[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6115781B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP6115781B2
JP6115781B2 JP2013528428A JP2013528428A JP6115781B2 JP 6115781 B2 JP6115781 B2 JP 6115781B2 JP 2013528428 A JP2013528428 A JP 2013528428A JP 2013528428 A JP2013528428 A JP 2013528428A JP 6115781 B2 JP6115781 B2 JP 6115781B2
Authority
JP
Japan
Prior art keywords
depth
reliability
image processing
value
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013528428A
Other languages
English (en)
Other versions
JPWO2013145554A1 (ja
Inventor
グエン カン
グエン カン
物部 祐亮
祐亮 物部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2013145554A1 publication Critical patent/JPWO2013145554A1/ja
Application granted granted Critical
Publication of JP6115781B2 publication Critical patent/JP6115781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Architecture (AREA)
  • Image Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

本発明は、デプス値を修正する画像処理装置及び画像処理方法に関する。
従来より、入力画像に含まれる各画素又は一定領域ごとに、当該画素又は一定領域のデプス値を推定する技術が知られている。デプス値とは、例えば撮像装置から被写体までの距離であり、奥行き値とも呼ばれる。しかしこれらの技術を用いた処理では、画像の特徴又はノイズなどの影響によってデプス推定にエラーが発生することで検出精度が低下することがある。このため、従来のデプス推定技術により生成されたデプス値を利用する画像処理では、出力画像の画質が低下してしまう。例えば、デプス値に基づいて画像をシフトすることで視差画像を生成するDIBR(Depth Image Based Rendering)処理では、デプス値のエラーによって、生成された画像中にノイズ又はオブジェクトの歪みが発生するという問題がある。また、デプス値を利用して画像のボケを任意調整する処理では、デプス値エラーのため、被写体の前後関係が崩れる。これにより、生成された画像中の被写体のボケが不自然になるという課題もある。
このように、デプス値が利用される画像処理により生成される出力画像の品質を改善するためには、高精度のデプス値が要求される。しかし、前述のように、画像を用いたデプス値の推定処理の精度には限界があり、推定後のデプス値にはエラーが多く含まれている。そこで、従来より推定後のデプス値を修正する技術が開発されていた。
従来のデプス値を補正する技術としては、対象画素の画素値と周辺画素の画素値との関係を利用してデプス値を補正する技術がある(例えば、特許文献1参照)。特許文献1記載の装置は、入力画像の画素値(色、輝度又は色差)を利用して、周辺のデプス値の重みを算出し、当該重みを用いてデプス値を補正する。つまり、当該装置は、画素値が近い画素は同じ被写体とみなして画素のデプス値を補正する。
国際公開第2011/033673号
このような、デプス値を補正する画像処理装置では、デプス値の精度を向上させることが望まれている。
そこで、本発明は、デプス値の精度を向上させることができる画像処理装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る画像処理装置は、入力画像に含まれる複数の画素の各々の奥行きを示す複数のデプス値を修正する画像処理装置であって、前記複数の画素の各々の特徴量を算出する特徴算出部と、前記複数のデプス値の各々の信頼度を取得する信頼度取得部と、複数の前記信頼度及び複数の前記特徴量を用いて前記複数のデプス値を修正するデプス修正部とを備える。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD−ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
本発明は、デプス値の精度を向上させることができる画像処理装置を提供できる。
図1は、実施の形態1に係る画像処理装置の構成を示すブロック図である。 図2は、実施の形態1に係る画像処理方法のフローチャートである。 図3は、実施の形態1に係る画像処理装置の構成を示すブロック図である。 図4は、実施の形態1に係る入力画像の一例を示す図である。 図5は、実施の形態1に係る入力デプス情報の一例を示す図である。 図6は、実施の形態1に係る信頼度情報の一例を示す図である。 図7は、実施の形態1に係る信頼度とエラー量との関係を示す図である。 図8は、実施の形態1に係るエッジ画像の一例を示す図である。 図9は、実施の形態1に係るデプス修正部の構成を示すブロック図である。 図10Aは、実施の形態1に係る特徴量の差と重みとの関係を示す図である。 図10Bは、実施の形態1に係るエラー量と重みとの関係を示す図である。 図10Cは、実施の形態1に係る距離と重みとの関係を示す図である。 図11は、実施の形態1に係る出力デプス情報の一例を示す図である。 図12は、実施の形態1に係る画像処理方法のフローチャートである。 図13は、実施の形態2に係る画像処理装置の構成を示すブロック図である。 図14は、実施の形態2に係る最小コスト値と信頼度との関係を示す図である。 図15は、実施の形態2に係る画像処理方法のフローチャートである。 図16は、実施の形態2に係る最小コスト値と信頼度との関係を示す図である。 図17は、実施の形態2に係る輝度と閾値との関係を示す図である。 図18は、実施の形態3に係る画像処理装置の構成を示すブロック図である。 図19は、実施の形態3に係るブロック間差異と信頼度との関係を示す図である。 図20は、実施の形態3に係る画像処理方法のフローチャートである。
(本発明の基礎となった知見)
本発明者は、従来の技術において、以下の問題が生じることを見出した。
例えば、特許文献1に記載の従来の装置は、色が近い異なった被写体を同じ被写体とみなしてしまい、デプス値を補正する際、周辺の誤ったデプス値を利用してしまう場合がある。これにより、補正されたデプス値の精度が低くなるという問題が発生することを本発明者は見出した。
また、自然画像では同じ被写体内に色が違う部分が多く含まれる。このような場合には、従来の装置は、同じ被写体にもかかわらず色が違った部分が違う被写体と判断する。これにより、周辺のデプス値が正しい場合でも、このデプス値が補正には利用されないため、対象画素のデプス値が補正されないという問題が発生する。この結果、従来の処理では正しいデプス値の補正が行えず、デプス値の精度が改善されないという問題があることを本発明者は見出した。
このような問題を解決するために、本発明の一態様に係る画像処理装置は、入力画像に含まれる複数の画素の各々の奥行きを示す複数のデプス値を修正する画像処理装置であって、前記複数の画素の各々の特徴量を算出する特徴算出部と、前記複数のデプス値の各々の信頼度を取得する信頼度取得部と、複数の前記信頼度及び複数の前記特徴量を用いて前記複数のデプス値を修正するデプス修正部とを備える。
これにより、当該画像処理装置は、信頼度を用いて、例えば、処理対象の画素のデプス値及び周辺の画像のデプス値の正しさを判断できるので、周辺の正しいデプス値を利用して処理対象の画素のデプス値を修正することができる。また、同じ特徴を有する画素は同じ被写体、つまり同じデプス値を有する可能性が高い。よって、当該画像処理装置は、画素の特徴量を用いて、例えば、処理対象の画素と同じ被写体に含まれる周辺の画素を判別できる。これにより、当該画像処理装置は、デプス値の精度を向上させることができる。
例えば、前記デプス修正部は、前記複数の画素に含まれる複数の参照画素の複数のデプス値のうち、前記信頼度が高いデプス値と、処理対象の対象画素のデプス値に特徴量が近い参照画素のデプス値とを優先して用いて、前記対象画素のデプス値を修正してもよい。
これにより、当該画像処理装置は、信頼度の高いデプス値を利用して対象画素のデプス値を修正することができる。さらに、当該画像処理装置は、対象画素と同じ被写体に含まれる周辺の画素を判別できる。これにより、当該画像処理装置は、デプス値の精度を向上させることができる。
