[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6112882B2 - 燃料電池システムの起動方法 - Google Patents

燃料電池システムの起動方法 Download PDF

Info

Publication number
JP6112882B2
JP6112882B2 JP2013014398A JP2013014398A JP6112882B2 JP 6112882 B2 JP6112882 B2 JP 6112882B2 JP 2013014398 A JP2013014398 A JP 2013014398A JP 2013014398 A JP2013014398 A JP 2013014398A JP 6112882 B2 JP6112882 B2 JP 6112882B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
anode
pressure
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013014398A
Other languages
English (en)
Other versions
JP2014146505A (ja
Inventor
宏一朗 古澤
宏一朗 古澤
山崎 薫
薫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013014398A priority Critical patent/JP6112882B2/ja
Priority to US14/167,010 priority patent/US9716283B2/en
Priority to DE201410201558 priority patent/DE102014201558A1/de
Publication of JP2014146505A publication Critical patent/JP2014146505A/ja
Application granted granted Critical
Publication of JP6112882B2 publication Critical patent/JP6112882B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

この発明は、燃料電池システムの起動方法に関する。
従来、燃料電池システムの起動時に燃料電池に電気負荷が接続されていない状態(無負荷)でアノードに燃料ガスを供給して、燃料ガスによる置換を行なう際に、燃料ガスによる置換を促進するために、燃料ガスの濃度に応じて燃料ガスの圧力を低下させる方法が知られている(例えば、特許文献1参照)。
特開2009−301771号公報
ところで、上記従来技術に係る燃料電池システムにおいては、燃料ガスの圧力を低下させることに伴い、アノードの入口側と出口側とにおける燃料ガスの置換が完了するまでの時間が長くなり、無負荷での過大な電位上昇の継続時間が長くなる虞がある。これによって、アノード全体での燃料ガスによる置換の促進と、過大な電位上昇に起因する劣化の抑制とを、適切に制御することが望まれている。
本発明は上記事情に鑑みてなされたもので、燃料電池の起動時に生じる劣化を抑制し、起動時間を短縮することが可能な燃料電池システムの起動方法を提供することを目的としている。
上記課題を解決して係る目的を達成するために、本発明の第1の発明に係る燃料電池システムの起動方法は、アノード(例えば、実施の形態でのアノード11A)の燃料およびカソード(例えば、実施の形態でのカソード11B)の酸化剤によって発電する燃料電池(例えば、実施の形態での燃料電池スタック11)と、前記燃料を含む燃料ガスを前記アノードに供給する燃料ガス供給手段(例えば、実施の形態での水素タンク21および水素供給弁22)と、前記酸化剤を含む酸化剤ガスを前記カソードに供給する酸化剤ガス供給手段(例えば、実施の形態でのエアーコンプレッサー13)と、前記燃料電池と電気負荷との接続と遮断とを切替可能な断接手段(例えば、実施の形態でのコンタクタ39)と、前記燃料ガス供給手段および前記酸化剤ガス供給手段を制御する制御手段(例えば、実施の形態での制御装置41)と、を備える燃料電池システムの起動方法であって、前記燃料としての水素の前記アノードでの濃度を取得する水素濃度取得工程と、前記水素濃度取得工程によって取得された前記水素の濃度が第1の閾値(例えば、実施の形態での所定の第2閾値M2)以上であるか否かを判定する閾値判定工程と、前記断接手段の遮断状態で前記燃料ガス供給手段から前記アノードに前記水素を供給する前記燃料電池の起動実行時に、前記閾値判定工程によって判定された判定結果に基づいて、前記燃料ガス供給手段から供給される前記水素の圧力を設定する起動時圧力設定工程と、前記燃料電池の起動実行時に、前記アノードの水素置換を行う水素置換工程と、を含み、前記起動時圧力設定工程は、前記閾値判定工程によって前記水素の濃度が前記第1の閾値以上であると判定された場合に、前記水素の圧力を、前記燃料電池の起動完了後に実行される通常発電の実行時の前記水素の圧力(例えば、実施の形態での所定圧力#PH2FCCHKN)以下に設定し、前記閾値判定工程によって前記水素の濃度が前記第1の閾値未満であると判定された場合に、前記水素の圧力を、前記通常発電の実行時の前記水素の圧力よりも高く設定前記水素置換工程は、前記起動時圧力設定工程にて設定された前記水素の圧力にて前記アノードの水素置換を行う
さらに、本発明の第2の発明に係る燃料電池システムの起動方法では、前記燃料電池システムは、前記アノードから排出される前記燃料ガスを通流させる燃料ガス排出路(例えば、実施の形態での燃料ガス排出路56)と、前記燃料ガス排出路を開閉可能なパージ弁(例えば、実施の形態でのパージ弁30)と、を備え、前記燃料電池の起動時に前記燃料ガス供給手段から供給される前記水素の圧力が、前記水素濃度取得工程によって取得された前記水素の濃度に応じた所定圧力(例えば、実施の形態での所定圧力#P2、#P3)以上か否かを判定する所定圧力判定工程と、前記所定圧力判定工程によって前記水素の圧力が前記所定圧力未満であると判定された場合に前記パージ弁を閉弁させ、前記所定圧力判定工程によって前記水素の圧力が前記所定圧力以上であると判定された場合に前記パージ弁を開弁させるパージ弁開弁工程と、を含む。
さらに、本発明の第3の発明に係る燃料電池システムの起動方法では、前記閾値判定工程は、前記水素濃度取得工程によって取得された前記水素の濃度が前記第1の閾値よりも大きい第2の閾値(例えば、実施の形態での所定の第1閾値M1)以上であるか否かを判定し、前記起動時圧力設定工程は、前記閾値判定工程によって前記水素の濃度が前記第2の閾値以上であると判定された場合に、前記水素の圧力を、前記通常発電の実行時の前記水素の圧力と同一に設定し、前記閾値判定工程によって前記水素の濃度が前記第2の閾値以上であると判定された場合に、前記パージ弁の開弁を禁止するパージ弁開弁禁止工程を含む。
さらに、本発明の第4の発明に係る燃料電池システムの起動方法では、前記燃料電池システムは、前記燃料ガスを前記アノードに供給するために通流させる燃料ガス供給路(例えば、実施の形態での燃料ガス供給路55)と、前記アノードから排出される前記燃料ガスを通流させる燃料ガス排出路(例えば、実施の形態での燃料ガス排出路56)と、前記燃料ガス排出路と前記燃料ガス供給路とを接続し、前記アノードから排出された燃料ガスを前記燃料ガス供給路に通流させる燃料ガス循環路(例えば、実施の形態での燃料ガス循環路57)と、前記燃料ガス循環路において前記水素を循環させる水素ポンプ(例えば、実施の形態での水素ポンプ28)と、を備え、前記燃料電池の起動実行時に前記水素ポンプを駆動する水素ポンプ駆動工程を含む。
さらに、本発明の第5の発明に係る燃料電池システムの起動方法では、前記水素ポンプ駆動工程は、前記閾値判定工程によって前記水素の濃度が前記第1の閾値未満であると判定された場合に、前記水素ポンプの駆動回転数を、前記閾値判定工程によって前記水素の濃度が前記第1の閾値以上であると判定された場合に比べて、増大させる。
さらに、本発明の第6の発明に係る燃料電池システムの起動方法では、前記水素ポンプ駆動工程は、前記燃料ガス供給手段から前記アノードに前記水素を供給することに先立って、前記水素ポンプを駆動する。
