[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6108407B2 - Method and kit for detecting macrolide antibiotic-resistant mutant bacteria - Google Patents

Method and kit for detecting macrolide antibiotic-resistant mutant bacteria Download PDF

Info

Publication number
JP6108407B2
JP6108407B2 JP2014504719A JP2014504719A JP6108407B2 JP 6108407 B2 JP6108407 B2 JP 6108407B2 JP 2014504719 A JP2014504719 A JP 2014504719A JP 2014504719 A JP2014504719 A JP 2014504719A JP 6108407 B2 JP6108407 B2 JP 6108407B2
Authority
JP
Japan
Prior art keywords
hydrolysis probe
sequence
mutant
probe
macrolide antibiotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014504719A
Other languages
Japanese (ja)
Other versions
JPWO2013136818A1 (en
Inventor
一平 宮田
一平 宮田
烈 宮入
烈 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Health Sciences Foundation
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Publication of JPWO2013136818A1 publication Critical patent/JPWO2013136818A1/en
Application granted granted Critical
Publication of JP6108407B2 publication Critical patent/JP6108407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、23S rRNAドメインVへの結合が阻害されることによりマクロライド系抗生物質に対する耐性化が生じたマクロライド系抗生物質耐性変異菌を迅速且つ的確に検出することができる検出方法及び検出キットに関する。   The present invention relates to a detection method and a detection method capable of quickly and accurately detecting a macrolide antibiotic-resistant mutant having resistance to a macrolide antibiotic caused by inhibition of binding to 23S rRNA domain V. About the kit.

マクロライド系抗生物質は、細菌の細胞内にあるリボゾームの50Sサブユニットに結合してタンパク質の合成を阻害する抗生物質であり、比較的副作用が少なく抗菌スペクトルも広いことで知られている。マクロライド系抗生物質は、肺炎マイコプラズマ、百日咳菌、ピロリ菌、キャンピロバクター属、クラミジア属、非定形抗酸菌等による感染症に対する治療において第一選択薬あるいは複数の薬剤を組み合わせる際の主要な薬剤として位置づけられている。   Macrolide antibiotics are antibiotics that bind to the 50S subunit of ribosomes in bacterial cells and inhibit protein synthesis, and are known to have relatively few side effects and a broad antibacterial spectrum. Macrolide antibiotics are the main drugs used in the treatment of infections caused by Mycoplasma pneumoniae, Bordetella pertussis, Helicobacter pylori, Campylobacter, Chlamydia, atypical mycobacteria, etc. It is positioned as a drug.

一方、上に例示した諸病原体においては報告の頻度の多寡はあるもののマクロライド系抗生物質に対する耐性を獲得した菌の存在が知られており、適切な治療を行なうためにはマクロライド系抗生物質への耐性変異を迅速に判断する手段、あるいはそれを実施するための検査試薬キットが求められている。   On the other hand, although there are many reports of the pathogens exemplified above, the existence of bacteria that have acquired resistance to macrolide antibiotics is known, and macrolide antibiotics are necessary for appropriate treatment. There is a need for a means for quickly determining mutations resistant to or test reagent kits for carrying it out.

マクロライド系抗生物質耐性変異菌の変異は、SNPのような定まった1塩基の変異ではなく、臨床的に問題になる耐性を付与するのは定まった隣接する2塩基の一方の変異である。それゆえに既存のSNP検出の方法論の延長では必ずしも明快に、マクロライド系抗生物質耐性変異菌の変異を検出できるとは限らない。   The mutation of a macrolide antibiotic-resistant mutant is not a single-base mutation such as SNP, but one of two adjacent base mutations that confer resistance that is clinically problematic. Therefore, the extension of existing SNP detection methodologies does not always clearly detect mutations in macrolide antibiotic-resistant mutants.

肺炎マイコプラズマは、ウイルスと細菌の中間に位置する病原体であるマイコプラズマ・ニューモニエ(Mycoplasma pneumoniae)の感染でおこる肺炎であり、罹患対象は小児・若年成人が中心とされ、発熱や頭痛を伴った気分不快が数日間続くと共にしつこく乾いた咳が生じるのが特徴である。   Mycoplasma pneumonia is pneumonia caused by infection with Mycoplasma pneumoniae, a pathogen located between virus and bacteria, mainly affected by children and young adults, and mood discomfort with fever and headache It is characterized by persistent dry cough as it lasts for several days.

肺炎マイコプラズマは、直径125〜153nm程度のウイルス程度の小さな病原体であるが、ウイルスと異なり増殖に生きた細胞を必要とせず、一部の抗生物質が有効なことから細菌に分類される。その一方で、肺炎マイコプラズマは、細菌の特徴である細胞壁を有しておらず、そのため細菌感染症治療の第一選択として使われるβ−ラクタム系の抗生物質(ペニシリン系、セフェム系等)は細菌の細胞壁を障害して菌を殺す作用を有するところ、細胞壁を持たないマイコプラズマには効力をほとんど有せず、上述のように蛋白合成阻害剤のマクロライド系抗生物質等が有効とされる。   Pneumonia mycoplasma is a small pathogen with a diameter of about 125 to 153 nm, but unlike a virus, does not require living cells for growth and is classified as a bacterium because some antibiotics are effective. On the other hand, Mycoplasma pneumonia does not have the cell wall that is characteristic of bacteria, so β-lactam antibiotics (penicillins, cephems, etc.) used as the first choice for bacterial infections are bacteria. However, mycoplasma having no cell wall has little effect, and as described above, macrolide antibiotics as protein synthesis inhibitors are effective.

しかしながら、近年、小児のマイコプラズマ肺炎例から全国規模でマクロライド系抗生物質耐性変異菌(非特許文献1)が検出されており、マクロライド系抗生物質の臨床効果がみられない遷延化例や、有熱期間が有意に延長する等の重症化例が増加している(非特許文献2、3)。特にマイコプラズマの流行年にマクロライド系抗生物質耐性変異菌の発生率が上昇し、この変異菌は、特にエリスロマイシン(EM)、クラリスロマイシン(CAM)、アジスロマイシン(AZM)等に高度耐性化している。   However, in recent years, macrolide antibiotic-resistant mutant bacteria (Non-patent Document 1) have been detected on a national scale from childhood mycoplasma pneumonia cases, and there are prolonged cases where clinical effects of macrolide antibiotics are not observed, Severe cases such as significantly extending the fever period are increasing (Non-Patent Documents 2 and 3). In particular, the incidence of macrolide antibiotic-resistant mutants increased during the epidemic year of mycoplasma, and these mutants are highly resistant to erythromycin (EM), clarithromycin (CAM), azithromycin (AZM), etc. .

マイコプラズマ肺炎に対する治療方針としては、第1選択はマクロライド系抗生物質が基本として用いられ、そして投与開始後4日を過ぎても解熱しない場合には、全身状態の良し悪しや胸部写真上の肺炎の重症度等に応じて、ミノサイクリン(MINO)等のマクロライド系抗生物質耐性変異菌にも抗菌作用を有する薬剤への変更が考慮される。   As a treatment strategy for mycoplasma pneumonia, the first choice is based on macrolide antibiotics, and if the fever does not go away after 4 days from the start of administration, the general condition is good or pneumonia on the chest photo Depending on the severity of the disease, change to a drug having an antibacterial action is also considered for macrolide antibiotic-resistant mutants such as minocycline (MINO).

もっともMINOは6歳未満では歯牙の色素沈着の問題があり、小児への投与は、整容上の不利益を上回る利益を見込む場合に限定して慎重投与されるべきである。そのため、MINOが投与される場合を考慮して、患者がマクロライド系抗生物質耐性変異菌に罹患しているとの病理学上の的確な証拠が取得できる判断手法が望まれる。更に、罹患している病原菌がマクロライド耐性菌によるものと早期に判明すれば、より適切な時期にMINO等を投与する是非の判断を判断することが可能となるので、罹患している病原菌がマクロライド系抗生物質耐性変異菌によるものか否かの迅速且つ的確な判断手法が求められる。   However, MINO has problems with pigmentation of teeth under 6 years of age, and should be administered with caution to children only if it is expected to outweigh the cosmetic disadvantages. Therefore, in consideration of the case where MINO is administered, a determination method capable of obtaining accurate pathological evidence that the patient is suffering from a macrolide antibiotic-resistant mutant is desired. Furthermore, if it is determined early that the disease-causing pathogen is due to macrolide-resistant bacteria, it will be possible to determine whether or not to administer MINO etc. at a more appropriate time. There is a need for a quick and accurate method for determining whether or not a macrolide antibiotic-resistant mutant bacteria.

肺炎マイコプラズマの判断手法としては、ペア血清による抗体価上昇の確認や、IgM抗体検査(キット)等があるが、検出感度と精度の点でリアルタイムPCR法が比較的よく用いられ(非特許文献4)、非特許文献5には、融点解析法(melting curve analysis)によるマクロライド系抗生物質耐性変異菌の検出方法が記載されている。融点解析法は、増幅反応を終えたリアルタイムPCR反応液の温度を徐々に上昇させながら、蛍光信号の強度の変化を計測し、蛍光強度が急激に変化する点を求め、配列の内容の相異を反映するものと判断する手法である。   As a method for judging pneumonia mycoplasma, there are confirmation of antibody titer increase by paired sera, IgM antibody test (kit), etc., but the real-time PCR method is relatively often used in terms of detection sensitivity and accuracy (Non-patent Document 4 Non-Patent Document 5 describes a method for detecting a macrolide antibiotic-resistant mutant bacterium by melting curve analysis. The melting point analysis method measures the change in the intensity of the fluorescence signal while gradually raising the temperature of the real-time PCR reaction solution after the amplification reaction, finds the point where the fluorescence intensity changes abruptly, and determines the difference in the sequence contents. It is a method to judge that it reflects.

しかし、この融点解析法では、リアルタイムPCR反応を終えてから、徐々に加温する過程が必要であり、判断に所定の時間を要する。また、この融点解析法では、曲線を比較して判断する事が必要であるが、被検対象によっては形態が類似しており紛らわしい曲線が検出されることがあり、かかる場合は正確に検出することが難しい。   However, this melting point analysis method requires a process of gradually heating after the real-time PCR reaction is completed, and a predetermined time is required for the determination. In addition, in this melting point analysis method, it is necessary to compare and judge curves, but depending on the test object, a confusing curve may be detected because the shape is similar, and in such a case, it is detected accurately. It is difficult.

次に、百日咳は、主にグラム陰性桿菌の百日咳菌(Bordetella pertussis)による呼吸器感染症の一種あり、発症機序は未解明で特有の痙攣性の咳発作を特徴とする急性気道感染症である。百日咳菌に対する治療としてEM、CAM等のマクロライド系抗生物質が用いられているものの、近年は米国・フランスにおいてマクロライド系抗生物質耐性変異菌の発生が報告されている。   Next, whooping cough is a type of respiratory infection caused mainly by the Gram-negative bacilli Bordetella pertussis, and its onset mechanism is an acute respiratory tract infection characterized by a characteristic convulsive cough attack. is there. Although macrolide antibiotics such as EM and CAM are used as a treatment for Bordetella pertussis, in recent years, occurrence of macrolide antibiotic-resistant mutant bacteria has been reported in the United States and France.

百日咳に罹患しているか否かの診断は困難な場合があり、特に生後6ヶ月未満の乳幼児では早期診断が困難となる場合がある。また生後6ヵ月未満の乳幼児が百日咳に罹患すると、肺炎、脳症、痙攣等を合併して、死亡することもある。このように特に乳幼児の場合は致死率が高いため、罹患している病原菌がマクロライド耐性菌によるものか否かにつき、迅速且つ的確な判断手法が求められる。   Diagnosis of pertussis may be difficult, and early diagnosis may be difficult especially for infants younger than 6 months. Infants younger than 6 months may suffer from pertussis and die due to pneumonia, encephalopathy, convulsions, and the like. In this way, especially in the case of infants and children, the fatality rate is high, and therefore a quick and accurate determination method is required as to whether or not the disease-causing pathogen is caused by macrolide-resistant bacteria.

百日咳の判断手法としては、培養検査方法が標準的に使用される。百日咳の培養検査方法では、検査材料としての例えば鼻咽頭分泌物を特殊培地にて4〜5日間培養しコロニーを形成させ、培養後7日目で百日咳菌様集落を認めない場合は培養陰性とする(非特許文献6)。しかしながら、このように培養に日数を要するうえ、百日咳様患者からの百日咳菌分離率は10〜20%程度と低いので、検査結果が陰性であったとしても本検査結果から直ちに百日咳への罹患を否定することはできない。更には薬剤耐性を判断することも困難である。   As a method for determining pertussis, a culture inspection method is typically used. In the culture test method for pertussis, for example, a nasopharyngeal secretion as a test material is cultured in a special medium for 4 to 5 days to form a colony. (Non-Patent Document 6). However, in addition to the number of days required for culturing in this way, the rate of Bordetella pertussis from pertussis-like patients is as low as about 10 to 20%. There is no denying. It is also difficult to determine drug resistance.

次に、ヘリコバクター・ピロリ(Helicobacter pylori)は、ヒト等の胃に生息するらせん型の細菌である。
ヘリコバクター・ピロリ菌に感染すると、胃粘膜に定着して毒素を出し、粘膜を損傷し、胃潰瘍・十二指腸潰瘍はもちろん、萎縮性胃炎を引きおこすことが知られている。また、ピロリ菌の感染者は非感染者にくらべ、約5倍ほど胃がんになりやすいことが判明している。ピロリ菌に対する治療として、CAM等のマクロライド系抗生物質を含んだ併用療法が行われているものの、近年はマクロライド系抗生物質耐性変異菌の発生率が上昇している。
Next, Helicobacter pylori is a spiral bacterium that inhabits the stomach of humans and the like.
It is known that infection with Helicobacter pylori colonizes the gastric mucosa, produces toxins, damages the mucosa, and causes atrophic gastritis as well as gastric and duodenal ulcers. In addition, H. pylori-infected persons have been found to be about 5 times more likely to develop gastric cancer than non-infected persons. Although the combination therapy containing macrolide antibiotics, such as CAM, is performed as a treatment for H. pylori, in recent years, the incidence of macrolide antibiotic resistant mutants has increased.

ピロリ菌の培養検査は本菌の感染を直接的に証明する唯一の方法であるが、特殊な培地を必要とする事に加え、高湿度、微好気条件で培養することが求められ、必ずしも全ての医療機関の細菌検査室で容易に実施可能ではない。また培養が可能であっても結果判定までには3〜7日を要する。   The culture test for H. pylori is the only method to directly prove the infection of this bacteria, but in addition to requiring a special medium, it is required to be cultured under high humidity and microaerobic conditions. It is not easily implemented in the bacterial laboratory of all medical institutions. Even if the culture is possible, it takes 3 to 7 days to determine the result.

胃生検試料を用いるピロリ菌の検査法に迅速ウレアーゼ試験があるが、検査結果を保存することも、薬剤耐性を判断することも不可能である(非特許文献7)。また便検体を用いてピロリ菌を検出し、その薬剤耐性も判定する手法が報告されている(非特許文献8)。   Although there is a rapid urease test as a method for testing Helicobacter pylori using a gastric biopsy sample, it is impossible to store the test result or judge drug resistance (Non-patent Document 7). In addition, a method for detecting Helicobacter pylori using a stool specimen and determining its drug resistance has been reported (Non-Patent Document 8).

次に、キャンピロバクター属に属する細菌でヒトに感染するものとして多く問題になるものはキャンピロバクター・ジェジュニ(Campylobacter jejuni)菌である。Campylobacterjejuni菌(C.jejuni)は、胃腸炎症状を主たる臨床症状として惹起する細菌である。胃腸炎に占めるC.jejuniの割合は成人よりも小児において高く、また特に10歳以下の小児においては入院症例が多い。感染の治療において抗生物質の投与は必須ではなく、多くの場合は自然軽快する。   Next, Campylobacter jejuni is a bacterium belonging to the genus Campylobacter that causes many problems in humans. Campylobacterjejuni (C.jejuni) is a bacterium that causes gastrointestinal inflammation as the main clinical symptom. The proportion of C. jejuni in gastroenteritis is higher in children than in adults, and there are many hospitalized cases especially in children under 10 years of age. Antibiotic administration is not essential in the treatment of infection and often relieves spontaneously.

しかしながら、時に重症化する場合もありそのような場合には抗生物質投与が必要とされ、第一選択薬はマクロライド系抗生物質である。C.jejuniは一般的には同菌の分離培養によって確認され、さらに微量液体希釈法によって感受性が測定される。しかしながら、C.jejuniの感受性の測定結果を得るまでには最低でも3〜5日の期間を要する。即ち、選択分離培地を用いて微好気条件で培養を行ない、発育が確認されるまでに1〜2日;その後、感受性検査に供するための純培養処理に1〜2日;感受性パネルに接種してさらに1〜2日の期間が必要である(非特許文献9)。このように、必ずしも治療介入に対して有益なタイミングで結果が得られない問題がある。   However, sometimes it becomes severe, in which case antibiotic administration is required, and the first-line drug is a macrolide antibiotic. C. jejuni is generally confirmed by isolation culture of the same bacteria, and sensitivity is further measured by a micro liquid dilution method. However, it takes a minimum of 3-5 days to obtain a C.jejuni sensitivity measurement. In other words, culture under selective aerobic conditions using selective separation medium, 1-2 days before growth is confirmed; then 1-2 days for pure culture treatment for sensitivity test; inoculate sensitivity panel Further, a period of 1 to 2 days is necessary (Non-patent Document 9). As described above, there is a problem that results cannot always be obtained at a useful timing for therapeutic intervention.

研究的な手法としては、遺伝子配列をシークエンスによって解析してマクロライド耐性変異の有無を精査する手法(非特許文献10)や、当該変異を含む遺伝子断片をPCRで増幅し、その断片の制限酵素切断パターンによって変異の有無を判定する手法(RFLP;Restriction Fragment Length Polymorphism(制限酵素断片長多型)法:非特許文献11)や、PCRで増幅した産物を固相に固定したプローブと結合させた後に発色させて判定する方法(PCR-LiPA; PCR and Line Probe Assay法:非特許文献12)等の報告があるものの、一般的な臨床検査手法ではない。また、これらの手法は培養に基づく手法よりも短時間で結果を得ることが可能であるが、PCR法によって増幅した産物を操作する必要があり、手技の煩雑さとともに増幅産物による実験環境の汚染の危険を孕んでいる。   As a research method, a gene sequence is analyzed by sequence to examine the presence or absence of a macrolide-resistant mutation (Non-patent Document 10), or a gene fragment containing the mutation is amplified by PCR, and the restriction enzyme of the fragment is amplified. A method for determining the presence or absence of mutations based on the cleavage pattern (RFLP: Restriction Fragment Length Polymorphism (Non-Patent Document 11)) or a product amplified by PCR was bound to a probe immobilized on a solid phase. Although there is a report such as a method of determining the color after development (PCR-LiPA; PCR and Line Probe Assay method: Non-Patent Document 12), it is not a general clinical test method. In addition, these methods can obtain results in a shorter time than culture-based methods, but it is necessary to manipulate the products amplified by the PCR method. I am jealous of the dangers.

次に、クラミジア属に属する細菌でヒトに感染するものとして問題になるものにクラミジア・トラコマチス(Chlamydia trachomatis)菌がある。Chlamydiatrachomatis菌(C.trachomatis)は新生児においては結膜炎や肺炎を来たし、成人においては尿道炎、子宮頸管炎、骨盤炎等を来す病原体である。生物としては、真核細胞の中でのみ増殖する二相性の増殖環を有する偏性細胞内寄生性細菌である。本菌の感染の治療に用いられる抗生物質は小児の場合はマクロライド系抗生物質が第一選択薬である。   Next, there is a Chlamydia trachomatis bacterium that belongs to the genus Chlamydia and infects humans. Chlamydiatrachomatis (C. trachomatis) is a pathogen that causes conjunctivitis and pneumonia in neonates and causes urethritis, cervicitis, pelvicitis, etc. in adults. The organism is an obligate intracellular parasitic bacterium having a biphasic growth ring that grows only in eukaryotic cells. In the case of children, macrolide antibiotics are the first choice for the treatment of infections of this bacterium.