例えば、前記デプス修正部は、前記複数の参照画素の各々の前記特徴量及び前記信頼度を用いて、各参照画素の重みを算出する重み算出部と、算出された複数の前記重みを用いて、前記複数の参照画素のデプス値を加重平均することにより、修正後の前記対象画素の前記デプス値を生成するデプス合成部とを備えてもよい。
これにより、当該画像処理装置は、参照画素の信頼度に基づいて重みを算出する。つまり、参照画素のデプス値の正しさの度合いによって重みが違ってくるのでデプス値の修正精度が向上する。また、当該画像処理装置は、画素の特徴量に基づいて重みを算出する。これにより、当該画像処理装置は、例えば、処理画素と特徴が似ている画素のデプス値を利用できるのでデプス値の精度を向上させることができる。
例えば、前記重み算出部は、前記対象画素の特徴量と、前記複数の参照画素の特徴量の各々との差を算出し、前記差が大きいほど、対応する参照画素の前記重みを小さくしてもよい。
これにより、対象画素と特徴が近い参照画素のデプス値ほど、重みが大きくなる。よって、当該画像処理装置は、特徴が似ている画素のデプス値を多く利用できるので、対象画素のデプス値の精度を向上させることができる。
例えば、 記特徴量は、各画素におけるエッジの強さを含んでもよい。
これにより、当該画像処理装置は、対象画素及び参照画素の特徴量が算出できる。一般にエッジは被写体と被写体との境界で検出される。また、被写体が異なると、デプス値も異なる可能性が高い。そこで、当該画像処理装置は、エッジの量を利用することによって、対象画素と同じ被写体に含まれる参照画素を判別し、当該参照画素のデプス値を利用することができる。これより、当該画像処理装置は、デプス値の精度を向上させることができる。
例えば、前記特徴量は、各画素におけるエッジの方向を含んでもよい。
これにより、当該画像処理装置は、画素のエッジの方向を用いてデプス値を修正できる。これにより、当該画像処理装置は、デプス値の精度を向上させることができる。
例えば、前記重み算出部は、前記参照画素の信頼度が大きいほど当該参照画素の前記重みを大きくしてもよい。
これにより、当該画像処理装置は、信頼度の低いデプス値に対する重みを小さくすることで、エラーを含む画素の影響を少なくすることができる。また、当該画像処理装置は、信頼度が高いデプス値に対する重みを大きくすることで、修正されたデプス値の精度を向上させることができる。
例えば、前記重み算出部は、前記対象画素と前記参照画素との距離が遠いほど当該参照画素の前記重みを小さくしてもよい。
ここで、対象画素から遠く離れる画素ほど、対象画素と異なる被写体に含まれる可能性が高い。つまり、対象画素から遠く離れる画素ほど、対象画素とデプス値が違う可能性が高い。そこで、当該画像処理装置は、対象画素から遠い画素のデプス値の重みを小さくすることによって、違う被写体のデプス値の影響を少なくすることができる。
例えば、前記信頼度は、前記デプス値の正しさの度合い、又は、前記デプス値が正しいか否かを示してもよい。
これにより、当該画像処理装置は、デプス値の正しい度合いを把握できるので、対象画素のデプス値を修正する際、例えば、当該対象画素のデプス値に、周辺の正しいデプス値を多く配分し、周辺の正しくないデプス値を少なく配分できる。これにより、当該画像処理装置は、修正されたデプス値の精度を向上させることができる。
例えば、前記画像処理装置は、さらに、前記入力画像を含む複数の画像を用いて前記複数のデプス値を推定するデプス推定部を備えてもよい。
これにより、当該画像処理装置は、複数の画像からデプス値を推定することができる。
例えば、前記デプス推定部は、前記複数の画素の各々に対して、処理対象の画素のボケ量と、予め定められた複数の奥行きに対応する予め定められた複数のボケ量との一致度を示すコスト値を、当該奥行きごとに算出し、算出された複数の前記コスト値のうち、最も一致度が高い選択コスト値に対応する奥行きを、前記処理対象の画素のデプス値として推定し、前記信頼度取得部は、前記選択コスト値を用いて前記信頼度を算出してもよい。
これにより、当該画像処理装置は、デプス値の推定処理時に用いられた情報を利用して、精度の高いデプス値の信頼度を算出することができる。
例えば、前記信頼度取得部は、前記選択コスト値の一致度が高いほど前記信頼度を高くしてもよい。
ここで、選択コスト値の一致度が高ければ高いほど、デプス値が正しい可能性が高い。よって、当該画像処理装置は、精度の高いデプス値の信頼度を算出できる。
例えば、前記信頼度取得部は、さらに、前記選択コスト値の一致度が閾値より低い場合、前記信頼度を最も低い値に設定してもよい。
これにより、当該画像処理装置は、信頼度が低いデプス値の影響を低減できる。
例えば、前記信頼度取得部は、さらに、前記閾値を処理対象の画素の輝度値に応じて変更してもよい。
ここで、コスト値は、輝度値に応じて変動する傾向がある。よって、当該画像処理装置は、輝度値に応じて閾値を変更することにより、例えば、この輝度値に応じたコスト値の変動の影響を低減できる。
例えば、前記信頼度取得部は、前記輝度値が大きいほど前記閾値を大きくしてもよい。
これにより、当該画像処理装置は、輝度値に応じたコスト値の変動の影響を低減できる。
例えば、前記画像処理装置は、さらに、前記複数の画像における被写体の位置を合わせるために、当該被写体の位置をずらす位置合わせを行う位置合わせ部を備え、前記デプス推定部は、前記位置合わせが行われた後の複数の画像を用いて前記複数のデプス値を推定し、前記信頼度取得部は、前記位置合わせの際に生成された情報を用いて前記信頼度を算出してもよい。
これにより、当該画像処理装置は、複数の入力画像の被写体の位置ずれを合わせることでデプス値の推定の精度を向上させることができる。さらに、当該画像処理装置は、この位置合わせの際に生成された情報を利用することで信頼度の精度を向上させることができる。
例えば、前記位置合わせ部は、前記位置合わせにおいて、前記複数の画像の一つである対象画像に含まれる対象ブロックと、前記複数の画像に含まれる前記対象画像と異なる画像に含まれる複数のブロックとの差異を算出し、算出した複数の前記差異のうち最も小さい差異に対応するブロックを前記対象ブロックに対応する対応ブロックと判定し、前記信頼度取得部は、前記対象ブロックと前記対応ブロックとの前記差異が小さいほど前記信頼度を高くしてもよい。
ここで、位置合わせの際の対象ブロックと対応ブロックとの差異が小さいほど、デプス値が正しい可能性が高い。よって、当該画像処理装置は信頼度の精度を向上できる。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD−ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
以下、本発明の実施の形態について、図面を参照しながら説明する。
なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
本実施の形態に係る画像処理装置は、入力画像の特徴量と、入力デプス情報の信頼度とに基づき、当該入力デプス情報を修正する。これにより、当該画像処理装置は、デプス値の精度を向上させることができる。
まず、本実施の形態に係る画像処理装置の基本構成を説明する。図1は、本実施の形態に係る画像処理装置100の基本構成を示すブロック図である。
図1に示す画像処理装置100は、入力デプス情報121を修正することにより出力デプス情報122を生成する。入力デプス情報121は、入力画像123に含まれる複数の画素の各々の奥行きを示す複数のデプス値を含む。
この画像処理装置100は、特徴算出部101と、信頼度取得部102と、デプス修正部103とを備える。
特徴算出部101は、入力画像123に含まれる複数の画素の各々の特徴量125を算出する。
信頼度取得部102は、信頼度情報124を取得する。この信頼度情報124は、入力デプス情報121に含まれる複数のデプス値の各々の信頼度を示す情報である。ここで信頼度とは、対応するデプス値の確からしさを示す情報である。具体的には、信頼度は、例えば、デプス値の正しさの度合い、又は、デプス値が正しいか否かを示す。
デプス修正部103は、信頼度情報124及び複数の特徴量125を用いて入力デプス情報121を修正することで出力デプス情報122を生成する。
図2は、本実施の形態に係る画像処理装置100による基本動作の流れを示すフローチャートである。
まず、特徴算出部101は、入力画像123に含まれる複数の画素の各々の特徴量125を算出する(S101)。次に、信頼度取得部102は、信頼度情報124を取得する(S102)。
次に、デプス修正部103は、信頼度情報124及び複数の特徴量125を用いて入力デプス情報121を修正することで出力デプス情報122を生成する(S103)。具体的には、具体的には、デプス修正部103は、入力画像123に含まれる参照画素のデプス値を用いて対象画素のデプス値を修正する。参照画素とは、例えば、対象画素の周辺の画素である。
より具体的には、デプス修正部103は、入力画像123に含まれる複数の参照画素の複数のデプス値のうち、信頼度が高いデプス値と、処理対象の対象画素のデプス値に特徴量が近い参照画素のデプス値とを優先して用いて、当該対象画素のデプス値を修正する。