また、本発明の第7の発明に係る燃料電池システムの起動方法では、前記水素ポンプ駆動工程は、前記燃料電池の停止放置時間(例えば、実施の形態でのソーク時間TMSOAK)の増大に伴い、前記水素ポンプの駆動時間を増大傾向に変化させる
さらに、本発明の第8の発明に係る燃料電池システムの起動方法では、前記水素ポンプ駆動工程は、前記水素ポンプの駆動回転数を増大させてから所定時間経過後に前記水素ポンプの駆動回転数を低下させる。
さらに、本発明の第9の発明に係る燃料電池システムの起動方法では、前記水素濃度取得工程は、前記燃料電池の停止放置時間(例えば、実施の形態でのソーク時間TMSOAK)と、前記燃料電池の停止放置期間の前記アノードの雰囲気の圧力(例えば、実施の形態でのアノード圧力Ph)と、前記燃料電池の停止放置期間の前記カソードの雰囲気の圧力(例えば、実施の形態でのカソード圧力Pa)と、のうち少なくとも何れかを用いて前記水素の濃度を推定する。
本発明の第1の発明に係る燃料電池システムの起動方法によれば、水素の濃度が第1閾値以上である場合には、アノード全体での水素による置換が短時間で完了すると想定される。これによって、燃料ガス供給手段から供給される水素の圧力を通常発電の実行時よりも低下させて、水素による置換を促進することによって、迅速に燃料電池を起動させることができる。
一方、水素の濃度が第1閾値未満である場合には、アノード全体での水素による置換が短時間では完了せずに、無負荷での過大な電位上昇の継続時間が長くなる虞があると想定される。これによって、燃料ガス供給手段から供給される水素の圧力を通常発電の実行時よりも増大させて、アノードの入口側と出口側とにおける水素による混合を促進することによって、無負荷での過大な電位上昇を抑制し、燃料電池の劣化を抑制することができる。
本発明の第2の発明に係る燃料電池システムの起動方法によれば、パージ弁を開弁させることによって、アノードでの水素による置換を促進することができる。
本発明の第3の発明に係る燃料電池システムの起動方法によれば、パージ弁の開弁を禁止することによって、燃料ガス排出路から排出される水素の濃度が過大になることを防止することができる。
また、燃料電池の起動実行時の水素の圧力を通常発電の実行時の水素の圧力と同一に設定することによって、燃料電池の起動実行の完了後に迅速に通常発電の実行を開始することができる。
本発明の第4の発明に係る燃料電池システムの起動方法によれば、燃料ガス循環路の水素ポンプを駆動することによって、アノードでの水素による置換を促進することができる。
本発明の第5の発明に係る燃料電池システムの起動方法によれば、水素ポンプの駆動回転数を増大させることによって、アノードの入口側と出口側とにおける水素による混合を促進して、無負荷での過大な電位上昇を迅速に解消し、燃料電池の劣化を抑制することができる。
本発明の第6の発明に係る燃料電池システムの起動方法によれば、燃料ガス循環路と燃料ガス供給路とアノードと燃料ガス排出路とによる循環系内において水素ポンプの駆動によってガスの流れを形成した後に、燃料ガス供給手段から水素を供給することによって、アノードでの水素による置換を促進することができる。
本発明の第7の発明に係る燃料電池システムの起動方法によれば、燃料電池の停止放置時間にかかわらずにアノードでの水素による所望の置換を行なうことができる。
本発明の第8の発明に係る燃料電池システムの起動方法によれば、水素ポンプの駆動回転数を増大させることによって、アノードの入口側と出口側とにおける水素による混合を促進した後に、アノードの系内の滞留水を排出する際には、水素ポンプの駆動回転数を低下させる。これによって、滞留水の排出およびキャッチタンクでの補水を促進し、迅速に燃料電池システムを起動させることができるとともに、電力消費を削減して、燃料電池システムの運転効率を向上させることができる。
本発明の第9の発明に係る燃料電池システムの起動方法によれば、水素の濃度を検出するセンサなどを備える必要無しに、水素濃度を精度良く取得することができる。
本発明の実施形態に係る燃料電池システムの構成図である。 本発明の実施形態に係る燃料電池システムの動作、特に、燃料電池システムの起動時における制御装置による制御動作(つまり、燃料電池システムの起動方法)を示すフローチャートである。 本発明の実施形態に係る燃料電池システムの起動信号を受信した時点での燃料電池スタックのアノードでの水素の濃度(アノード水素濃度)とソーク時間との対応関係の一例を示す図である。 本発明の実施形態に係る燃料電池システムの起動信号を受信した時点での燃料電池スタックのアノードでの水素の圧力(アノード圧力)とソーク時間との対応関係の一例を示す図である。 本発明の実施形態に係る燃料電池システムの起動時における各状態1,2,3での燃料電池スタックのアノードでの水素の圧力と、パージ弁の開閉状態と、水素ポンプの駆動回転数との時間変化の一例を示す図である。 本発明の実施形態に係る燃料電池システムの起動時における各所定時間T1,T2,T3とソーク時間との対応関係の一例を示す図である。
以下、本発明の一実施形態に係る燃料電池システムの起動方法について添付図面を参照しながら説明する。
本実施形態による燃料電池システム10は、例えば、走行駆動用のモータMおよびモータMを制御するパワードライブユニットPDUを備える車両1に電源として搭載されている。
なお、車両1は、例えばイグニッションスイッチなどのように、運転者による入力操作に応じて車両1の起動を指示する起動信号または停止を指示する停止信号を出力するスイッチ2を備えている。
燃料電池システム10は、図1に示すように、燃料電池スタック11と、インテイク12と、エアーコンプレッサー13と、加湿器14と、封止入口弁15と、封止出口弁16と、圧力制御弁17と、バイパス弁18と、排気再循環ポンプ19と、逆止弁20と、水素タンク21と、水素供給弁22と、遮断弁23と、インジェクタ24と、エゼクタ25と、バイパスインジェクタ26と、気液分離器27と、水素ポンプ28と、逆止弁29と、パージ弁30と、ドレイン弁31と、希釈器32と、エアフローセンサー33と、温度センサ34と、圧力センサ35と、水素温度センサ36と、水素圧力センサ37と、電圧センサ38と、コンタクタ39と、電圧調整器(FCVCU)40と、制御装置41と、を備えている。
燃料電池スタック11は、複数の燃料電池セルが積層された積層体(図示略)と、この積層体を積層方向の両側から挟み込む一対のエンドプレート(図示略)と、を備えている。
燃料電池セルは、膜電極接合体(MEA:Membrane Electrode Assembly)と、この膜電極接合体を接合方向の両側から挟み込む一対のセパレータと、を備えている。
膜電極接合体は、アノード触媒およびガス拡散層からなる燃料極(アノード)11Aと、カソード触媒およびガス拡散層からなる酸素極(カソード)11Bと、アノード11Aおよびカソード11Bによって厚さ方向の両側から挟み込まれた陽イオン交換膜などからなる固体高分子電解質膜11Cと、を備えている。
燃料電池スタック11のアノード11Aには、燃料として水素を含む燃料ガス(反応ガス)が水素タンク21から供給され、カソード11Bには、酸化剤として酸素を含む酸化剤ガス(反応ガス)である空気がエアーコンプレッサー13から供給される。
アノード11Aに供給された水素は、アノード触媒上で触媒反応によりイオン化され、水素イオンは、適度に加湿された固体高分子電解質膜11Cを介してカソード11Bへと移動する。水素イオンの移動に伴って発生する電子は直流電流として外部回路(電圧調整器40など)に取り出し可能である。
アノード11Aからカソード11Bのカソード触媒上へと移動した水素イオンは、カソード11Bに供給された酸素と、カソード触媒上の電子と反応して、水を生成する。
なお、燃料電池スタック11の複数の燃料電池セルには、例えばDHE(Dynamic Hydrogen Electrode)などの参照電極(図示略)が接続されていてもよい。
参照電極は、例えば、水素を参照電位(0V)として、参照電位に対するアノード11Aの電位(アノード電位)を測定して、測定結果の信号を制御装置41に出力可能である。
参照電極は、例えば、複数の燃料電池セルの全てに設けられていてもよいし、複数の燃料電池セルのうちの所定の燃料電池セルにのみ設けられていてもよい。
エアーコンプレッサー13は、制御装置41により駆動制御されるモータなどを備え、このモータの駆動力によってインテイク12を介して外部から空気を取り込んで圧縮し、圧縮後の空気をカソード11Bに接続された酸化剤ガス供給路51に排出する。
