振器10及び第2の給電側共振器20の2つの共振器による比較的強度の大きい合成磁界Hc(図6参照)に基づいた電力が、体内機器100に供給されるので、体内機器100に対してより効率よく非接触にて給電することができる。   According to the in-vivo device power feeding device according to the embodiment of the present invention as described above, the first power feeding is performed by supplying the alternating current (energy) to the first power feeding resonator 10 (single resonator). Since the electric power based on the combined magnetic field Hc (see FIG. 6) having a relatively high strength by the two resonators of the side resonator 10 and the second power supply side resonator 20 is supplied to the internal device 100, the internal device 100 In contrast, power can be supplied in a non-contact manner more efficiently.

なお、本願発明は、前述した体内機器給電装置に限らず、非接触にて機器に給電する機器給電装置として具現化することができる。   The present invention is not limited to the above-described in-vivo device power supply device, but can be embodied as a device power supply device that supplies power to a device in a non-contact manner.

また、第1の給電側コイル11及び第2の給電側コイル21のそれぞれは、スパイラルコイルにて形成されたが、これに限られず、それらは、他のタイプのコイル、例えば、ソレノイドコイルであってもよく、また、それらは、異なるタイプのコイル(一方がスパイラルコイル、他方がソレノイドコイル等)であってもよい。ただし、第1の給電側コイル11及び第2の給電側コイル21のそれぞれをスパイラルコイルで形成した場合、第1の給電側コイル11及び第2の給電側コイル21が扁平形状になるので、それらを収める第1パッド110及び第2パッド120(図2参照)を扁平に形成することができ、第1パッド110と第2パッド120とを被験者HMNの体を挟んで対向配置し易くなり、その結果、第1の給電側コイル11及び第2の給電側コイル21を被験者HMNの体を挟んで対向配置させ易くなる。   Further, each of the first power supply side coil 11 and the second power supply side coil 21 is formed of a spiral coil, but is not limited thereto, and these are other types of coils, for example, solenoid coils. They may also be different types of coils (one is a spiral coil, the other is a solenoid coil, etc.). However, when each of the first power supply side coil 11 and the second power supply side coil 21 is formed of a spiral coil, the first power supply side coil 11 and the second power supply side coil 21 have a flat shape. The first pad 110 and the second pad 120 (see FIG. 2) for accommodating the first pad 110 and the second pad 120 can be formed flat, and the first pad 110 and the second pad 120 can be easily arranged to face each other across the body of the subject HMN. As a result, the first power supply side coil 11 and the second power supply side coil 21 are easily arranged to face each other with the body of the subject HMN interposed therebetween.

なお、本願発明者は、図7A〜図24を参照して以下に説明するような実験及び考察に基づいて、本発明に係る機器給電装置(体内機器給電装置)をなした。以下に記載されるデュアル共振器が本願発明に係る機器給電装置(体内機器給電装置)に用いられている。   In addition, this inventor made the apparatus electric power feeder (in-body apparatus electric power feeder) which concerns on this invention based on experiment and consideration which are demonstrated below with reference to FIG. 7A-FIG. The dual resonator described below is used in a device power supply device (in-body device power supply device) according to the present invention.