以上により、本実施の形態に係る画像処理装置100は、入力画像123の特徴量と、入力デプス情報121の信頼度とに基づき、当該入力デプス情報121を修正する。これにより、画像処理装置100は、信頼度を用いて、例えば、対象画素のデプス値及び周辺画像のデプス値の正しさを判断できるので、周辺の正しいデプス値を利用して対象画素のデプス値を修正することができる。また、同じ特徴を有する画素は同じ被写体、つまり同じデプス値を有する可能性が高い。よって、画像処理装置100は、画素の特徴量を用いて、対象画素と同じ被写体に含まれる周辺画素を判別できる。これにより、画像処理装置100は、デプス値の精度を向上させることができる。
以下、本実施の形態に係る画像処理装置100の詳細な構成及びその動作を説明する。
まず、本実施の形態に係る画像処理装置100の構成を説明する。図3は、本実施の形態に係る画像処理装置100の機能構成を示すブロック図である。図3に示すように、画像処理装置100は、特徴算出部101と、エラー検出部102Aと、デプス修正部103とを備える。
以下、本実施の形態における画像処理装置100の各処理部の動作を説明する。また、図4は、原画像である入力画像123の一例を示す図である。
エラー検出部102Aは、図1に示す信頼度取得部102に対応し、信頼度取得部102の機能に加え、入力デプス情報121のエラー量126を信頼度情報124に基づいて算出する機能を有する。なお、以下では、エラー検出部102Aにおいて、信頼度をエラー量126に変換し、エラー量126を用いて後続の処理が行われる例を説明するが、図1に示すように、この変換を行わずに、後続の処理において信頼度をそのまま用いてもよい。
図5は、入力デプス情報121の一例である入力デプス画像を示す図である。この入力デプス情報121は、例えば、当該画像処理装置100又は他の装置が、図4に示す入力画像123に対してデプス推定処理を施すことにより生成した画像である。なお、入力デプス情報121は、各画素のデプス値を示す情報であればよく、その生成方法は、上記に限定されない。
図5に示す入力デプス情報121では、推定された各画素におけるデプス値に関して、手前側にあると推定された画素ほど白く表示され、奥にあると推定された画素ほど黒く表示されている。図5から、入力デプス情報121には、多くのエラーが発生していることが分かる。その原因は、撮影条件、及びデプス推定の際の画像マッチングの精度が低いこと等に起因する。ここでは入力デプス情報121に生じるエラーがどのような原因で生じたものかは限定せず、あらゆる原因により生じたエラーを含んでいる入力デプス情報121を想定する。
図6は、信頼度情報124の一例である信頼度画像を示す図である。例えば、この信頼度情報124は、図4に示す入力画像123に対してデプス推定をする際に求まる、デプス値の確からしさを示す画像である。すなわち、信頼度情報124は、入力画像123に含まれる画素又は領域ごとに、推定されたデプス値がどれくらい正しいかを示している。ここで信頼度情報124は、上述のようにデプス推定の際に求められるものであってもよいし、その他の条件によって算出されたものでもあってもよく、いずれの方法により生成されてもよい。
エラー検出部102Aは、入力デプス情報121に対する複数のエラー量126を、信頼度情報124に基づいて算出する。また、各エラー量126は、入力デプス情報121に含まれる各デプス値に対応する。図7は、信頼度情報124で示される信頼度とエラー量126との関係を示す図である。図7に示すにように、エラー検出部102Aは、例えば、信頼度が高いほどエラー量を小さくする。これによって、エラー検出部102Aは、入力デプス情報121に含まれる各デプス値のエラーの量(正しくない度合い)を示すエラー量126を推定することができる。
なお、本実施の形態では、エラー検出部102Aは、信頼度をエラー量に変換する際、図7に示すような変換を利用したが、この変換に限定せず、信頼度が高いほどエラー量を小さくする変換であれば、どんな方法を利用してもよい。
特徴算出部101は、画像変換部111と、特徴抽出部112とを含む。
画像変換部111は、図4に示す入力画像123を、当該入力画像123に含まれる各画素値の情報を用いて、特徴画像に変換する。ここでは、画像変換部111は、例えば、入力画像123にエッジ検出処理を施すことによりエッジ画像127を生成する。
図8は、エッジ画像127の一例を示す図である。一般的な画像では、被写体の輪郭周辺においてエッジが検出されることが多い。よって、エッジの周辺は異なる被写体が存在する可能性が高い。つまり、エッジの周辺では、デプス値が異なる可能性が高い。よって、単に周辺のデプス値を利用して対象画素のデプス値を修正した場合、異なった被写体のデプス値を用いて対象画素のデプス値を補正する場合がある。この場合、デプス値を正しく修正することができない。そこで、本実施の形態に係る画像処理装置100は、画像のエッジの特徴を利用してデプス値の修正を行う。
また、画像変換部111は、入力画像123をエッジ画像に変換するために、例えば、Sobelフィルタを利用する。なお、画像変換部111は、他の方法を用いてもよい。例えば、画像変換部111は、Prewittフィルタ、及びLaplacianフィルタなどの他の方法を利用してもよい。なお、画像変換部111は、エッジ情報の検出以外に、さらに、各画素における色、輝度又は色差の情報を検出し、当該検出した情報を用いて、入力画像123を特徴画像に変換してもよい。
特徴抽出部112は、エッジ画像127を用いて複数の特徴量125を算出する。つまり、特徴抽出部112は、エッジ画像127で示される各画素のエッジの強さを特徴量125として抽出する。すなわち、本実施の形態では、特徴量125は各画素におけるエッジの強さである。なお、特徴抽出部112は、エッジの強さから求めた特徴量に所定の演算を行うことで、最終的な特徴量125を算出してもよい。例えば、特徴抽出部112は、エッジの強さに加え、画素の色、輝度又は色差の情報を用いて特徴量125を算出してもよい。また、特徴抽出部112は、入力画像123の空間周波数又はコントラストを用いて特徴量125を算出してもよい。
デプス修正部103は、複数のエラー量126及び複数の特徴量125に基づいて、入力デプス情報121のエラーを修正する。
図9はデプス修正部103の機能構成を示すブロック図である。図9に示すように、デプス修正部103は、重み算出部113と、デプス合成部114とを備える。ここでは、デプス修正部103は、対象画素の周辺画素のデプス値を利用して対象画素のデプス値を修正する。その際に、デプス修正部103は、周辺画素のデプス値を対象画素のデプス値にどの程度反映させるかを示す重み128を算出し、その重み128を用いて対象画素のデプス値を修正する。以下、各構成を説明する。
重み算出部113は、デプス修正部103が、対象画素の周辺の複数の周辺画素のデプス値を利用して対象画素のデプス値を修正する際、周辺画素のデプス値毎に、当該デプス値にかける重み128を算出する。また、重み算出部113は、対象画素を含む複数の参照画素の各々の特徴量125及び信頼度を用いて、各参照画素の重みを算出する。
具体的には、まず、重み算出部113は、対象画素の特徴量125と周辺画素の特徴量125との差を算出する。すなわち、この特徴量の差は、例えば、エッジの強さの差である。また、ここでは、重み算出部113は、この差の絶対値を算出する。次に、重み算出部113は、算出された特徴量の差を用いて重み128を算出する。
図10Aは、特徴量の差と重み128との関係を示す図である。2つの画素の特徴量が近いほど、2つの画像が同じ被写体に含まれる可能性が高いので、図10Aに示すように、特徴量の差が小さいほど重み128が大きくなる。なお、ここでは、重み算出部113は、図10Aに示すような変換を行っているが、変換方法は限定しない。重み算出部113は、特徴量の差が小さいほど重みを大きくなる変換であれば、他のどんな変換方法を利用してもよい。
また、デプス修正部103は、対象画素のデプス値を修正するために周辺画素のデプス値を利用するが、周辺画素のデプス値が正しくない場合もある。デプス修正部103は、間違ったデプス値で修正しないようにエラー量126を利用する。エラー量が大きい場合はデプス値が間違っている可能性が高い。よって、重み算出部113は、エラー量が大きいデプス値の重み128を低くする。図10Bは、エラー量126と重み128との関係を示す図である。重み算出部113は、図10Bに示すように、エラー量126が大きいほど重み128を小さくする。つまり、重み算出部113は、信頼度が高いほど重み128を大きくする。
さらに、周辺画素は、対象画素から離れるほど対象画素の被写体と異なる被写体に含まれる可能性が高くなる。重み算出部113は、この特徴を利用して重みを算出してもよい。図10Cは、対象画素と周辺画素との距離と、重み128との関係を示す図である。重み算出部113は、対象画素と周辺画素との距離を算出し、この距離が遠いほど重みを小さくする。なお、このように画素間の距離を利用して重み128を算出する場合、重み算出部113がこの距離を算出してもよいし、重み算出部113は、予め他の処理部で算出された距離情報を用いて重み128を算出してもよい。