加湿器14は、例えば中空糸膜などの水透過膜を備え、燃料電池スタック11のカソード排出口11bから酸化剤ガス排出路52に排出された空気などの排出ガス(カソードオフガス)を加湿用のガスとして用いて、エアーコンプレッサー13から酸化剤ガス供給路51に排出された空気(カソードガス)を加湿する。
より詳細には、加湿器14は、エアーコンプレッサー13から排出された空気と燃料電池スタック11のカソード排出口11bから排出された湿潤状態の排出ガスとを水透過膜を介して接触させることで、排出ガスに含まれる水分(特に、水蒸気)のうち水透過膜の膜穴を透過した水分を空気(カソードガス)に添加する。
封止入口弁15は、エアーコンプレッサー13と、燃料電池スタック11のカソード11Bに空気を供給可能なカソード供給口11aと、を接続する酸化剤ガス供給路51に設けられ、制御装置41の制御によって酸化剤ガス供給路51を開閉可能であって、カソード11Bを封止可能である。
封止出口弁16は、燃料電池スタック11のカソード11Bから空気などの排出ガス(カソードオフガス)を排出可能なカソード排出口11bと、希釈器32と、を接続する酸化剤ガス排出路52に設けられ、制御装置41の制御によって酸化剤ガス排出路52を開閉可能であって、カソード11Bを封止可能である。
圧力制御弁17は、酸化剤ガス排出路52における加湿器14と希釈器32との間に設けられ、制御装置41の制御によって酸化剤ガス排出路52を流通するカソードオフガスの圧力を制御する。
バイパス弁18は、酸化剤ガス供給路51におけるエアーコンプレッサー13と加湿器14との間と、酸化剤ガス排出路52における圧力制御弁17と希釈器32との間と、を接続するバイパス路53に設けられている。
バイパス弁18は、エアーコンプレッサー13から供給された空気を、酸化剤ガス供給路51から分岐してカソード11Bを迂回するバイパス路53を介して、希釈器32に供給可能であり、制御装置41の制御によってバイパス路53を開閉可能である。
排気再循環ポンプ19は、酸化剤ガス供給路51における封止入口弁15とカソード供給口11aとの間と、酸化剤ガス排出路52におけるカソード排出口11bと封止出口弁16との間と、を接続する排気再循環路54に設けられている。
排気再循環ポンプ19は、燃料電池スタック11のカソード11Bを通過してカソード排出口11bから酸化剤ガス排出路52に排出されたカソードオフガスの少なくとも一部を排気再循環路54に通流させる。そして、排気再循環路54を流通したカソードオフガスを、封止入口弁15からカソード供給口11aに向かい酸化剤ガス供給路51を流通する空気(カソードガス)に混合して、カソード11Bに再び供給する。
逆止弁20は、酸化剤ガス排出路52から酸化剤ガス供給路51に向かう方向を順方向として、排気再循環路54に設けられている。
水素タンク21は、圧縮された水素を貯留し、水素を排出可能である。
水素供給弁22は、水素タンク21と、燃料電池スタック11のアノード11Aに水素を供給可能なアノード供給口11cと、を接続する燃料ガス供給路55に設けられている。
水素供給弁22は、制御装置41の制御またはエアーコンプレッサー13から排出される空気の圧力による信号圧などに応じた圧力を有する水素を、水素タンク21から燃料ガス供給路55に供給する。
遮断弁23は、燃料ガス供給路55において水素供給弁22とアノード供給口11cとの間に設けられ、制御装置41の制御によって燃料ガス供給路55を遮断可能である。
インジェクタ24は、燃料ガス供給路55において遮断弁23とアノード供給口11cとの間に設けられ、制御装置41の制御によって目標圧力の水素をアノード供給口11cへ所定の周期で間欠的に供給する。これによって、燃料電池スタック11のカソード11Bとアノード11Aとの間の極間差圧を所定の圧力に保持する。
エゼクタ25は、燃料ガス供給路55においてインジェクタ24とアノード供給口11cとの間に設けられている。
エゼクタ25は、燃料電池スタック11のアノード11Aを通過してアノード排出口11dから燃料ガス排出路56に排出された未反応の水素を含む排出ガス(アノードオフガス)の少なくとも一部を、燃料ガス排出路56と燃料ガス供給路55とを接続する燃料ガス循環路57に通流させる。そして、燃料ガス循環路57を流通したアノードオフガスを、インジェクタ24からアノード供給口11cに向かい燃料ガス供給路55を流通する水素に混合して、アノード11Aに再び供給する。
バイパスインジェクタ26は、燃料ガス供給路55における遮断弁23とアノード供給口11cとの間でインジェクタ24およびエゼクタ25を迂回して燃料ガス供給路55に接続された迂回路58に設けられている。
バイパスインジェクタ26は、制御装置41の制御によってインジェクタ24を補助するようにして目標圧力の水素をアノード供給口11cへ供給する。
気液分離器27は、燃料ガス排出路56においてアノード排出口11dと燃料ガス循環路57との間に設けられている。
気液分離器27は、燃料電池スタック11のアノード11Aを通過してアノード排出口11dから排出されたアノードオフガスに含まれる水分を分離する。そして、分離後のアノードオフガスを燃料ガス排出路56に接続されたガス排出口(図示略)から排出し、分離後の水分を水分排出路59に接続された水分排出口(図示略)から排出する。
水素ポンプ28は、燃料ガス排出路56における気液分離器27とパージ弁30との間と、エゼクタ25の副流導入口(図示略)とに接続された燃料ガス循環路57に設けられている。
水素ポンプ28は、燃料電池スタック11のアノード11Aを通過してアノード排出口11dから燃料ガス排出路56に排出されたアノードオフガスの少なくとも一部を、燃料ガス循環路57に通流させる。そして、燃料ガス循環路57を流通したアノードオフガスを、インジェクタ24からアノード供給口11cに向かい燃料ガス供給路55を流通する水素に混合して、アノード11Aに再び供給する。
逆止弁29は、燃料ガス排出路56から燃料ガス供給路55に向かう方向を順方向として、燃料ガス循環路57に設けられている。
パージ弁30は、燃料ガス排出路56において気液分離器27のガス排出口と希釈器32との間に設けられている。パージ弁30は、制御装置41の制御によって燃料ガス排出路56を開閉可能であって、気液分離器27のガス排出口から排出されたアノードオフガスを制御装置41の制御によって希釈器32に供給可能である。
ドレイン弁31は、水分排出路59において気液分離器27の水分排出口と希釈器32との間に設けられている。ドレイン弁31は、制御装置41の制御によって水分排出路59を開閉可能であって、気液分離器27の水分排出口から排出された水分を制御装置41の制御によって希釈器32に供給可能である。
希釈器32は、酸化剤ガス排出路52と、燃料ガス排出路56と、水分排出路59と、に接続されている。
希釈器32は、パージ弁30から供給されたアノードオフガスの水素濃度を、バイパス弁18から供給された空気または圧力制御弁17から供給されたカソードオフガスによって希釈する。そして、希釈後の水素濃度が所定濃度以下に低減された排出ガスを外部(例えば、大気中など)に排出する。
エアフローセンサー33は、インテイク12の下流側に設けられ、インテイク12を介して外部から取り込まれる空気の流量Gaを検出し、検出結果の信号を制御装置41に出力する。
温度センサ34は、燃料電池スタック11のカソード11Bに供給される空気の温度Taを検出し、検出結果の信号を制御装置41に出力する。
圧力センサ35は、燃料電池スタック11のカソード11Bに供給される空気の圧力Paを検出し、検出結果の信号を制御装置41に出力する。
水素温度センサ36は、燃料電池スタック11のアノード11Aに供給される燃料ガスの温度Thを検出して、検出結果の信号を制御装置41に出力する。
水素圧力センサ37は、燃料電池スタック11のアノード11Aに供給される燃料ガスの圧力Phを検出し、検出結果の信号を制御装置41に出力する。
電圧センサ38は、燃料電池スタック11の正極および負極間の電圧(つまり、複数の燃料電池セルの電圧の総和である総電圧)VFCを検出して、検出結果の信号を制御装置41に出力する。
コンタクタ39は、燃料電池スタック11の正極および負極に接続され、制御装置41の制御によって、燃料電池スタック11と電気負荷(例えば、パワードライブユニットPDUなど)との接続と遮断とを切り替える。