偏性細胞内寄生性細菌であるC.trachomatisの分離培養には細胞培養が必須であるため、分離培養は日常的には行われておらず、耐性菌の存在が発見出来ない問題がある。一般的に同菌の検出には抗原検出法、核酸検出法、抗体検査法が用いられている。これらの手法によって菌を検出することは可能であるが、菌の増殖を捉える手法ではないため、宿主細胞内で増殖している菌に対する抗生物質の効果を判定することは出来ない。臨床的に抗生物質が奏功しない例や再発例が報告されており、抗生物質耐性の存在が示唆されており、それをより容易に検出する手法が待たれている。   Since the cell culture is essential for the isolation culture of the obligate intracellular parasitic bacterium C. trachomatis, the isolation culture is not performed on a daily basis, and there is a problem that the presence of resistant bacteria cannot be found. In general, antigen detection methods, nucleic acid detection methods, and antibody test methods are used to detect the same bacteria. Although it is possible to detect bacteria by these techniques, it is not a technique for capturing the growth of bacteria, and therefore the effect of antibiotics on the bacteria growing in the host cell cannot be determined. There have been reports of cases in which antibiotics have not succeeded clinically or cases of recurrence, suggesting the presence of antibiotic resistance, and a method for more easily detecting this has been awaited.

分離培養の上でマクロライド耐性が認められた菌において、他の細菌におけるマクロライド系抗生物質に対する薬剤耐性変異と相同する部位の変異が見出した報告がある(非特許文献13)。本報告は、菌を分離培養した後に核酸を抽出し、PCR法によって増幅した遺伝子断片のシークエンスを解読する手法で行われている。従って、再現するためには、分離培養のための日常的な細胞を培養して維持できる施設が必要であり、さらに分離培養の手間、そしてPCR増幅産物の操作が必要とされる。またPCRの増幅産物を操作する必要は必然的に実験環境を汚染する危険も孕んでいる。   There has been a report of finding a mutation at a site homologous to a drug resistance mutation against a macrolide antibiotic in another bacterium, in which macrolide resistance was observed on the isolated culture (Non-patent Document 13). This report is conducted by extracting nucleic acids after separating and culturing bacteria and decoding the sequence of gene fragments amplified by PCR. Therefore, in order to reproduce, a facility capable of culturing and maintaining routine cells for separation culture is required, and further labor for separation culture and manipulation of PCR amplification products are required. In addition, the need to manipulate PCR amplification products inevitably risks contaminating the experimental environment.

次に、非定形抗酸菌に属する細菌でヒトに感染するものの一群としてトリ型結核菌群(Mycobacterium avium complex; MAC)が知られており、これらはヒトに日和見感染を起こす事が知られている環境常在菌であって土壌や水系に汎く存在している。本菌群には、Mycobacterium avium、Mycobacteriumintracellulareが知られている。また、本菌群は結核菌と同じMycobacterium属に属しているが総じて抗結核薬は効果が乏しく、本菌の感染の治療は単剤ではなく複数の抗生物質を組み合わせる併用療法行われる。この際のキードラッグがマクロライド系抗生物質であり、マクロライド系抗生物質に耐性を有する菌が感染している場合には治療が失敗となるおそれがある。ATS(米国胸部学会)/IDSA(米国感染症学会)ガイドラインにおいては、MACについてはマクロライド系抗生物質であるCAMに対する感受性を調べる事が推奨されている。   Next, the Mycobacterium avium complex (MAC) is known as a group of bacteria belonging to atypical mycobacteria that infect humans, and these are known to cause opportunistic infections in humans. It is an environment-resident bacterium that exists widely in soil and water systems. Mycobacterium avium and Mycobacterium intracellulare are known in this group. In addition, this group belongs to the same Mycobacterium genus as M. tuberculosis, but anti-tuberculosis drugs are generally ineffective, and the infection is treated with a combination therapy combining multiple antibiotics instead of a single agent. If the key drug at this time is a macrolide antibiotic and a bacterium resistant to the macrolide antibiotic is infected, the treatment may fail. In the ATS (American Thoracic Society) / IDSA (American Infectious Diseases Society) guidelines, it is recommended that MAC be examined for its sensitivity to CAM, a macrolide antibiotic.

Lucier TS. et al., Transition Mutations in the 23S rRNA ofErythromycin-Resistant Isolates of Mycoplasma pneumoniae.Antimicrob.Agents Chemother. 39,. 2770-2773Lucier TS. Et al., Transition Mutations in the 23S rRNA of Erythromycin-Resistant Isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 39 ,. 2770-2773 Suzuki S.et al., Clinical Evaluation of Macrolide-ResistanTmycoplasmapneumoniae, Antimicrob Agents Chemother 50,p709-712Suzuki S. et al., Clinical Evaluation of Macrolide-ResistanTmycoplasmapneumoniae, Antimicrob Agents Chemother 50, p709-712 Matsubara K. et al., A comparative study of macrolide-sensitive andmacrolide-resistanTmycoplasma pneumoniaeinfectionsin pediatric patients, J Infect Chemother 15, p380-383Matsubara K. et al., A comparative study of macrolide-sensitive andmacrolide-resistanTmycoplasma pneumoniaeinfectionsin pediatric patients, J Infect Chemother 15, p380-383 Morozumi M, Nakayama E, Iwata S, et al.: Simultaneous detection ofpathogens in clinical samples from patients with community-acquired pneumoniaby real-time PCR with pathogen-specific molecular beacon probes. J ClinMicrobiol 33:1440-1446, 2006Morozumi M, Nakayama E, Iwata S, et al .: Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumoniaby real-time PCR with pathogen-specific molecular beacon probes.J ClinMicrobiol 33: 1440-1446, 2006 Peuchant O, Menard A, Renaudin H, MorozumiM, Ubukata K, Bebear CM, Pereyre S. Increased macrolideresistance of Mycoplasma pneumoniae in France directly detected in clinicalspecimens by real-time PCR and melting curve analysis.. J Antimicrob Chemother.2009 ;64:52-8.Peuchant O, Menard A, Renaudin H, MorozumiM, Ubukata K, Bebear CM, Pereyre S. Increased macrolideresistance of Mycoplasma pneumoniae in France directly detected in clinicalspecimens by real-time PCR and melting curve analysis .. J Antimicrob Chemother.2009; 64: 52-8. 石川隆、田中真理子 青年及び成人百日咳の診断は難しい 総合臨床,58(10):2081-2084,2009年Takashi Ishikawa, Mariko Tanaka Diagnosis of adolescents and adult whooping cough is difficult General Clinical, 58 (10): 2081-2084, 2009 日本ヘリコバクター学会ガイドライン作成委員会編. H. pylori 感染の診断と治療のガイドライン2009改訂版. 日本ヘリコバクター学会誌Vol.10SupplementThe Japan Helicobacter Society Guidelines Preparation Committee. H. pylori Infection Diagnosis and Treatment Guidelines 2009 Revised Edition. Journal of the Japan Helicobacter Society Vol.10Supplement Schabereiter-Gurtner C et al. Novel real-time PCR assay fordetection of Helicobacter pylori infection and simultaneous clarithromycinsusceptibility testing of stool and biopsy specimens. J Clin Microbiol. 2004Oct;42(10):4512-8.Schabereiter-Gurtner C et al. Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycinsusceptibility testing of stool and biopsy specimens.J Clin Microbiol. 2004 Oct; 42 (10): 4512-8. 丸山英行, Campylobacter jejuni の感受性検査, 検査と技術 2013;41(2), 114-5Maruyama Hideyuki, Campylobacter jejuni susceptibility testing, testing and technology 2013; 41 (2), 114-5 Gibreel A., et al.Macrolide resistance in Campylobacter jejuni and Campylobacter coli: molecularmechanism and stability of the resistance phenotype. Antimicrob. AgentsChemother 2005; 49(7):2753-2759.Gibreel A., et al. Macrolide resistance in Campylobacter jejuni and Campylobacter coli: molecularmechanism and stability of the resistance phenotype. Antimicrob. Agents Chemother 2005; 49 (7): 2753-2759. Vacher S., Menard A.,Bernard E., Megraud F. PCR-restriction fragment length polymorphism analysisfor detection of poinTmutations associated with macrolide resistance inCampylobacter spp. Antimicrob. Agents Chemother 2003 47(3):1125-1128.Vacher S., Menard A., Bernard E., Megraud F. PCR-restriction fragment length polymorphism analysis for detection of poinTmutations associated with macrolide resistance inCampylobacter spp. Antimicrob.Agents Chemother 2003 47 (3): 1125-1128. Niwa H, Chuma T,Okamoto K, Itoh K. Rapid detection of mutations associated with resistance toerythromycin in Campylobacter jejuni/coli by PCR and line probe assay. Int JAntimicrob Agents. 2001 Oct;18(4):359-64.Niwa H, Chuma T, Okamoto K, Itoh K. Rapid detection of mutations associated with resistance toerythromycin in Campylobacter jejuni / coli by PCR and line probe assay.Int JAntimicrob Agents. 2001 Oct; 18 (4): 359-64. Misyurina OY, Chipitsyna EV, Finashutina YP, Lazarev VN, Akopian TA,Savicheva AM, Govorun VM. Mutations in a 23S rRNA gene of Chlamydia trachomatisassociated with resistance to macrolides. Antimicrob Agents Chemother. 2004Apr;48(4):1347-9.Misyurina OY, Chipitsyna EV, Finashutina YP, Lazarev VN, Akopian TA, Savicheva AM, Govorun VM. Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob Agents Chemother. 2004Apr; 48 (4): 1347-9.

既存の判定手法として報告されている手法はPCR反応産物を電気泳動した後にさらに染色して増幅産物の大きさを解析・確認する報告や、リアルタイムPCR法に融点解析法を組み合わせて用いる報告である。これらはいずれも、PCR反応に引き続いて追加の解析を実施する時間、更にその結果を判定する手間を要する問題が残っている。   Methods that have been reported as existing judgment methods include reports of electrophoresis and subsequent staining of PCR reaction products to analyze and confirm the size of amplification products, and reports that use a real-time PCR method combined with a melting point analysis method. . In both cases, there remains a problem that it takes time to perform additional analysis subsequent to the PCR reaction, and further to determine the result.

本発明はかかる問題点に鑑みてなされたものであって、既存のSNP検出手法に依拠することなく、迅速且つ的確なマクロライド系抗生物質耐性変異菌の検出方法及び検出キットを提供することを目的とする。   The present invention has been made in view of such problems, and provides a rapid and accurate detection method and detection kit for a macrolide antibiotic-resistant mutant without relying on an existing SNP detection method. Objective.

本発明にかかるマクロライド系抗生物質耐性変異菌の検出方法は、被検体の生物学的試料において、23S rRNAドメインVへの結合が阻害されることによりマクロライド系抗生物質に対する耐性を獲得したマクロライド系抗生物質耐性変異菌をリアルタイムPCRで検出する検出方法であって、前記生物学的試料を、第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有し、前記第1の加水分解プローブと前記第2の加水分解プローブとは同一の鋳型配列と結合するように設計されており、標準株の場合は、前記第1の加水分解プローブ及び第2の加水分解プローブ由来の蛍光が観察される一方、マクロライド系抗生物質耐性変異菌の場合は、前記第2の加水分解プローブのみの蛍光が観察されることを特徴とする。   The method for detecting a macrolide antibiotic-resistant mutant bacterium according to the present invention is a macromolecule that has acquired resistance to a macrolide antibiotic by inhibiting binding to 23S rRNA domain V in a biological sample of a subject. A detection method for detecting a ride antibiotic resistant mutant by real-time PCR, comprising the step of contacting the biological sample with a first hydrolysis probe and a second hydrolysis probe, The second hydrolysis probe and the second hydrolysis probe are designed to bind to the same template sequence. In the case of a standard strain, the hydrolysis probe is derived from the first hydrolysis probe and the second hydrolysis probe. On the other hand, in the case of a macrolide antibiotic-resistant mutant, fluorescence of only the second hydrolysis probe is observed while fluorescence is observed.

この特徴は、いずれも鎖長が短い第1の加水分解プローブと第2の加水分解プローブとに対して、熱安定性を向上させるための相違する修飾技術をそれぞれに用いることによって、この2種類のプローブを組合せて用いた際に、標準株を対象とした場合にはそれぞれのプローブはともに類似した熱安定性を示し、結果として安定して鋳型配列に結合することが可能である一方で、マクロライド系抗生物質耐性変異配列を対象とした場合にはそれぞれのプローブの熱安定性の変化の程度が相違する結果として熱安定性の変動の少ない第2のプローブのみが鋳型配列に安定して結合できることによって達成されるものである。   This feature is obtained by using different modification techniques for improving thermal stability for the first hydrolysis probe and the second hydrolysis probe, both of which have a short chain length, respectively. When the probes are used in combination, when the standard strain is used, each probe shows similar thermal stability, and as a result, it is possible to stably bind to the template sequence, When a macrolide antibiotic-resistant mutant sequence is used as a target, only the second probe with a small variation in thermal stability is stabilized in the template sequence as a result of the difference in the degree of change in thermal stability of each probe. This is achieved by being able to combine.

第1の加水分解プローブは、配列の一部がLNA(Locked Nucleic Acid)により構成され、第2の加水分解プローブは、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されているものを使用することが可能である。   The first hydrolysis probe is partially composed of LNA (Locked Nucleic Acid), the second hydrolysis probe is labeled with a reporter fluorescent dye at the 5 ′ end, and the quencher non-fluorescence is at the 3 ′ end. It is possible to use those labeled with a dye and MGB.

本発明は、マクロライド系抗生物質耐性変異菌を迅速且つ的確に検出することができる。   The present invention can rapidly and accurately detect a macrolide antibiotic-resistant mutant.

肺炎マイコプラズマの場合における、第1の加水分解プローブを説明する図である。It is a figure explaining the 1st hydrolysis probe in the case of pneumonia mycoplasma. 肺炎マイコプラズマの場合における、鋳型配列を説明する図である。It is a figure explaining the template arrangement | sequence in the case of a pneumonia mycoplasma. 肺炎マイコプラズマの場合における、第2の加水分解プローブを説明する図である。It is a figure explaining the 2nd hydrolysis probe in the case of pneumonia mycoplasma. 百日咳菌の場合における、第1の加水分解プローブを説明する図である。It is a figure explaining the 1st hydrolysis probe in the case of Bordetella pertussis. 百日咳菌の場合における、鋳型配列を説明する図である。It is a figure explaining the template arrangement | sequence in the case of Bordetella pertussis. 百日咳菌の場合における、第2の加水分解プローブを説明する図である。It is a figure explaining the 2nd hydrolysis probe in the case of Bordetella pertussis. ピロリ菌又はキャンピロバクター・ジェジュニ菌の場合における、第1の加水分解プローブを説明する図である。It is a figure explaining the 1st hydrolysis probe in the case of Helicobacter pylori or Campylobacter jejuni. ピロリ菌の場合における、鋳型配列を説明する図である。It is a figure explaining the template arrangement | sequence in the case of Helicobacter pylori. ピロリ菌又はキャンピロバクター・ジェジュニ菌の場合における、第2の加水分解プローブを説明する図である。It is a figure explaining the 2nd hydrolysis probe in the case of Helicobacter pylori or Campylobacter jejuni. キャンピロバクター・ジェジュニ菌又はピロリ菌の場合における、第1の加水分解プローブを説明する図である。It is a figure explaining the 1st hydrolysis probe in the case of Campylobacter jejuni bacteria or H. pylori. キャンピロバクター・ジェジュニ菌の場合における、鋳型配列を説明する図である。It is a figure explaining the template arrangement | sequence in the case of Campylobacter jejuni microbe. キャンピロバクター・ジェジュニ菌又はピロリ菌の場合における、第2の加水分解プローブを説明する図である。It is a figure explaining the 2nd hydrolysis probe in the case of Campylobacter jejuni bacteria or H. pylori. クラミジア・トラコマチス菌の場合における、第1の加水分解プローブを説明する図である。It is a figure explaining the 1st hydrolysis probe in the case of Chlamydia trachomatis. クラミジア・トラコマチス菌の場合における、鋳型配列を説明する図である。It is a figure explaining the template arrangement | sequence in the case of Chlamydia trachomatis. クラミジア・トラコマチス菌の場合における、第2の加水分解プローブを説明する図である。It is a figure explaining the 2nd hydrolysis probe in the case of Chlamydia trachomatis. トリ型結核菌群の場合における、第1の加水分解プローブを説明する図である。It is a figure explaining the 1st hydrolysis probe in the case of avian type Mycobacterium tuberculosis group. トリ型結核菌群の場合における、鋳型配列を説明する図である。It is a figure explaining the template arrangement | sequence in the case of an avian type tuberculosis microbe group. トリ型結核菌群の場合における、第2の加水分解プローブを説明する図である。It is a figure explaining the 2nd hydrolysis probe in the case of avian type Mycobacterium tuberculosis group. 実施例1において、感受性配列における増幅曲線の検出結果を示す図である。In Example 1, it is a figure which shows the detection result of the amplification curve in a sensitive arrangement | sequence. 肺炎マイコプラズマの場合における、シークエンス結果を示す図である。It is a figure which shows the sequence result in the case of pneumonia mycoplasma. 実施例1において、感受性不問の場合における増幅曲線の検出結果を示す図である。In Example 1, it is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. 実施例2において、感受性配列における増幅曲線の検出結果を示す図である。In Example 2, it is a figure which shows the detection result of the amplification curve in a sensitive arrangement | sequence. 実施例2において、感受性不問の場合における増幅曲線の検出結果を示す図である。In Example 2, it is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. 百日咳菌の場合における、シークエンス結果を示す図である。It is a figure which shows the sequence result in the case of Bordetella pertussis. 実施例3において、感受性配列における増幅曲線の検出結果を示す図であり、そのうち(a)はB1228であり、(b)はC0127であり、(c)はC0131であり、(d)はB0902であり、(e)はD0104であり、(f)はD0403であり、(g)はD0423であり、(h)はD0425である。In Example 3, it is a figure which shows the detection result of the amplification curve in a sensitivity arrangement | sequence, (a) is B1228, (b) is C0127, (c) is C0131, (d) is B0902. Yes, (e) is D0104, (f) is D0403, (g) is D0423, and (h) is D0425. 実施例3において、感受性不問の場合における増幅曲線の検出結果を示す図であり、そのうち(a)はB1228であり、(b)はC0127であり、(c)はC0131であり、(d)はB0902であり、(e)はD0104であり、(f)はD0403であり、(g)はD0423であり、(h)はD0425である。In Example 3, it is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case, (a) is B1228, (b) is C0127, (c) is C0131, (d) is B0902, (e) is D0104, (f) is D0403, (g) is D0423, and (h) is D0425. 実施例4において、感受性配列における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tである。In Example 4, it is a figure which shows the detection result of the amplification curve in a sensitivity arrangement | sequence, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) is A2058T. (E) is A2059G, (f) is A2059C, and (g) is A2059T. 実施例4において、感受性不問の場合における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tである。In Example 4, it is a figure which shows the detection result of the amplification curve in the case of sensitivity unquestioned, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) Is A2058T, (e) is A2059G, (f) is A2059C, and (g) is A2059T. ピロリ菌の場合における、シークエンス結果を示す図である。It is a figure which shows the sequence result in the case of Helicobacter pylori. 実施例5において、感受性配列における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株JCM12093由来のゲノムDNAである。In Example 5, it is a figure which shows the detection result of the amplification curve in a sensitivity arrangement | sequence, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) is A2058T. (E) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is genomic DNA derived from the positive target strain JCM12093. 実施例5において、感受性不問の場合における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株JCM12093由来のゲノムDNAである。In Example 5, it is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) Is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is genomic DNA derived from the positive target strain JCM12093. 実施例5において、5’端の1塩基を削除したプローブを用いた場合における、感受性配列の増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株由来のゲノムDNAである。In Example 5, it is a figure which shows the detection result of the amplification curve of a sensitivity arrangement | sequence when the probe which deleted 1 base of 5 'end was used, (a) is no mutation, (b) is A2058G (C) is A2058C, (d) is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, (h) is a positive target strain Genomic DNA derived from. 実施例5において、5’側の1塩基を削除したプローブを用いた場合における、感受性不問の増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株由来のゲノムDNAである。In Example 5, it is a figure which shows the detection result of a sensitivity unquestioned amplification curve at the time of using the probe which deleted 1 base of 5 'side, (a) is no mutation, (b) is A2058G (C) is A2058C, (d) is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, (h) is a positive target strain Genomic DNA derived from. キャンピロバクター・ジェジュニ菌の場合における、シークエンス結果を示す図である。It is a figure which shows the sequence result in the case of Campylobacter jejuni bacteria. 実施例6において、感受性配列における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株JCM2013由来のゲノムDNAである。In Example 6, it is a figure which shows the detection result of the amplification curve in a sensitivity arrangement | sequence, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) is A2058T. (E) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is genomic DNA derived from the positive target strain JCM2013. 実施例6において、感受性不問の場合における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株JCM2013由来のゲノムDNAである。In Example 6, it is a figure which shows the detection result of the amplification curve in the case of an unquestioned sensitivity, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) Is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is genomic DNA derived from the positive target strain JCM2013. 実施例6において、5’端を1塩基延長したプローブを用いた場合における、感受性配列の増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株由来のゲノムDNAである。In Example 6, it is a figure which shows the detection result of the amplification curve of a sensitivity sequence in the case of using the probe which extended 1 base of 5 'ends, (a) is no mutation, (b) is A2058G. Yes, (c) is A2058C, (d) is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, (h) is derived from the positive target strain Genomic DNA. 実施例6において、5’端を1塩基延長したプローブを用いた場合における、感受性不問の増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象株由来のゲノムDNAである。In Example 6, it is a figure which shows the detection result of a sensitivity unquestioned amplification curve at the time of using the probe which extended 1 base of 5 'ends, (a) is no mutation, (b) is A2058G. Yes, (c) is A2058C, (d) is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, (h) is derived from the positive target strain Genomic DNA. クラミジア・トラコマチス菌の場合における、シークエンス結果を示す図である。It is a figure which shows the sequence result in the case of Chlamydia trachomatis. 実施例7において、感受性配列における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は2の陽性検体由来核酸である。In Example 7, it is a figure which shows the detection result of the amplification curve in a sensitivity arrangement | sequence, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) is A2058T. (E) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is a nucleic acid derived from 2 positive specimens. 実施例7において、感受性不問の場合における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性検体由来核酸である。In Example 7, it is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) Is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is a nucleic acid derived from a positive specimen. トリ型結核菌群の場合における、シークエンス結果を示す図である。It is a figure which shows the sequence result in the case of an avian type Mycobacterium tuberculosis group. 実施例8において、感受性配列における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象として用いた標準株JCM6384由来のゲノムDNAである。In Example 8, it is a figure which shows the detection result of the amplification curve in a sensitivity arrangement | sequence, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) is A2058T. (E) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is a genomic DNA derived from the standard strain JCM6384 used as a positive target. 実施例8において、感受性不問の場合における増幅曲線の検出結果を示す図であり、そのうち(a)は変異無しであり、(b)はA2058Gであり、(c)はA2058Cであり、(d)はA2058Tであり、(e)はA2059Gであり、(f)はA2059Cであり、(g)はA2059Tであり、(h)は陽性対象として用いた標準株JCM6384由来のゲノムDNAである。In Example 8, it is a figure which shows the detection result of an amplification curve in the case of sensitivity unquestioned, (a) is no mutation, (b) is A2058G, (c) is A2058C, (d) Is A2058T, (e) is A2059G, (f) is A2059C, (g) is A2059T, and (h) is genomic DNA derived from the standard strain JCM6384 used as a positive target.