デプス合成部114は、重み算出部113で算出された複数の重み128を用いて入力デプス情報121を修正する。具体的には、デプス合成部114は、算出された複数の重み128を用いて、複数の参照画素のデプス値を加重平均することにより、修正後の対象画素のデプス値を生成する。つまり、周辺画素のデプス値をD(i)、特徴量125から算出された重みをWf(i)、エラー量から算出された重みをWe(i)、距離から算出された重みをWd(i)とすると、対象画素の出力デプス値D(0)は、以下の式(1)で算出される。
Figure 0006115781
図11は、以上の処理によって、デプス合成部114にて算出された複数の出力デプス値D(0)を含む出力デプス情報122の一例である出力デプス画像を示す図である。図11に示す出力デプス情報122は、図5に示す入力デプス情報121と比較して、エラーが修正されている。また、図11に示すように、対象物のデプス値に悪影響を与えることなく、ノイズ等によりエラーが生じていたデプス値のみが修正されていることが分かる。
以下、画像処理装置100により処理の流れを説明する。図12は、画像処理装置100による画像処理方法のフローチャートである。
まず、画像変換部111は、入力画像123のエッジを抽出することにより、エッジ画像127を生成する(S111)。次に、特徴抽出部112は、エッジ画像127から、入力画像123に含まれる各画素の特徴量125を抽出する(S112)。
また、エラー検出部102Aは、信頼度情報124を用いて各画素のエラー量を検出する(S113)。
次に、画像処理装置100は、入力画像123に含まれる複数の画素から対象画素を選択する(S114)。次に、デプス修正部103は、入力画像123に含まれる複数の画素から参照画素を選択する(S115)。例えば、この参照画素は、対象画素の周辺の画素である。具体的には、参照画素は、対象画素に隣接する画素、又は、対象画素から予め定められた距離内に位置する画素である。なお、複数の参照画素は、入力画像123に含まれる全ての画素であってもよい。また、複数の参照画素は対象画素を含んでもよい。
次に、重み算出部113は、対象画素と参照画素との特徴量の差を算出し、算出された特徴量の差を用いて第1の重みを算出する(S116)。具体的には、重み算出部113は、特徴量の差が大きいほど第1の重みを小さくする。
また、重み算出部113は、参照画素のエラー量(信頼度)を用いて第2の重みを算出する(S117)。具体的には、重み算出部113は、エラー量が大きいほど(信頼度が低いほど)第2の重みを小さくする。
また、重み算出部113は、対象画素と参照画素との距離を算出し、算出された距離を用いて第3の重みを算出する(S118)。具体的には、重み算出部113は、距離が遠いほど第3の重みを小さくする。
なお、これらのステップS116〜S118の処理順序は任意の順序よく、一部又は全ての処理が同時に行われてもよい。
全ての参照画素に対する重みの算出処理が終了していない場合(S119でNo)、次の参照画素が選択され(S115)、選択された参照画素に対してステップS116〜S118の処理が行われる。つまり、ステップS115〜118の処理が全ての参照画素に対して行われることにより、複数の参照画素の各々に対応する第1〜第3の重みが算出される。
全ての参照画素に対する重みの算出処理が終了した場合(S119でYes)、デプス合成部114は、複数の参照画素に対して算出された第1〜第3の重みを用いて、複数の参照画素を重み付け加算することにより、対象画素の修正後のデプス値を算出する(S120)。つまり、デプス合成部114は、複数の参照画素の各々に、当該参照画素に対応する第1〜第3の重みを乗算し、算出された複数の乗算結果を加算することにより、対象画素の修正後のデプス値を算出する。
以上の処理により、一つの対象画素のデプス値が修正される。
入力画像123に含まれる全ての画素に対する修正処理が終了していない場合(S121でNo)、複数の画素から次の対象画素が選択され(S114)、選択された対象画素に対してステップS115〜S120の処理が行われる。つまり、ステップS114〜120の処理が全ての画素に対して行われることにより、複数の画素の各々のデプス値が修正される。
以上、本実施の形態に係る画像処理装置100は、周辺画素のデプス値を利用して対象画素のデプス値を修正する際、画像の特徴(エッジ強さ等)及び信頼度に基づいて、周辺画素のデプス値の重みを決定する。これにより、画像処理装置100は、デプス値の精度を向上させることができる。
なお、本実施の形態では、画像処理装置100は、第1〜第3の重みの全てを利用してデプス値の修正を行っているが、全ての重みではなく、一部の重みを利用してもよい。言い換えると、重み算出部113は、対象画素と周辺画素との特徴量の差と、周辺画素のエラー量と、対象画素と周辺画素との距離とのうち、少なくとも一つを用いて重み128を決定してもよい。
また、本実施の形態では、画像処理装置100は、全ての画素に対して、デプス値の修正処理を行うが、エラー量等を利用して、修正する画素と修正しない画素とを判断してもよい。例えば、画像処理装置100は、複数の画素のうち、エラー量が予め定められた閾値より大きい画素を判定し、エラー量が予め定められた閾値より大きい画素に対してのみエラー修正処理を行ってもよい。
また、本実施の形態では、画像処理装置100は、画像の特徴としてエッジの強さを利用したが、画像の特徴として平坦度を利用してもよい、一般に平坦度はエッジの強さと反対の意味を持ち、エッジ量が多いほど、平坦度が少なくなる。言い換えると、平坦度もエッジの強さを示す情報である。
また、特徴抽出部112は、画素の特徴として、エッジの方向を抽出してもよい。この場合、例えば、重み算出部113は、対象画素と参照画素とのエッジの方向の差を算出し、当該差が大きいほど重み128を小さくする。これにより、画像処理装置100は、対象画素と類似度の高い参照画素を用いて、当該対象画素を修正できる。
なお、重み算出部113は、エッジの方向が予め定められた方向(又は当該方向に近いほど)重み128を大きく(又は小さく)してもよい。これにより、重み算出部113は、カメラの特性に応じたデプス値の信頼度の傾向に基づき、より信頼度の高いデプス値の重みを大きくできる。具体的には、カメラの特性(例えば、レンズの特性)に応じて、特定のエッジ方向を有する画素のデプス値の信頼度が、他のエッジ方向(例えば、上記特定のエッジ方向に直交するエッジ方向)を有する画素のデプス値の信頼度より低くなる傾向がある場合がある。このような場合には、重み算出部113は、当該特定のエッジ方向(又は当該方向に近いほど)重み128を小さくする。
(実施の形態2)
本実施の形態では、上記実施の形態1に係る画像処理装置100の変形例を説明する。本実施の形態に係る画像処理装置200は、上記画像処理装置100の機能に加え、入力デプス情報121を生成する機能を有する。さらに、画像処理装置200は、入力デプス情報121を生成する際に生成された情報を用いて信頼度を算出する。
図13は、本実施の形態に係る画像処理装置200の機能構成を示すブロック図である。この画像処理装置200は、図3に示す画像処理装置100の構成に加え、さらに、デプス推定部215と、信頼度算出部216とを備える。なお、実施の形態1と同様の構成要素については同じ符号を用い、説明を省略する。
デプス推定部215は、複数の入力画像を含む入力画像群223を用いて、各画素におけるデプス値を推定することにより入力デプス情報121を生成する。ここで入力画像群223は、図3に示す入力画像123を含む複数の画像である。典型的には、入力画像群223に含まれる複数の画像は、焦点位置(合焦範囲)が異なるように、同一のシーン(被写体)が連続的又は同時に撮影された画像である。
なお、デプス推定部215によるデプス推定処理には、公知のデプス推定処理を用いることができる。典型的には、デプス推定部215は、複数の画像からデプス値を推定する。例えば、デプス推定部215は、DFF(Depth From Focus)又はDFD(Depth From Defocus)などを利用する。
具体的には、デプス推定部215は、処理対象の画素がどのデプス値に対応するかを推定するために、例えば、複数の想定されるデプス値d(n)の複数のコスト値Cost(d(n))を算出する。ここで、複数のデプス値d(n)は、各々が予め定められた奥行きに対応する。つまり、nは、想定されるデプス値の段階を示す。また、コスト値Cost(d(n))は、処理対象の画素のボケ量と、デプス値d(n)に対応する予め定められたボケ量との一致度を示す。具体的には、コスト値Cost(d(n))が小さいほど、一致度が高いことを示す。つまり、デプス推定部215は、デプス値d(n)ごとに、コスト値Cost(d(n))を算出する。
次に、デプス推定部215は、算出された複数のコスト値Cost(d(n))のうち、最も値が小さい(最も一致度が高い)最小コスト値229(選択コスト値)を判定し、当該最小コスト値229に対応するデプス値d(n)をデプス値の推定結果とする。よって、最小コスト値229が小さいほど推定結果がより正確であるといえる。
また、デプス推定部215は、上記の処理を画素ごとに行うことにより、1画面に対応する複数の画素のデプス値を推定し、この複数のデプス値を入力デプス情報121として出力する。また、デプス推定部215は、1画面に対応する複数の最小コスト値229を出力する。