電圧調整器(FCVCU)40は、コンタクタ39を介した燃料電池スタック11の正極および負極と、電気負荷との間に配置され、制御装置41の制御によって、燃料電池スタック11から出力される電圧および電流を調整する。
制御装置41は、スイッチ2から出力される信号と、各センサ33−38から出力される検出結果の信号に基づいて、燃料電池システム10の動作を制御する。
なお、燃料電池システム10は、例えば、車両1に搭載された走行駆動用のモータMおよび蓄電装置(図示略)などの電気機器に加えて、制御装置41の制御によって燃料電池スタック11に対する接続および遮断が切り替え可能かつ負荷電流が変更可能とされた電気負荷(例えば、ディスチャージ抵抗や電子負荷など)を備えていてもよい。この場合、制御装置41は、燃料電池スタック11の発電時の放電(ディスチャージ)として、電気負荷への放電を制御可能である。
本実施形態による燃料電池システム10は上記構成を備えており、次に、この燃料電池システム10の起動時の制御装置41による制御動作(つまり、燃料電池システム10の起動方法)について説明する。
先ず、図2に示すステップS01においては、スイッチ2に対する運転者の入力操作などによって燃料電池システム10の起動を指示する起動信号(IG−ON)を受信したか否かを判定する。
この判定結果が「NO」の場合には、ステップS01の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS02に進む。
次に、ステップS02においては、水素濃度取得工程として、起動信号を受信するまでの燃料電池スタック11の停止放置時間(ソーク時間)TMSOAKを取得する。
次に、ステップS03においては、水素濃度取得工程として、圧力センサ35および水素圧力センサ37から出力された信号に基づき、燃料電池スタック11の停止放置期間のアノード11Aの雰囲気の圧力(アノード圧力Ph)とカソード11Bの雰囲気の圧力(カソード圧力Pa)とを取得する。
なお、燃料電池システム10の起動信号を受信した時点での燃料電池スタック11のアノード11Aでの水素の濃度(アノード水素濃度)は、ソーク時間TMSOAKと、アノード圧力Phと、カソード圧力Paと、のうち少なくとも何れかに応じた値とされている。
例えば図3に示すように、アノード水素濃度は、ソーク時間TMSOAKが長くなることに伴い、減少傾向に変化する。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1以下であれば、アノード水素濃度は所定の第1閾値M1以上である。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1よりも長い所定の第2ソーク時間#TMSOAK2以上であれば、アノード水素濃度は所定の第1閾値M1よりも小さい所定の第2閾値M2以下である。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1以上かつ所定の第2ソーク時間#TMSOAK2以下であれば、アノード水素濃度は所定の第1閾値M1以下かつ所定の第2閾値M2以上である。
また、例えば図4に示すように、アノード圧力Phは、ソーク時間TMSOAKが長くなることに伴い、減少傾向に変化する。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1以下であれば、アノード圧力Phは所定の第1閾値Ph1以上である。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1よりも長い所定の第2ソーク時間#TMSOAK2以上であれば、アノード圧力Phは所定の第1閾値Ph1よりも小さい所定の第2閾値Ph2以下である。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1以上かつ所定の第2ソーク時間#TMSOAK2以下であれば、アノード圧力Phは所定の第1閾値Ph1以下かつ所定の第2閾値Ph2以上である。
また、アノード圧力Phと同様に、カソード圧力Paは、ソーク時間TMSOAKが長くなることに伴い、減少傾向に変化する。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1以下であれば、カソード圧力Paは所定の第1閾値Pa1以上である。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1よりも長い所定の第2ソーク時間#TMSOAK2以上であれば、カソード圧力Paは所定の第1閾値Pa1よりも小さい所定の第2閾値Pa2以下である。ソーク時間TMSOAKが所定の第1ソーク時間#TMSOAK1以上かつ所定の第2ソーク時間#TMSOAK2以下であれば、カソード圧力Paは所定の第1閾値Pa1以下かつ所定の第2閾値Pa2以上である。
なお、アノード水素濃度に対する所定の第1閾値M1は、例えば、アノード11Aの雰囲気を水素タンク21から供給される水素によって置換する必要無しに、水素ポンプ28の駆動によってアノード11Aの水素の圧力を所定圧力に増大させるだけで、燃料電池スタック11の通常発電を適正に実行可能な水素濃度である。なお、通常発電は、例えば燃料電池スタック11の発電効率を優先させる発電などである。
また、アノード水素濃度に対する所定の第2閾値M2は、例えば、アノード11Aの雰囲気を水素タンク21から供給される水素によって置換することを優先する状態と、カソード電位の高電位状態の発生を抑制することを優先する状態と、を区分する水素濃度である。なお、カソード電位の高電位状態は、例えば、アノード11Aのアノード供給口11c側に比べてアノード排出口11d側における水素による置換度合が低いことに起因して生じる。
水素濃度取得工程では、例えば図3および図4に示すような予め設定された所定マップなどのデータに基づき、ソーク時間TMSOAKと、アノード圧力Phと、カソード圧力Paと、のうち少なくとも何れかに応じて、アノード水素濃度を推定する。
次に、ステップS04においては、閾値判定工程として、アノード水素濃度は所定の第1閾値M1よりも大きいか否かを判定する。
より詳細には、ソーク時間TMSOAKは所定の第1ソーク時間#TMSOAK1未満であるか否か、または、アノード圧力Phは所定の第1閾値Ph1よりも大きいか否か、または、カソード圧力Paは所定の第1閾値Pa1よりも大きいか否か、を判定する。
この判定結果が「YES」の場合には、「状態1」であると判定して、後述するステップS06に進む。
一方、この判定結果が「NO」の場合には、ステップS05に進む。
次に、ステップS05においては、閾値判定工程として、アノード水素濃度は所定の第1閾値M2よりも大きいか否かを判定する。
より詳細には、ソーク時間TMSOAKは所定の第2ソーク時間#TMSOAK2未満であるか否か、または、アノード圧力Phは所定の第2閾値Ph2よりも大きいか否か、または、カソード圧力Paは所定の第2閾値Pa2よりも大きいか否か、を判定する。
この判定結果が「YES」の場合には、「状態2」であると判定して、後述するステップS12に進む。
一方、この判定結果が「NO」の場合には、「状態3」であると判定して、後述するステップS17に進む。
そして、ステップS06においては、水素タンク21からアノード11Aに水素を供給することに先立って、水素ポンプ28を駆動する水素ポンプ駆動工程を実行する。この水素ポンプ駆動工程では、水素ポンプ28の駆動回転数を指示する指令値H2PMPに、閾値判定工程の判定結果に応じた値、例えば所定の第1駆動回転数#H2PMP1よりも小さい所定の第2駆動回転数#H2PMP2を設定する。
そして、ステップS07においては、所定時間T1(水素ポンプ28の駆動回転数が指令値H2PMPに到達するのに要する時間:駆動時間)が経過したか否かを判定する。
この判定結果が「NO」の場合には、ステップS07の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS08に進む。これによって、例えば図5に示すように、起動信号(IG−ON)を受信した時刻t1以降の駆動時間T1の期間において、水素ポンプ28の駆動回転数が指令値H2PMP(=第2駆動回転数#H2PMP2)に到達する。