1.まえがき
ワイヤレス給電(WPT)システムの中で"磁界共鳴型"は近・中距離伝送に適しており、その伝送効率の増大と効率の空間一様性の向上はシステムの応用範囲を広げるために重要である。我々は複数の結合共振器を用いてその目的を達成する一つの方法としてデュアル共振器という新しい構造を提案する。同じ構造はすでにいくつかのグループから提案されているがその使用目的がこの報告とは異なっており[1]-[3]、電磁界分布の一様化を通じて結合効率の一様化を図っている例は存在しない。この共振器は名前の示すとおり2個の共振器によって形成されており、2つは同じ共振周波数を持っている。複数の共振器を近づけると相互に結合し、その共振周波数は共振器の数と同じだけの個数に分裂することが知られており、2個の共振器を用いればいわゆる偶モード/奇モードに分裂する。
この時点でこの2個の共振器は一体化されたとみなすことが出来るので[1],[2]、これをデュアル共振器と呼んで送電用に用いる。偶奇モードは周波数が異なるので低いほうの奇モードを基本モード、高いほうの偶モードを高次モードと考えることが出来る。そしてさらに別のもう一つの共振器を導入しこれを受電側に使用するため前記奇モード周波数に合わせて両者を結合させるとWPT伝送回路が形成される。この報告ではデュアルスパイラル共振器を用いて、WPTシステムの伝送効率増大と空間一様性向上を図る。
2.結合共振器の特性
筆者の一人は以前に上のようなアイデアに基づく共振器を帯域通過フィルタ(BPF)小型化のために利用する提案を行った[1],[2].文献1ではプリント基板の上面には通常の共振器を作製し、下のグラウンド面に同型の共振器を加えた図7A〜図7Bのような共振器、文献2では低温同時焼結セラミクス(LTCC)構造の図8のような多層インターディジタルストリップ共振器を提案した。これらは互いにプロードサイド結合するストリップ導体共振器からなるため、共振周波数が強結合によって大きく上下に分裂する。そこで最も低い周波数を基本モードとしてBPFに用いれば、回路の小型化と低スプリアス化に貢献する。
しかし今回の報告では結合共振器の別の側面を利用する。それは図9A〜図9Dのように2つの結合共振器の作る電磁界分布に着目するものである。同一のスパイラル共振器を対称的に配置したとき相互結合によって偶奇モードが生ずることを前述したが、結合モード理論によって電磁界分布を解析すると図9A~図9Dのようになることが知られている[4]。近似的には奇モードでは結合によって形成される磁界は各共振器基本モードの和、電界はその差となる。一方偶モードではその逆である。
磁界結合共振器型("磁界共鳴型")WPTシステムでは磁界分布が重要で電界分布は結合にはあまり寄与しないので、図9A〜図9Dから奇モードを用いるのが良いことが分かる。受電共振器を送電共振器R1とR2の中間部においたとき、最低の磁界強度を与える中心部で単独共振器の2倍の磁界が得られるので伝送効率も2倍になるものと予想される。
3.電磁界分布
デュアル共振器の特性を明らかにするため、図10及び図11A〜図11Bに示した代表的な構造を比較検討する。図11Aは図10の基本スパイラルコイルにコンデンサを直列に加えた通常のスパイラル共振器で単一共振器と呼ぶ。図11Bは基本スパイラルコイル2つを適当な間隔だけ離して直列に接続し、共通のコンデンサを直列に加えて共振させる。これを分割共振器と呼ぶことにする。図11Cは図11Aの単一共振器を2つ対向して配置し結合させる。従って片方は外部から給電するが、他方は配線不要という特徴がある。また前述のように図11Cは2つの共振周波数を持つがそのうちの低いほうのモード(奇モード)のみを用いる。
3つの構造が作る電磁界の共振器軸に沿った強度分布を電磁界シミュレータWIPL-Dで計算して図12A及び図12B結果が得られた。分割共振器、デュアル共振器を構成する2つのスパイラルコイル間隔を20cmとし、丁度その中心を0として座標軸を決めたので、単一共振器の座標はそれにあわせて−10cmのところにスパイラルコイルを置いたことにしている。
WIPL‐Dの励振法では1Wの電力を入力し、その反射係数S11が表示されるのでS11=−3dBと3構造に対して共通になるよう励振用ループコイルを調整し、同じ量の電力が共振器に注入されるように注意した。その結果、前述のように(図9A)単一共振器に対してデュアル共振器の奇モードは中心点で2倍の磁界強度となるはずであったが、ここでは1.5倍程度にとどまっている。また分割共振器の磁界強度がデュアル共振器と同程度になっているのは好ましいことである。
参考のため電界分布を図12Bに示しているが、絶対値表示のためデュアル共振器の電界のうち図9Aの負値は正値に変更されている。分割共振器の電界は大きいが受電共振器との結合には奇与しないと考えられるのでここでは関心はない。
以上によって形成される電磁界分布から判断すると分割共振器、デュアル共振器は同程度の性能であるが、ワイヤで2つの共振器を接続する必要がないという利点を持ったデュアル共振器を利用することとする。
4.デュアルスパイラル共振器の特性
(1)コイル巻き数の影響
使用電力はmWオーダーを考えているので容量はチップ部品とする。各種容量値について無負荷Q値を測定すると、容量値によらず2000以上あったのでQ値が数100以下のコイルに比べて容量損失は無視してよい。スパイラルコイルの外形は30cmに固定して巻き数(ピッチも同時に変わる)を変更すれば何が起こるかを調べてみた。それによってインダクタンスが変わり、共振周波数は1MHzに固定しているので当然付加容量値は変わる。横軸をコイルの総巻き数にとってインダクタンス、付加容量の変化をシミュレーションした結果を図13A及び図13Bに示している。巻数をn、半径をrとした時コイルの総延長lはほぼ

Figure 0006116157
でありnが大きいときlは巻き数に比例するとしてよい。自己インダクタンスLは一次近似の範囲ではコイル長に比例するはずなので図13A及び図13BのLは直線になると予想される。しかし現実にそうはなっていないのはコイル巻線間の相互インダクタンスおよび線間容量が等価的に全インダクタンスに寄与しているためと考えられる。一方コイル抵抗Rはもし近接効果が小さければコイル長に比例するので、この共振器の無負荷Qは
Figure 0006116157
であることから巻数の増加とともにQは増加することが期待できる。図14に巻数に対する無負荷Qの測定結果を示してあるが予測どおりに増大しており、伝送効率が結合係数と無負荷Qに支配されることを考えると、この特性は実用上重要である。
次に図15のような小さい受電コイルを用意して、結合係数がコイル巻き数の影響を受けるかどうかを調べる。結合係数は基本的にコイル直径で決まる[5]ことを考えるとほとんど巻き数の影響はないと予想されるが、図16のシミュレーション結果はそれを裏付けるものである。図16では送電用として図11Cのデュアルスパイラル共振器の基本モードを仮定して、別のループプローブと疎結合状態にして計算した。また、2つのスパイラルコイルの外側を利用することも有るかもしれないので外側の結果も示している。
シミュレーションに加えて上記共振器を実際に製作して実験を行った結果を図17に示す。デュアルスパイラル共振器の巻数をパラメータとした図16に対応する測定結果は巻数の少ないときはシミュレーションより小さいが、巻数の増加に従って明らかに結合係数が増加し、シミュレーション値に近づいている。その理由は今のところ不明である。
(2)ソレノドコイルの導入
ソレノイドコイルは同じ直径のスパイラルコイルに比べてより遠方まで磁界が強度を保つことが知られている[5]。そこで図18のように片方だけをソレノイドコイルに置き換えてデュアル共振器を構築し、中心軸上の磁界分布をWIPL-Dで計算したところ図19のような結果が得られた。ソレノイドコイルの巻数は20回としその奥行きtは20〜50mmと変えて図15と同じ直径3cm、巻数25回の単一スパイラルコイルを受電用に使用した。ソレノイドコイルはz=10cmの場所にその左端面がおかれているが、受電コイルの直径は小さく、ソレノイドコイルの直径が30cmあるため内部を貫通して受電コイルを移動できる。その結果z=20cmまでデータが示されている。
図19の結果は図16に比べて結合係数が減少しあまり好ましくない。半径方向の変化を確認したうえで何らかの改善することは今後の課題である。
(3)コイル間隔
デュアル共振器を形成する2つのスパイラルコイルの間隔が何らかの理由で変わると共振周波数も変わって具合が悪いのでその影響を調べておく必要がある。実験によってそれを確認したので図20に示す。この結果からコイル直径程度に共振器が離れていれば共振周波数シフトは問題とするほど大きくないことが分かる。
5.結合係数の空間的一様性の向上
同一のスパイラルコイルを2個用いることは変わらないが、巻き方を工夫して磁界分布の空間一様性を高めることによって結合係数の一様性を高める事が出来る。各コイルは従来の一様巻きに対して、図21のように円形を方形に変更し、エッジ部は従来どおり一様であるが、中心部は次第に疎に巻くようにする。この根拠は図11A〜図11Cのように一様巻きの場合には図22に示すように中心軸方向、半径方向ともに磁界分布(方向は無視して振幅のみの分布)が非一様となるからである。
最も強い箇所の強度を減らすような巻き方の一つとして図21のような巻き方を考えた。図22において各曲線はコイル中心軸から半径方向にrだけ位置をずらし、その値を保ったままコイル軸に平行に観測点をずらせて磁場強さを計算した結果である。また図23においては、同じく中心軸からコイル外形に平行にdだけ位置をずらせて同じ計算を行った。
図23によると一番外側であるd=15cm以外の曲線は図22に対して非常に一様性が向上していることが分かる。d=10cm以下の範囲に限れば図22では場所によって10倍の磁界強度差があるのに対して、図23では3倍にまで減少していて、一様化が実現していることが分かる。
その結果として図16と同様に図15のコイルを用いて結合係数を計算してみると、図24のように一様巻きに比べて大幅な一様化を達成することが出来た。ただしこの結果は全体として結合係数を若干減らすマイナス面を持っているが、磁界の一様化は伝送効率一様化に直接つながり応用上重要である。
6.結論
マイクロ波BPF作製時に小型化の有力な手段として提案した結合共振器という概念を別の目的、すなわち共振器電磁界の増強と一様化に役立て、"磁界共鳴型"WPTシステムの伝送効率とその空間的一様性の向上を図った。
向上率は期待したほど大きくはなかったが、少しの向上であっても他の方法と組み合わせて積み上げることによって、大きな効果へと高められると考えている。

文 献
[1] 山本卓史, 粟井郁雄, 真田篤志, 久保洋, "プリント回路基板両面に作製された2重結合共振器とその応用,"電子情報通信学会論文誌,J87-C, No. 12,1045-1052, 2004 年12月
[2] Ikuo Awai, "Wide Band Spurious Suppression of Multi-Strip Resonator BPF -Comprehensive Way to Suppress Spurious Responses in BPFs-", IEICE Trans. Electron., Vol. E93-C, No 7, pp.942-948, July 2010,invited.
[3] Wei Wei,Yoshiaki Narusue,Yoshihiro Kawahara,Naoki Kobayashi,Hiroshi Fukuda,Tsuneo Tsukagoshi,Tohru Asami," Characteristic Analysis on Double Side Spiral Resonator's Thickness Effect on Transmission Efficiency-Distance Feature for Wireless Power Transmission"、信学技報WPT2012-01, 2012年5月.
[4] Ikuo Awai, "New expressions for coupling coefficient between resonators", IEICE Trans. Electron., E88-C, No.12, pp.2295-2301, Dec. 2005.
[5] Toshio Ishizaki, Takuya Komori, Tetsuya Ishida and Ikuo Awai, "Comparative study of coil resonators for wireless power transfer system in terms of transfer loss", IEICE Electronics Express, Vol. 7, No. 11, pp. 785-790, June, 2010. 1. Preface Among the wireless power transfer (WPT) systems, the "magnetic resonance type" is suitable for near / medium-distance transmission. Increasing the transmission efficiency and improving the spatial uniformity of efficiency are important for expanding the application range of the system. It is. We propose a new structure called dual resonator as one way to achieve the purpose using multiple coupled resonators. The same structure has already been proposed by several groups, but the purpose of use is different from that of this report [1]-[3]. There are no examples. As the name implies, this resonator is formed by two resonators, and the two have the same resonance frequency. When two or more resonators are brought close to each other, they are coupled to each other, and the resonance frequency is known to be divided into as many as the number of resonators. If two resonators are used, so-called even mode / odd mode is obtained. Split.
At this point, the two resonators can be regarded as being integrated [1], [2], which are called dual resonators and used for power transmission. Since the even-odd mode has different frequencies, the lower odd mode can be considered as the basic mode, and the higher even mode can be considered as the higher-order mode. If another resonator is introduced and used on the power receiving side, the two are coupled in accordance with the odd mode frequency to form a WPT transmission circuit. In this report, a dual spiral resonator is used to increase the transmission efficiency and spatial uniformity of the WPT system.
2. Characteristics of coupled resonators One of the authors has previously proposed the use of resonators based on the above ideas for band-pass filter (BPF) miniaturization [1], [2]. In Reference 1, a normal resonator is fabricated on the upper surface of a printed circuit board, and the same type of resonator is added to the lower ground surface, as shown in FIGS. 7A to 7B. In Reference 2, low temperature co-sintered ceramics (LTCC) is used. A multilayer interdigital strip resonator as shown in FIG. Since these are composed of strip conductor resonators that are spread side coupled to each other, the resonance frequency is largely split up and down by strong coupling. Therefore, if the lowest frequency is used as the basic mode for the BPF, it contributes to miniaturization of the circuit and low spurious.
However, this report uses another aspect of the coupled resonator. It focuses on the electromagnetic field distribution formed by two coupled resonators as shown in FIGS. 9A to 9D. As described above, even and odd modes are generated by mutual coupling when the same spiral resonators are arranged symmetrically. However, it is known that the electromagnetic field distribution is analyzed as shown in FIGS. 9A to 9D by the coupled mode theory. [Four]. Approximately, in the odd mode, the magnetic field formed by coupling is the sum of the resonator fundamental modes, and the electric field is the difference. On the other hand, the opposite is true in even mode.
In the magnetic field coupled resonator type ("magnetic field resonance") WPT system, the magnetic field distribution is important and the electric field distribution does not contribute much to the coupling, so it can be seen from FIGS. 9A to 9D that the odd mode is preferably used. When the power receiving resonator is placed between the power transmitting resonators R1 and R2, a magnetic field twice as large as that of the single resonator can be obtained in the central portion that gives the lowest magnetic field strength, so that the transmission efficiency is expected to double. .
3. Electromagnetic field distribution In order to clarify the characteristics of the dual resonator, the representative structures shown in FIGS. 10 and 11A to 11B are compared and examined. FIG. 11A is a normal spiral resonator in which a capacitor is added in series to the basic spiral coil of FIG. 10 and is called a single resonator. In FIG. 11B, two basic spiral coils are connected in series at an appropriate interval, and a common capacitor is added in series to resonate. This is called a split resonator. FIG. 11C places and couples the two single resonators of FIG. 11A in opposition. Therefore, one of them is powered from the outside, while the other has the feature that no wiring is required. As described above, FIG. 11C has two resonance frequencies, but only the lower mode (odd mode) is used.
The intensity distribution along the resonator axis of the electromagnetic field formed by the three structures was calculated by the electromagnetic field simulator WIPL-D, and the results of FIGS. 12A and 12B were obtained. The coordinate axis was determined by setting the distance between the two spiral coils constituting the split resonator and dual resonator to 20 cm, and setting the center axis to 0, so that the coordinates of the single resonator were set at −10 cm accordingly. I am doing it.
In the WIPL-D excitation method, 1W of power is input and the reflection coefficient S11 is displayed. Therefore, the excitation loop coil is adjusted so that S11 = -3dB and 3 structures are common. Care was taken to inject into the resonator. As a result, as described above (FIG. 9A), the odd mode of the dual resonator should have double the magnetic field strength at the central point as compared to the single resonator, but it is only about 1.5 times here. ing. In addition, it is preferable that the magnetic field strength of the split resonator is approximately the same as that of the dual resonator.
For reference, the electric field distribution is shown in FIG. 12B, but the negative value in FIG. 9A of the electric field of the dual resonator is changed to a positive value for the absolute value display. Since the electric field of the split resonator is large, it is considered that it does not affect the coupling with the power-receiving resonator, so there is no interest here.
Judging from the electromagnetic field distribution formed as described above, the split resonator and the dual resonator have the same performance, but use the dual resonator having the advantage that it is not necessary to connect the two resonators with a wire. I will do it.
4). Characteristics of Dual Spiral Resonator (1) Influence of the number of coil turns The power used is in the order of mW, so the capacity is chip parts. When the no-load Q value was measured for various capacitance values, it was 2000 or more regardless of the capacitance value, so that the capacity loss may be ignored as compared with a coil having a Q value of several hundreds or less. I examined what happens if the outer shape of the spiral coil is fixed at 30 cm and the number of turns (the pitch also changes simultaneously) is changed. As a result, the inductance changes, and the resonant frequency is fixed at 1 MHz, so that the additional capacitance value naturally changes. 13A and 13B show the results of simulating changes in inductance and additional capacitance with the horizontal axis as the total number of turns of the coil. When the number of turns is n and the radius is r, the total coil length l is almost
Figure 0006116157
And when n is large, l may be proportional to the number of turns. Since the self-inductance L should be proportional to the coil length in the first order approximation range, L in FIGS. 13A and 13B is expected to be a straight line. However, this is not actually the case because the mutual inductance and the line capacitance between the coil windings contribute to the total inductance equivalently. On the other hand, the coil resistance R is proportional to the coil length if the proximity effect is small.
Figure 0006116157
Therefore, Q can be expected to increase as the number of turns increases. FIG. 14 shows the measurement result of the no-load Q with respect to the number of turns, which increases as expected, and considering that the transmission efficiency is dominated by the coupling coefficient and the no-load Q, this characteristic is practically important. .
Next, a small receiving coil as shown in FIG. 15 is prepared, and it is examined whether the coupling coefficient is affected by the number of coil turns. Considering that the coupling coefficient is basically determined by the coil diameter [5], it is expected that there is almost no influence of the number of turns, but the simulation result in FIG. 16 supports this. In FIG. 16, the basic mode of the dual spiral resonator of FIG. 11C is assumed for power transmission, and calculation is performed in a loosely coupled state with another loop probe. The outer results are also shown because the outside of the two spiral coils may be used.
FIG. 17 shows the result of actually manufacturing the resonator in addition to the simulation and conducting an experiment. The measurement result corresponding to FIG. 16 with the number of turns of the dual spiral resonator as a parameter is smaller than the simulation when the number of turns is small, but the coupling coefficient obviously increases as the number of turns increases and approaches the simulation value. The reason is unknown for now.
(2) Introduction of Solenoid Coil Solenoid coils are known to maintain their magnetic field strength farther than spiral coils of the same diameter [5]. Thus, as shown in FIG. 18, a dual resonator is constructed by replacing only one side with a solenoid coil, and the magnetic field distribution on the central axis is calculated with WIPL-D. The result shown in FIG. 19 is obtained. The number of turns of the solenoid coil was 20 and the depth t was changed from 20 to 50 mm, and a single spiral coil having the same diameter of 3 cm and 25 turns as in FIG. 15 was used for power reception. The solenoid coil has a left end face at a location where z = 10 cm. However, since the diameter of the power receiving coil is small and the solenoid coil has a diameter of 30 cm, the power receiving coil can be moved through the inside. As a result, data is shown up to z = 20 cm.
The result of FIG. 19 is less preferable because the coupling coefficient is reduced compared to FIG. It is a future problem to make some improvement after confirming the change in the radial direction.
(3) Coil spacing If the spacing between the two spiral coils forming the dual resonator changes for some reason, the resonance frequency will also change and the condition will be bad. Since it was confirmed by experiment, it is shown in FIG. From this result, it is understood that the resonance frequency shift is not so large as to be a problem if the resonator is separated by about the coil diameter.
5. Improving the spatial uniformity of the coupling coefficient The use of two identical spiral coils remains the same, but improving the uniformity of the coupling coefficient by improving the spatial uniformity of the magnetic field distribution by devising the winding method. I can do it. Each coil is changed from a circular shape to a square shape as shown in FIG. 21 with respect to the conventional uniform winding, and the edge portion is uniform as before, but the center portion is gradually wound sparsely. The reason for this is that in the case of uniform winding as shown in FIGS. 11A to 11C, the magnetic field distribution (distribution of only the amplitude, ignoring the direction) is non-uniform in both the central axis direction and the radial direction as shown in FIG. Because.
As one of the winding methods for reducing the strength of the strongest part, the winding method as shown in FIG. 21 was considered. In FIG. 22, each curve is the result of calculating the magnetic field strength by shifting the position by r in the radial direction from the coil center axis and shifting the observation point parallel to the coil axis while maintaining the value. In FIG. 23, the same calculation was performed by shifting the position by d in the same way from the central axis in parallel with the coil outer shape.
According to FIG. 23, it can be seen that the curves other than d = 15 cm, which is the outermost side, are much more uniform than FIG. If it is limited to the range of d = 10 cm or less, in FIG. 22, there is a magnetic field strength difference of 10 times depending on the location, but in FIG. .
As a result, when the coupling coefficient was calculated using the coil of FIG. 15 as in FIG. 16, it was possible to achieve significant uniformization compared to uniform winding as shown in FIG. However, this result has a negative effect of slightly reducing the coupling coefficient as a whole, but uniforming the magnetic field directly leads to uniform transmission efficiency and is important for application.
6). Conclusion The concept of coupled resonator, which was proposed as an effective means of miniaturization when producing microwave BPF, was used for another purpose, namely, enhancement and equalization of the electromagnetic field of the resonator, and the transmission efficiency of the "magnetic resonance type" WPT system. The spatial uniformity was improved.
Although the improvement rate was not as great as expected, we believe that even a slight improvement can be increased to a great effect by accumulating in combination with other methods.

Literature
[1] Takashi Yamamoto, Ikuo Sakurai, Atsushi Sanada, Hiroshi Kubo, "Double-coupled resonators fabricated on both sides of printed circuit boards and their applications," IEICE Transactions, J87-C, No. 12,1045 -1052, December 2004
[2] Ikuo Awai, "Wide Band Spurious Suppression of Multi-Strip Resonator BPF -Comprehensive Way to Suppress Spurious Responses in BPFs-", IEICE Trans. Electron., Vol. E93-C, No 7, pp.942-948, July 2010, invited.
[3] Wei Wei, Yoshiaki Narusue, Yoshihiro Kawahara, Naoki Kobayashi, Hiroshi Fukuda, Tsuneo Tsukagoshi, Tohru Asami, “Characteristic Analysis on Double Side Spiral Resonator's Thickness Effect on Transmission Efficiency-Distance Feature for Wireless Power Transmission” WPT2012-01, May 2012.
[4] Ikuo Awai, "New expressions for coupling coefficient between resonators", IEICE Trans. Electron., E88-C, No. 12, pp.2295-2301, Dec. 2005.
[5] Toshio Ishizaki, Takuya Komori, Tetsuya Ishida and Ikuo Awai, "Comparative study of coil resonators for wireless power transfer system in terms of transfer loss", IEICE Electronics Express, Vol. 7, No. 11, pp. 785-790 , June, 2010.

以上、説明したように、本発明に係る機器給電装置(体内機器給電装置)及び機器給電方法は、機器(体内機器)に対してできるだけ効率よく非接触にて給電することができるという効果を有し、機器に対して非接触にて給電する機器給電装置及び機器給電方法、並びに体内にある内視鏡カプセルや臓器センサー等の体内機器に体外から給電する体内機器給電装置として有用である。   As described above, the device power supply device (internal device power supply device) and the device power supply method according to the present invention have an effect that power can be supplied to the device (internal device) in a non-contact manner as efficiently as possible. Therefore, the present invention is useful as a device power supply apparatus and device power supply method for supplying power to a device in a non-contact manner, and an in-vivo device power supply device for supplying power to an in-vivo device such as an endoscope capsule or an organ sensor in the body from outside the body.

10 第1の給電側共振器(第1の共振器)
11 第1の給電側コイル(第1のコイル)
12 コンデンサ
13 交流電源
20 第2の給電側共振器(第2の共振器)
22 コンデンサ
30 受電側共振器(第3の共振器)
31 受電側コイル
32 コンデンサ
100 体内機器
110 第1パッド
120 第2パッド
200 ベッド
10 1st power supply side resonator (1st resonator)
11 First power supply side coil (first coil)
12 Capacitor 13 AC power supply 20 Second power supply side resonator (second resonator)
22 Capacitor 30 Receiving side resonator (third resonator)
31 Power-receiving coil 32 Capacitor 100 Internal device 110 First pad 120 Second pad 200 Bed

Claims (3)

スパイラルコイルである第1のコイルを含む第1の共振器と、該第1のコイルに接続されることなく、当該第1のコイルに対して所定の距離離れて同軸的に配置されるスパイラルコイルである第2のコイルを含む第2の共振器とを備え、交流電流が前記第1のコイルに供給されている状態で、前記第1の共振器と前記第2の共振器とが磁気的に結合して共振する結合共振器と、
前記交流電流を前記第1のコイルに供給する電源とを有し、
前記第1のコイルと前記第2のコイルとが動物の体を挟んで前記所定距離離れて対向配置され、前記動物の体内に導入された機器に設けられて前記結合共振器に磁気的に結合する第3の共振器を介して前記機器に給電する体内機器給電装置。
A first resonator including a first coil that is a spiral coil, and a spiral coil that is coaxially disposed at a predetermined distance from the first coil without being connected to the first coil And a second resonator including a second coil, wherein the first resonator and the second resonator are magnetic in a state where an alternating current is supplied to the first coil. A coupled resonator that couples to and resonates;
A power supply for supplying the alternating current to the first coil;
The first coil and the second coil are opposed to each other with a predetermined distance between the animal body, and are provided in a device introduced into the animal body and magnetically coupled to the coupling resonator. An in-vivo device power supply device that supplies power to the device via a third resonator.
スパイラルコイルである第1のコイルを含む第1の共振器と、該第1のコイルに接続されることなく、当該第1のコイルに対して所定の距離離れて同軸的に対向配置されるスパイラルコイルである第2のコイルを含む第2の共振器とを備えた結合共振器を用い、  A first resonator that includes a first coil that is a spiral coil, and a spiral that is not connected to the first coil and is coaxially disposed opposite to the first coil by a predetermined distance. A coupled resonator comprising a second resonator comprising a second coil that is a coil;
前記第1のコイルと前記第2のコイルとを動物の体を挟んで前記所定の距離離れて対向配置させ、  The first coil and the second coil are arranged opposite to each other with the predetermined distance between the animal body,
前記第1のコイルに交流電流を供給して、前記結合共振器における前記第1の共振器と前記第2の共振器とを磁気的に結合させて共振させ、  An alternating current is supplied to the first coil, and the first resonator and the second resonator in the coupled resonator are magnetically coupled to resonate,
前記動物の体内に導入された機器に設けられて前記結合共振器に磁気的に結合する第3の共振器を介して前記機器に給電する体内機器給電方法。  An in-vivo device feeding method for feeding power to a device via a third resonator provided in the device introduced into the animal body and magnetically coupled to the coupled resonator.
第1のコイルを含む第1の共振器と、該第1のコイルに接続されることなく、当該第1のコイルに対して所定の距離離れて同軸的に対向配置される第2のコイルを含む第2の共振器とを備え、交流電流が前記第1のコイルに供給されている状態で、前記第1の共振器と前記第2の共振器とが磁気的に結合して共振する結合共振器と、
前記交流電流を前記第1のコイルに供給する電源とを有し、
前記結合共振器において対応配置される前記第1のコイルと前記第2のコイルとの間に配置される機器に設けられ、前記結合共振器に磁気的に結合する第3の共振器を介して前記機器に給電し、
前記結合共振器は、前記第1の共振器と前記第2の共振器とが奇モード周波数をもって共振するよう構成された機器給電装置。
A first resonator including a first coil, and a second coil that is coaxially disposed opposite to the first coil by a predetermined distance without being connected to the first coil. A second resonator including the second resonator, wherein the first resonator and the second resonator are magnetically coupled to resonate in a state where an alternating current is supplied to the first coil. A resonator,
A power supply for supplying the alternating current to the first coil;
Via a third resonator that is provided in a device arranged between the first coil and the second coil correspondingly arranged in the coupled resonator and is magnetically coupled to the coupled resonator Power the device,
The coupling resonator is a device power supply apparatus configured such that the first resonator and the second resonator resonate with an odd mode frequency.
JP2012183365A 2012-08-22 2012-08-22 Device feeding device, in-body device feeding device, and in-body device feeding method Active JP6116157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183365A JP6116157B2 (en) 2012-08-22 2012-08-22 Device feeding device, in-body device feeding device, and in-body device feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183365A JP6116157B2 (en) 2012-08-22 2012-08-22 Device feeding device, in-body device feeding device, and in-body device feeding method

Publications (2)

Publication Number Publication Date
JP2014039665A JP2014039665A (en) 2014-03-06
JP6116157B2 true JP6116157B2 (en) 2017-04-19

Family

ID=50392477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183365A Active JP6116157B2 (en) 2012-08-22 2012-08-22 Device feeding device, in-body device feeding device, and in-body device feeding method

Country Status (1)

Country Link
JP (1) JP6116157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429773B1 (en) 2020-08-14 2022-08-08 주식회사 한양그린기술 A mask with cooling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107181328A (en) * 2017-06-19 2017-09-19 扬州芯智瑞电子科技有限公司 The enhancement magnetism resonance ejection coil applied based on capsule endoscope wireless charging

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089778B2 (en) * 2002-11-07 2008-05-28 株式会社アイデンビデオトロニクス Energy supply equipment
JP5135204B2 (en) * 2008-12-26 2013-02-06 株式会社日立製作所 Non-contact power transmission system and load device in the non-contact power transmission system
JP5526795B2 (en) * 2010-01-15 2014-06-18 ソニー株式会社 Wireless power supply system
JP5890170B2 (en) * 2011-09-29 2016-03-22 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method
JP5705079B2 (en) * 2011-09-29 2015-04-22 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method
JP5801154B2 (en) * 2011-10-07 2015-10-28 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method
JP5844662B2 (en) * 2012-03-07 2016-01-20 日立マクセル株式会社 Non-contact power transmission system and non-contact power transmission method
JP5859346B2 (en) * 2012-03-08 2016-02-10 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102429773B1 (en) 2020-08-14 2022-08-08 주식회사 한양그린기술 A mask with cooling device

Also Published As

Publication number Publication date
JP2014039665A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
Hui et al. A critical review of recent progress in mid-range wireless power transfer
Xue et al. High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation
CN103534772B (en) Power supply unit, electric power system and electronic installation
JP6124085B2 (en) Wireless power transmission device, wireless power transmission device and power reception device
JP5934934B2 (en) Wireless power transmission system
US9129741B2 (en) Method and apparatus for wireless power transmission
US8653927B2 (en) System comprising a multi-layer-multi-turn structure for high efficiency wireless communication
US9232893B2 (en) Method of operation of a multi-layer-multi-turn structure for high efficiency wireless communication
EP2899848B1 (en) Split winding repeater
KR101941307B1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
CN107005095A (en) Low transmitting coil topology for wireless charging
US20110266884A1 (en) Electric power transmission apparatus and noncontact electric power transmission system
JPWO2008075614A1 (en) Nuclear magnetic resonance measuring apparatus and coil unit
Tang A low-operating-voltage wireless intermediate-range scheme for energy and signal transmission by magnetic coupling for implantable devices
CN104521100B (en) Contactless power transmission device, electric supply installation and current-collecting device
Meng et al. Optimization and analysis of Helmholtz-like three-coil wireless power transfer system applied in gastrointestinal robots
JP6116157B2 (en) Device feeding device, in-body device feeding device, and in-body device feeding method
Barreto et al. Conformal strongly coupled magnetic resonance systems with extended range
CN104569878A (en) Imaging coil for magnetic resonance imaging and electronic resonance circuit with imaging coil
Khripkov et al. Integrated resonant structure for simultaneous wireless power transfer and data telemetry
JP6164720B2 (en) Coupled resonator type wireless power transmission system
JP2020537483A (en) Resonant circuit for transmitting electrical energy
CN105957701A (en) Design method for wireless electric energy transmission magnetic coupling coil with variable wire specifications
JP2011172647A (en) Magnetic resonance imaging apparatus and high frequency coil
JP2016004990A (en) Resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250