以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the embodiments are for facilitating understanding of the principle of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.

本実施形態にかかるマクロライド系抗生物質耐性変異菌の検出方法は、被検体の生物学的試料において、23S rRNAのドメインVへの結合が阻害されることによりマクロライド系抗生物質に対する耐性化が生じた耐性変異菌を検出する。   In the method for detecting a macrolide antibiotic-resistant mutant according to the present embodiment, resistance to a macrolide antibiotic is inhibited by inhibiting the binding of 23S rRNA to domain V in a biological sample of a subject. The resulting resistant mutant is detected.

リボソームは50Sサブユニットと30Sサブユニットとが合体した形状であり、30Sサブユニットの中でメッセンジャーRNAが読み込まれ、50Sサブユニットの中でペプチジルトランスフェラーゼという酵素の機能でアミノ酸がつながれポリペプチドが合成されていくが、この際に重要な働きをするのが23S rRNAである。その機能部位の中心が6つのドメインのうち5番目のドメインであるドメインVであり、マクロライド系抗生物質はこのドメインVに結合することによりその機能を阻害し、蛋白の合成を抑制して抗生物質として働くところ、このマクロライド系抗生物質がドメインVに結合するうえで重要な部位が、塩基番号が大腸菌では2058番目と2059番目の隣接する2つのアデニンであり、これらの部位に塩基置換やメチル化の変異が生ずるとその立体構造に変化が生じ、マクロライド系抗生物質はドメインVに結合できなくなり、蛋白合成を阻害できず、その菌は臨床的に問題となる程度のマクロライド系抗生物質に対する耐性を獲得することになる。   Ribosome is the shape that 50S subunit and 30S subunit are united, messenger RNA is read in 30S subunit, and amino acid is connected by the function of peptidyltransferase in 50S subunit to synthesize polypeptide. However, 23S rRNA plays an important role in this process. The center of the functional site is domain V, which is the fifth of the six domains, and macrolide antibiotics bind to this domain V to inhibit its function and suppress protein synthesis to prevent antibiotics. When it works as a substance, the important sites for binding of this macrolide antibiotic to domain V are the two adjacent adenines with base numbers 2058 and 2059 in Escherichia coli. When a methylation mutation occurs, the conformation changes, and the macrolide antibiotic cannot bind to domain V, cannot inhibit protein synthesis, and the fungus has a clinically problematic macrolide antibiotic. You will gain resistance to the substance.

この部位は肺炎マイコプラズマに限らず多くの細菌に共通であり、マクロライド系抗生物質への耐性化のホットスポットと考えられている。介在する塩基の数により塩基番号には若干の差があり、最も良く研究されているモデルである大腸菌においては2058番目と2059番目であるが、肺炎マイコプラズマ(標準株M129; NCBI Reference Sequence:NC_000912.1)では2063番目と2064番目が、百日咳菌(標準株 Tohama I; NCBI Reference Sequence:NC_002929.2)では2037番目と2038番目が、ピロリ菌(標準株 Helicobacter pylori 26695; NCBI Reference Sequence: NC_000915.1)では2146番目と2147番目(Accession番号U27270の配列を標準として2142番目と2143番目とする文献もある)が、Campylobacterjejuni (標準株Campylobacterjejuni subsp. jejuni; NCBI Reference Sequence:NC_002163.1)では2074番目と2075番目が、Chlamydia trachomatis (標準株Chlamydia trachomatis D/UW-3/CX; NCBIReference Sequence: NC_000117.1)では2038番目と2039番目が、Mycobacterium avium (標準株Mycobacterium avium 104; NCBI Reference Sequence: NC_008595.1)では2279番目と2280番目が、Mycobacteriumintracellulare (標準株Mycobacteriumintracellulare ATCC 13950; NCBI Reference Sequence:NC_016946.1)では2266番目と2267番目が、これらの部位に対応する。なお、上述したマクロライド系抗生物質への耐性化のホットスポットは、病原微生物の種類によって、あるいは株によって塩基番号が相違するので、大腸菌における番号で記載する。また、特に断らない限り、以降は上で標準株として例示したものをそれぞれ病原菌の標準株として記載する。   This site is common to many bacteria as well as pneumonia mycoplasma and is considered a hot spot for resistance to macrolide antibiotics. There is a slight difference in the base number depending on the number of intervening bases, and in the most well-studied model E. coli, it is 2058th and 2059th, but pneumonia mycoplasma (standard strain M129; NCBI Reference Sequence: NC_000912. 1) 2063 and 2064, pertussis (standard strain Tohama I; NCBI Reference Sequence: NC_002929.2) 2037 and 2038, H. pylori (standard strain Helicobacter pylori 26695; NCBI Reference Sequence: NC_000915.1 ) Is 2146th and 2147th (there is also a document with 2142 and 2143th as the standard of the sequence of Accession number U27270), but Campylobacterjejuni (standard strain Campylobacterjejuni subsp. Jejuni; NCBI Reference Sequence: NC_002163.1) 2075th is Chlamydia trachomatis (standard strain Chlamydia trachomatis D / UW-3 / CX; NCBIReference Sequence: NC_000117.1), 2038th and 2039th is Mycobacterium avium (standard strain Mycobacterium avium 104; NCBI Reference Sequence: NC_008595.1 2279 2280 th eyes are Emuwaicobacteriumintracellulare (standard strain Mycobacteriumintracellulare ATCC 13950; NCBI Reference Sequence: NC_016946.1) In 2266 th and 2267 th, corresponding to these sites. In addition, since the base number differs according to the kind of pathogenic microorganisms or strains, the above-mentioned hotspots for resistance to macrolide antibiotics are described with numbers in Escherichia coli. In addition, unless otherwise specified, those exemplified above as standard strains will be described as standard strains of pathogenic bacteria.

本実施形態において、マクロライド系抗生物質耐性変異菌は、肺炎マイコプラズマ変異菌、百日咳菌変異菌、ピロリ菌変異菌、Campylobacter jejuni変異菌、Chlamydiatrachomatis変異菌、MAC変異菌、であるが、これに限定されるものではなく、大腸菌や肺炎球菌等の耐性変異菌も含まれる。   In this embodiment, the macrolide antibiotic-resistant mutant bacteria are pneumonia mycoplasma mutant bacteria, Bordetella pertussis mutant bacteria, Helicobacter pylori mutant bacteria, Campylobacter jejuni mutant bacteria, Chlamydiatrachomatis mutant bacteria, MAC mutant bacteria, but are not limited thereto. In addition, resistant mutants such as Escherichia coli and Streptococcus pneumoniae are also included.

マクロライド系抗生物質は、特に限定されるものではないが、例えば、14員環系であるならばEM、CAM、ロキシスロマイシン(RXM)であり、15員環系であるならばAZMであり、16員環であるならばジョサマイシン(JM)、ロキタマイシン(RKM)である。   The macrolide antibiotic is not particularly limited, but for example, EM, CAM, and roxithromycin (RXM) if it is a 14-membered ring system, and AZM if it is a 15-membered ring system. If it is a 16-membered ring, it is josamycin (JM) or rokitamicin (RKM).

以下、マクロライド系抗生物質耐性変異菌が肺炎マイコプラズマ変異菌の場合について記載する。   Hereinafter, the case where the macrolide antibiotic resistant mutant is a Mycoplasma pneumoniae is described.

本実施形態では、リアルタイムPCRにて生物学的試料を第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有する。   In this embodiment, the method includes a step of bringing a biological sample into contact with the first hydrolysis probe and the second hydrolysis probe by real-time PCR.

第1の加水分解プローブは、5’-aacgggacggaaag-3’(配列番号1)なる配列を有し(図1)、Tmは66℃である。ここでTmは融解温度であり、二本鎖DNAの50%が一本鎖DNAに解離する温度(melting temperature)である。第1の加水分解プローブは、5’端がssH amino linkerを介してレポーター色素Alexa647で標識されており、3'端がクエンチャー非蛍光色素であるBlack Hole Quencher 3(BHQ3)で標識されている。   The first hydrolysis probe has a sequence of 5'-aacgggacggaaag-3 '(SEQ ID NO: 1) (Fig. 1), and Tm is 66 ° C. Here, Tm is a melting temperature, and is a temperature at which 50% of double-stranded DNA is dissociated into single-stranded DNA (melting temperature). The first hydrolysis probe is labeled with the reporter dye Alexa647 through the ssH amino linker at the 5 ′ end and with Black Hole Quencher 3 (BHQ3), which is a quencher non-fluorescent dye. .

第1の加水分解プローブは、図1にて大文字でGAAAと示されているように、配列の一部がLNA(Locked NucleicAcid)により構成されている。配列にLNAが導入されることによって完全に相補的な二本鎖の熱安定性が上がる結果、Tm値が上昇し、プローブの長さを短くすることが可能となる。ここでLNAがgaaaである理由は、図2に示される鋳型配列ctcgg tgaaa tccaggtacg ggtga agaca cccgt taggc gcaac gggac ggaaa gaccc cgtga agctt tactg tagcttaata ttgat cagga catta tcatg tagag aatag gtagg agcaa tcgat gca(配列番号2)において、下線(B)で示される箇所における矢印が変異箇所である2058番目と2059番目(肺炎マイコプラズマ標準株においては2063番目と2064番目)のアデニンを示すところ、その両側の塩基を含む配列が好ましいからである。なお、図2において下線(A)で示される箇所は、後述するように、Forwardのprimer配列tccag gtacg ggtga agaca(配列番号3)であり、下線(C)で示される箇所はReverseのprimer配列atcat gtaga gaata ggtag gagc(配列番号4)である。この第1の加水分解プローブは、変異株の場合、二本鎖の熱安定性の変化の程度すなわちTmの下降の程度が比較的大きい。   The first hydrolysis probe is partially composed of LNA (Locked Nucleic Acid) as indicated by capital letters GAAA in FIG. The introduction of LNA into the sequence increases the thermal stability of the completely complementary duplex, resulting in an increase in Tm value and a reduction in probe length. The reason why the LNA is gaaa is that the template sequence ctcgg tgaaa tccaggtacg ggtga agaca cccgt taggc gcaac gggac ggaaa gaccc cgtga agctt tactg tagcttaata ttgat cagga catta tcatg tagag aatag gtagg agcaa tcgat This is because the sequence containing the bases on both sides of the 2058th and 2059th positions (the 2063th and 2064th positions in the pneumonia mycoplasma standard strain) are preferable, as indicated by the arrows in the position shown in (B). . In FIG. 2, the portion indicated by the underline (A) is the forward primer array tccag gtacg ggtga agaca (SEQ ID NO: 3), and the portion indicated by the underline (C) is the reverse primer array atcat, as will be described later. gtaga gaata ggtag gagc (SEQ ID NO: 4). In the case of the mutant strain, the first hydrolysis probe has a relatively large degree of change in double-stranded thermal stability, that is, a degree of decrease in Tm.

第2の加水分解プローブは、図3に示されるように、第1の加水分解プローブと同じ配列を有しており、Tmは67℃である。第2の加水分解プローブは、5’末端がレポーター蛍光色素VICで標識され、3’末端がクエンチャー非蛍光色素及びMinor Groove Binder(MGB)で標識されている。3’末端を標識しているMGBが、プローブとターゲット配列との二本鎖螺旋構造の副溝(Minor Groove)に結合することにより二本鎖の熱安定性が上がる結果、比較的短い配列でTm値が高いプローブが得られる。この第2の加水分解プローブでは、変異株の場合、二本鎖の熱安定性の変化の程度すなわちTmの下降の程度が第1の加水分解プローブよりも穏やかである。なお、図3では3’末端にクエンチャー非蛍光色素及びMGBがそれぞれ接合しているが、このような構造に限定されるものではなく、例えば3’末端にクエンチャー非蛍光色素が接合しており、そのクエンチャー非蛍光色素にMGBが接合している構造も可能である。この説明は、以下に記載される第2の加水分解プローブについても同様にあてはまる。   As shown in FIG. 3, the second hydrolysis probe has the same sequence as the first hydrolysis probe, and Tm is 67 ° C. The second hydrolysis probe is labeled at the 5 'end with a reporter fluorescent dye VIC and at the 3' end with a quencher non-fluorescent dye and Minor Groove Binder (MGB). The MGB labeled at the 3 'end binds to the minor groove of the double-stranded helical structure between the probe and the target sequence, thereby increasing the thermal stability of the double-stranded chain. A probe with a high Tm value can be obtained. In the second hydrolysis probe, in the case of the mutant strain, the degree of change in the thermal stability of the double strand, that is, the degree of decrease in Tm, is gentler than that of the first hydrolysis probe. In FIG. 3, the quencher non-fluorescent dye and MGB are joined to the 3 ′ end, respectively. However, the structure is not limited to this. For example, the quencher non-fluorescent dye is joined to the 3 ′ end. A structure in which MGB is bonded to the quencher non-fluorescent dye is also possible. This explanation applies to the second hydrolysis probe described below as well.

第1、第2いずれの加水分解プローブにおいても、プローブがDNAポリメラーゼにより加水分解されるまでは、5’末端のレポーター蛍光色素と3’末端のクエンチャー非蛍光色素の2つの物質が近接しているため、レポーター色素から発せられるの蛍光シグナルのエネルギーはクエンチャー色素に吸収される(クエンチング)結果として抑制されている。リアルタイムPCR反応の進行に伴って、DNAポリメラーゼの5’→3’エクソヌクレアーゼ活性によって鋳型配列に安定に結合しているプローブは加水分解され、レポーター蛍光色素とクエンチャー非蛍光色素が分離し、分離したレポーター色素由来の蛍光シグナルのエネルギーがクエンチングを受けなくなるため、励起されると蛍光シグナルが観察される。   In both the first and second hydrolysis probes, two substances, a reporter fluorescent dye at the 5 ′ end and a quencher non-fluorescent dye at the 3 ′ end, are close to each other until the probe is hydrolyzed by the DNA polymerase. Therefore, the energy of the fluorescent signal emitted from the reporter dye is suppressed as a result of being absorbed (quenching) by the quencher dye. As the real-time PCR reaction proceeds, the probe that is stably bound to the template sequence is hydrolyzed by the 5 '→ 3' exonuclease activity of DNA polymerase, and the reporter fluorescent dye and quencher non-fluorescent dye are separated and separated. Since the energy of the fluorescent signal derived from the reporter dye is not quenched, a fluorescent signal is observed when excited.

MGBとしては、特に限定されるものではないが、例えばベレニル、ネトロプシン、ジスタマイシンA、4’,6−ジアミジノ−2−フェニルインドール(DAPI)等を挙げることができる。レポーター蛍光色素としては、特に限定されるものではないが例えばFluoresceine系の蛍光色素であり、具体的にはVICやFAMである。クエンチャー非蛍光色素としては、特に限定されるものではないが例えばBHQ1である。   Examples of MGB include, but are not limited to, beryl, netropsin, distamycin A, 4 ', 6-diamidino-2-phenylindole (DAPI), and the like. The reporter fluorescent dye is not particularly limited, but is, for example, a fluoresceine fluorescent dye, specifically, VIC or FAM. The quencher non-fluorescent dye is not particularly limited, and is, for example, BHQ1.

生物学的試料としては、特に限定されるものではないが、例えば被験者からの気道由来試料、血清、血漿、リンパ液、血液、唾液等であり、このうち特に好ましくは気道由来試料であり、具体的には喀痰、気道吸引物、気管支肺胞洗浄液等である。   The biological sample is not particularly limited, and examples thereof include airway-derived samples from subjects, serum, plasma, lymph fluid, blood, saliva, etc. Among these, airway-derived samples are particularly preferable. These include sputum, airway aspirate, bronchoalveolar lavage fluid.

リアルタイムPCR用プライマーは、マクロライド系抗生物質耐性変異菌の特異的な領域の塩基配列において、選択される10〜40個の連続した塩基配列と同一の塩基配列を、被検体DNAのForwardのプライマーとして設計し、また、Reverseのプライマーとしては、本発明のマクロライド系抗生物質耐性変異菌の特異的な領域の塩基配列において、選択される10〜40個の連続した塩基配列と相補的な塩基配列から設計することができる。例えば、Forwardのプライマーとして、tccag gtacg ggtga agaca(配列番号3)であり、Reverseのプライマーとしてatcat gtaga gaata ggtag gagc(配列番号4)である塩基配列を例としてあげることができる。これらのリアルタイムPCR用プライマーは、塩基配列に従って公知の方法により合成することができる。   The primer for real-time PCR is the same as the selected 10 to 40 consecutive base sequences in the specific region of the macrolide antibiotic-resistant mutant, and the forward primer for the sample DNA As a reverse primer, the base sequence of the specific region of the macrolide antibiotic-resistant mutant of the present invention is a base complementary to 10 to 40 consecutive base sequences selected. Can be designed from an array. For example, a base sequence which is tccag gtacg ggtga agaca (SEQ ID NO: 3) as a forward primer and atcat gtaga gaata ggtag gagc (SEQ ID NO: 4) as a reverse primer can be exemplified. These primers for real-time PCR can be synthesized by a known method according to the base sequence.

マクロライド系抗生物質耐性変異菌が肺炎マイコプラズマ変異菌の場合についてのマクロライド系抗生物質耐性変異菌の検出キットは、上述した第1の加水分解プローブと、第2の加水分解プローブと、を有する。更に、リアルタイムPCR用のプライマー、リアルタイムPCR用ポリメラーゼを含む。また、他の構成要素として、各種バッファー、ヌクレアーゼ・フリーの水、固定化単体等を含めることもできる。   The detection kit for a macrolide antibiotic-resistant mutant when the macrolide antibiotic-resistant mutant is a Mycoplasma pneumoniae mutant has the first hydrolysis probe and the second hydrolysis probe described above. . Furthermore, it contains primers for real-time PCR and polymerase for real-time PCR. In addition, as other components, various buffers, nuclease-free water, a single immobilized substance, and the like can also be included.

本実施形態にかかる発明では、上述したように、全く同じ標的鋳型配列と結合するように設計されている、Tm値がほぼ等しい(即ち、互いに競合的に結合する)プローブを用いている。これゆえに、標的配列が感受性配列(プローブ配列と標的が完全に一致)する際には、二つのプローブは同等に標的配列と反応液中でアニールし、同等に加水分解を受けるため、双方のプローブ由来の蛍光が観測される。一方で、二つのプローブは鎖長が短い(14塩基)にも関わらず、互いに異なる修飾技術(LNAあるいはMGB)によって、例えば66〜67℃のように比較的高いTmを保つことができている。このように、鎖長が短いプローブのTmを上昇させている修飾技術が相違するため、変異が入った配列が標的となった際のTmは2種類のプローブ間では乖離すると考えられる。即ち、変異を有する配列を標的とした際のTmの変化(下降)の程度が、第1の加水分解プローブ(LNAプローブ)の場合の方が、第2の加水分解プローブ(MGBプローブ)よりも大きい(MGBプローブの方が、Tm変化は穏やかである)と考えられる。   In the invention according to the present embodiment, as described above, probes that are designed to bind to the same target template sequence and have substantially the same Tm value (that is, competitively bind to each other) are used. Therefore, when the target sequence is a sensitive sequence (the probe sequence and the target are completely identical), the two probes are equally annealed with the target sequence in the reaction solution, and are equally hydrolyzed. Origin fluorescence is observed. On the other hand, although the two probes have a short chain length (14 bases), they can maintain a relatively high Tm such as 66-67 ° C by different modification techniques (LNA or MGB). . As described above, since the modification techniques for increasing the Tm of a probe having a short chain length are different, it is considered that the Tm when a sequence containing a mutation becomes a target is dissociated between the two types of probes. That is, the degree of change (decrease) in Tm when targeting a sequence having a mutation is greater in the case of the first hydrolysis probe (LNA probe) than in the second hydrolysis probe (MGB probe). It is considered large (MGB probe has a milder Tm change).

この結果、変異を有した配列が対象となった場合に、2種類のプローブのTmが乖離を来すこととなり、一方の第2の加水分解プローブ(MGBプローブ)のみが加水分解を受けると考えられ、第2のプローブ由来の蛍光のみが観測される。この結果、第2のプローブ由来の蛍光のみが観測されるマクロライド耐性変異株を双方のプローブ由来の蛍光が観測される通常株とを一目瞭然に区別して正確に判定することができる。なお、第2の加水分解プローブのみの蛍光が観察されるとは、第1の加水分解プローブの蛍光が第2の加水分解プローブの蛍光と比較して極めて弱く、ほとんど観察されない結果、第2の加水分解プローブの蛍光が極めて強く観察される場合を含む。また、従前の融点解析法(melting curve analysis)のように、増幅反応を終えたリアルタイムPCR反応液の温度を徐々に上昇させながら、蛍光信号の強度変化を計測する加温過程は不要であるため、マクロライド系抗生物質耐性変異菌を通常株と区別して迅速に判定することができる。   As a result, when a sequence having a mutation is targeted, the Tm of the two types of probes will diverge, and only one second hydrolysis probe (MGB probe) will undergo hydrolysis. Only the fluorescence derived from the second probe is observed. As a result, the macrolide resistant mutant strain in which only the fluorescence derived from the second probe is observed can be accurately distinguished from the normal strain in which the fluorescence derived from both probes is observed at a glance. It should be noted that the fluorescence of only the second hydrolysis probe is observed that the fluorescence of the first hydrolysis probe is very weak compared to the fluorescence of the second hydrolysis probe and is hardly observed. This includes the case where the fluorescence of the hydrolysis probe is observed very strongly. In addition, as in the previous melting curve analysis, there is no need for a heating process to measure the intensity change of the fluorescence signal while gradually increasing the temperature of the real-time PCR reaction solution after the amplification reaction. Macrolide antibiotic-resistant mutant bacteria can be quickly distinguished from normal strains.

次に、マクロライド系抗生物質耐性変異菌が百日咳菌変異菌の場合について記載する。   Next, the case where the macrolide antibiotic resistant mutant is a Bordetella pertussis mutant will be described.

前述と同様に、リアルタイムPCRにて生物学的試料を第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有する。   As described above, the method includes contacting a biological sample with a first hydrolysis probe and a second hydrolysis probe by real-time PCR.

第1の加水分解プローブは、5’-cggctagacggaaag-3’(配列番号5)なる配列を有し(図4)、Tmは67℃である。第1の加水分解プローブは、5’端がssH amino linkerを介してAlexa647で標識されており、3'端がBHQ3で標識されている。   The first hydrolysis probe has a sequence of 5'-cggctagacggaaag-3 '(SEQ ID NO: 5) (Fig. 4), and Tm is 67 ° C. The first hydrolysis probe is labeled with Alexa647 at the 5 'end via an ssH amino linker and labeled with BHQ3 at the 3' end.

第1の加水分解プローブは、図4にて大文字でGAAAと示されているように、配列の一部がLNA(Locked NucleicAcid)により構成されている。ここでLNAがgaaaである理由は、図5に示される鋳型配列ttccg acctg cacga atggc gtaac gatgg ccaca ctgtc tcctc ctgag actcagcgaa gttga agtgt ttgtg atgat gcaat ctacc cgcgg ctaga cggaa agacc ccatg aacct ttactgtagc tttgc attgg actgt gaacc ggcct gtgta ggata ggtgg gaggc gcaga actcg agtcgccaga ttcga gggag ccatc cttga aatac(配列番号6)において、下線(B)で示される箇所における矢印が変異箇所である2058番目と2059番目(百日咳菌標準株においては2037番目と2038番目)のアデニンを示すところ、その両側の塩基を含む配列が好ましいからである。なお、図5において下線(A)で示される箇所は、Forwardのprimer配列に対応し、下線(C)で示される箇所はReverseのprimer配列に対応する。この第1の加水分解プローブは、変異株の場合Tmの下降の程度が比較的大きい。   In the first hydrolysis probe, a part of the sequence is composed of LNA (Locked Nucleic Acid) as indicated by a capital letter GAAA in FIG. The reason why the LNA is gaaa is that the template sequence shown in FIG. In gcaga actcg agtcgccaga ttcga gggag ccatc cttga aatac (SEQ ID NO: 6), the adenine at the positions indicated by the underline (B) is the mutation positions 2058 and 2059 (2037 and 2038 in the Bordetella pertussis standard strain). This is because a sequence containing bases on both sides is preferable. In FIG. 5, the part indicated by the underline (A) corresponds to the Forward primer array, and the part indicated by the underline (C) corresponds to the Reverse primer array. This first hydrolysis probe has a relatively large decrease in Tm in the case of a mutant strain.

第2の加水分解プローブは、図6に示されるように、第1の加水分解プローブと同じ配列を有しており、Tmは68℃である。第2の加水分解プローブは、更に、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGB(Minor Groove Binder)で標識されている。MGB、レポーター蛍光色素、及びクエンチャー非蛍光色素については前述と同様に特に限定されるものではない。生物学的試料としては、前述と同様に特に限定されるものではない。   As shown in FIG. 6, the second hydrolysis probe has the same sequence as the first hydrolysis probe, and Tm is 68 ° C. The second hydrolysis probe is further labeled at the 5 'end with a reporter fluorescent dye and at the 3' end with a quencher non-fluorescent dye and MGB (Minor Groove Binder). The MGB, reporter fluorescent dye, and quencher non-fluorescent dye are not particularly limited as described above. The biological sample is not particularly limited as described above.

リアルタイムPCR用プライマーは、前述と同様に適宜設計することが可能であり、例えば、Forwardのプライマーとしてgcacgaatggcgtaacgatg(配列番号7)であり、Reverseのプライマーとしてctccctcgaatctggcgactc(配列番号8)である塩基配列を例としてあげることができる。   The primer for real-time PCR can be appropriately designed in the same manner as described above. For example, the base sequence is gcacgaatggcgtaacgatg (SEQ ID NO: 7) as a forward primer and ctccctcgaatctggcgactc (SEQ ID NO: 8) as a reverse primer. Can be given as

マクロライド系抗生物質耐性変異菌が百日咳菌変異菌の場合についてのマクロライド系抗生物質耐性変異菌の検出キットは、上述した第1の加水分解プローブと、第2の加水分解プローブと、を有する。更に、リアルタイムPCR用のプライマー、リアルタイムPCR用ポリメラーゼを含む。また、他の構成要素として、各種バッファー、ヌクレアーゼ・フリーの水、固定化単体等を含めることもできる。   A detection kit for a macrolide antibiotic-resistant mutant when the macrolide antibiotic-resistant mutant is a Bordetella pertussis mutant, has the first hydrolysis probe and the second hydrolysis probe described above. . Furthermore, it contains primers for real-time PCR and polymerase for real-time PCR. In addition, as other components, various buffers, nuclease-free water, a single immobilized substance, and the like can also be included.

これにより、マクロライド系抗生物質耐性変異菌が百日咳菌変異菌の場合であっても前述と同様に、マクロライド耐性変異株を通常株と区別して一目瞭然に正確に判定することができる。   Thus, even when the macrolide antibiotic-resistant mutant is a Bordetella pertussis mutant, the macrolide-resistant mutant can be distinguished from the normal strain and accurately determined at a glance as described above.

次に、マクロライド系抗生物質耐性変異菌がピロリ菌変異菌の場合について記載する。   Next, the case where the macrolide antibiotic resistant mutant is a H. pylori mutant will be described.

前述と同様に、リアルタイムPCRにて生物学的試料を第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有する。   As described above, the method includes contacting a biological sample with a first hydrolysis probe and a second hydrolysis probe by real-time PCR.

第1の加水分解プローブは、5’-cggcaagacggaaag-3’(配列番号9)なる配列を有し(図7)、Tmは68℃である。第1の加水分解プローブは、5’端がssH amino linkerを介してAlexa647で標識されており、3'端がBHQ3で標識されている。   The first hydrolysis probe has a sequence of 5'-cggcaagacggaaag-3 '(SEQ ID NO: 9) (Fig. 7), and Tm is 68 ° C. The first hydrolysis probe is labeled with Alexa647 at the 5 'end via an ssH amino linker and labeled with BHQ3 at the 3' end.

第1の加水分解プローブは、図7にて大文字でGAAAと示されているように、配列の一部がLNA(Locked NucleicAcid)により構成されている。ここでLNAがgaaaである理由は、図8に示される鋳型配列ccgac ctgca tgaat ggcgt aacga gatgg gagct gtctc aacca gagat tcagtgaaat tgtag tggag gtgaa aattc ctcct acccg cggca agacg gaaag acccc gtgga ccttt actacaactt agcac tgcta atggg aatat catgc gcagg atagg tggga ggctt tgaag taagg gctttggctc ttatg gagcc atcct(配列番号10)において、下線(B)で示される箇所における矢印が変異箇所である2058番目と2059番目(ピロリ菌標準株においては2146番目と2147番目)のアデニンを示すところ、その両側の塩基を含む配列が好ましいからである。なお、図8において下線(A)で示される箇所は、Forwardのprimer配列に対応し、下線(C)で示される箇所はReverseのprimer配列に対応する。この第1の加水分解プローブは、変異株の場合Tmの下降の程度が比較的大きい。   The first hydrolysis probe is partially composed of LNA (Locked Nucleic Acid) as indicated by a capital letter GAAA in FIG. The reason why the LNA is gaaa is that the template sequence shown in FIG. In tgaag taagg gctttggctc ttatg gagcc atcct (SEQ ID NO: 10), the arrows in the underlined (B) indicate the 2058th and 2059th adenine mutation sites (2146th and 2147th in the H. pylori standard strain) adenine However, a sequence containing bases on both sides is preferable. In FIG. 8, a portion indicated by an underline (A) corresponds to the forward primer array, and a portion indicated by an underline (C) corresponds to the reverse primer array. This first hydrolysis probe has a relatively large decrease in Tm in the case of a mutant strain.

第2の加水分解プローブは、図9に示されるように、第1の加水分解プローブと同じ配列を有しており、Tmは70℃である。第2の加水分解プローブは、更に、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGB(Minor Groove Binder)で標識されている。MGB、レポーター蛍光色素、及びクエンチャー非蛍光色素については前述と同様に特に限定されるものではない。生物学的試料としては、前述と同様に特に限定されるものではない。   As shown in FIG. 9, the second hydrolysis probe has the same sequence as the first hydrolysis probe, and Tm is 70 ° C. The second hydrolysis probe is further labeled at the 5 'end with a reporter fluorescent dye and at the 3' end with a quencher non-fluorescent dye and MGB (Minor Groove Binder). The MGB, reporter fluorescent dye, and quencher non-fluorescent dye are not particularly limited as described above. The biological sample is not particularly limited as described above.

リアルタイムPCR用プライマーは、前述と同様に適宜設計することが可能であり、例えば、Forwardのプライマーとしてgcgtaacgagatgggagctg(配列番号11)であり、Reverseのプライマーとしてtggctccataagagccaaagc(配列番号12)である塩基配列を例としてあげることができる。   The primer for real-time PCR can be appropriately designed as described above. For example, the base sequence is gcgtaacgagatgggagctg (SEQ ID NO: 11) as the forward primer and tggctccataagagccaaagc (SEQ ID NO: 12) as the reverse primer. Can be given as

マクロライド系抗生物質耐性変異菌がピロリ菌変異菌の場合についてのマクロライド系抗生物質耐性変異菌の検出キットは、上述した第1の加水分解プローブと、第2の加水分解プローブと、を有する。更に、リアルタイムPCR用のプライマー、リアルタイムPCR用ポリメラーゼを含む。また、他の構成要素として、各種バッファー、ヌクレアーゼ・フリーの水、固定化単体等を含めることもできる。   The detection kit for a macrolide antibiotic-resistant mutant when the macrolide antibiotic-resistant mutant is a H. pylori mutant has the first hydrolysis probe and the second hydrolysis probe described above. . Furthermore, it contains primers for real-time PCR and polymerase for real-time PCR. In addition, as other components, various buffers, nuclease-free water, a single immobilized substance, and the like can also be included.

これにより、マクロライド系抗生物質耐性変異菌がピロリ菌変異菌の場合であっても前述と同様に、マクロライド耐性変異株を通常株と区別して一目瞭然に正確に判定することができる。   Thus, even when the macrolide antibiotic-resistant mutant is a Helicobacter pylori mutant, the macrolide-resistant mutant can be distinguished from the normal strain and accurately determined at a glance as described above.

なお、後述の実施例にて記載するように、図7に示す第1の加水分解プローブ及び図9に示す第2の加水分解プローブは、キャンピロバクター・ジェジュニ菌変異菌の検出にも利用できる。また、全ての実施形態において共通することであるが、実施形態に示したプローブの配列の一部の追加、削除又は変更した配列のプローブであっても、本発明の効果を奏する限り、用いることが可能である。   As described in Examples below, the first hydrolysis probe shown in FIG. 7 and the second hydrolysis probe shown in FIG. 9 can also be used for detection of Campylobacter jejuni mutants. . In addition, as is common to all embodiments, even a probe having a sequence obtained by adding, deleting, or changing a part of the probe sequence shown in the embodiment may be used as long as the effect of the present invention is exhibited. Is possible.

次に、マクロライド系抗生物質耐性変異菌がキャンピロバクター・ジェジュニ菌変異菌の場合について記載する。   Next, the case where the macrolide antibiotic resistant mutant is a Campylobacter jejuni mutant is described.

前述と同様に、リアルタイムPCRにて生物学的試料を第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有する。   As described above, the method includes contacting a biological sample with a first hydrolysis probe and a second hydrolysis probe by real-time PCR.

第1の加水分解プローブは、5’- ggcaagacggaaag -3’(配列番号13)なる配列を有し(図10)、Tmは67℃である。第1の加水分解プローブは、5’端がssH amino linkerを介してAlexa647で標識されており、3'端がBHQ3で標識されている。   The first hydrolysis probe has a sequence of 5'-ggcaagacggaaag-3 '(SEQ ID NO: 13) (Fig. 10), and Tm is 67 ° C. The first hydrolysis probe is labeled with Alexa647 at the 5 'end via an ssH amino linker and labeled with BHQ3 at the 3' end.

第1の加水分解プローブは、図10にて大文字でGAAAと示されているように、配列の一部がLNA(Locked NucleicAcid)により構成されている。ここでLNAがgaaaである理由は、図11に示される鋳型配列ttaaa taccg acctg catga atggc gtaac gagat gggag ctgtc tcaaa gagggatcca gtgaa attgt agtgg aggtg aaaat tcctc ctacc cgcgg caaga cggaa agacc ccgtg gacctttact acagc ttgac actgc tactt ggata agaat gtgca ggata ggtgg gaggc tttga gtatatgacg ccagt tgtat atgag ccatt gttga gatac(配列番号14)において、下線(B)で示される箇所における矢印が変異箇所である2058番目と2059番目(キャンピロバクター・ジェジュニ菌標準株においては2074番目と2075番目)のアデニンを示すところ、その両側の塩基を含む配列が好ましいからである。なお、図11において下線(A)で示される箇所は、Forwardのprimer配列に対応し、下線(C)で示される箇所はReverseのprimer配列に対応する。この第1の加水分解プローブは、変異株の場合Tmの下降の程度が比較的大きい。   A part of the sequence of the first hydrolysis probe is constituted by LNA (Locked Nucleic Acid) as indicated by capital letters GAAA in FIG. The reason why LNA is gaaa is that the template sequence ttaaa taccg acctg catga atggc gtaac gagat gggag ctgtc tcaaa gagggatcca gtgaa attgt agtgg cggt gctact ggtt In gaggc tttga gtatatgacg ccagt tgtat atgag ccatt gttga gatac (SEQ ID NO: 14), the arrows in the underlined (B) indicate the mutation sites 2058 and 2059 (2074 in Campylobacter jejuni standard strain) This is because a sequence containing the bases on both sides is preferred when the 2075th adenine is shown. In FIG. 11, a portion indicated by an underline (A) corresponds to the Forward primer array, and a portion indicated by an underline (C) corresponds to the Reverse primer array. This first hydrolysis probe has a relatively large decrease in Tm in the case of a mutant strain.

第2の加水分解プローブは、図12に示されるように、第1の加水分解プローブと同じ配列を有しており、Tmは67℃である。第2の加水分解プローブは、更に、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGB(Minor Groove Binder)で標識されている。MGB、レポーター蛍光色素、及びクエンチャー非蛍光色素については前述と同様に特に限定されるものではない。生物学的試料としては、前述と同様に特に限定されるものではない。   As shown in FIG. 12, the second hydrolysis probe has the same sequence as the first hydrolysis probe, and Tm is 67 ° C. The second hydrolysis probe is further labeled at the 5 'end with a reporter fluorescent dye and at the 3' end with a quencher non-fluorescent dye and MGB (Minor Groove Binder). The MGB, reporter fluorescent dye, and quencher non-fluorescent dye are not particularly limited as described above. The biological sample is not particularly limited as described above.

リアルタイムPCR用プライマーは、前述と同様に適宜設計することが可能であり、例えば、Forwardのプライマーとしてcgtaacgagatgggagctgt(配列番号15)であり、Reverseのプライマーとしてctcccacctatcctgcacat(配列番号16)である塩基配列を例としてあげることができる。   The primer for real-time PCR can be appropriately designed as described above. For example, the base sequence is cgtaacgagatgggagctgt (SEQ ID NO: 15) as a forward primer and ctcccacctatcctgcacat (SEQ ID NO: 16) as a reverse primer. Can be given as

マクロライド系抗生物質耐性変異菌がキャンピロバクター・ジェジュニ菌変異菌の場合についてのマクロライド系抗生物質耐性変異菌の検出キットは、上述した第1の加水分解プローブと、第2の加水分解プローブと、を有する。更に、リアルタイムPCR用のプライマー、リアルタイムPCR用ポリメラーゼを含む。また、他の構成要素として、各種バッファー、ヌクレアーゼ・フリーの水、固定化単体等を含めることもできる。   The detection kit for the macrolide antibiotic-resistant mutant when the macrolide antibiotic-resistant mutant is the Campylobacter jejuni mutant, the first hydrolysis probe and the second hydrolysis probe described above And having. Furthermore, it contains primers for real-time PCR and polymerase for real-time PCR. In addition, as other components, various buffers, nuclease-free water, a single immobilized substance, and the like can also be included.

これにより、マクロライド系抗生物質耐性変異菌がキャンピロバクター・ジェジュニ菌変異菌の場合であっても前述と同様に、マクロライド耐性変異株を通常株と区別して一目瞭然に正確に判定することができる。   As a result, even if the macrolide antibiotic resistant mutant is a Campylobacter jejuni mutant, the macrolide resistant mutant can be distinguished from the normal strain and accurately determined at a glance. it can.

なお、後述の実施例にて記載するように、図10に示す第1の加水分解プローブ及び図12に示す第2の加水分解プローブは、ピロリ菌変異菌の検出にも利用できる。   Note that, as described in Examples below, the first hydrolysis probe shown in FIG. 10 and the second hydrolysis probe shown in FIG. 12 can be used for detection of Helicobacter pylori mutants.

次に、マクロライド系抗生物質耐性変異菌がクラミジア・トラコマチス菌変異菌の場合について記載する。   Next, the case where the macrolide antibiotic resistant mutant is a Chlamydia trachomatis mutant is described.

前述と同様に、リアルタイムPCRにて生物学的試料を第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有する。   As described above, the method includes contacting a biological sample with a first hydrolysis probe and a second hydrolysis probe by real-time PCR.

第1の加水分解プローブは、5’-cgaaaggacgaaaag-3’(配列番号17)なる配列を有し(図13)、Tmは60℃である。第1の加水分解プローブは、5’端がssH amino linkerを介してAlexa647で標識されており、3'端がBHQ3で標識されている。   The first hydrolysis probe has a sequence of 5'-cgaaaggacgaaaag-3 '(SEQ ID NO: 17) (Fig. 13), and Tm is 60 ° C. The first hydrolysis probe is labeled with Alexa647 at the 5 'end via an ssH amino linker and labeled with BHQ3 at the 3' end.

第1の加水分解プローブは、図13にて大文字でAAAAと示されているように、配列の一部がLNA(Locked NucleicAcid)により構成されている。ここでLNAがaaaaである理由は、図14に示される鋳型配列cctgc acgaa tggtg taacg atctg ggcac tgtct caacg aaaga ctcgg tgaaattgtagtagc agtga agatg ctgtt taccc gcgaa aggac gaaaa gaccc cgtga acctttactgtactt tggta ttgat ttttg gtttg ttatg tgtag gatag ccagg agact aagaacactcttctt cagga gagtg ggagt caacg ttgaa atact ggtct taaca agctg ggaat ctaac(配列番号18)において、下線(B)で示される箇所における矢印が変異箇所である2058番目と2059番目(クラミジア・トラコマチス菌標準株においては2038番目と2039番目)のアデニンを示すところ、その両側の塩基を含む配列が好ましいからである。なお、図14において下線(A)で示される箇所は、Forwardのprimer配列に対応し、下線(C)で示される箇所はReverseのprimer配列に対応する。この第1の加水分解プローブは、変異株の場合Tmの下降の程度が比較的大きい。   In the first hydrolysis probe, a part of the sequence is composed of LNA (Locked Nucleic Acid) as indicated by capital letters AAAA in FIG. The reason why the LNA is aaaa is the template sequence shown in Fig. 14: In ggagt caacg ttgaa atact ggtct taaca agctg ggaat ctaac (SEQ ID NO: 18), the arrows in the underlined (B) indicate mutation sites 2058 and 2059 (2038 and 2039 in Chlamydia trachomatis standard strains) This is because a sequence containing both bases is preferred. In FIG. 14, the part indicated by the underline (A) corresponds to the Forward primer array, and the part indicated by the underline (C) corresponds to the Reverse primer array. This first hydrolysis probe has a relatively large decrease in Tm in the case of a mutant strain.

第2の加水分解プローブは、図15に示されるように、第1の加水分解プローブと同じ配列を有しており、Tmは66℃である。第2の加水分解プローブは、更に、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGB(Minor Groove Binder)で標識されている。MGB、レポーター蛍光色素、及びクエンチャー非蛍光色素については前述と同様に特に限定されるものではない。生物学的試料としては、前述と同様に特に限定されるものではない。   As shown in FIG. 15, the second hydrolysis probe has the same sequence as the first hydrolysis probe, and Tm is 66 ° C. The second hydrolysis probe is further labeled at the 5 'end with a reporter fluorescent dye and at the 3' end with a quencher non-fluorescent dye and MGB (Minor Groove Binder). The MGB, reporter fluorescent dye, and quencher non-fluorescent dye are not particularly limited as described above. The biological sample is not particularly limited as described above.

リアルタイムPCR用プライマーは、前述と同様に適宜設計することが可能であり、例えば、Forwardのプライマーとしてtgggcactgtctcaacgaaa(配列番号19)であり、Reverseのプライマーとしてcaacgttgactcccactctc(配列番号20)である塩基配列を例としてあげることができる。   The primer for real-time PCR can be appropriately designed in the same manner as described above. For example, the base sequence is tgggcactgtctcaacgaaa (SEQ ID NO: 19) as the forward primer and caacgttgactcccactctc (SEQ ID NO: 20) as the reverse primer. Can be given as

マクロライド系抗生物質耐性変異菌がクラミジア・トラコマチス菌変異菌の場合についてのマクロライド系抗生物質耐性変異菌の検出キットは、上述した第1の加水分解プローブと、第2の加水分解プローブと、を有する。更に、リアルタイムPCR用のプライマー、リアルタイムPCR用ポリメラーゼを含む。また、他の構成要素として、各種バッファー、ヌクレアーゼ・フリーの水、固定化単体等を含めることもできる。   A detection kit for a macrolide antibiotic-resistant mutant when the macrolide antibiotic-resistant mutant is a Chlamydia trachomatis mutant, the first hydrolysis probe, the second hydrolysis probe, Have Furthermore, it contains primers for real-time PCR and polymerase for real-time PCR. In addition, as other components, various buffers, nuclease-free water, a single immobilized substance, and the like can also be included.

これにより、マクロライド系抗生物質耐性変異菌がクラミジア・トラコマチス菌変異菌の場合であっても前述と同様に、マクロライド耐性変異株を通常株と区別して一目瞭然に正確に判定することができる。   Thereby, even when the macrolide antibiotic-resistant mutant is a Chlamydia trachomatis mutant, the macrolide-resistant mutant can be distinguished from the normal strain and can be accurately determined at a glance.

次に、マクロライド系抗生物質耐性変異菌がMAC変異菌の場合について記載する。   Next, the case where the macrolide antibiotic resistant mutant is a MAC mutant will be described.

前述と同様に、リアルタイムPCRにて生物学的試料を第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有する。   As described above, the method includes contacting a biological sample with a first hydrolysis probe and a second hydrolysis probe by real-time PCR.

第1の加水分解プローブは、5’-cggcaggacgaaaag-3’(配列番号21)なる配列を有し(図16)、Tmは67℃である。第1の加水分解プローブは、5’端がssH amino linkerを介してAlexa647で標識されており、3'端がBHQ3で標識されている。   The first hydrolysis probe has a sequence of 5'-cggcaggacgaaaag-3 '(SEQ ID NO: 21) (Fig. 16), and Tm is 67 ° C. The first hydrolysis probe is labeled with Alexa647 at the 5 'end via an ssH amino linker and labeled with BHQ3 at the 3' end.

第1の加水分解プローブは、図16にて大文字でAAAAと示されているように、配列の一部がLNA(Locked NucleicAcid)により構成されている。ここでLNAがaaaaである理由は、図17に示される鋳型配列gactt cccaa ctgtc tcaac catag actcg gcgaa attgc actac gagta aagatgctcg ttacg cgcgg cagga cgaaa agacc ccggg acctt cacta caact tggta ttggt gttcg gtacggtttg tgtag gatag gtggg agact ttgaa gcaca gacgc cagtt tgtgt ggagt cgttg ttgaaatacc actct gatcg tattg gacac ctaac gtcga accct tatcg ggttc acgga cagtg cctggcgggt agttt aactg gggcg gttgc ctcct aaaat gtaac ggagg(配列番号22)において、下線(B)で示される箇所における矢印が変異箇所である2058番目と2059番目(M.avium 標準株においては2279番目と2280番目)のアデニンを示すところ、その両側の塩基を含む配列が好ましいからである。なお、図17において下線(A)で示される箇所は、Forwardのprimer配列に対応し、下線(C)で示される箇所はReverseのprimer配列に対応する。この第1の加水分解プローブは、変異株の場合Tmの下降の程度が比較的大きい。   In the first hydrolysis probe, a part of the sequence is composed of LNA (Locked Nucleic Acid) as shown by capital letters AAAA in FIG. The reason why the LNA is aaaa is that the template sequence shown in FIG. ggagt cgttg ttgaaatacc actct gatcg tattg gacac ctaac gtcga accct tatcg ggttc acgga cagtg cctggcgggt agttt aactg gggcg gttgc ctcct aaaatgtaac This is because an adenine (2279th and 2280th in the M.avium standard strain) is shown, and a sequence containing bases on both sides thereof is preferable. In FIG. 17, a portion indicated by an underline (A) corresponds to the forward primer array, and a portion indicated by an underline (C) corresponds to the reverse primer array. This first hydrolysis probe has a relatively large decrease in Tm in the case of a mutant strain.

第2の加水分解プローブは、図18に示されるように、第1の加水分解プローブの5’末端の2塩基をイノシン(I)に置換した5’-IIgcaggacgaaaag-3’(配列番号23)なる配列を有しており、Tmは66℃である。一般にイノシンを通常の塩基の代わりにオリゴヌクレオチド配列に挿入することによって、DNA二本鎖を構成する塩基相補的結合に影響を与えずにオリゴヌクレオチド配列中に1塩基分の位置を占めることが可能となり、この結果Tmに影響を与えずにオリゴヌクレオチドを伸ばすことができる。この特性を利用して第2の加水分解プローブは検出対象変異から最も離れた5’末端の2塩基をイノシンに置換することによってTm値を抑えながらも第1のプローブと同一の対象配列と競合して結合するように設計された。第2の加水分解プローブは、更に、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGB(Minor Groove Binder)で標識されている。MGB、レポーター蛍光色素、及びクエンチャー非蛍光色素については前述と同様に特に限定されるものではない。生物学的試料としては、前述と同様に特に限定されるものではない。   As shown in FIG. 18, the second hydrolysis probe is 5′-IIgcaggacgaaaag-3 ′ (SEQ ID NO: 23) in which two bases at the 5 ′ end of the first hydrolysis probe are substituted with inosine (I). It has a sequence and Tm is 66 ° C. In general, by inserting inosine into an oligonucleotide sequence instead of a normal base, it is possible to occupy a single base position in the oligonucleotide sequence without affecting the complementary binding of the DNA duplex. As a result, the oligonucleotide can be extended without affecting Tm. Utilizing this property, the second hydrolysis probe competes with the same target sequence as the first probe while suppressing the Tm value by substituting the two bases at the 5 ′ end farthest from the target mutation with inosine. And designed to combine. The second hydrolysis probe is further labeled at the 5 'end with a reporter fluorescent dye and at the 3' end with a quencher non-fluorescent dye and MGB (Minor Groove Binder). The MGB, reporter fluorescent dye, and quencher non-fluorescent dye are not particularly limited as described above. The biological sample is not particularly limited as described above.

リアルタイムPCR用プライマーは、前述と同様に適宜設計することが可能であり、例えば、Forwardのプライマーとしてtcggcgaaattgcactacga(配列番号24)であり、Reverseのプライマーとしてaacccgataagggttcgacg(配列番号25)である塩基配列を例としてあげることができる。   The primer for real-time PCR can be appropriately designed in the same manner as described above. For example, the base sequence is tcggcgaaattgcactacga (SEQ ID NO: 24) as a forward primer and aacccgataagggttcgacg (SEQ ID NO: 25) as a reverse primer. Can be given as

マクロライド系抗生物質耐性変異菌がMAC変異菌の場合についてのマクロライド系抗生物質耐性変異菌の検出キットは、上述した第1の加水分解プローブと、第2の加水分解プローブと、を有する。更に、リアルタイムPCR用のプライマー、リアルタイムPCR用ポリメラーゼを含む。また、他の構成要素として、各種バッファー、ヌクレアーゼ・フリーの水、固定化単体等を含めることもできる。   The detection kit for a macrolide antibiotic-resistant mutant when the macrolide antibiotic-resistant mutant is a MAC mutant has the first hydrolysis probe and the second hydrolysis probe described above. Furthermore, it contains primers for real-time PCR and polymerase for real-time PCR. In addition, as other components, various buffers, nuclease-free water, a single immobilized substance, and the like can also be included.

これにより、マクロライド系抗生物質耐性変異菌がMAC変異菌の場合であっても前述と同様に、マクロライド耐性変異株を通常株と区別して一目瞭然に正確に判定することができる。   Thereby, even when the macrolide antibiotic-resistant mutant bacterium is a MAC mutant, the macrolide-resistant mutant strain can be distinguished from the normal strain and accurately determined at a glance as described above.

以下に示す本件発明における検討の全ての実施例おいて、次の5点は共通事項である。
(I)リアルタイムPCR反応システムにはBIO-RAD社製「CFX96 Real-Time PCR System」を使用した点
(II)リアルタイムPCR反応が次の組成の反応液で実施した点:BIO-RAD社製 iQ SuperMixが10μL、検討対象試料が4μL、PCRプライマーがForward,reverseそれぞれ500[nM]の濃度で、第1の加水分解プローブ及び第2の加水分解プローブがそれぞれ100[nM]の濃度含まれ、ヌクレアーゼ・フリーの水で最終容量20μLに調製されたもの
(III)第1の加水分解プローブは5’末端がレポーター蛍光色素で標識され、3’末端はダーククエンチャー色素BHQ3で標識されているものを使用し、レポーター蛍光色素はAlexa647であった点
(IV)第2の加水分解プローブは5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されているものを使用し、レポーター蛍光色素はVICであった点
(V)蛍光の測定に関しては、第1の加水分解プローブ(LNA probe)のレポーター色素Alexa647由来の蛍光をCy5のチャネルで、第2の加水分解プローブ(MGB probe)のレポーター色素VIC由来の蛍光をVICのチャネルで測定した点(なお、Alexa647のEmission peakは665nmであり、Cy5のEmissionpeakである667nmとほぼ一致する)。
The following five points are common items in all the examples of the study in the present invention described below.
(I) The real-time PCR reaction system uses BIO-RAD's “CFX96 Real-Time PCR System”
(II) Real-time PCR reaction was performed with a reaction solution of the following composition: BIO-RAD's iQ SuperMix was 10 μL, the sample to be studied was 4 μL, the PCR primer was 500 [nM] each in the forward and reverse concentrations. 1 hydrolysis probe and 2nd hydrolysis probe each contained at a concentration of 100 [nM], prepared in a final volume of 20 μL with nuclease-free water
(III) The first hydrolysis probe used was labeled with a reporter fluorescent dye at the 5 ′ end and labeled with a dark quencher dye BHQ3 at the 3 ′ end, and the reporter fluorescent dye was Alexa647.
(IV) The second hydrolysis probe used was labeled with a reporter fluorescent dye at the 5 ′ end and labeled with a quencher non-fluorescent dye and MGB at the 3 ′ end, and the reporter fluorescent dye was VIC. point
(V) Regarding the measurement of fluorescence, the fluorescence from the reporter dye Alexa647 of the first hydrolysis probe (LNA probe) is obtained from the Cy5 channel, and the fluorescence from the reporter dye VIC of the second hydrolysis probe (MGB probe) is obtained. Points measured in VIC channel (Note that Alexa647's Emission peak is 665 nm, which is almost the same as Cy5's Emission peak, 667 nm).

(実施例1 肺炎マイコプラズマ変異菌の検出)
これまでに別のhousebredのPCR検出系を用いて肺炎マイコプラズマ陽性と判断された、12の患者検体由来の核酸標品を使用した。核酸標品は、気道由来臨床検体をQIAGEN社のQIAamp(登録商標)DNAmini kitを用いて抽出し、元の検体の量に依らず一律に100μLの容量に溶出することによって調製した。陰性対照には核酸溶出に用いているのと同一のQIAGENBuffer AEを使用した。
(Example 1 Detection of Mycoplasma pneumoniae)
Nucleic acid samples from 12 patient specimens that have been determined to be positive for pneumonia mycoplasma using another housebred PCR detection system so far were used. Nucleic acid preparations were prepared by extracting airway-derived clinical specimens using QIAGEN's QIAamp (registered trademark) DNAmini kit and eluting them uniformly to a volume of 100 μL regardless of the amount of the original specimen. The same QIAGENBuffer AE used for nucleic acid elution was used as a negative control.

Forward/Reverseのprimer配列は文献(Wolff BJ, Thacker WL, Schwartz SB, et al., Detection of MacrolideResistance in Mycoplasma pneumoniae by Real-Time PCR and High-Resolution MeltAnalysis,Antimicrob. Agents Chemother.2008, 52(10):3542.DOI:10.1128/AAC.00582-08.)のTable.1中に報告されている Forward_2020とReverseを用いた。即ち、Forwardのprimer配列はtccaggtacg ggtga agaca(配列番号3)であり、Reverseのprimer配列はatcat gtaga gaata ggtag gagc(配列番号4)であった。   Forward / Reverse primer sequences are described in the literature (Wolff BJ, Thacker WL, Schwartz SB, et al., Detection of MacrolideResistance in Mycoplasma pneumoniae by Real-Time PCR and High-Resolution MeltAnalysis, Antimicrob.Agents Chemother. 2008, 52 (10) : 3542.DOI: 10.1128 / AAC.00582-08.) Forward_2020 and Reverse reported in Table.1 were used. That is, the forward primer sequence was tccaggtacg ggtga agaca (SEQ ID NO: 3), and the reverse primer sequence was atcat gtaga gaata ggtag gagc (SEQ ID NO: 4).

第1の加水分解プローブは、図1に示されるように、5’-aacgggacggaaag-3’(配列番号1)なる配列を有し、図中にて大文字で示されている部分にLNAが導入されているものを使用した。また、第2の加水分解プローブは、図3に示されるように第1の加水分解プローブと同じ配列を有しているものを使用した。   As shown in FIG. 1, the first hydrolysis probe has a sequence of 5′-aacgggacggaaag-3 ′ (SEQ ID NO: 1), and LNA is introduced into the portion shown in capital letters in the figure. I used what I have. Moreover, the 2nd hydrolysis probe used what has the same arrangement | sequence as a 1st hydrolysis probe as FIG. 3 shows.

PCRプログラム(thermal profile)は次の通りであった。
95.0℃ 3分00秒の初期加温(DNA合成酵素活性化)に引き続き、
95.0℃ 0分05秒
60.0℃ 0分20秒(本ステップ終了毎に蛍光を測定)
を50サイクル反復
リアルタイムPCRの測定にかかる所要時間は1時間程度であった。
The PCR program (thermal profile) was as follows.
Following the initial warming (DNA synthase activation) at 95.0 ° C for 3 minutes 00 seconds,
95.0 ℃ 0 min 05 sec
60.0 ° C 0 min 20 sec (measurement of fluorescence at the end of this step)
The time required for the real-time PCR measurement was about 1 hour.

図19は、感受性配列における増幅曲線の検出結果を示す図である。図20は、シークエンス結果を示す図である。図19に示されるように、12本(+陰性対照)の増幅曲線中、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が2本示されている(C0826,C1012)。図20には、リアルタイムPCRで検討した12のマイコプラズマ陽性検体から、23S rRNA領域の2058,2059番の塩基(肺炎マイコプラズマ菌標準株における2063,2064番に相当)とその周囲の配列を別途シークエンシングで確認した結果が、標準株(M129)の当該部位の配列と並べて示して示されている。M129は標準株(M129)の配列であり、そのうち下線を付したAAの2文字が2058,2059番に相当する部位、即ち、耐性変異の入る部位である。M129の下に実際にシークエンスで求められた配列を並べてられており、M129標準株と塩基が一致している場合には「-」が記され、相違があった場合にはその塩基が記されている。図19に示された2本の陽性反応を示した増幅曲線C0826とC1012に対応するシークエンス結果は、図20によれば、標準株と完全に配列が一致していたことが示された。そして、図19において検出されなかった株は、図20に示されるように、2058番あるいは2059番に塩基変異が入っていたことが示された。一方、図21は、感受性不問の場合における増幅曲線の検出結果を示す図である。図21に示されるように、図20で示された耐性変異菌につき、陽性反応を示す増幅曲線が検出された。このように、本発明によれば、形態が類似している曲線を比較して判断するのではなく、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異菌の有無が検出できた。   FIG. 19 is a diagram showing detection results of amplification curves in sensitive sequences. FIG. 20 is a diagram showing a sequence result. As shown in FIG. 19, in the amplification curve of 12 (+ negative control), two amplification curves showing a positive reaction are shown in a chart in which fluorescence is expected only in the sensitive sequence. (C0826, C1012). In FIG. 20, from 20 mycoplasma positive specimens examined by real-time PCR, the 2058,2059 base of the 23S rRNA region (corresponding to 2063,2064 in the pneumoniae mycoplasma standard strain) and its surrounding sequences were separately sequenced. The results confirmed in (1) are shown side by side with the sequence of the site of the standard strain (M129). M129 is the sequence of the standard strain (M129), of which the underlined two letters AA correspond to positions 2058 and 2059, that is, the site where the resistance mutation is introduced. The sequence actually obtained in the sequence is arranged under M129. When the base matches the standard strain of M129, “-” is written, and when there is a difference, the base is written. ing. According to FIG. 20, the sequence results corresponding to the amplification curves C0826 and C1012 showing the two positive reactions shown in FIG. 19 showed that the sequence was completely identical to that of the standard strain. As shown in FIG. 20, the strains that were not detected in FIG. 19 were found to have a base mutation at No. 2058 or No. 2059. On the other hand, FIG. 21 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 21, an amplification curve showing a positive reaction was detected for the resistant mutant shown in FIG. As described above, according to the present invention, the presence or absence of a macrolide antibiotic-resistant mutant is clearly recognized in an all-or-none manner in a very short time, rather than comparing and comparing curves having similar forms. It was detected.

(実施例2 肺炎マイコプラズマの耐性変異の検出)
上述の実施例1では、A2058Gが9例、A2059Cが1例であったが、本実施例では変異を有さない配列とともに、A2058G、A2059C、A2058C、A2058T、A2059Gの計5種類の既報のマクロライド系抗生物質耐性変異の陽性対照、及び報告はされていないが生じうる1塩基変異であるA2059T、さらには2058,2059の2塩基ともに変異を有する9通りの変異をも加えた、これらマクロライド系抗生物質への耐性化のホットスポットの2塩基に生じ得る全16通りの配列の検出結果を示す。サンプルは、1)臨床検体由来核酸から目的配列をサブクローニングし、2)シークエンスを確認し、3)部位特異的変異導入法(Site-DirectedMutagenesis)で一塩基変異を導入し、4)意図した変異が導入されたことをシークエンスでそれぞれ確認することにより、人為的に作出した。それ以外の実験手法は実施例1と同様に行った。図22は、感受性配列における増幅曲線の検出結果を示す図である。図23は、感受性不問の場合における増幅曲線の検出結果を示す図である。
(Example 2 Detection of resistance mutation of Mycoplasma pneumonia)
In Example 1 described above, A2058G was 9 cases and A2059C was 1 case, but in this example, together with the sequence having no mutation, A2058G, A2059C, A2058C, A2058T, and A2059G, a total of 5 types of previously reported macro Ride antibiotic resistance mutation positive control, and macrolides that have not been reported yet, A2059T, which is a possible single base mutation, and 9 types of mutations that have mutations in both 2058 and 2059 bases. The detection results of all 16 possible sequences that can occur in 2 bases of a hot spot for resistance to antibiotics are shown. Samples: 1) Subcloning the target sequence from the nucleic acid derived from clinical specimens, 2) Confirming the sequence, 3) Introducing a single base mutation by site-directed mutagenesis (Site-Directed Mutagenesis), 4) The intended mutation It was created artificially by confirming that it was introduced in the sequence. The other experimental methods were the same as in Example 1. FIG. 22 is a diagram showing detection results of amplification curves in sensitive sequences. FIG. 23 is a diagram showing a detection result of an amplification curve in the case of no sensitivity question.

図22及び図23に示されるように、2058、2059の2塩基の少なくとも一方に変異を有する全ての変異型、即ち既報の5種類の耐性変異A2058G、A2058C、A2058T、A2059G、A2059C及び生じうる1塩基変異A2059T、さらには2058,2059の2塩基双方に変異の生じた9通りの変異のいずれにおいても一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できることが判明した。   As shown in FIGS. 22 and 23, all mutants having mutations in at least one of 2058 and 2059 bases, that is, five previously reported resistance mutations A2058G, A2058C, A2058T, A2059G, A2059C and possible 1 It was revealed that the presence or absence of a macrolide antibiotic resistance mutation could be detected in a very short time in any of the nine mutations in which both the base mutation A2059T and 2058 and 2059 were mutated.

(実施例3 百日咳菌変異菌の検出)
これまでに別のPCR検出系(KostersK, Riffelmann M, Wirsing von Konig CH.Evaluation of a real-time PCR assay fordetection of Bordetella pertussis and B. parapertussis in clinical samples.JMed Microbiol. 2001 May;50(5):436-40.)を用いて百日咳陽性と判断された、8の患者検体由来の核酸標品(B1228,C0127,C0131,B0929,D0104,D0403,D0423,D0425)を使用した。上述の実施例1と同様に、核酸標品は、気道由来臨床検体をQIAGEN社のQIAamp(登録商標)DNAmini kitを用いて抽出し、元の検体の量に依らず一律に100μLの容量に溶出することによって調製した。陰性対照には核酸溶出に用いているのと同一のQIAGENBuffer AEを使用した。
(Example 3 Detection of Bordetella pertussis mutant)
Another PCR detection system (KostersK, Riffelmann M, Wirsing von Konig CH.Evaluation of a real-time PCR assay for detection of Bordetella pertussis and B. parapertussis in clinical samples.JMed Microbiol. 2001 May; 50 (5): 436-40.), Nucleic acid preparations (B1228, C0127, C0131, B0929, D0104, D0403, D0423, D0425) derived from 8 patient specimens that were judged as pertussis positive were used. As in Example 1 above, the nucleic acid sample was extracted from airway-derived clinical specimens using QIAGEN's QIAamp (registered trademark) DNAmini kit and uniformly eluted in a volume of 100 μL regardless of the amount of the original specimen. It was prepared by. The same QIAGENBuffer AE used for nucleic acid elution was used as a negative control.

Forwardのprimer配列はgcacgaatggcgtaacgatg(配列番号7)であり、Reverseのprimer配列はctccctcgaatctggcgactc(配列番号8)であった。これらのprimerはPrimer BLASTソフトウエアにて設計した。   The forward primer sequence was gcacgaatggcgtaacgatg (SEQ ID NO: 7), and the reverse primer sequence was ctccctcgaatctggcgactc (SEQ ID NO: 8). These primers were designed with Primer BLAST software.

第1の加水分解プローブは、図4に示されるように、5’-cggctagacggaaag-3’(配列番号5)なる配列を有し、図中にて大文字で示されている部分にLNAが導入されているものを使用した。また、第2の加水分解プローブは、図6に示されるように第1の加水分解プローブと同じ配列を有しているものを使用した。   As shown in FIG. 4, the first hydrolysis probe has a sequence of 5′-cggctagacggaaag-3 ′ (SEQ ID NO: 5), and LNA is introduced into the portion indicated by capital letters in the figure. I used what I have. Moreover, the 2nd hydrolysis probe used what has the same arrangement | sequence as a 1st hydrolysis probe as FIG. 6 shows.

PCRプログラム(thermal profile)は上述の実施例1と同様であった。   The PCR program (thermal profile) was the same as in Example 1 above.

リアルタイムPCRの測定にかかる所要時間は1時間程度であった。   The time required for the real-time PCR measurement was about 1 hour.

図24は、シークエンス結果を示す図である。図24には、リアルタイムPCRで検討した8の百日咳菌陽性検体から、23S rRNA領域の2058,2059番の塩基(百日咳菌における2037,2038番に相当)とその周囲の配列を別途シークエンシングで確認した結果が、標準株(Tohama I)の当該部位の配列と並べて示して示されている。Tohama Iは標準株の配列であり、そのうち下線を付したAAの2文字が2058,2059番に相当する部位、即ち、耐性変異の入る部位である。Tohama Iの下に実際にシークエンスで求められた配列を並べてられており、TohamaI標準株と塩基が一致している場合には「・」が記され、相違があった場合にはその塩基が記されている。   FIG. 24 is a diagram showing a sequence result. In Figure 24, the 20S, 2059 bases of the 23S rRNA region (corresponding to 2037, 2038 in Bordetella pertussis) and the surrounding sequences were separately confirmed from 8 positive B. pertussis positive samples examined by real-time PCR. The results are shown side by side with the sequence of the site of the standard strain (Tohama I). Tohama I is a sequence of a standard strain, of which the underlined two letters AA correspond to positions 2058 and 2059, that is, a site where a resistance mutation is introduced. The sequence actually obtained in the sequence is arranged under Tohama I. When the base matches the Tohama I standard strain, “•” is indicated, and when there is a difference, the base is indicated. Has been.

図25は、感受性配列における増幅曲線の検出結果を示す図である。図25に示されるように、8の増幅曲線中、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(B1228,C0127,C0131,B0929,D0104,D0403,D0423,D0425)。図25に示された陽性反応を示した増幅曲線B1228,C0127,C0131,B0929,D0104,D0403,D0423,D0425に対応するシークエンス結果は、図24によれば、標準株と完全に配列が一致していたことが示された。一方、図26は、感受性不問の場合における増幅曲線の検出結果を示す図である。   FIG. 25 is a diagram showing detection results of amplification curves in sensitive sequences. As shown in FIG. 25, among the eight amplification curves, an amplification curve showing a positive reaction is shown in a chart in which fluorescence is expected only in the sensitive sequence (B1228, C0127, C0131, B0929, D0104, D0403, D0423, D0425). According to FIG. 24, the sequence results corresponding to the amplification curves B1228, C0127, C0131, B0929, D0104, D0403, D0423, D0425 showing the positive reaction shown in FIG. It was shown that it was. On the other hand, FIG. 26 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case.

このように、上述の実施例と同様に、本発明によれば、形態が類似している曲線を比較して判断するのではなく、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。   As described above, according to the present invention, in the same way as in the above-described embodiments, the macrolide system can be recognized at a glance in all or none, but in a very short time, instead of comparing and comparing curves having similar forms. The presence or absence of antibiotic resistance mutations could be detected.

(実施例4 百日咳菌の耐性変異の検出)
上述の実施例3で検討した8の患者検体由来の核酸標品はいずれも変異を有さないマクロライド系抗生物質に感受性の配列であった。対して、本実施例では、耐性変異を有さない陽性対象に加え、耐性変異を人為的に導入したA2058G陽性対照、A2058C陽性対照、A2058T陽性対照、A2059G陽性対照、A2059C陽性対照、A2059T陽性対照についての検出結果を示す。サンプルは、実施例2と同様に、1)臨床検体由来核酸から目的配列をサブクローニングし、2)シークエンスを確認し、3)部位特異的変異導入法(Site-Directed Mutagenesis)で一塩基変異を導入し、4)意図した変異が導入されたことをシークエンスでそれぞれ確認することにより、人為的に作出した。それ以外の実験手法は実施例3と同様に行った。図27は、感受性配列における増幅曲線の検出結果を示す図である。図28は、感受性不問の場合における増幅曲線の検出結果を示す図である。
(Example 4 Detection of resistance mutation of Bordetella pertussis)
The nucleic acid samples derived from the 8 patient specimens examined in Example 3 described above were all sensitive to macrolide antibiotics without mutation. On the other hand, in this example, in addition to positive subjects having no resistance mutation, A2058G positive control, A2058C positive control, A2058T positive control, A2059G positive control, A2059C positive control, A2059T positive control in which resistance mutation was artificially introduced The detection result about is shown. Samples are the same as in Example 2. 1) Subcloning the target sequence from the clinical specimen-derived nucleic acid, 2) Confirming the sequence, and 3) Introducing a single nucleotide mutation by site-directed mutagenesis (Site-Directed Mutagenesis) 4) Created artificially by confirming that the intended mutation was introduced in the sequence. The other experimental methods were the same as in Example 3. FIG. 27 is a diagram showing a detection result of an amplification curve in a sensitive sequence. FIG. 28 is a diagram showing the detection result of the amplification curve when sensitivity is not questioned.

図27及び図28に示されるように、全ての変異型、即ち、A2058G陽性対照、A2058C陽性対照、A2058T陽性対照、A2059G陽性対照、A2059C陽性対照、A2059T陽性対照において一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できることが判明した。   As shown in FIG. 27 and FIG. 28, macros of all variants, namely, A2058G positive control, A2058C positive control, A2058T positive control, A2059G positive control, A2059C positive control, A2059T positive control are clearly and extremely short. It has been found that the presence or absence of a ride antibiotic resistance mutation can be detected.

(実施例5 ピロリ菌の耐性変異の検出)
理化学研究所バイオリソースセンターから分譲を受けたJCM12093株由来の核酸標品を耐性変異を有さないサンプル(感受性配列のサンプル)として使用した。このサンプルは上述の実施例1と同様に抽出され、核酸標品は、200μLの容量に溶出することによって調製した。この標品の核酸濃度を吸光度により測定し、凡そ1×105ゲノム毎μLとなるようにさらに希釈した。変異を有する配列のサンプルは、1)互いに36塩基ずつoverlapする8本の130merのオリゴヌクレオチド(アクション番号NC_011333を参考配列として使用)をPCR反応液中で繋ぎ、この反応産物を鋳型としてPCRの反応で増幅を行ない、2)シークエンスを確認し、3)部位特異的変異導入法(Site-Directed Mutagenesis)で一塩基変異を導入し、4)意図した変異が導入されたことをシークエンスでそれぞれ確認することにより作出されたものである。陰性対照には核酸溶出に用いているのと同一のQIAGEN Buffer AEを使用した。
(Example 5) Detection of resistance mutation of Helicobacter pylori
A nucleic acid sample derived from the JCM12093 strain received from the RIKEN BioResource Center was used as a sample having no resistance mutation (a sample of a sensitive sequence). This sample was extracted in the same manner as in Example 1 above, and the nucleic acid preparation was prepared by eluting to a volume of 200 μL. The nucleic acid concentration of this preparation was measured by absorbance, and further diluted to be about 1 × 10 5 genomes per μL. Samples of sequences with mutations are as follows: 1) Eight 130mer oligonucleotides that overlap each other by 36 bases (using action number NC_011333 as a reference sequence) are connected in a PCR reaction solution, and PCR reaction is performed using this reaction product as a template. 2) Confirm the sequence, 3) Introduce a single base mutation by site-directed mutagenesis, and 4) Confirm that the intended mutation has been introduced. It was created by. The same QIAGEN Buffer AE used for nucleic acid elution was used as a negative control.

Forwardのprimer配列はgcgtaacgagatgggagctg(配列番号11)であり、Reverseのprimer配列はtggctccataagagccaaagc(配列番号12)であった。   The forward primer sequence was gcgtaacgagatgggagctg (SEQ ID NO: 11), and the reverse primer sequence was tggctccataagagccaaagc (SEQ ID NO: 12).

第1の加水分解プローブは、図7に示されるように、5’-cggcaagacggaaag-3’(配列番号9)なる配列を有し、図中にて大文字で示されている部分にLNAが導入されているものを使用した。また、第2の加水分解プローブは、図9に示されるように第1の加水分解プローブと同じ配列を有しているものを使用した。   As shown in FIG. 7, the first hydrolysis probe has a sequence of 5′-cggcaagacggaaag-3 ′ (SEQ ID NO: 9), and LNA is introduced into the portion indicated by capital letters in the figure. I used what I have. Moreover, the 2nd hydrolysis probe used what has the same arrangement | sequence as a 1st hydrolysis probe as FIG. 9 shows.

PCRプログラム(thermal profile)は次の通りであった。
95.0℃ 3分00秒の初期加温(DNA合成酵素活性化)に引き続き、
95.0℃ 0分05秒
64.0℃ 0分20秒(本ステップ終了毎に蛍光を測定)
を50サイクル反復
リアルタイムPCRの測定にかかる所要時間は1時間程度であった。
The PCR program (thermal profile) was as follows.
Following the initial warming (DNA synthase activation) at 95.0 ° C for 3 minutes 00 seconds,
95.0 ℃ 0 min 05 sec
64.0 ° C 0 min 20 sec (measurement of fluorescence at the end of this step)
The time required for the real-time PCR measurement was about 1 hour.

図29は、シークエンス結果を示す図である。図29には、リアルタイムPCRで検討した8の核酸標品(理化学研究所バイオリソースセンターから分譲を受けたJCM12093株由来、及びJCM12093株由来ゲノムDNAからサブクローニングした配列、人為的に作出した6種類の変異を有する配列)から、23S rRNA領域の2058,2059番の塩基(ピロリ菌標準株における2146,2147番に相当(既報文献ではピロリ菌の2142,2143番とも言及される部位))とその周囲の配列を別途シークエンシングで確認した結果が、標準株(Helicobacter pylori 26695 (NCBI Reference Sequence:NC_000915.1))の当該部位の配列と並べて示して示されている。Helicobacterpylori 26695は標準株の配列であり、そのうち下線を付したAAの2文字が2058,2059番に相当する部位、即ち、耐性変異の入る部位である。Helicobacter pylori 26695の下に実際にシークエンスで求められた配列が並べてられており、Helicobacter pylori 26695標準株と塩基が一致している場合には「・」が記され、相違があった場合にはその塩基が記されている。   FIG. 29 is a diagram showing a sequence result. In Fig. 29, 8 nucleic acid samples examined by real-time PCR (from JCM12093 strain distributed by RIKEN BioResource Center, and subcloned sequences from genomic DNA from JCM12093 strain, 6 artificially created mutations) From the 20S, 2059 base of the 23S rRNA region (corresponding to 2146, 2147 in the H. pylori standard strain (sites also referred to as 2142, 2143 of H. pylori)) and surroundings The result of confirming the sequence separately by sequencing is shown side by side with the sequence of the relevant site of a standard strain (Helicobacter pylori 26695 (NCBI Reference Sequence: NC — 000915.1)). Helicobacterpylori 26695 is a sequence of a standard strain, of which the underlined two letters AA correspond to positions 2058 and 2059, that is, a site where a resistance mutation is introduced. The sequence actually obtained in the sequence is arranged under Helicobacter pylori 26695. When the base matches the Helicobacter pylori 26695 standard strain, “ The base is marked.

図30は、感受性配列における増幅曲線の検出結果を示す図である。図30に示されるように、8の増幅曲線中、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(AA)。図30に示された陽性反応を示した増幅曲線AAに対応するシークエンス結果は、図29によれば、標準株と完全に配列が一致していたことが示された。そして、図30において検出されなかった配列は、図29に示されるように、2058番あるいは2059番に塩基変異が入っていたことが示された。一方、図31は、感受性不問の場合における増幅曲線の検出結果を示す図である。図31に示されるように、図29で示された耐性変異配列についても耐性変異を有さない配列ともども、陽性反応を示す増幅曲線が検出された。このように、上述の実施例と同様に、本発明によれば、形態が類似している曲線を比較して判断するのではなく、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。   FIG. 30 is a diagram showing detection results of amplification curves in sensitive sequences. As shown in FIG. 30, among the 8 amplification curves, an amplification curve showing a positive reaction is shown in a chart where fluorescence is expected to be observed only in the sensitive sequence (AA). According to FIG. 29, the sequence result corresponding to the amplification curve AA showing the positive reaction shown in FIG. 30 showed that the sequence was completely identical with the standard strain. Then, as shown in FIG. 29, the sequence that was not detected in FIG. 30 was found to have a base mutation at No. 2058 or No. 2059. On the other hand, FIG. 31 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 31, an amplification curve showing a positive reaction was detected for both the resistant mutant sequence shown in FIG. 29 and the sequence having no resistant mutation. As described above, according to the present invention, in the same way as in the above-described embodiments, the macrolide system can be recognized at a glance in all or none, but in a very short time, instead of comparing and comparing curves having similar forms. The presence or absence of antibiotic resistance mutations could be detected.

次に、上述の実施例におけるプローブの配列を変えた場合において、ピロリ菌の耐性変異の検出を試みた。   Next, when the probe sequence in the above-described example was changed, an attempt was made to detect a resistance mutation of H. pylori.

第1の加水分解プローブは、後述する実施例6のもの、即ち図10に示される5’-ggcaagacggaaag-3’(配列番号13)なる配列を有するものを使用した。また、同様に、第2の加水分解プローブは、後述する実施例6のもの、即ち図12に示される配列を有するものを使用した。これらのプローブの配列(配列番号13)は先に用いたプローブの配列(配列番号9)の、5’末端のC(シトシン)を1塩基除いた配列であり、図8に示される鋳型配列と完全に一致する配列である。   As the first hydrolysis probe, one used in Example 6 described later, that is, a probe having the sequence 5'-ggcaagacggaaag-3 '(SEQ ID NO: 13) shown in FIG. 10 was used. Similarly, the second hydrolysis probe used in Example 6 described later, that is, the probe having the sequence shown in FIG. 12 was used. The sequence of these probes (SEQ ID NO: 13) is a sequence obtained by removing one base from C (cytosine) at the 5 ′ end of the previously used probe sequence (SEQ ID NO: 9), and the template sequence shown in FIG. It is an exact sequence.

PCRプログラム(thermalprofile)は次の通りであった。
95.0℃ 3分00秒の初期加温(DNA合成酵素活性化)に引き続き、
95.0℃ 0分05秒
60.0℃ 0分20秒(本ステップ終了毎に蛍光を測定)
を60サイクル反復
図32は、感受性配列における増幅曲線の検出結果を示す図である。図32に示されるように、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(AA)。一方、図33は、感受性不問の場合における増幅曲線の検出結果を示す図である。図33に示されるように、耐性変異配列についても耐性変異を有さない配列ともども、陽性反応を示す増幅曲線が検出された。このように、上述の実施例におけるプローブよりも1塩基短いプローブを用いた場合においても、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。
The PCR program (thermalprofile) was as follows.
Following the initial warming (DNA synthase activation) at 95.0 ° C for 3 minutes 00 seconds,
95.0 ℃ 0 min 05 sec
60.0 ° C 0 min 20 sec (measures fluorescence at the end of this step)
FIG. 32 is a diagram showing detection results of amplification curves in sensitive sequences. As shown in FIG. 32, an amplification curve showing a positive reaction is shown in a chart in which fluorescence is expected to be observed only in the sensitive sequence (AA). On the other hand, FIG. 33 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 33, an amplification curve showing a positive reaction was detected for both the resistant mutant sequence and the sequence having no resistant mutation. Thus, even when a probe shorter by one base than the probe in the above-described example was used, the presence or absence of a macrolide antibiotic resistance mutation could be detected in an extremely short time with all or none.

(実施例6 Campylobacter jejuni菌の耐性変異の検出)
理化学研究所バイオリソースセンターからCampylobacter jejuni subsp. jejuni菌JCM2013株由来の核酸標品を緩衝液に溶解したものの分譲を受け、これを耐性変異を有さないサンプル(感受性配列のサンプル)として使用した。この標品をさらに1000倍に希釈したものを実験に供した。変異を有する配列のサンプルは、1)上記JCM2013株由来の核酸表品から目的配列をサブクローニングし、2)シークエンスを確認し、3)部位特異的変異導入法(Site-Directed Mutagenesis)で一塩基変異を導入し、4)意図した変異が導入されたことをシークエンスでそれぞれ確認することにより作出されたものである。陰性対照には核酸溶出に用いているのと同一のヌクレアーゼ・フリーの水を使用した。
(Example 6 Detection of resistance mutation in Campylobacter jejuni)
A nucleic acid sample derived from Campylobacter jejuni subsp. Jejuni JCM2013 strain was dissolved in a buffer solution from the RIKEN BioResource Center, and used as a sample without a resistance mutation (a sample of a sensitive sequence). This sample was further diluted 1000 times and used for the experiment. Samples of sequences with mutations: 1) Subcloning the target sequence from the above-mentioned nucleic acid table from JCM2013 strain, 2) Confirming the sequence, 3) Single-site mutation by site-directed mutagenesis (Site-Directed Mutagenesis) 4) was created by confirming that the intended mutation was introduced by sequencing. As a negative control, the same nuclease-free water used for nucleic acid elution was used.

Forwardのprimer配列はcgtaacgagatgggagctgt(配列番号15)であり、Reverseのprimer配列はctcccacctatcctgcacat(配列番号16)であった。   The forward primer sequence was cgtaacgagatgggagctgt (SEQ ID NO: 15), and the reverse primer sequence was ctcccacctatcctgcacat (SEQ ID NO: 16).

第1の加水分解プローブは、図10に示されるように、5’-ggcaagacggaaag-3’(配列番号13)なる配列を有し、図中にて大文字で示されている部分にLNAが導入されているものを使用した。また、第2の加水分解プローブは、図12に示されるように第1の加水分解プローブと同じ配列を有しており、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されているものを使用した。レポーター蛍光色素はVICであった。   As shown in FIG. 10, the first hydrolysis probe has a sequence of 5′-ggcaagacggaaag-3 ′ (SEQ ID NO: 13), and LNA is introduced into the portion indicated by capital letters in the figure. I used what I have. Further, as shown in FIG. 12, the second hydrolysis probe has the same sequence as the first hydrolysis probe, the 5 ′ end is labeled with a reporter fluorescent dye, and the 3 ′ end is not a quencher. Those labeled with a fluorescent dye and MGB were used. The reporter fluorescent dye was VIC.

PCRプログラム(thermal profile)は上述の実施例1と同様であった。   The PCR program (thermal profile) was the same as in Example 1 above.

リアルタイムPCRの測定にかかる所要時間は1時間程度であった。   The time required for the real-time PCR measurement was about 1 hour.

図34は、シークエンス結果を示す図である。図34には、リアルタイムPCRで検討した8の核酸標品(理化学研究所バイオリソースセンターから分譲を受けたJCM2013株由来、及び変異を含まない配列ならびに人為的に作出した6種類の変異を有する配列)から、23S rRNA領域の2058,2059番の塩基(Campylobacter jejuni菌標準株における2074,2075番に相当)とその周囲の配列を別途シークエンシングで確認した結果が、標準株(Campylobacter jejuni subsp. jejuni (NCBI Reference Sequence:NC_002163.1))の当該部位の配列と並べて示して示されている。これは標準株の配列であり、そのうち下線を付したAAの2文字が2074,2075番に相当する部位、即ち、耐性変異の入る部位である。標準株Campylobacter jejuni subsp. jejuniの配列の下に実際にシークエンスで求められた配列が並べてられており、この標準株と塩基が一致している場合には「・」が記され、相違があった場合にはその塩基が記されている。   FIG. 34 is a diagram showing a sequence result. In FIG. 34, 8 nucleic acid samples examined by real-time PCR (derived from JCM2013 strain distributed from RIKEN BioResource Center, sequences not containing mutations and sequences having 6 artificially created mutations) From the results of the sequencing of the 2058,2059 base of the 23S rRNA region (corresponding to 2074,2075 in the standard strain of Campylobacter jejuni) and its surrounding sequence, the results were confirmed by sequencing separately (Campylobacter jejuni subsp. Jejuni ( NCBI Reference Sequence: NC_002163.1)) is shown side by side with the sequence of the relevant part. This is the sequence of the standard strain, of which the underlined two letters AA correspond to the numbers 2074 and 2075, that is, the site where the resistance mutation is introduced. The sequence obtained in the sequence is actually arranged under the sequence of the standard strain Campylobacter jejuni subsp. Jejuni. When this base strain and the base match, “•” is written and there is a difference. In some cases, the base is marked.

図35は、感受性配列における増幅曲線の検出結果を示す図である。図35に示されるように、増幅曲線中、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(AA)。図35に示された陽性反応を示した増幅曲線AAに対応するシークエンス結果は、図34によれば、標準株と完全に配列が一致していたことが示された。そして、図35において検出されなかった配列は、図34に示されるように、2058番あるいは2059番に塩基変異が入っていたことが示された。一方、図36は、感受性不問の場合における増幅曲線の検出結果を示す図である。図36に示されるように、図34で示された耐性変異配列についても耐性変異を有さない配列ともども、陽性反応を示す増幅曲線が検出された。このように、上述の実施例と同様に、本発明によれば、形態が類似している曲線を比較して判断するのではなく、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。   FIG. 35 is a diagram showing detection results of amplification curves in sensitive sequences. As shown in FIG. 35, an amplification curve showing a positive reaction is shown in a chart in which fluorescence is expected to be observed only in the sensitive sequence in the amplification curve (AA). The sequence result corresponding to the amplification curve AA showing the positive reaction shown in FIG. 35 showed that the sequence was completely identical with the standard strain according to FIG. Then, as shown in FIG. 34, the sequence that was not detected in FIG. 35 was shown to have a base mutation at No. 2058 or No. 2059. On the other hand, FIG. 36 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 36, an amplification curve showing a positive reaction was detected for both the resistant mutant sequence shown in FIG. 34 and the sequence having no resistant mutation. As described above, according to the present invention, in the same way as in the above-described embodiments, the macrolide system can be recognized at a glance in all or none, but in a very short time, instead of comparing and comparing curves having similar forms. The presence or absence of antibiotic resistance mutations could be detected.

次に、上述の実施例におけるプローブの配列を変えた場合において、Campylobacter jejuni菌の耐性変異の検出を試みた。   Next, when the probe sequence in the above-described example was changed, an attempt was made to detect a resistance mutation of Campylobacter jejuni.

第1の加水分解プローブは、前述した実施例5のもの、即ち図7に示される5’-cggcaagacggaaag-3’(配列番号9)なる配列を有するものを使用した。また、同様に、第2の加水分解プローブは、前述した実施例5のもの、即ち図9に示される配列を有するものを使用した。これらのプローブの配列(配列番号9)は先に用いたプローブの配列(配列番号13)の、5’末端側にC(シトシン)を1塩基付加した配列であり、図11に示される鋳型配列と完全に一致する配列である。   The first hydrolysis probe used was that of Example 5 described above, that is, the probe having the sequence 5'-cggcaagacggaaag-3 '(SEQ ID NO: 9) shown in FIG. Similarly, the second hydrolysis probe used was that of Example 5 described above, that is, the probe having the sequence shown in FIG. The sequence of these probes (SEQ ID NO: 9) is a sequence obtained by adding one base of C (cytosine) to the 5 ′ end of the previously used probe sequence (SEQ ID NO: 13). The template sequence shown in FIG. Is a sequence that completely matches.

PCRプログラム(thermalprofile)は次の通りであった。
95.0℃ 3分00秒の初期加温(DNA合成酵素活性化)に引き続き、
95.0℃ 0分05秒
64.0℃ 0分20秒(本ステップ終了毎に蛍光を測定)
を50サイクル反復
図37は、感受性配列における増幅曲線の検出結果を示す図である。図37に示されるように、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(AA)。一方、図38は、感受性不問の場合における増幅曲線の検出結果を示す図である。図38に示されるように、耐性変異配列についても耐性変異を有さない配列ともども、陽性反応を示す増幅曲線が検出された。このように、上述の実施例におけるプローブよりも1塩基長いプローブを用いた場合においても、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。
The PCR program (thermalprofile) was as follows.
Following the initial warming (DNA synthase activation) at 95.0 ° C for 3 minutes 00 seconds,
95.0 ℃ 0 min 05 sec
64.0 ° C 0 min 20 sec (measurement of fluorescence at the end of this step)
FIG. 37 is a diagram showing the detection results of the amplification curve in the sensitive sequence. As shown in FIG. 37, an amplification curve showing a positive reaction is shown in a chart in which fluorescence is expected to be observed only in the sensitive sequence (AA). On the other hand, FIG. 38 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 38, an amplification curve showing a positive reaction was detected for both the resistant mutant sequence and the sequence having no resistant mutation. Thus, even when a probe longer by one base than the probe in the above-described example was used, the presence or absence of a macrolide antibiotic resistance mutation could be detected in an extremely short time with all or none.

(実施例7 Chlamydia trachomatis菌の耐性変異の検出)
Amplicor(登録商標)法によってChlamydia trachomatis菌が陽性だと判定された臨床検体からフェノール・クロロホルム抽出された2件の核酸標品を使用した。これらの1)臨床検体由来核酸から目的配列をサブクローニングし、2)シークエンスを確認し、3)部位特異的変異導入法(Site-Directed Mutagenesis)で一塩基変異を導入し、4)意図した変異が導入されたことをシークエンスでそれぞれ確認することにより、変異を有する配列のサンプルを人為的に作出した。陰性対照には核酸溶出に用いているのと同一のヌクレアーゼ・フリーの水を使用した。
(Example 7 Detection of resistance mutation in Chlamydia trachomatis)
Two nucleic acid preparations extracted from phenol / chloroform from clinical specimens positive for Chlamydia trachomatis by Amplicor (registered trademark) method were used. 1) Subcloning the target sequence from the clinical specimen-derived nucleic acid, 2) Confirming the sequence, 3) Introducing a single nucleotide mutation by site-directed mutagenesis (Site-Directed Mutagenesis), 4) The intended mutation A sequence sample having a mutation was artificially created by confirming the introduction by sequencing. As a negative control, the same nuclease-free water used for nucleic acid elution was used.

Forwardのprimer配列はtgggcactgtctcaacgaaa(配列番号19)であり、Reverseのprimer配列はcaacgttgactcccactctc(配列番号20)であった。   The forward primer sequence was tgggcactgtctcaacgaaa (SEQ ID NO: 19), and the reverse primer sequence was caacgttgactcccactctc (SEQ ID NO: 20).

第1の加水分解プローブは、図7に示されるように、5’-cgaaaggacgaaaag-3’(配列番号17)なる配列を有し、図中にて大文字で示されている部分にLNAが導入されているものを使用した。また、第2の加水分解プローブは、図9に示されるように第1の加水分解プローブと同じ配列を有しており、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されているものを使用した。レポーター蛍光色素はVICであった。   As shown in FIG. 7, the first hydrolysis probe has a sequence of 5′-cgaaaggacgaaaag-3 ′ (SEQ ID NO: 17), and LNA is introduced into the portion shown in capital letters in the figure. I used what I have. Further, as shown in FIG. 9, the second hydrolysis probe has the same sequence as the first hydrolysis probe, the 5 ′ end is labeled with a reporter fluorescent dye, and the 3 ′ end is not a quencher. Those labeled with a fluorescent dye and MGB were used. The reporter fluorescent dye was VIC.

PCRプログラム(thermal profile)は上述の実施例1と同様であった。   The PCR program (thermal profile) was the same as in Example 1 above.

リアルタイムPCRの測定にかかる所要時間は1時間程度であった。   The time required for the real-time PCR measurement was about 1 hour.

図39は、シークエンス結果を示す図である。図39には、リアルタイムPCRで検討した9の核酸標品(Chlamydia trachomatis菌陽性臨床検体0630,0707由来、及び人為的に作出した変異を含まない配列ならびに6種類の変異を有する配列)から、23S rRNA領域の2058,2059番の塩基(Chlamydia trachomatis菌標準株における2038,2039番に相当)とその周囲の配列を別途シークエンシングで確認した結果が、標準株(Chlamydiatrachomatis D/UW-3/CX (NCBI Reference Sequence: NC_000117.1))の当該部位の配列と並べて示して示されている。NC_000117は標準株の配列であり、そのうち下線を付したAAの2文字が2038,2039番に相当する部位、即ち、耐性変異の入る部位である。NC_000117.1の配列の下に実際にシークエンスで求められた配列を並べてられており、この標準株と塩基が一致している場合には「・」が記され、相違があった場合にはその塩基が記されている。   FIG. 39 is a diagram showing a sequence result. FIG. 39 shows 23S from 9 nucleic acid samples examined by real-time PCR (derived from Chlamydia trachomatis-positive clinical specimens 0630 and 0707, and sequences not containing artificially generated mutations and 6 types of mutations). As a result of separately sequencing the 2058 and 2059 bases of the rRNA region (corresponding to 2038 and 2039 in the standard strain of Chlamydia trachomatis) and the surrounding sequences, the standard strain (Chlamydiatrachomatis D / UW-3 / CX ( NCBI Reference Sequence: NC_000117.1)) is shown side by side with the sequence of the relevant part. NC_000117 is a sequence of a standard strain, of which the underlined two letters AA correspond to positions 2038 and 2039, that is, a site where a resistance mutation is introduced. The sequence actually obtained in the sequence is arranged under the sequence of NC_000117.1. When this base strain and the base match, “•” is written, and when there is a difference, The base is marked.

図40は、感受性配列における増幅曲線の検出結果を示す図である。図40に示されるように、増幅曲線中、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(AA,陽性検体)。図40に示された陽性反応を示した増幅曲線AAおよび陽性検体に対応するシークエンス結果は、図39によれば、標準株と完全に配列が一致していたことが示された。そして、図40において検出されなかった株は、図39に示されるように、2058番あるいは2059番に塩基変異が入っていたことが示された。一方、図41は、感受性不問の場合における増幅曲線の検出結果を示す図である。図41に示されるように、図39で示された耐性変異配列についても耐性変異を有さない配列ともども、陽性反応を示す増幅曲線が検出された。このように、上述の実施例と同様に、本発明によれば、形態が類似している曲線を比較して判断するのではなく、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。   FIG. 40 is a diagram showing detection results of amplification curves in sensitive sequences. As shown in FIG. 40, an amplification curve showing a positive reaction is shown in a chart in which fluorescence is expected to be observed only in the sensitive sequence in the amplification curve (AA, positive sample). The amplification curve AA showing the positive reaction shown in FIG. 40 and the sequence result corresponding to the positive specimen showed that the sequence was completely identical with the standard strain according to FIG. The strains that were not detected in FIG. 40 were found to have a base mutation at No. 2058 or No. 2059, as shown in FIG. On the other hand, FIG. 41 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 41, an amplification curve showing a positive reaction was detected for both the resistant mutant sequence shown in FIG. 39 and the sequence having no resistant mutation. As described above, according to the present invention, in the same way as in the above-described embodiments, the macrolide system can be recognized at a glance in all or none, but in a very short time, instead of comparing and comparing curves having similar forms. The presence or absence of antibiotic resistance mutations could be detected.

(実施例8 MACの耐性変異の検出)
理化学研究所バイオリソースセンターからMycobacterium intracellulare菌JCM6384標準株(ATCC13950と同一)由来の核酸標品を緩衝液に溶解したものの分譲を受け、これを耐性変異を有さないサンプル(感受性配列のサンプル)として使用した。この標品をさらに1000倍に希釈したものを実験に供した。陽性対照として用いる変異を有する配列ならびに有さない配列のサンプルは、1)互いに36塩基ずつoverlapする6本の160mer、ほぼ中央に目的の変異を含む82mer、Forwardプライマーとしての57mer、Reverseプライマーとしての50merのオリゴヌクレオチド(アクション番号NC008595.1を参考配列として採用)をPCR反応液中で繋ぎ、この反応産物を鋳型としてPCRの反応で増幅を行ない、2)シークエンスを確認し、3)意図した変異が導入されたことをシークエンスでそれぞれ確認することにより作出されたものである。陰性対照には核酸溶出に用いているのと同一のヌクレアーゼ・フリーの水を使用した。
(Example 8 Detection of resistance mutation in MAC)
Received a lot of nucleic acid sample from Mycobacterium intracellulare JCM6384 standard strain (same as ATCC13950) dissolved in buffer from RIKEN BioResource Center, and used it as a sample without resistance mutation (sensitive sequence sample) did. This sample was further diluted 1000 times and used for the experiment. Samples with and without mutations used as positive controls are: 1) 6 160mers overlapping each other by 36 bases, 82mer containing the desired mutation in the middle, 57mer as the forward primer, and reverse primer A 50mer oligonucleotide (action number NC008595.1 is used as a reference sequence) is ligated in the PCR reaction solution and amplified by PCR reaction using this reaction product as a template, 2) the sequence is confirmed, and 3) the intended mutation It was created by confirming that each was introduced in the sequence. As a negative control, the same nuclease-free water used for nucleic acid elution was used.

Forwardのprimer配列はtcggcgaaattgcactacga(配列番号24)であり、Reverseのprimer配列はaacccgataagggttcgacg(配列番号25)であった。   The forward primer sequence was tcggcgaaattgcactacga (SEQ ID NO: 24), and the reverse primer sequence was aacccgataagggttcgacg (SEQ ID NO: 25).

第1の加水分解プローブは、図16に示されるように、5’-cggcaggacgaaaag-3’(配列番号21)なる配列を有し、図中にて大文字で示されている部分にLNAが導入されているものを使用した。また、第2の加水分解プローブは、図18に示されるように第1の加水分解プローブと同じ長さだが、5’末端の2塩基がイノシン(I)に置き換えられた5’-IIgcaggacgaaaag-3’(配列番号23)なる配列を有しており、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されているものを使用した。レポーター蛍光色素はVICであった。   As shown in FIG. 16, the first hydrolysis probe has a sequence of 5′-cggcaggacgaaaag-3 ′ (SEQ ID NO: 21), and LNA is introduced into the portion indicated by capital letters in the figure. I used what I have. Further, as shown in FIG. 18, the second hydrolysis probe has the same length as the first hydrolysis probe, but 5′-IIgcaggacgaaaag-3 in which two bases at the 5 ′ end are replaced with inosine (I). It has a sequence of '(SEQ ID NO: 23), 5' end is labeled with a reporter fluorescent dye, and 3 'end is labeled with a quencher non-fluorescent dye and MGB. The reporter fluorescent dye was VIC.

PCRプログラム(thermal profile)は次の通りであった。
95.0℃ 3分00秒の初期加温(DNA合成酵素活性化)に引き続き、
95.0℃ 0分05秒
62.0℃ 0分20秒(本ステップ終了毎に蛍光を測定)
を50サイクル反復
リアルタイムPCRの測定にかかる所要時間は1時間程度であった。
The PCR program (thermal profile) was as follows.
Following the initial warming (DNA synthase activation) at 95.0 ° C for 3 minutes 00 seconds,
95.0 ℃ 0 min 05 sec
62.0 ° C 0 min 20 sec (fluorescence measured at the end of this step)
The time required for the real-time PCR measurement was about 1 hour.

図42は、シークエンス結果を示す図である。図42には、リアルタイムPCRで検討した7の核酸標品(人為的に作出した標準株と同一の配列ならびに6種類の変異を有する配列)から、23S rRNA領域の2058,2059番の塩基(標準株Mycobacterium avium 104における2279,2280番に相当)とその周囲の配列を別途シークエンシングで確認した結果が、2種類のMAC標準株(Mycobacterium avium 104 (NCBIReference Sequence: NC_008595.1)、Mycobacteriumintracellulare ATCC 13950 (NCBI Reference Sequence:NC_016946.1))の当該部位の配列と並べて示して示されている。Mycobacteriumavium 104はMACの標準株の配列であり、そのうち下線を付したAAの2文字が2058,2059番に相当する部位、即ち、耐性変異の入る部位である。Mycobacterium avium 104の下に実際にシークエンスで求められた配列を並べてられており、この標準株と塩基が一致している場合には「・」が記され、相違があった場合にはその塩基が記されている。図の最も下がM.intracellulare ATCC 13950標準株の配列である。   FIG. 42 is a diagram showing a sequence result. FIG. 42 shows nucleotides 2058 and 2059 in the 23S rRNA region (standards) from 7 nucleic acid samples examined by real-time PCR (same sequences as the artificially generated standard strain and 6 types of mutations). The results obtained by separately sequencing the surrounding sequences in the strain Mycobacterium avium 104 and corresponding sequences were two MAC standard strains (Mycobacterium avium 104 (NCBIReference Sequence: NC_008595.1), Mycobacteriumintracellulare ATCC 13950 ( NCBI Reference Sequence: NC — 016946.1)) is shown side by side with the sequence of the relevant part. Mycobacterium avium 104 is a sequence of a standard strain of MAC, of which the underlined two letters AA correspond to positions 2058 and 2059, that is, a site where a resistance mutation is introduced. The sequence actually obtained in the sequence is arranged under Mycobacterium avium 104. When this base strain and the base match, “•” is written, and when there is a difference, the base is It is written. The bottom of the figure is the sequence of the M.intracellulare ATCC 13950 standard strain.

図43は、感受性配列における増幅曲線の検出結果を示す図である。図43に示されるように、増幅曲線中、感受性配列でのみ蛍光が観察されることが期待されるチャートにおいて、陽性反応を示した増幅曲線が示されている(AA、JCM6384(標準株))。図43に示された陽性反応を示した増幅曲線AAに対応するシークエンス結果は、図42によれば、標準株と完全に配列が一致していたことが示された。そして、図43において検出されなかった配列は、図42に示されるように、2279番あるいは2280番に塩基変異が入っていたことが示された。一方、図44は、感受性不問の場合における増幅曲線の検出結果を示す図である。図44に示されるように、図42で示された耐性変異配列についても耐性変異を有さない配列ともども、陽性反応を示す増幅曲線が検出された。このように、上述の実施例と同様に、本発明によれば、形態が類似している曲線を比較して判断するのではなく、all or noneにて一目瞭然にしかも極めて短時間でマクロライド系抗生物質耐性変異の有無が検出できた。   FIG. 43 is a diagram showing detection results of amplification curves in sensitive sequences. As shown in FIG. 43, an amplification curve showing a positive reaction is shown in the chart in which fluorescence is expected to be observed only in the sensitive sequence in the amplification curve (AA, JCM6384 (standard strain)). . The sequence result corresponding to the amplification curve AA showing the positive reaction shown in FIG. 43 showed that the sequence was completely identical with the standard strain according to FIG. 43. As shown in FIG. 42, the sequence that was not detected in FIG. 43 was found to have a base mutation at No. 2279 or No. 2280. On the other hand, FIG. 44 is a figure which shows the detection result of the amplification curve in the sensitivity unquestioned case. As shown in FIG. 44, an amplification curve showing a positive reaction was detected for both the resistant mutant sequence shown in FIG. 42 and the sequence having no resistant mutation. As described above, according to the present invention, in the same way as in the above-described embodiments, the macrolide system can be recognized at a glance in all or none, but in a very short time, instead of comparing and comparing curves having similar forms. The presence or absence of antibiotic resistance mutations could be detected.

マクロライド系抗生物質耐性変異菌の検出に利用できる。   It can be used to detect macrolide antibiotic-resistant mutant bacteria.

配列番号1,5,9,13,17,21,23:プローブ
配列番号2,6,10,14,18,22:鋳型配列
配列番号3,4,7,8,11,12,15,16,19,20,24,25:プライマー
SEQ ID NO: 1, 5, 9, 13, 17, 21, 23: Probe SEQ ID NO: 2, 6, 10, 14, 18, 22: Template sequence SEQ ID NO: 3, 4, 7, 8, 11, 12, 15, 16 , 19, 20, 24, 25: Primer

Claims (2)

被検体の生物学的試料において、23S rRNAドメインVへの結合が阻害されることによりマクロライド系抗生物質に対する耐性化が生じたマクロライド系抗生物質耐性変異菌をリアルタイムPCRで検出する検出方法であって、
前記生物学的試料を、第1の加水分解プローブ及び第2の加水分解プローブと接触させる工程を有し、
前記第1の加水分解プローブと前記第2の加水分解プローブとは同一の鋳型配列と結合するように設計されており、
前記第1の加水分解プローブは、配列の一部がLNAにより構成され、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素で標識されており、
前記第2の加水分解プローブは、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されており、
(1)前記マクロライド系抗生物質耐性変異菌が肺炎マイコプラズマ変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-aacgggacggaaag-3’(配列番号1)であり、
(2)前記マクロライド系抗生物質耐性変異菌が百日咳菌変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-cggctagacggaaag-3’(配列番号5)であり、
(3)前記マクロライド系抗生物質耐性変異菌がピロリ変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-cggcaagacggaaag-3’(配列番号9)であり、
(4)前記マクロライド系抗生物質耐性変異菌がキャンピロバクター・ジェジュニ菌変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-ggcaagacggaaag-3’(配列番号13)であり、
(5)前記マクロライド系抗生物質耐性変異菌がクラミジア・トラコマチス菌変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-cgaaaggacgaaaag-3’(配列番号17)であり、
(6)前記マクロライド系抗生物質耐性変異菌がMAC変異菌である場合、前記第1の加水分解プローブの配列は5’-cggcaggacgaaaag-3’(配列番号21)であり、前記第2の加水分解プローブの配列は5’-IIgcaggacgaaaag-3’(配列番号23)であり、
標準株の場合は、前記第1の加水分解プローブ及び第2の加水分解プローブ由来の蛍光が観察される一方、マクロライド系抗生物質耐性変異菌の場合は、前記第2の加水分解プローブのみの蛍光が観察されることを特徴とするマクロライド系抗生物質耐性変異菌の検出方法。
A detection method that detects macrolide antibiotic-resistant mutants that have become resistant to macrolide antibiotics due to inhibition of binding to 23S rRNA domain V in a biological sample of the subject using real-time PCR. There,
Contacting the biological sample with a first hydrolysis probe and a second hydrolysis probe;
The first hydrolysis probe and the second hydrolysis probe are designed to bind to the same template sequence;
In the first hydrolysis probe, a part of the sequence is composed of LNA, the 5 ′ end is labeled with a reporter fluorescent dye, and the 3 ′ end is labeled with a quencher non-fluorescent dye.
The second hydrolysis probe has a 5 ′ end labeled with a reporter fluorescent dye, a 3 ′ end labeled with a quencher non-fluorescent dye and MGB,
(1) When the macrolide antibiotic resistant mutant is a Mycoplasma pneumoniae, the sequence of the first hydrolysis probe and the second hydrolysis probe is 5′-aacgggacggaaag-3 ′ (SEQ ID NO: 1) And
(2) When the macrolide antibiotic-resistant mutant is a Bordetella pertussis mutant, the sequence of the first hydrolysis probe and the second hydrolysis probe is 5′-cggctagacggaaag-3 ′ (SEQ ID NO: 5) And
(3) When the macrolide antibiotic resistant mutant is a H. pylori mutant, the sequences of the first hydrolysis probe and the second hydrolysis probe are 5′-cggcaagacggaaag-3 ′ (SEQ ID NO: 9). Yes,
(4) When the macrolide antibiotic resistant mutant is a Campylobacter jejuni mutant, the sequences of the first hydrolysis probe and the second hydrolysis probe are 5′-ggcaagacggaaag-3 ′ ( SEQ ID NO: 13)
(5) When the macrolide antibiotic resistant mutant is a Chlamydia trachomatis mutant, the sequence of the first hydrolysis probe and the second hydrolysis probe is 5′-cgaaaggacgaaaag-3 ′ (SEQ ID NO: 17)
(6) When the macrolide antibiotic resistance mutant is a MAC mutant, the sequence of the first hydrolysis probe is 5′-cggcaggacgaaaag-3 ′ (SEQ ID NO: 21), and the second hydrolysis probe The sequence of the degradation probe is 5′-IIgcaggacgaaaag-3 ′ (SEQ ID NO: 23),
In the case of a standard strain, fluorescence derived from the first hydrolysis probe and the second hydrolysis probe is observed, whereas in the case of a macrolide antibiotic-resistant mutant, only the second hydrolysis probe is observed. A method for detecting a macrolide antibiotic-resistant mutant bacterium, wherein fluorescence is observed.
23S rRNAドメインVへの結合が阻害されることによりマクロライド系抗生物質に対する耐性化が生じたマクロライド系抗生物質耐性変異菌をリアルタイムPCRにて検出する検出キットであって、
第1の加水分解プローブと、第2の加水分解プローブと、を有し、
前記第1の加水分解プローブと第2の加水分解プローブとは同一の鋳型配列と結合するように設計されており、
前記第1の加水分解プローブは、配列の一部がLNA(Locked Nucleic Acid)により構成され、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素で標識されており、
前記第2の加水分解プローブは、5’末端がレポーター蛍光色素で標識され、3’末端はクエンチャー非蛍光色素及びMGBで標識されており、
(1)前記マクロライド系抗生物質耐性変異菌が肺炎マイコプラズマ変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-aacgggacggaaag-3’(配列番号1)であり、
(2)前記マクロライド系抗生物質耐性変異菌が百日咳菌変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-cggctagacggaaag-3’(配列番号5)であり、
(3)前記マクロライド系抗生物質耐性変異菌がピロリ変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-cggcaagacggaaag-3’(配列番号9)であり、
(4)前記マクロライド系抗生物質耐性変異菌がキャンピロバクター・ジェジュニ菌変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-ggcaagacggaaag-3’(配列番号13)であり、
(5)前記マクロライド系抗生物質耐性変異菌がクラミジア・トラコマチス菌変異菌である場合、前記第1の加水分解プローブ及び第2の加水分解プローブの配列は5’-cgaaaggacgaaaag-3’(配列番号17)であり、
(6)前記マクロライド系抗生物質耐性変異菌がMAC変異菌である場合、前記第1の加水分解プローブの配列は5’-cggcaggacgaaaag-3’(配列番号21)であり、前記第2の加水分解プローブの配列は5’-IIgcaggacgaaaag-3’(配列番号23)であり、
標準株の場合は、前記第1の加水分解プローブ及び第2の加水分解プローブ由来の蛍光が観察される一方、肺炎マイコプラズマ変異菌の場合は、前記第2の加水分解プローブのみの蛍光が観察されることを特徴とするマクロライド系抗生物質耐性変異菌の検出キット。
A detection kit for detecting a macrolide antibiotic-resistant mutant bacterium having resistance to a macrolide antibiotic caused by inhibition of binding to 23S rRNA domain V by real-time PCR,
A first hydrolysis probe and a second hydrolysis probe;
The first hydrolysis probe and the second hydrolysis probe are designed to bind to the same template sequence;
In the first hydrolysis probe, a part of the sequence is composed of LNA (Locked Nucleic Acid) , the 5 ′ end is labeled with a reporter fluorescent dye, and the 3 ′ end is labeled with a quencher non-fluorescent dye.
The second hydrolysis probe has a 5 ′ end labeled with a reporter fluorescent dye, a 3 ′ end labeled with a quencher non-fluorescent dye and MGB,
(1) When the macrolide antibiotic resistant mutant is a Mycoplasma pneumoniae, the sequence of the first hydrolysis probe and the second hydrolysis probe is 5′-aacgggacggaaag-3 ′ (SEQ ID NO: 1) And
(2) When the macrolide antibiotic-resistant mutant is a Bordetella pertussis mutant, the sequence of the first hydrolysis probe and the second hydrolysis probe is 5′-cggctagacggaaag-3 ′ (SEQ ID NO: 5) And
(3) When the macrolide antibiotic resistant mutant is a H. pylori mutant, the sequences of the first hydrolysis probe and the second hydrolysis probe are 5′-cggcaagacggaaag-3 ′ (SEQ ID NO: 9). Yes,
(4) When the macrolide antibiotic resistant mutant is a Campylobacter jejuni mutant, the sequences of the first hydrolysis probe and the second hydrolysis probe are 5′-ggcaagacggaaag-3 ′ ( SEQ ID NO: 13)
(5) When the macrolide antibiotic resistant mutant is a Chlamydia trachomatis mutant, the sequence of the first hydrolysis probe and the second hydrolysis probe is 5′-cgaaaggacgaaaag-3 ′ (SEQ ID NO: 17)
(6) When the macrolide antibiotic resistance mutant is a MAC mutant, the sequence of the first hydrolysis probe is 5′-cggcaggacgaaaag-3 ′ (SEQ ID NO: 21), and the second hydrolysis probe The sequence of the degradation probe is 5′-IIgcaggacgaaaag-3 ′ (SEQ ID NO: 23),
In the case of the standard strain, fluorescence derived from the first hydrolysis probe and the second hydrolysis probe is observed, whereas in the case of Mycoplasma pneumoniae, fluorescence of only the second hydrolysis probe is observed. A detection kit for a macrolide antibiotic-resistant mutant.
JP2014504719A 2012-03-15 2013-03-15 Method and kit for detecting macrolide antibiotic-resistant mutant bacteria Active JP6108407B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012058239 2012-03-15
JP2012058239 2012-03-15
JP2012248706 2012-11-12
JP2012248706 2012-11-12
PCT/JP2013/001807 WO2013136818A1 (en) 2012-03-15 2013-03-15 Method and kit for detecting macrolide antibiotic-resistant mutant bacterium

Publications (2)

Publication Number Publication Date
JPWO2013136818A1 JPWO2013136818A1 (en) 2015-08-03
JP6108407B2 true JP6108407B2 (en) 2017-04-05

Family

ID=49160740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014504719A Active JP6108407B2 (en) 2012-03-15 2013-03-15 Method and kit for detecting macrolide antibiotic-resistant mutant bacteria

Country Status (2)

Country Link
JP (1) JP6108407B2 (en)
WO (1) WO2013136818A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667512A (en) * 2013-12-27 2014-03-26 西安市疾病预防控制中心 Primer for rapidly detecting drug tolerance of pertussis bordelella erythrocin from specimen and detection method
CN108474042B (en) * 2014-10-17 2022-02-11 弗雷德哈钦森癌症研究中心 Reagent component, kit and method for evaluating helicobacter pylori infection
JP2016214203A (en) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 Nucleic acid amplification apparatus, cartridge for nucleic acid amplification, and nucleic acid amplification method
WO2021010446A1 (en) * 2019-07-17 2021-01-21 学校法人川崎学園 Method for detecting macrolide-antibiotic-resistant mutant bacterium
TW202204640A (en) 2020-04-01 2022-02-01 國立感染症研究所長代表之日本國 Method for determining single base mutation of erm (41) gene of acid-fast bacillus belonging to mycobacteroides abscessus complex, and primer set and probe used in said method
CN111705148A (en) * 2020-06-24 2020-09-25 南开大学 Rapid molecular diagnosis method and kit for personalized medication guidance in helicobacter pylori eradication treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534255B2 (en) * 2008-12-17 2017-01-03 Life Technologies Corporation Methods, compositions, and kits for detecting allelic variants

Also Published As

Publication number Publication date
WO2013136818A1 (en) 2013-09-19
JPWO2013136818A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
Ikryannikova et al. Misidentification of alpha-hemolytic streptococci by routine tests in clinical practice
Båverud et al. Real-time PCR for detection and differentiation of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus
JP6108407B2 (en) Method and kit for detecting macrolide antibiotic-resistant mutant bacteria
Abdeldaim et al. Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment
Abdeldaim et al. Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the diagnosis of pneumococcal pneumonia
US20170204452A1 (en) Method for the detection of sepsis
JP2013520186A (en) Assays and kits for serotyping of Pseudomonas aeruginosa and oligonucleotide sequences useful in such methods and kits
US7381547B2 (en) Methods and compositions to detect bacteria using multiplex PCR
US20110287965A1 (en) Methods and compositions to detect clostridium difficile
Wang et al. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2
EP3298163B1 (en) Diagnostic method for bacterial organisms using the smpb gene
US20170145480A1 (en) Selective detection of haemophilus influenzae
JP5204466B2 (en) Method for detecting Mycoplasma pneumoniae
WO2020028718A1 (en) Antibiotic susceptibility of microorganisms and related markers, compositions, methods and systems
JP2010512728A (en) Rapid detection of highly pathogenic ST-17 clones of BSTREPTOCOCCUS
US20060088849A1 (en) Compositions and methods for the diagnosis of group B streptococcus infection
Shaheen et al. Detection of fluoroquinolone resistance level in clinical canine and feline Escherichia coli pathogens using rapid real-time PCR assay
EP3523447B1 (en) A method for the detection of legionella
Shaik et al. Development of a microarray-based method for simultaneous detection and serotyping of Streptococcus pneumoniae from culture negative serum samples
JP7575101B2 (en) Method for detecting mutant bacteria resistant to macrolide antibiotics
EP2723891B1 (en) Diagnostic methods for detecting clostridium difficile
CN110512013B (en) Method for identifying three corynebacteria by using high-resolution melting curve method
US20120183960A1 (en) Method for identifying e. coli m-17
US20220396828A1 (en) Method of determining the presence of a hyper-virulent clostridioides difficile strain of the b1/nap1/027 group in a sample
KR101742016B1 (en) Oligonucleotide for detecting Chlamydia trachomatis and/or Neisseria gonorrhoeae, and kit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R150 Certificate of patent or registration of utility model

Ref document number: 6108407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250