そして、ステップS08においては、起動時圧力設定工程として、コンタクタ39の遮断状態で水素タンク21からアノード11Aに水素を供給する際のアノード11Aの水素の圧力を指示する圧力指令値PH2FCCHKに、閾値判定工程の判定結果に応じた値を設定する。そして、水素タンク21からアノード11Aに水素の供給を開始する。この起動時圧力設定工程では、圧力指令値PH2FCCHKに、例えば燃料電池システム10の起動完了後に実行される通常発電の実行時の水素の圧力などの所定圧力#PH2FCCHKNを設定する。
そして、ステップS09においては、パージ弁開弁禁止工程として、OCVパージの実行を禁止する。このOCVパージは、燃料電池スタック11を電気負荷から遮断した無負荷(つまり非発電状態)かつパージ弁30および遮断弁23の開弁状態で、水素タンク21からアノード11Aを介して希釈器32に水素を供給する動作である。
これによって、例えば図5に示すように、水素タンク21からアノード11Aに水素の供給を開始した時刻t2以降において、アノード11Aの水素の圧力は所定初期値Ph0から圧力指令値PH2FCCHK(=所定圧力#PH2FCCHKN)に向かい増大する。また、パージ弁30は閉弁状態に維持される。
そして、アノード11Aの水素の圧力が圧力指令値PH2FCCHK(=所定圧力#PH2FCCHKN)に到達した後の所定の時刻t4(例えば、燃料電池スタック11の電圧が発電開始を許可する所定電圧に到達した時点など)において、燃料電池スタック11の発電が開始される。
そして、ステップS10においては、水素タンク21からアノード11Aに水素の供給を開始した以後に所定時間(T2+T3)が経過したか否かを判定する。
この判定結果が「NO」の場合には、ステップS10の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS11に進む。
なお、所定時間T2は、水素タンク21から供給される水素によってアノード11Aの雰囲気を所定の程度に置換するのに要する水素ポンプ28の駆動継続時間である。所定時間T3は、アノード11Aの系内の滞留水を水素タンク21から供給される水素によって所定の程度に排出するのに要する水素ポンプ28の駆動継続時間である。「状態1」および「状態2」における所定時間T3は、後述する「状態3」の所定時間T3に比べてより短くされてもよいし、ゼロであってもよい。
そして、ステップS11においては、水素ポンプ28の駆動回転数を指示する指令値H2PMPにゼロを設定し、燃料電池システム10の起動が完了し、エンドに進む。これによって、例えば図5に示すように、指令値H2PMPにゼロを設定した時刻t6以降において、水素ポンプ28の駆動回転数はゼロに向かい低下する。
また、ステップS12においては、水素タンク21からアノード11Aに水素を供給することに先立って、水素ポンプ28を駆動する水素ポンプ駆動工程を実行する。この水素ポンプ駆動工程では、水素ポンプ28の駆動回転数を指示する指令値H2PMPに、閾値判定工程の判定結果に応じた値、例えば所定の第1駆動回転数#H2PMP1よりも小さい所定の第2駆動回転数#H2PMP2を設定する。
そして、ステップS13においては、所定時間T1(水素ポンプ28の駆動回転数が指令値H2PMPに到達するのに要する時間:駆動時間)が経過したか否かを判定する。
この判定結果が「NO」の場合には、ステップS13の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS14に進む。これによって、例えば図5に示すように、起動信号(IG−ON)を受信した時刻t1以降の駆動時間T1の期間において、水素ポンプ28の駆動回転数が指令値H2PMP(=第2駆動回転数#H2PMP2)に到達する。
そして、ステップS14においては、起動時圧力設定工程として、コンタクタ39の遮断状態で水素タンク21からアノード11Aに水素を供給する際のアノード11Aの水素の圧力を指示する圧力指令値PH2FCCHKに、閾値判定工程の判定結果に応じた値を設定する。そして、水素タンク21からアノード11Aに水素の供給を開始する。この起動時圧力設定工程では、圧力指令値PH2FCCHKに、例えば燃料電池システム10の起動完了後に実行される通常発電の実行時の水素の圧力などの所定圧力#PH2FCCHKNよりも小さいロー側所定圧力#PH2FCCHKLを設定する。なお、通常発電は、例えば燃料電池スタック11の発電効率を優先させる発電などである。
そして、ステップS15においては、所定圧力判定工程およびパージ弁開弁工程を実行する。所定圧力判定工程では、アノード11Aの水素の圧力が閾値判定工程の判定結果に応じた所定閾値#P2以上に到達したか否かを判定する。パージ弁開弁工程では、所定圧力判定工程によってアノード11Aの水素の圧力が閾値判定工程の判定結果に応じた所定閾値#P2以上に到達したと判定された場合に、OCVパージを実行する。一方、所定圧力判定工程によってアノード11Aの水素の圧力が所定閾値#P2未満であると判定された場合に、パージ弁30を閉弁状態に維持する。
これによって、例えば図5に示すように、水素タンク21からアノード11Aに水素の供給を開始した時刻t2以降において、アノード11Aの水素の圧力は所定初期値Ph0から圧力指令値PH2FCCHK(=ロー側所定圧力#PH2FCCHKL)に向かい増大する。そして、アノード11Aの水素の圧力が所定閾値#P2に到達した時刻t3においてパージ弁30は閉弁状態から開弁状態へと切り替えられる。
そして、ステップS16においては、例えば図5に示すように、アノード11Aの水素の圧力が圧力指令値PH2FCCHK(=ロー側所定圧力#PH2FCCHKL)に到達した後の所定の時刻t4において、圧力指令値PH2FCCHKに所定圧力#PH2FCCHKNを設定する。そして、パージ弁30を開弁状態から閉弁状態へと切り替え、燃料電池スタック11の発電を開始する。
なお、所定の時刻t4は、例えば、燃料電池スタック11の電圧が発電開始を許可する所定電圧に到達した時点やパージ弁30から希釈器32に排出される水素量(パージ量)が所定量に到達した時点などである。水素量(パージ量)が所定量に到達したか否かは、燃料電池スタック11外部の大気圧とアノード11Aの圧力との差圧およびパージ弁30の大きさなどに基づいて判定されてもよいし、OCVパージの実行継続時間が所定時間に到達したか否かに応じて判定されてもよい。そして、このステップS16の実行後に、上述したステップS10に進む。
また、ステップS17においては、水素タンク21からアノード11Aに水素を供給することに先立って、水素ポンプ28を駆動する水素ポンプ駆動工程を実行する。この水素ポンプ駆動工程では、水素ポンプ28の駆動回転数を指示する指令値H2PMPに、閾値判定工程の判定結果に応じた値、例えば所定の第2駆動回転数#H2PMP2よりも大きい所定の第1駆動回転数#H2PMP1を設定する。
そして、ステップS18においては、所定時間T1(水素ポンプ28の駆動回転数が指令値H2PMPに到達するのに要する時間:駆動時間)が経過したか否かを判定する。
この判定結果が「NO」の場合には、ステップS18の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS19に進む。これによって、例えば図5に示すように、起動信号(IG−ON)を受信した時刻t1以降の駆動時間T1の期間において、水素ポンプ28の駆動回転数が指令値H2PMP(=第1駆動回転数#H2PMP1)に到達する。
そして、ステップS19においては、起動時圧力設定工程として、コンタクタ39の遮断状態で水素タンク21からアノード11Aに水素を供給する際のアノード11Aの水素の圧力を指示する圧力指令値PH2FCCHKに、閾値判定工程の判定結果に応じた値を設定する。そして、水素タンク21からアノード11Aに水素の供給を開始する。この起動時圧力設定工程では、圧力指令値PH2FCCHKに、例えば燃料電池システム10の起動完了後に実行される通常発電の実行時の水素の圧力などの所定圧力#PH2FCCHKNよりも大きいハイ側所定圧力#PH2FCCHKHを設定する。なお、通常発電は、例えば燃料電池スタック11の発電効率を優先させる発電などである。
そして、ステップS20においては、所定圧力判定工程およびパージ弁開弁工程を実行する。所定圧力判定工程では、アノード11Aの水素の圧力が閾値判定工程の判定結果に応じた所定閾値#P3以上に到達したか否かを判定する。パージ弁開弁工程では、所定圧力判定工程によってアノード11Aの水素の圧力が閾値判定工程の判定結果に応じた所定閾値#P3以上に到達したと判定された場合に、OCVパージを実行する。一方、所定圧力判定工程によってアノード11Aの水素の圧力が所定閾値#P2未満であると判定された場合に、パージ弁30を閉弁状態に維持する。