信頼度算出部216は、複数の最小コスト値229を用いて信頼度情報124を算出する。つまり、信頼度算出部216は、各最小コスト値229に基づいて、推定されたデプス値の信頼度を算出する。具体的には、信頼度算出部216は、例えば、図14に示すように、最小コスト値229が小さいほど(一致度が高いほど)信頼度が高くなるように最小コスト値229を変換することにより信頼度情報124を算出する。なお、信頼度算出部216は、例えば、図1に示す信頼度取得部102に含まれる。
エラー検出部102Aは、信頼度算出部216によって算出された信頼度情報124を用いてエラー量126を検出する。
また、ここでは、信頼度算出部216により複数の最小コスト値229(選択コスト値)が信頼度情報124に変換される例を述べるが、エラー検出部102Aは、最小コスト値229をそのまま用いてもよい。例えば、エラー検出部102Aは、最小コスト値229をそのままエラー量126として出力してもよい。または、デプス修正部103は、最小コスト値229をそのまま用いて重み128を算出してもよい。つまり、デプス修正部103は、最小コスト値229が大きいほど重み128を小さくしてもよい。
図15は、本実施の形態に係る画像処理装置200による処理の流れを示すフローチャートである。図15に示す処理は、図12に示す処理に対して、ステップS201が追加されている。また、ステップS113AがステップS113と異なる。
ステップS112の後、デプス推定部215は、入力画像群223を用いて入力デプス情報121を生成する(S201)。次に、信頼度算出部216は、デプス推定処理において算出された最小コスト値229(選択コスト値)を用いて、信頼度を算出し、エラー検出部102Aは、算出された信頼度を用いてエラー量126を算出する(S113A)。なお、以降の処理は、実施の形態1と同様である。
以上、本実施の形態に係る画像処理装置200は、デプス推定部215と、信頼度算出部216とにより、デプス推定の際に利用された情報を用いて信頼度を算出することができる。
なお、本実施の形態では、信頼度算出部216は、デプス推定時の最小コスト値を利用して、最小コスト値が小さいほど信頼度を高くしているが、デプス推定時の最小コスト値を利用してデプス値の信頼度を算出する方法であれば、他の方法を利用してもよい。
例えば、被写体が高速で移動している場合には、入力画像群223に含まれる複数の画像において被写体の位置がずれることがある。この場合には、正しくデプス値を推定できないため、最小コスト値229が大きくなる。よって、信頼度算出部216は、最小コスト値229と閾値M_thとを比較し、図16に示すように、最小コスト値229が閾値M_thより大きい場合(一致度が閾値M_thより低い場合)には、信頼度を最も低い値「0」に設定する。これにより、信頼度が低いデプス値が修正に用いられることを抑制できる。
なお、図17に示すように、信頼度算出部216は、閾値M_thを画素の輝度値に応じて変更してもよい。具体的には、信頼度算出部216は、輝度値が大きいほど閾値M_thを大きくする。また、閾値M_thには上限値及び下限値のうち少なくとも一方が設定されていてもよい。ここで、コスト値の算出時には、輝度値が大きいほどコスト値が大きくなる傾向がある。よって、輝度値に応じて閾値M_thを変更することにより、この輝度値に応じたコスト値の変動の影響を低減できる。
(実施の形態3)
本実施の形態では、上記実施の形態2に係る画像処理装置200の変形例を説明する。本実施の形態に係る画像処理装置300は、上記画像処理装置200の機能に加え、入力画像群223の位置合わせを行う機能を有する。さらに、画像処理装置300は、位置合わせの際に生成された情報を用いて信頼度を算出する。
図18は、本実施の形態に係る画像処理装置300の機能構成を示すブロック図である。この画像処理装置300は、図13に示す画像処理装置200の構成に加え、さらに、位置合わせ部317を備える。また、信頼度算出部316の機能が信頼度算出部216と異なる。なお、実施の形態2と同様の構成要素については同じ符号を用い、説明を省略する。
複数の画像を用いてデプス値を推定する場合、画像間の時間差によって、被写体の位置及び形状などが変わる場合があるため、正確にデプス値を推定することが困難である。そこで、本実施の形態に係る画像処理装置300は、デプス推定の精度を向上させるために、複数の画像の位置ずれを修正し、修正後の複数の画像を用いてデプス推定を行う。さらに、画像処理装置300は、この位置合わせの際に生成された情報を信頼度の算出にも利用する。それによって、画像処理装置300は、適切にデプス値の修正を行う。
位置合わせ部317は、入力画像群223に含まれる複数の画像に対して位置合わせを行うことで画像群323を生成する。つまり、位置合わせ部317は、複数の画像における被写体の位置を合わせるために、当該被写体の位置をずらして位置合わせを行う。なお、この位置合わせ処理には、公知の任意の処理方式を用いることができる。例えば、位置合わせ部317は、ブロックマッチングなどの一般の位置合わせ方式を利用してもよい。
具体的には、位置合わせ部317は、ブロックマッチングを用いて、対象画像の対象ブロックに対応する参照画像の対応ブロックを探索する。対象画像及び参照画像は、入力画像群223に含まれる画像である。具体的には、位置合わせ部317は、対象ブロックと、参照画像に含まれる複数のブロックの各々との差異を算出する。次に、位置合わせ部317は、算出された複数の差異のうち、最も小さい差異に対応するブロックを対応ブロックと判定する。そして、位置合わせ部317は、対象ブロックと対応ブロックとの位置が一致するように、対象ブロック又は対応ブロックをずらす。なお、位置合わせ部317は、互いに対応するブロックを示す情報をデプス推定部215へ出力してもよい。
ここで、対象ブロックと対応ブロックと差異が少なければブロックが一致する可能性が高い。画像が一致すれば、デプス推定の精度も高くなる。そこで、信頼度算出部316は、このブロック探索時の対象ブロックと対応ブロックとの差異であるブロック間差異330を用いて信頼度を算出する。具体的には、信頼度算出部316は、図19に示すように、このブロック間差異330が小さいほど信頼度を高くする。なお、このブロック間差異330は、対象ブロックごとの、当該対象ブロックと対応ブロックとの差異を示す。
デプス推定部215は、位置合わせが行われた後の画像群323を用いてデプス推定処理を行う。なお、デプス推定処理の詳細は、入力される画像が異なる点を除くと実施の形態2と同様である。
信頼度算出部316は、位置合わせ部317による位置合わせの際に生成された情報を用いて信頼度情報124を算出する。具体的には、信頼度算出部316は、最小コスト値229、及びブロック間差異330に基づいて複数のデプス値の信頼度を含む信頼度情報124を算出する。
例えば、最小コスト値Cost(d(n))を用いて算出された信頼度をR_cost、ブロック間の差異を用いて算出された信頼度をR_diff、最終的なデプス値の信頼度をRとした場合、以下の式(2)に示すように、RはR_costとR_diffとの関数で表される。
Figure 0006115781
最終的な信頼度Rは例えば以下の式(3)で算出される。
Figure 0006115781
なお、ここでは、信頼度算出部316により複数のブロック間の差異が信頼度情報124に変換される例を述べたが、エラー検出部102Aは、ブロック間差異330をそのまま用いてもよい。例えば、エラー検出部102Aは、ブロック間差異330をそのままエラー量126として出力してもよい。または、デプス修正部103は、ブロック間差異330をそのまま用いて重み128を算出してもよい。つまり、デプス修正部103は、ブロック間差異330が大きいほど重み128を小さくしてもよい。
図20は、本実施の形態に係る画像処理装置300による処理の流れを示すフローチャートである。図20に示す処理は、図15に示す処理に対して、ステップS301が追加されている。また、ステップS113BがステップS113Aと異なる。
ステップS112の後、位置合わせ部317は、入力画像群223に含まれる複数の画像の位置あわせを行うことにより画像群323を生成する(S301)。次に、デプス推定部215は、画像群323を用いて入力デプス情報121を生成する(S201)。次に、信頼度算出部316は、位置合わせ処理において算出されたブロック間差異330と、デプス推定処理において算出された最小コスト値229(選択コスト値)とを用いて、信頼度を算出し、エラー検出部102Aは、算出された信頼度を用いてエラー量126を算出する(S113B)。なお、以降の処理は、実施の形態1及び2と同様である。
以上、本実施の形態に係る画像処理装置300は、デプス推定の際に利用する情報に加えて、位置あわせを行う際に求まる情報も信頼度算出に利用する。これにより、画像処理装置300は、信頼度をより精度よく算出することができる。
なお、信頼度算出部316は、上記式(3)を用いる方法以外で、最終的な信頼度を算出してもよい。例えば、信頼度算出部316は、以下の式(4)を用いてもよい。
Figure 0006115781
ここでは、a及びbは係数であり、0≦a、b≦1を満たす。
また、上記説明では、信頼度算出部316は、最小コスト値229とブロック間差異330とを共に用いて信頼度を算出しているが、ブロック間差異330のみを用いて信頼度を算出してもよい。
以上、本発明の1つ又は複数の態様に係る画像処理装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。
例えば、上記各実施の形態における画像処理装置が備える構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。例えば、画像処理装置100は、特徴算出部101と、信頼度取得部102と、デプス修正部103とを有するシステムLSIから構成されてもよい。
システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。前記ROMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
なお、ここでは、システムLSIとしたが、集積度の違いにより、IC、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
また、本発明の一態様は、このような画像処理装置だけではなく、画像処理装置に含まれる特徴的な構成部をステップとする画像処理方法であってもよい。また、本発明の一態様は、画像処理方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムであってもよい。また、本発明の一態様は、そのようなコンピュータプログラムが記録された、コンピュータ読み取り可能な非一時的な記録媒体であってもよい。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の画像処理装置などを実現するソフトウェアは、次のようなプログラムである。
すなわち、このプログラムは、コンピュータに、入力画像に含まれる複数の画素の各々の特徴量を算出する特徴算出ステップと、前記複数の画素の各々の奥行きを示す複数のデプス値の各々の信頼度を取得する信頼度取得ステップと、前記信頼度及び前記特徴量を用いて前記デプス値を修正するデプス修正ステップとを実行させる。
また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
また、上記画像処理方法に含まれる各ステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
以上、一つまたは複数の態様に係る画像処理装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
本発明は、画像処理装置に適用できる。また、本発明は、このような画像処理装置を備える、デジタルスチルカメラ、デジタルビデオカメラ、パーソナルコンピュータ、タブレット端末、携帯電話機器、及びスマートフォン等の各種電子機器に適用できる。
100、200、300 画像処理装置
101 特徴算出部
102 信頼度取得部
102A エラー検出部
103 デプス修正部
111 画像変換部
112 特徴抽出部
113 重み算出部
114 デプス合成部
121 入力デプス情報
122 出力デプス情報
123 入力画像
124 信頼度情報
125 特徴量
126 エラー量
127 エッジ画像
128 重み
215 デプス推定部
216、316 信頼度算出部
223 入力画像群
229 最小コスト値
317 位置合わせ部
323 画像群
330 ブロック間差異

Claims (15)

  1. 入力画像に含まれる複数の画素の各々の奥行きを示す複数のデプス値を修正する画像処理装置であって、
    前記複数の画素の各々の特徴量を算出する特徴算出部と、
    前記複数のデプス値の各々の信頼度を取得する信頼度取得部と、
    複数の前記信頼度及び複数の前記特徴量を用いて前記複数のデプス値を修正するデプス修正部と
    前記入力画像を含む複数の画像を用いて前記複数のデプス値を推定するデプス推定部とを備え、
    前記特徴量は、各画素におけるエッジの方向を含み、
    前記デプス推定部は、
    前記複数の画素の各々に対して、処理対象の画素のボケ量と、予め定められた複数の奥行きに対応する予め定められた複数のボケ量との一致度を示すコスト値を、当該奥行きごとに算出し、
    算出された複数の前記コスト値のうち、最も一致度が高い選択コスト値に対応する奥行きを、前記処理対象の画素のデプス値として推定し、
    前記信頼度取得部は、前記選択コスト値を用いて前記信頼度を算出する
    画像処理装置。
  2. 前記デプス修正部は、前記複数の画素に含まれる複数の参照画素の複数のデプス値のうち、前記信頼度が高いデプス値と、処理対象の対象画素のデプス値に特徴量が近い参照画素のデプス値とを優先して用いて、前記対象画素のデプス値を修正する
    請求項1記載の画像処理装置。
  3. 前記デプス修正部は、
    前記複数の参照画素の各々の前記特徴量及び前記信頼度を用いて、各参照画素の重みを算出する重み算出部と、
    算出された複数の前記重みを用いて、前記複数の参照画素のデプス値を加重平均することにより、修正後の前記対象画素の前記デプス値を生成するデプス合成部とを備える
    請求項2記載の画像処理装置。
  4. 前記重み算出部は、前記対象画素の特徴量と、前記複数の参照画素の特徴量の各々との差を算出し、前記差が大きいほど、対応する参照画素の前記重みを小さくする
    請求項3記載の画像処理装置。
  5. 前記特徴量は、各画素におけるエッジの強さを含む
    請求項1〜4のいずれか1項に記載の画像処理装置。
  6. 前記重み算出部は、前記参照画素の信頼度が大きいほど当該参照画素の前記重みを大きくする
    請求項3記載の画像処理装置。
  7. 前記重み算出部は、前記対象画素と前記参照画素との距離が遠いほど当該参照画素の前記重みを小さくする
    請求項3記載の画像処理装置。
  8. 前記信頼度は、前記デプス値の正しさの度合い、又は、前記デプス値が正しいか否かを示す
    請求項1〜7のいずれか1項に記載の画像処理装置。
  9. 前記信頼度取得部は、前記選択コスト値の一致度が高いほど前記信頼度を高くする
    請求項記載の画像処理装置。
  10. 前記信頼度取得部は、さらに、前記選択コスト値の一致度が閾値より低い場合、前記信頼度を最も低い値に設定する
    請求項記載の画像処理装置。
  11. 前記信頼度取得部は、さらに、前記閾値を処理対象の画素の輝度値に応じて変更する
    請求項10記載の画像処理装置。
  12. 前記信頼度取得部は、前記輝度値が大きいほど前記閾値を大きくする
    請求項11記載の画像処理装置。
  13. 入力画像に含まれる複数の画素の各々の奥行きを示す複数のデプス値を修正する画像処理方法であって、
    前記複数の画素の各々の特徴量を算出する特徴算出ステップと、
    前記複数のデプス値の各々の信頼度を取得する信頼度取得ステップと、
    複数の前記信頼度及び複数の前記特徴量を用いて前記複数のデプス値を修正するデプス修正ステップと
    前記入力画像を含む複数の画像を用いて前記複数のデプス値を推定するデプス推定ステップとを含み、
    前記特徴量は、各画素におけるエッジの方向を含み、
    前記デプス推定ステップでは、
    前記複数の画素の各々に対して、処理対象の画素のボケ量と、予め定められた複数の奥行きに対応する予め定められた複数のボケ量との一致度を示すコスト値を、当該奥行きごとに算出し、
    算出された複数の前記コスト値のうち、最も一致度が高い選択コスト値に対応する奥行きを、前記処理対象の画素のデプス値として推定し、
    前記信頼度取得ステップでは、前記選択コスト値を用いて前記信頼度を算出する
    画像処理方法。
  14. 請求項13記載の画像処理方法をコンピュータに実行させるための
    プログラム。
  15. 入力画像に含まれる複数の画素の各々の奥行きを示す複数のデプス値を修正する集積回路であって、
    前記複数の画素の各々の特徴量を算出する特徴算出部と、
    前記複数のデプス値の各々の信頼度を取得する信頼度取得部と、
    複数の前記信頼度及び複数の前記特徴量を用いて前記複数のデプス値を修正するデプス修正部と
    前記入力画像を含む複数の画像を用いて前記複数のデプス値を推定するデプス推定部とを備え、
    前記特徴量は、各画素におけるエッジの方向を含み、
    前記デプス推定部は、
    前記複数の画素の各々に対して、処理対象の画素のボケ量と、予め定められた複数の奥行きに対応する予め定められた複数のボケ量との一致度を示すコスト値を、当該奥行きごとに算出し、
    算出された複数の前記コスト値のうち、最も一致度が高い選択コスト値に対応する奥行きを、前記処理対象の画素のデプス値として推定し、
    前記信頼度取得部は、前記選択コスト値を用いて前記信頼度を算出する
    集積回路。
JP2013528428A 2012-03-29 2013-02-28 画像処理装置及び画像処理方法 Active JP6115781B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012078066 2012-03-29
JP2012078066 2012-03-29
PCT/JP2013/001216 WO2013145554A1 (ja) 2012-03-29 2013-02-28 画像処理装置及び画像処理方法

Publications (2)

Publication Number Publication Date
JPWO2013145554A1 JPWO2013145554A1 (ja) 2015-12-10
JP6115781B2 true JP6115781B2 (ja) 2017-04-19

Family

ID=49258877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013528428A Active JP6115781B2 (ja) 2012-03-29 2013-02-28 画像処理装置及び画像処理方法

Country Status (3)

Country Link
US (1) US9495806B2 (ja)
JP (1) JP6115781B2 (ja)
WO (1) WO2013145554A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9937561B2 (en) 2007-08-06 2018-04-10 3M Innovative Properties Company Fly-cutting head, system and method, and tooling and sheeting produced therewith

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9495806B2 (en) * 2012-03-29 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Image processing apparatus and image processing method
WO2013158784A1 (en) * 2012-04-17 2013-10-24 3Dmedia Corporation Systems and methods for improving overall quality of three-dimensional content by altering parallax budget or compensating for moving objects
JP5703255B2 (ja) * 2012-04-27 2015-04-15 株式会社東芝 画像処理装置、画像処理方法およびプログラム
JP6140935B2 (ja) * 2012-05-17 2017-06-07 キヤノン株式会社 画像処理装置、画像処理方法、画像処理プログラム、および撮像装置
JP5746795B2 (ja) * 2012-09-27 2015-07-08 富士フイルム株式会社 撮像装置及び画像処理方法
JP2015035658A (ja) * 2013-08-07 2015-02-19 キヤノン株式会社 画像処理装置、画像処理方法、および撮像装置
JP6308748B2 (ja) 2013-10-29 2018-04-11 キヤノン株式会社 画像処理装置、撮像装置及び画像処理方法
JP6332982B2 (ja) * 2014-01-29 2018-05-30 キヤノン株式会社 画像処理装置およびその方法
TWI515710B (zh) * 2014-02-17 2016-01-01 友達光電股份有限公司 顯示器的驅動方法
JP5980294B2 (ja) 2014-10-27 2016-08-31 キヤノン株式会社 データ処理装置、撮像装置、およびデータ処理方法
JP6573354B2 (ja) * 2014-11-28 2019-09-11 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
US9805294B2 (en) * 2015-02-12 2017-10-31 Mitsubishi Electric Research Laboratories, Inc. Method for denoising time-of-flight range images
GB2537831A (en) * 2015-04-24 2016-11-02 Univ Oxford Innovation Ltd Method of generating a 3D representation of an environment and related apparatus
JP2017021759A (ja) * 2015-07-15 2017-01-26 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
US9396400B1 (en) * 2015-07-30 2016-07-19 Snitch, Inc. Computer-vision based security system using a depth camera
JP6643122B2 (ja) * 2016-02-03 2020-02-12 キヤノン株式会社 距離画像装置、撮像装置、および距離画像補正方法
JP6702766B2 (ja) * 2016-03-15 2020-06-03 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
DE112017001926T5 (de) * 2016-04-06 2019-01-10 Sony Corporation Bildverarbeitungseinrichtung und Bildverarbeitungsverfahren
JP6501732B2 (ja) * 2016-07-26 2019-04-17 キヤノン株式会社 データ処理装置、撮像装置、およびデータ処理装置の制御方法
US11112237B2 (en) * 2016-11-14 2021-09-07 Waymo Llc Using map information to smooth objects generated from sensor data
CN110140151B (zh) * 2016-12-06 2023-08-29 皇家飞利浦有限公司 用于生成光强度图像的装置和方法
EP3358844A1 (en) * 2017-02-07 2018-08-08 Koninklijke Philips N.V. Method and apparatus for processing an image property map
US10775501B2 (en) * 2017-06-01 2020-09-15 Intel Corporation Range reconstruction using shape prior
JP7117914B2 (ja) * 2018-06-29 2022-08-15 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
CN113710986A (zh) 2019-04-10 2021-11-26 索尼集团公司 图像处理装置和图像处理方法
US20220284610A1 (en) * 2019-07-17 2022-09-08 Sony Group Corporation Information processing apparatus, information processing method, and information processing program
US11303877B2 (en) * 2019-08-13 2022-04-12 Avigilon Corporation Method and system for enhancing use of two-dimensional video analytics by using depth data
US11727545B2 (en) 2019-12-12 2023-08-15 Canon Kabushiki Kaisha Image processing apparatus and image capturing apparatus
JP7404137B2 (ja) * 2020-04-01 2023-12-25 株式会社豊田中央研究所 顔画像処理装置及び顔画像処理プログラム
CN113570530B (zh) * 2021-06-10 2024-04-16 北京旷视科技有限公司 图像融合方法、装置、计算机可读存储介质和电子设备
JP2023097784A (ja) * 2021-12-28 2023-07-10 ソニーグループ株式会社 情報処理装置、情報処理方法、及びプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733358B2 (ja) * 1996-04-05 2006-01-11 松下電器産業株式会社 画像伝送装置、送信装置、受信装置、送信方法および受信方法
US6163337A (en) 1996-04-05 2000-12-19 Matsushita Electric Industrial Co., Ltd. Multi-view point image transmission method and multi-view point image display method
JP2001359119A (ja) 2000-06-15 2001-12-26 Toshiba Corp 立体映像生成方法
JP2004362443A (ja) * 2003-06-06 2004-12-24 Canon Inc パラメータ決定方式
JP3790764B2 (ja) * 2004-04-02 2006-06-28 一成 江良 投写型表示装置および投写型表示システム
JP5561781B2 (ja) * 2008-01-29 2014-07-30 トムソン ライセンシング 2d画像データを立体画像データに変換する方法およびシステム
KR101590767B1 (ko) * 2009-06-09 2016-02-03 삼성전자주식회사 영상 처리 장치 및 방법
WO2011033673A1 (ja) * 2009-09-18 2011-03-24 株式会社 東芝 画像処理装置
JP2011217044A (ja) * 2010-03-31 2011-10-27 Sony Corp 画像処理装置、画像処理方法および画像処理プログラム
JP5292364B2 (ja) * 2010-07-07 2013-09-18 株式会社ソニー・コンピュータエンタテインメント 画像処理装置および画像処理方法
JP5150698B2 (ja) * 2010-09-30 2013-02-20 株式会社東芝 デプス補正装置及び方法
JP2012138787A (ja) * 2010-12-27 2012-07-19 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
JP2013172190A (ja) * 2012-02-17 2013-09-02 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
US9495806B2 (en) * 2012-03-29 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Image processing apparatus and image processing method
US9729860B2 (en) * 2013-05-24 2017-08-08 Microsoft Technology Licensing, Llc Indirect reflection suppression in depth imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9937561B2 (en) 2007-08-06 2018-04-10 3M Innovative Properties Company Fly-cutting head, system and method, and tooling and sheeting produced therewith
US10413972B2 (en) 2007-08-06 2019-09-17 3M Innovative Properties Company Fly-cutting head, system and method, and tooling and sheeting produced therewith

Also Published As

Publication number Publication date
US9495806B2 (en) 2016-11-15
WO2013145554A1 (ja) 2013-10-03
JPWO2013145554A1 (ja) 2015-12-10
US20140093159A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP6115781B2 (ja) 画像処理装置及び画像処理方法
US10582180B2 (en) Depth imaging correction apparatus, imaging apparatus, and depth image correction method
US9251589B2 (en) Depth measurement apparatus, image pickup apparatus, and depth measurement program
JP5980294B2 (ja) データ処理装置、撮像装置、およびデータ処理方法
US8942506B2 (en) Image processing apparatus, image processing method, and program
US9607240B2 (en) Image processing apparatus, image capturing apparatus, image processing method, image capturing method, and non-transitory computer-readable medium for focus bracketing
US9508153B2 (en) Distance measurement apparatus, imaging apparatus, distance measurement method, and program
EP2704423B1 (en) Image processing apparatus, image processing method, and image processing program
US9576370B2 (en) Distance measurement apparatus, imaging apparatus, distance measurement method and program
JP2017040642A (ja) 画像処理装置及び撮影装置
US9843711B2 (en) Image processing device, image processing method, and image processing program
EP1968308A1 (en) Image processing method, image processing program, image processing device, and imaging device
US9538074B2 (en) Image processing apparatus, imaging apparatus, and image processing method
JP2014056378A (ja) 画像処理装置及び画像処理方法
JP2015062270A (ja) 画像処理装置
US20150161771A1 (en) Image processing method, image processing apparatus, image capturing apparatus and non-transitory computer-readable storage medium
JP6395429B2 (ja) 画像処理装置、その制御方法及び記憶媒体
JP6388507B2 (ja) 画像処理装置
US10122939B2 (en) Image processing device for processing image data and map data with regard to depth distribution of a subject, image processing system, imaging apparatus, image processing method, and recording medium
US8849066B2 (en) Image processing apparatus, image processing method, and storage medium
JP6175878B2 (ja) 画像処理回路、画像処理装置及び画像処理方法
JP2010079815A (ja) 画像補正装置
JP2011171991A (ja) 画像処理装置、電子機器、画像処理方法、および、画像処理プログラム
McCrackin et al. Strategic image denoising using a support vector machine with seam energy and saliency features
KR101763376B1 (ko) 신뢰 기반 재귀적 깊이 영상 필터링 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R151 Written notification of patent or utility model registration

Ref document number: 6115781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151