これによって、例えば図5に示すように、水素タンク21からアノード11Aに水素の供給を開始した時刻t2以降において、アノード11Aの水素の圧力は所定初期値Ph0から圧力指令値PH2FCCHK(=ハイ側所定圧力#PH2FCCHKH)に向かい増大する。そして、アノード11Aの水素の圧力が所定閾値#P3に到達した時刻t3においてパージ弁30は閉弁状態から開弁状態へと切り替えられる。
そして、ステップS21においては、例えば図5に示すように、アノード11Aの水素の圧力が圧力指令値PH2FCCHK(=ハイ側所定圧力#PH2FCCHKH)に到達した後の所定の時刻t4において、圧力指令値PH2FCCHKに所定圧力#PH2FCCHKNを設定する。そして、パージ弁30を開弁状態から閉弁状態へと切り替え、燃料電池スタック11の発電を開始する。
なお、所定の時刻t4は、例えば、燃料電池スタック11の電圧が発電開始を許可する所定電圧に到達した時点やパージ弁30から希釈器32に排出される水素量(パージ量)が所定量に到達した時点などである。水素量(パージ量)が所定量に到達したか否かは、燃料電池スタック11外部の大気圧とアノード11Aの圧力との差圧およびパージ弁30の大きさなどに基づいて判定されてもよいし、OCVパージの実行継続時間が所定時間に到達したか否かに応じて判定されてもよい。
そして、ステップS22においては、水素タンク21からアノード11Aに水素の供給を開始した以後に所定時間T2が経過したか否かを判定する。
この判定結果が「NO」の場合には、ステップS22の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS23に進む。
なお、所定時間T2は、水素タンク21から供給される水素によってアノード11Aの雰囲気を所定の程度に置換するのに要する水素ポンプ28の駆動継続時間である。
そして、ステップS23においては、水素ポンプ28の駆動回転数を指示する指令値H2PMPに所定の第1駆動回転数#H2PMP1よりも小さい所定の第2駆動回転数#H2PMP2を設定する。
これによって、例えば図5に示すように、水素タンク21からアノード11Aに水素の供給を開始した以後に所定時間T2が経過した時刻t5以降において、水素ポンプ28の駆動回転数は所定の第1駆動回転数#H2PMP1から所定の第2駆動回転数#H2PMP2に向かい低下する。
そして、ステップS24においては、水素タンク21からアノード11Aに水素の供給を開始した以後に所定時間T3が経過したか否かを判定する。
この判定結果が「NO」の場合には、ステップS24の判定処理を繰り返し実行する。
一方、この判定結果が「YES」の場合には、ステップS25に進む。
なお、所定時間T3は、アノード11Aの滞留水を水素タンク21から供給される水素によって所定の程度に排出するのに要する水素ポンプ28の駆動継続時間である。「状態3」における所定時間T3は、「状態1」および「状態2」の所定時間T3に比べてより長くされている。
そして、ステップS25においては、水素ポンプ28の駆動回転数を指示する指令値H2PMPにゼロを設定し、燃料電池システム10の起動が完了し、エンドに進む。これによって、例えば図5に示すように、指令値H2PMPにゼロを設定した時刻t6以降において、水素ポンプ28の駆動回転数はゼロに向かい低下する。
なお、「状態1」、「状態2」および「状態3」のそれぞれにおいて、各所定時間T1,T2,T3は、例えば図6に示すように、ソーク時間TMSOAKに応じた値であってもよい。例えば、各所定時間T1,T2,T3は、ソーク時間TMSOAKが長くなることに伴い、増大傾向に変化する。
上述したように、本実施の形態による燃料電池システム10の起動方法によれば、アノード水素濃度が所定の第1閾値M1以上である「状態1」においては、パージ弁30の開弁を禁止することによって、燃料ガス排出路56から希釈器32に排出される水素の濃度が過大になることを防止することができる。さらに、アノード11Aの水素の圧力を通常発電の実行時の水素の圧力(所定圧力#PH2FCCHKN)と同一に設定することによって、燃料電池システム10の起動完了後に迅速に通常発電の実行を開始することができる。
また、アノード水素濃度が所定の第2閾値M2以上かつ所定の第2閾値M2未満である「状態2」においては、アノード11Aの水素の圧力を所定圧力#PH2FCCHKNよりも低下させることによって、燃料ガス排出路56から希釈器32に排出される水素量の増大を抑制しつつ、アノード11Aにおける水素による置換を促進し、迅速に燃料電池システム10を起動させることができる。
また、アノード水素濃度が所定の第2閾値M2未満である「状態3」においては、アノード11Aの水素の圧力を所定圧力#PH2FCCHKNよりも増大させることによって、アノード11Aのアノード供給口11c側とアノード排出口11d側とにおける水素による混合を促進する。これによって、カソード電位の高電位状態の発生を抑制し、燃料電池スタック11の劣化を抑制することができる。さらに、「状態1」および「状態2」に比べて、水素ポンプ28の駆動回転数を増大させることによって、アノード11Aのアノード供給口11c側とアノード排出口11d側とにおける水素による混合を、より一層、促進することができる。さらに、アノード11Aの系内の滞留水を排出する際には、カソード電位の高電位状態の発生を抑制する場合に比べて、水素ポンプ28の駆動回転数を低下させることによって、滞留水の排出およびキャッチタンク(図示略)での補水を促進し、迅速に燃料電池システム10を起動させることができるとともに、燃料電池システム10の運転効率を向上させることができる。
さらに、「状態2」および「状態3」においては、パージ弁30を開弁させることによって、アノード11Aでの水素による置換を促進することができる。
さらに、燃料ガス循環路57の水素ポンプ28を駆動することによって、アノード11Aでの水素による置換を促進することができる。
さらに、水素タンク21からアノード11Aに水素の供給を開始することに先立って、水素ポンプ28を駆動することによって、予め、燃料ガス循環路57と燃料ガス供給路55とアノード11Aと燃料ガス排出路56とによる循環系内においてガスの流れを形成することができる。これによって、水素タンク21からアノード11Aに水素の供給を開始した場合に、スタック面内に水素濃度分布の不均一状態が生じることを抑制しつつ、アノード11Aでの水素による置換を促進することができる。さらに、燃料電池スタック11の発電開始後においても水素ポンプ28の駆動を継続することによって、例えばアノード圧力の低下時にインジェクタ24からの水素の供給が停止した場合などであっても、スタック面内に水素濃度分布の不均一状態が生じることを抑制し、ストイキが低下することを抑制することができる。
さらに、水素ポンプ28の駆動時間、つまり各所定時間T1,T2,T3を、ソーク時間TMSOAKが長くなることに伴い、増大傾向に変化させることによって、ソーク時間TMSOAKにかかわらずにアノード11Aでの水素による所望の置換を的確に行なうことができる。
さらに、ソーク時間TMSOAKと、アノード圧力Phと、カソード圧力Paと、のうち少なくとも何れかに応じて、アノード水素濃度を推定することによって、水素の濃度を検出するセンサなどを備える必要無しに、水素濃度を精度良く取得することができる。
以上、説明した本実施形態は、本発明を実施するうえでの一例を示すものであり、本発明が前記した実施形態に限定して解釈されるものではないことは言うまでもない。
10 燃料電池システム
11 燃料電池スタック(燃料電池)
11A アノード
11B カソード
13 エアーコンプレッサー(空気供給手段)
15 封止入口弁(封止弁)
16 封止出口弁(封止弁)
18 バイパス弁
21 水素タンク(燃料ガス供給手段)
22 水素供給弁(燃料ガス供給手段)
28 水素ポンプ
30 パージ弁
32 希釈器(希釈手段)
39 コンタクタ(断接手段)
41 制御装置(制御手段)
51 酸化剤ガス供給路
52 酸化剤ガス排出路
53 バイパス路
55 燃料ガス供給路
56 燃料ガス排出路
57 燃料ガス循環路

Claims (9)

  1. アノードの燃料およびカソードの酸化剤によって発電する燃料電池と、
    前記燃料を含む燃料ガスを前記アノードに供給する燃料ガス供給手段と、
    前記酸化剤を含む酸化剤ガスを前記カソードに供給する酸化剤ガス供給手段と、
    前記燃料電池と電気負荷との接続と遮断とを切替可能な断接手段と、
    前記燃料ガス供給手段および前記酸化剤ガス供給手段を制御する制御手段と、
    を備える燃料電池システムの起動方法であって、
    前記燃料としての水素の前記アノードでの濃度を取得する水素濃度取得工程と、
    前記水素濃度取得工程によって取得された前記水素の濃度が第1の閾値以上であるか否かを判定する閾値判定工程と、
    前記断接手段の遮断状態で前記燃料ガス供給手段から前記アノードに前記水素を供給する前記燃料電池の起動実行時に、前記閾値判定工程によって判定された判定結果に基づいて、前記燃料ガス供給手段から供給される前記水素の圧力を設定する起動時圧力設定工程と、
    前記燃料電池の起動実行時に、前記アノードの水素置換を行う水素置換工程と、
    を含み、
    前記起動時圧力設定工程は、前記閾値判定工程によって前記水素の濃度が前記第1の閾値以上であると判定された場合に、前記水素の圧力を、前記燃料電池の起動完了後に実行される通常発電の実行時の前記水素の圧力以下に設定し、
    前記閾値判定工程によって前記水素の濃度が前記第1の閾値未満であると判定された場合に、前記水素の圧力を、前記通常発電の実行時の前記水素の圧力よりも高く設定
    前記水素置換工程は、前記起動時圧力設定工程にて設定された前記水素の圧力にて前記アノードの水素置換を行う、ことを特徴とする燃料電池システムの起動方法。
  2. 前記燃料電池システムは、前記アノードから排出される前記燃料ガスを通流させる燃料ガス排出路と、前記燃料ガス排出路を開閉可能なパージ弁と、を備え、
    前記燃料電池の起動時に前記燃料ガス供給手段から供給される前記水素の圧力が、前記水素濃度取得工程によって取得された前記水素の濃度に応じた所定圧力以上か否かを判定する所定圧力判定工程と、
    前記所定圧力判定工程によって前記水素の圧力が前記所定圧力未満であると判定された場合に前記パージ弁を閉弁させ、
    前記所定圧力判定工程によって前記水素の圧力が前記所定圧力以上であると判定された場合に前記パージ弁を開弁させるパージ弁開弁工程と、
    を含む、
    ことを特徴とする請求項1に記載の燃料電池システムの起動方法。
  3. 前記閾値判定工程は、前記水素濃度取得工程によって取得された前記水素の濃度が前記第1の閾値よりも大きい第2の閾値以上であるか否かを判定し、
    前記起動時圧力設定工程は、前記閾値判定工程によって前記水素の濃度が前記第2の閾値以上であると判定された場合に、前記水素の圧力を、前記通常発電の実行時の前記水素の圧力と同一に設定し、
    前記閾値判定工程によって前記水素の濃度が前記第2の閾値以上であると判定された場合に、前記パージ弁の開弁を禁止するパージ弁開弁禁止工程を含む、
    ことを特徴とする請求項2に記載の燃料電池システムの起動方法。
  4. 前記燃料電池システムは、
    前記燃料ガスを前記アノードに供給するために通流させる燃料ガス供給路と、
    前記アノードから排出される前記燃料ガスを通流させる燃料ガス排出路と、
    前記燃料ガス排出路と前記燃料ガス供給路とを接続し、前記アノードから排出された燃料ガスを前記燃料ガス供給路に通流させる燃料ガス循環路と、
    前記燃料ガス循環路において前記水素を循環させる水素ポンプと、
    を備え、
    前記燃料電池の起動実行時に前記水素ポンプを駆動する水素ポンプ駆動工程を含む、
    ことを特徴とする請求項1から請求項3の何れか1つに記載の燃料電池システムの起動方法。
  5. 前記水素ポンプ駆動工程は、前記閾値判定工程によって前記水素の濃度が前記第1の閾値未満であると判定された場合に、前記水素ポンプの駆動回転数を、前記閾値判定工程によって前記水素の濃度が前記第1の閾値以上であると判定された場合に比べて、増大させる、ことを特徴とする請求項4に記載の燃料電池システムの起動方法。
  6. 前記水素ポンプ駆動工程は、前記燃料ガス供給手段から前記アノードに前記水素を供給することに先立って、前記水素ポンプを駆動する、
    ことを特徴とする請求項4または請求項5に記載の燃料電池システムの起動方法。
  7. 前記水素ポンプ駆動工程は、前記燃料電池の停止放置時間の増大に伴い、前記水素ポンプの駆動時間を増大傾向に変化させる、
    ことを特徴とする請求項4から請求項6の何れか1つに記載の燃料電池システムの起動方法。
  8. 前記水素ポンプ駆動工程は、前記水素ポンプの駆動回転数を増大させてから所定時間経過後に前記水素ポンプの駆動回転数を低下させる、
    ことを特徴とする請求項5に記載の燃料電池システムの起動方法。
  9. 前記水素濃度取得工程は、前記燃料電池の停止放置時間と、前記燃料電池の停止放置期間の前記アノードの雰囲気の圧力と、前記燃料電池の停止放置期間の前記カソードの雰囲気の圧力と、のうち少なくとも何れかを用いて前記水素の濃度を推定する、
    ことを特徴とする請求項1から請求項8の何れか1つに記載の燃料電池システムの起動方法。
JP2013014398A 2013-01-29 2013-01-29 燃料電池システムの起動方法 Expired - Fee Related JP6112882B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013014398A JP6112882B2 (ja) 2013-01-29 2013-01-29 燃料電池システムの起動方法
US14/167,010 US9716283B2 (en) 2013-01-29 2014-01-29 Method of starting fuel cell system
DE201410201558 DE102014201558A1 (de) 2013-01-29 2014-01-29 Startverfahren eines Brennstoffzellensystems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013014398A JP6112882B2 (ja) 2013-01-29 2013-01-29 燃料電池システムの起動方法

Publications (2)

Publication Number Publication Date
JP2014146505A JP2014146505A (ja) 2014-08-14
JP6112882B2 true JP6112882B2 (ja) 2017-04-12

Family

ID=51163738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014398A Expired - Fee Related JP6112882B2 (ja) 2013-01-29 2013-01-29 燃料電池システムの起動方法

Country Status (3)

Country Link
US (1) US9716283B2 (ja)
JP (1) JP6112882B2 (ja)
DE (1) DE102014201558A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207477B2 (ja) * 2014-07-03 2017-10-04 愛三工業株式会社 燃料供給ユニット
JP6450263B2 (ja) * 2014-08-25 2019-01-09 本田技研工業株式会社 燃料電池システム
KR101637727B1 (ko) * 2014-11-13 2016-07-07 현대자동차주식회사 통합형 밸브를 장착한 연료전지 차량의 공기 공급 시스템
JP7108848B2 (ja) * 2016-11-28 2022-07-29 パナソニックIpマネジメント株式会社 燃料電池システム
KR102496644B1 (ko) * 2017-10-17 2023-02-07 현대자동차주식회사 연료전지 시스템 및 그 제어방법
JP2019102430A (ja) * 2017-12-01 2019-06-24 パナソニックIpマネジメント株式会社 燃料電池システム
DE102018201103A1 (de) * 2018-01-24 2019-07-25 Audi Ag Verfahren zur Bestimmung des Startzustandes eines Brennstoffzellensystems
JP6667151B1 (ja) * 2018-12-03 2020-03-18 パナソニックIpマネジメント株式会社 水素昇圧システム
US11108065B2 (en) * 2019-06-03 2021-08-31 Microsoft Technology Licensing, Llc Fuel cell throttle
JP7208121B2 (ja) * 2019-08-30 2023-01-18 株式会社豊田自動織機 燃料電池システム
JP7163903B2 (ja) * 2019-12-19 2022-11-01 トヨタ自動車株式会社 燃料電池システム及びその掃気方法
JP7238849B2 (ja) * 2020-04-24 2023-03-14 トヨタ自動車株式会社 燃料電池システム
CN220491924U (zh) * 2020-06-05 2024-02-13 罗伯特·博世有限公司 氢气供应装置和燃料电池
JP7208287B2 (ja) * 2021-03-19 2023-01-18 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法
CN113258100B (zh) * 2021-06-25 2021-09-24 北京亿华通科技股份有限公司 一种燃料电池系统及其阳极氢气浓度评估方法
DE102021209344A1 (de) 2021-08-25 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Starten eines Brennstoffzellenstacks eines Brennstoffzellensystems
CN114361539B (zh) * 2022-01-04 2024-01-09 一汽解放汽车有限公司 尾排循环系统的排气控制方法及其排液控制方法
CN114792828A (zh) * 2022-05-14 2022-07-26 北京亿华通科技股份有限公司 一种燃料电池氢系统氢气纯度的监测方法
CN114718917B (zh) * 2022-06-09 2022-09-27 武汉海亿新能源科技有限公司 一种多级引射器及其级间无级切换的控制方法
DE102023200579A1 (de) 2023-01-25 2024-07-25 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem und Verfahren zum Starten eines Brennstoffzellensystems

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838199B2 (en) * 2002-12-26 2005-01-04 Utc Fuel Cells, Llc Start up system and method for a fuel cell power plant using a cathode electrode fuel purge
DE102004037097A1 (de) 2004-07-30 2006-03-23 Daimlerchrysler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
JP2006209996A (ja) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd 燃料電池システム
JP2007027078A (ja) * 2005-06-13 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP5050342B2 (ja) * 2005-12-02 2012-10-17 日産自動車株式会社 燃料電池システム及びその起動方法
WO2008093147A2 (en) * 2006-12-27 2008-08-07 Nissan Motor Co., Ltd. Fuel cell system
JP2007165103A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 燃料電池システム及びその運転方法並びに移動体
JP5168821B2 (ja) 2006-06-09 2013-03-27 トヨタ自動車株式会社 燃料電池システム
JP5012065B2 (ja) * 2007-02-09 2012-08-29 トヨタ自動車株式会社 燃料電池システム
JP2008293824A (ja) 2007-05-25 2008-12-04 Toyota Motor Corp 燃料電池システム
DE102007048317A1 (de) 2007-10-09 2009-04-16 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
JP5319171B2 (ja) * 2008-06-11 2013-10-16 本田技研工業株式会社 燃料電池システム
JP5104612B2 (ja) * 2008-07-14 2012-12-19 トヨタ自動車株式会社 ガス濃度推定装置及び燃料電池システム
JP2011014458A (ja) * 2009-07-03 2011-01-20 Fuji Electric Systems Co Ltd 燃料電池発電システム
WO2011104762A1 (ja) * 2010-02-26 2011-09-01 トヨタ自動車株式会社 燃料電池システム
JP5543840B2 (ja) * 2010-05-13 2014-07-09 本田技研工業株式会社 電動車両
JP5409705B2 (ja) * 2011-05-25 2014-02-05 本田技研工業株式会社 燃料電池システムおよびその制御方法

Also Published As

Publication number Publication date
JP2014146505A (ja) 2014-08-14
US20140212780A1 (en) 2014-07-31
DE102014201558A1 (de) 2014-07-31
US9716283B2 (en) 2017-07-25

Similar Documents

Publication Publication Date Title
JP6112882B2 (ja) 燃料電池システムの起動方法
CN110767924B (zh) 燃料电池系统
US9413021B2 (en) Fuel cell system and control method of fuel cell system
JP5113634B2 (ja) 燃料電池システム
JP5136415B2 (ja) 燃料電池システム
JP2005032652A (ja) 燃料電池システム
JP2014035822A (ja) 燃料電池システム
JP4806913B2 (ja) 燃料電池システム
JP2019129062A (ja) 燃料電池の制御装置及び制御方法
JP6313347B2 (ja) 燃料電池システムの制御方法
JP2016012461A (ja) 燃料電池システムの停止方法
JP6450263B2 (ja) 燃料電池システム
JP5783974B2 (ja) 燃料電池システムの起動方法および燃料電池システム
JP5596744B2 (ja) 燃料電池システム
JP4814493B2 (ja) 燃料電池システム
JP2014150036A (ja) 燃料電池システムの制御方法
JP2006236862A (ja) 燃料電池システム及びそれを搭載した車両
JP2005158431A (ja) 燃料電池システム
JP2009076261A (ja) 燃料電池システム及びその起動方法
JP2005276552A (ja) 燃料電池の運転方法
JP4935088B2 (ja) 燃料電池システム
JP6031564B2 (ja) 燃料電池システムの起動方法および燃料電池システム
JP2007213827A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5601178B2 (ja) 燃料電池システムおよびその制御方法
JP5410766B2 (ja) 燃料電池システムおよび燃料電池システムのカソード圧制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6112882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees