JP6108210B2 - Multilayer wiring film for electronic parts - Google Patents
Multilayer wiring film for electronic parts Download PDFInfo
- Publication number
- JP6108210B2 JP6108210B2 JP2012277916A JP2012277916A JP6108210B2 JP 6108210 B2 JP6108210 B2 JP 6108210B2 JP 2012277916 A JP2012277916 A JP 2012277916A JP 2012277916 A JP2012277916 A JP 2012277916A JP 6108210 B2 JP6108210 B2 JP 6108210B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- coating layer
- wiring film
- film
- main conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010410 layer Substances 0.000 claims description 85
- 239000011247 coating layer Substances 0.000 claims description 60
- 239000000758 substrate Substances 0.000 claims description 30
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 23
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 description 74
- 239000010949 copper Substances 0.000 description 59
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 238000005477 sputtering target Methods 0.000 description 16
- 238000004544 sputter deposition Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 238000002438 flame photometric detection Methods 0.000 description 9
- 239000013077 target material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910000882 Ca alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Engineering & Computer Science (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
本発明は、基板との密着性と加熱処理による耐熱性が要求される電子部品用積層配線膜に関するものである。 The present invention relates to a multilayer wiring film for electronic parts that requires adhesion to a substrate and heat resistance by heat treatment.
ガラス基板上に薄膜デバイスを形成する液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、電子ペーパー等に利用される電気泳動型ディスプレイ等の平面表示装置(フラットパネルディスプレイ、以下、FPDという)に加え、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品においては、低い電気抵抗値の配線膜が必要である。例えば、LCD、PDP、有機ELディスプレイ等などのFPDは大画面、高精細、高速応答化に伴い、その駆動素子として用いられている薄膜トランジスタ(TFT)の配線膜には電気抵抗値の低抵抗化が要求されている。さらに近年、FPDに操作性を加えるタッチパネルや、樹脂基板または極薄ガラス基板を用いたフレキシブルなFPDなど新たな製品が開発されている。 Flat display devices (flat panel displays, hereinafter) such as liquid crystal displays (hereinafter referred to as LCDs), plasma display panels (hereinafter referred to as PDPs), electrophoretic displays used for electronic paper, etc. for forming thin film devices on glass substrates In addition to thin film electronic components such as various semiconductor devices, thin film sensors, and magnetic heads, a wiring film having a low electric resistance value is required. For example, FPDs such as LCDs, PDPs, and organic EL displays have a large screen, high definition, and high-speed response, and the resistance value of the thin film transistor (TFT) wiring film used as the driving element is reduced. Is required. Furthermore, in recent years, new products such as a touch panel that adds operability to the FPD and a flexible FPD using a resin substrate or an ultrathin glass substrate have been developed.
近年、上記の低抵抗化の要求に対応するため、主導電層を形成する材料をAlからより低抵抗なCuに変更する検討が行われている。また、FPDの画面を見ながら直接的な操作性を付与するタッチパネル基板画面も大型化が進んでおり、低抵抗化のためにCuを主導電層に用いる検討が進んでいる。
また、スマートフォンやタブレットPC等に用いられているタッチパネルの位置検出電極には、一般的に透明導電膜であるITO(インジウム−スズ酸化物)が用いられている。Cuは、ITOとのコンタクト性は得られるが、基板との密着性が低いために、密着性を確保するためにMoやMo合金等を被覆層とした積層配線膜とする必要がある。
In recent years, in order to meet the above-described demand for lowering resistance, studies have been made to change the material for forming the main conductive layer from Al to lower resistance Cu. In addition, touch panel substrate screens that provide direct operability while viewing the screen of the FPD are also increasing in size, and studies are underway to use Cu as the main conductive layer to reduce resistance.
In addition, ITO (indium-tin oxide), which is a transparent conductive film, is generally used for position detection electrodes of touch panels used in smartphones, tablet PCs, and the like. Cu can be contacted with ITO, but has low adhesion to the substrate. Therefore, it is necessary to form a laminated wiring film with Mo, Mo alloy or the like as a coating layer in order to ensure adhesion.
また、従来のMo被覆層とAl主導電層でなる積層配線膜をエッチングする際に用いるリン酸と硝酸を含んだエッチャントを、Mo被覆層とCu主導電層を積層した積層配線膜に適応すると、Cu主導電層が早くエッチングされて積層配線膜に段差が生じる場合がある。この段差を抑制するためにエッチャントの濃度を調整すると、基板上に残渣が生じる等の問題がある。
このような問題に対しては、被覆層として、従来のMoと同様の基板との密着性を確保しつつ、主導電層のCuと共にエッチングできる被覆層として、Cu−Al−Ca合金を酸素雰囲気でスパッタして形成した膜の適用が提案されている(特許文献1参照)。
In addition, if an etchant containing phosphoric acid and nitric acid used for etching a multilayer wiring film composed of a conventional Mo coating layer and an Al main conductive layer is applied to a multilayer wiring film in which a Mo coating layer and a Cu main conductive layer are stacked. In some cases, the Cu main conductive layer is etched early and a step is generated in the laminated wiring film. When the concentration of the etchant is adjusted to suppress this step, there is a problem that a residue is generated on the substrate.
For such problems, as a coating layer, Cu—Al—Ca alloy is used in an oxygen atmosphere as a coating layer that can be etched together with Cu of the main conductive layer while ensuring adhesion with a substrate similar to conventional Mo. The application of a film formed by sputtering is proposed (see Patent Document 1).
特許文献1で提案される被覆層は、1〜10原子%のAlや0.1〜2.0原子%のCaを含有し、酸素雰囲気でスパッタすることで、高い密着性が得られるCu合金被覆層である。
しかし、酸素雰囲気でスパッタを行うと、酸素との反応生成物であるノジュールがスパッタリングターゲット上に堆積し、異常放電を起こしてパーティクルが発生することがある。また、スパッタチャンバー内の酸素ガスの流れ方向により、スパッタした被覆層内に取り込まれる酸素量に差が生じやすく、被覆層の特性や密着性にバラツキが生じるという問題が生じる場合がある。
The coating layer proposed in Patent Document 1 contains 1 to 10 atomic% Al and 0.1 to 2.0 atomic% Ca, and is a Cu alloy that provides high adhesion by sputtering in an oxygen atmosphere. It is a coating layer.
However, when sputtering is performed in an oxygen atmosphere, nodules, which are reaction products with oxygen, may accumulate on the sputtering target, causing abnormal discharge and generating particles. In addition, depending on the flow direction of the oxygen gas in the sputtering chamber, a difference in the amount of oxygen taken into the sputtered coating layer is likely to occur, which may cause a problem in that the characteristics and adhesion of the coating layer vary.
また、FPDの端子部等に信号線ケーブルを取り付ける際に大気中で加熱される場合があるため、積層配線膜には耐熱性の向上が要求される。加えて、酸化物を用いた半導体膜においては、特性向上や安定化のために、酸素を含有した雰囲気で350℃以上の高温での加熱処理を行う場合がある。また、酸素を含む保護膜を形成した後に350℃以上の高温での加熱処理を行う場合がある。このような酸素に接する環境下での加熱処理を経た後でも、積層配線膜として安定した特性を維持できるように耐熱性が要求される。 In addition, since the signal line cable may be heated in the air when the signal line cable is attached to the terminal portion of the FPD, the laminated wiring film is required to have improved heat resistance. In addition, in a semiconductor film using an oxide, heat treatment may be performed at a high temperature of 350 ° C. or higher in an oxygen-containing atmosphere in order to improve characteristics or stabilize the semiconductor film. In some cases, heat treatment is performed at a high temperature of 350 ° C. or higher after a protective film containing oxygen is formed. Heat resistance is required so that stable characteristics can be maintained as a laminated wiring film even after the heat treatment in an environment in contact with oxygen.
一方、上述した特許文献1に開示される酸素雰囲気でスパッタしたCu−Al−Ca合金被覆層は、酸素が導入されるため、耐熱性が上述した要求に対して十分ではなく、被覆した際に酸素が拡散して、主導電層のCuの電気抵抗値が増加することが懸念された。 On the other hand, since the Cu—Al—Ca alloy coating layer sputtered in the oxygen atmosphere disclosed in Patent Document 1 described above is introduced with oxygen, the heat resistance is not sufficient for the above-described requirements, and when coated, There was concern that oxygen would diffuse and increase the electrical resistance value of Cu in the main conductive layer.
本発明の目的は、Cuを主導電層とする積層配線膜において、被覆層に要求される下地層としての基板との密着性や、主導電層のCuの表面を保護する上層膜(キャップ層)としての耐熱性を確保し、加熱工程を経ても低い電気抵抗値を維持できる被覆層を用いた電子部品用積層配線膜を提供することにある。 An object of the present invention is to provide an upper layer film (cap layer) that protects the adhesion of a substrate as a base layer required for a coating layer and the Cu surface of the main conductive layer in a laminated wiring film having Cu as a main conductive layer. It is intended to provide a laminated wiring film for an electronic component using a coating layer that can secure heat resistance and maintain a low electric resistance value even after a heating process.
本発明者は、上記課題に鑑み、被覆層として、CuにAlを所定量加えた金属層とすることで、基板との密着性を確保し、主導電層であるCuの酸化も抑制することができることを見出し、本発明に到達した。 In view of the above-mentioned problems, the present inventor uses a metal layer obtained by adding a predetermined amount of Al to Cu as the coating layer, thereby ensuring adhesion with the substrate and suppressing oxidation of Cu as the main conductive layer. The present invention has been found.
すなわち、本発明は、基板上に金属層を形成した電子部品用積層配線膜であって、Cuを主成分とする主導電層と、該主導電層の少なくとも一方の面を覆う被覆層とからなり、該被覆層は原子比における組成式がCu100−X−AlX、20≦X≦60で表され、残部が不可避的不純物からなるCu合金でなる電子部品用積層配線膜の発明である。
前記被覆層は、下地層であることが好ましい。
また、前記被覆層は、キャップ層であることが好ましい。
また、前記被覆層は、下地層およびキャップ層であることがより好ましい。
本発明では、前記組成式のXを、25≦X≦35とすることが好ましい。
That is, the present invention is a laminated wiring film for electronic components in which a metal layer is formed on a substrate, comprising a main conductive layer mainly composed of Cu and a covering layer covering at least one surface of the main conductive layer. The coating layer is an invention of a laminated wiring film for electronic parts, in which the composition formula in atomic ratio is represented by Cu 100-X -Al X , 20 ≦ X ≦ 60, and the balance is a Cu alloy made of inevitable impurities. .
The coating layer is preferably a base layer.
Moreover, it is preferable that the said coating layer is a cap layer.
The covering layer is more preferably an underlayer and a cap layer.
In the present invention, X in the composition formula is preferably 25 ≦ X ≦ 35.
本発明のCu合金を被覆層とした電子部品用積層配線膜は、特殊な酸素雰囲気でスパッタする方法等を用いることなく、通常のスパッタをすることにより、安定かつ容易に成膜できる。そして、本発明の被覆層は、下地層として形成した場合には基板との密着性が確保でき、さらに下地層およびキャップ層として形成した場合には耐熱性を向上でき、加熱工程を経た後も低い電気抵抗値を維持できる。
これにより本発明は、種々の電子機器、例えばFPD等の配線膜に用いることで、電子部品の安定製造や信頼性向上に大きく貢献できる有用な技術である。特に、タッチパネルや樹脂基板を用いるフレキシブルなFPDに対して非常に有用な積層配線膜となる。
The multilayer wiring film for electronic parts using the Cu alloy of the present invention as a coating layer can be formed stably and easily by performing normal sputtering without using a method of sputtering in a special oxygen atmosphere. And when the coating layer of the present invention is formed as a foundation layer, it can secure adhesion to the substrate, and when it is formed as a foundation layer and a cap layer, it can improve heat resistance, even after a heating process. A low electrical resistance value can be maintained.
Thus, the present invention is a useful technique that can greatly contribute to the stable production of electronic components and the improvement of reliability by being used for various electronic devices, for example, wiring films such as FPD. In particular, it becomes a very useful laminated wiring film for a flexible FPD using a touch panel or a resin substrate.
本発明の電子部品用積層配線膜の断面模式図を図1に示す。本発明の電子部品用積層配線膜は、Cuを主体とする主導電層3の少なくとも一方の面を覆う被覆層からなり、例えば基板1上に形成される。図1では主導電層3の両面に被覆層2、4を形成しているが、下地層2またはキャップ層4のいずれか一方の面のみを覆ってもよく、適宜選択できる。尚、主導電層の一方の面のみを本発明の被覆層で覆う場合には、主導電層の他方の面には電子部品の用途に応じて、本発明とは別の組成の被覆層で覆うことができる。 A schematic cross-sectional view of the multilayer wiring film for electronic parts of the present invention is shown in FIG. The multilayer wiring film for electronic parts of the present invention is formed of a coating layer covering at least one surface of the main conductive layer 3 mainly composed of Cu, and is formed on the substrate 1, for example. In FIG. 1, the covering layers 2 and 4 are formed on both surfaces of the main conductive layer 3, but only one surface of the base layer 2 or the cap layer 4 may be covered and can be appropriately selected. When only one surface of the main conductive layer is covered with the coating layer of the present invention, the other surface of the main conductive layer is coated with a coating layer having a composition different from that of the present invention depending on the use of the electronic component. Can be covered.
本発明の重要な特徴は、図1に示す電子部品用積層配線膜の被覆層において、Cuに対してAlを特定量添加することで、基板との密着性を向上させるとともに、耐熱性を向上させ、加熱工程を経ても低い電気抵抗値を維持できることを見出した点にある。以下に本発明の電子部品用積層配膜について詳細に説明する。
なお、以下の説明において、「密着性」とは、積層配線膜の下層にくる基板との剥がれにくさをいうものとする。また、「耐熱性」とは、高温環境下における積層配線膜の酸化や、被覆層のAlが主導電層へ拡散することによる積層配線膜の電気抵抗値の増加の起こりにくさをいうものとする。
An important feature of the present invention is that, in the coating layer of the multilayer wiring film for electronic components shown in FIG. 1, by adding a specific amount of Al to Cu, adhesion with the substrate is improved and heat resistance is improved. And a low electrical resistance value can be maintained even after the heating step. The laminated film for electronic parts of the present invention will be described in detail below.
In the following description, “adhesiveness” refers to the difficulty of peeling off from the substrate under the laminated wiring film. “Heat resistance” refers to the difficulty of oxidation of the multilayer wiring film in a high temperature environment and the increase of the electrical resistance value of the multilayer wiring film due to diffusion of Al in the coating layer into the main conductive layer. To do.
本発明の電子部品用積層配膜の被覆層としてCuに特定量のAlを添加したCu合金を用いる理由は、主導電層の下地層として用いた際の基板との密着性を向上させるためである。Cuは、ガラス基板等の酸化物との密着性が低い元素である。本発明者は、Cuに特定量のAlを添加することで、大幅に密着性が改善できることを見出した。その効果は、CuにAlを20原子%添加すると明確となり、25原子%以上で飽和する。
また、主導電層のCu層は、大気中で加熱すると酸化して電気抵抗値が大きく増加する場合がある。本発明のCu合金でなる被覆層を主導電層のキャップ層として形成することで主導電層の表面が直接大気に触れることを妨げ、主導電層であるCu層の酸化による電気抵抗値の増加を抑制できる。その効果は、CuにAlを15原子%以上添加すると明確となる。
この効果の発現する理由は明らかではないが、本発明の範囲のCu合金を被覆層としてスパッタにより形成すると、柱状晶が形成されないため、酸素の拡散が抑制されたものと推定される。
The reason why the Cu alloy in which a specific amount of Al is added to Cu is used as the coating layer of the laminated film for electronic parts of the present invention is to improve the adhesion with the substrate when used as the underlayer of the main conductive layer. is there. Cu is an element having low adhesion to an oxide such as a glass substrate. The inventor has found that the adhesion can be significantly improved by adding a specific amount of Al to Cu. The effect becomes clear when 20 atomic% of Al is added to Cu, and is saturated at 25 atomic% or more.
In addition, the Cu layer of the main conductive layer may be oxidized when heated in the atmosphere and the electrical resistance value may be greatly increased. By forming the coating layer made of the Cu alloy of the present invention as a cap layer of the main conductive layer, the surface of the main conductive layer is prevented from being directly exposed to the atmosphere, and the electrical resistance value is increased by oxidation of the Cu layer which is the main conductive layer. Can be suppressed. The effect becomes clear when 15 atomic% or more of Al is added to Cu.
The reason for the manifestation of this effect is not clear, but when a Cu alloy within the scope of the present invention is formed by sputtering as a coating layer, columnar crystals are not formed, and it is presumed that oxygen diffusion is suppressed.
また、Cuに特定量のAlを添加した被覆層を下地層あるいはキャップ層として形成した際の共通な問題として、Alは、Cuに対して熱拡散しやすい元素であり、CuへのAlの添加量が60原子%を越えると、FPD等の電子部品を製造する際の加熱工程において、被覆層を形成するCu合金中のAlが、容易に主導電層であるCuに拡散し、低い電気抵抗値を維持しづらくなる問題がある。このため、被覆層を形成するCuへのAlの添加量は60原子%以下とする。
以上のことから、被覆層であるCuへのAl添加量は、密着性と耐熱性を確保するために20〜60原子%とした。
また、主導電層に被覆層を形成した積層配線膜を250℃より高温で加熱する場合は、被覆層に含まれるAlが主導電層のCuにさらに拡散しやすくなるため、より低い電気抵抗値を維持するためには、Alの添加量を35原子%以下にすることが好ましい。さらに高い密着性と高い耐熱性を確保するには、Alの添加量は25〜35原子%にすることがより好ましい。
In addition, as a common problem when a coating layer in which a specific amount of Al is added to Cu is formed as an underlayer or cap layer, Al is an element that is easily thermally diffused with respect to Cu, and addition of Al to Cu When the amount exceeds 60 atomic%, Al in the Cu alloy that forms the coating layer easily diffuses into Cu, which is the main conductive layer, in the heating process when manufacturing electronic parts such as FPD, and low electrical resistance. There is a problem that it is difficult to maintain the value. For this reason, the addition amount of Al to Cu forming the coating layer is set to 60 atomic% or less.
From the above, the amount of Al added to Cu as the coating layer was set to 20 to 60 atomic% in order to ensure adhesion and heat resistance.
In addition, when the laminated wiring film in which the coating layer is formed on the main conductive layer is heated at a temperature higher than 250 ° C., Al contained in the coating layer is more easily diffused into Cu of the main conductive layer, so that the lower electric resistance value In order to maintain the above, it is preferable that the amount of Al added is 35 atomic% or less. In order to secure higher adhesion and high heat resistance, the amount of Al added is more preferably 25 to 35 atomic%.
本発明の電子部品用積層配線膜において、低い電気抵抗値を安定的に得るには、主導電層であるCuの膜厚を100〜1000nmにすることが好ましい。これは、主導電層の膜厚が100nmより薄くなると、薄膜特有の電子の散乱の影響で電気抵抗値が増加しやすくなる。一方、1000nmより厚くなると膜を形成するために時間が掛かったり、膜応力により基板に反りが発生しやすくなったりする。
また、Cuを主成分とする主導電層は、純Cuが最も低い電気抵抗値を得られる点で好ましい。なお、耐熱性や耐食性等の信頼性を考慮して、Cuに遷移金属や半金属等を添加したCu合金層を用いてもよい。このとき、主導電層として、できる限り低い電気抵抗値を得るためには、Cuに添加する元素量を5原子%以下にすることが好ましい。
In the multilayer wiring film for electronic parts of the present invention, in order to stably obtain a low electric resistance value, it is preferable to set the film thickness of Cu as the main conductive layer to 100 to 1000 nm. This is because when the thickness of the main conductive layer is less than 100 nm, the electric resistance value is likely to increase due to the influence of electron scattering specific to the thin film. On the other hand, when the thickness is greater than 1000 nm, it takes time to form a film, and the substrate is likely to warp due to film stress.
Moreover, the main conductive layer which has Cu as a main component is preferable at the point from which pure Cu can obtain the lowest electrical resistance value. In consideration of reliability such as heat resistance and corrosion resistance, a Cu alloy layer obtained by adding a transition metal or a semimetal to Cu may be used. At this time, in order to obtain the lowest possible electrical resistance value as the main conductive layer, it is preferable that the amount of element added to Cu is 5 atomic% or less.
また、本発明の電子部品用積層配線膜において、低い電気抵抗値と高い密着性・耐熱性を安定的に得るには、被覆層であるCu合金層の膜厚を5〜100nmにすることが好ましい。これは、下地層として用いる場合の膜厚が5nm未満では、被覆層の連続性が低くなり、密着性を十分に確保できないためである。被覆層は、より安定して均一に成膜できる10nm以上がより好ましい。
また、キャップ層として用いる場合の膜厚は、20nm以上が好ましく、より高温の250℃以上で加熱される場合は30nm以上がより好ましい。その理由は、被覆層により酸素の侵入を十分に抑制する必要があるためである。
酸素の侵入を抑制するためには被覆層の膜厚は厚いほど好ましいが、100nmを越えると、総厚が一定の条件で被覆層の厚さを厚くすると、その分だけ主伝導層の厚さが薄くなるため、主導電層と被覆層を合わせた膜全体の電気抵抗値が高くなってしまい、主導電層と積層した際に低い電気抵抗値を得にくくなる。また、電子部品用積層配線膜が300℃以上で加熱される場合は、主導電層のCuへの被覆層中のAlの原子拡散による電気抵抗値の増加を抑制するには被覆層の膜厚は、50nm以下が好ましい。
In addition, in the multilayer wiring film for electronic parts of the present invention, in order to stably obtain a low electrical resistance value and high adhesion / heat resistance, the film thickness of the Cu alloy layer as the coating layer should be 5 to 100 nm. preferable. This is because if the film thickness is less than 5 nm when used as a base layer, the continuity of the coating layer becomes low, and sufficient adhesion cannot be ensured. The coating layer is more preferably 10 nm or more, which allows more stable and uniform film formation.
The film thickness when used as a cap layer is preferably 20 nm or more, and more preferably 30 nm or more when heated at a higher temperature of 250 ° C. or more. The reason is that it is necessary to sufficiently suppress the entry of oxygen by the coating layer.
In order to suppress the intrusion of oxygen, the thickness of the coating layer is preferably as thick as possible. However, when the thickness exceeds 100 nm, the thickness of the main conductive layer is increased by increasing the thickness of the coating layer under the condition that the total thickness is constant. Therefore, the electrical resistance value of the entire film including the main conductive layer and the covering layer becomes high, and it becomes difficult to obtain a low electrical resistance value when laminated with the main conductive layer. In addition, when the multilayer wiring film for electronic parts is heated at 300 ° C. or higher, the film thickness of the coating layer is used to suppress an increase in electrical resistance due to atomic diffusion of Al in the coating layer to the Cu of the main conductive layer. Is preferably 50 nm or less.
本発明の電子部品用積層配線膜は、樹脂フィルム基板や極薄ガラス基板等を基板に用いて構成された場合であっても、主導電層のCu層を保護する効果が十分に維持できる。
また、FPDの大画面化や高速駆動を得るために、TFT製造工程中の加熱温度は上昇する傾向にある。本発明の電子部品用積層配線膜は、主導電層のCu層にCu合金でなる被覆層を形成することで、優れた耐熱性を有するので、主導電層のCuへの熱拡散を抑制して低い電気抵抗値を維持することができる。
The laminated wiring film for electronic parts of the present invention can sufficiently maintain the effect of protecting the Cu layer of the main conductive layer even when it is configured using a resin film substrate, an ultrathin glass substrate, or the like as the substrate.
In addition, in order to obtain a large FPD screen and high-speed driving, the heating temperature during the TFT manufacturing process tends to increase. Since the multilayer wiring film for electronic parts of the present invention has excellent heat resistance by forming a coating layer made of a Cu alloy on the Cu layer of the main conductive layer, it suppresses thermal diffusion to the Cu of the main conductive layer. And a low electric resistance value can be maintained.
本発明の電子部品用積層配線膜を形成するには、スパッタリングターゲットを用いたスパッタリング法が好適である。スパッタリング法としては、主導電層および被覆層の組成と同一のCuまたはCu合金スパッタリングターゲットを使用して成膜する方法が好ましい。本発明は、通常のスパッタをすることができるため、スパッタリングターゲット上へのノジュールの堆積を抑制し、異常放電を防止でき、パーティクルが発生することなく、安定的にかつ容易に成膜できる。
本発明の電子部品用積層配線膜の被覆層を形成するには、Alを20〜60原子%含有し、残部Cuおよび不可避的不純物からなるCu合金スパッタリングターゲットを用いることで安定に被覆層を形成できる。
また、上述したように、被覆層として基板との高い密着性と耐熱性を得るには、Cu合金スパッタリングターゲットに含まれるAlを25〜35原子%にすることが好ましい。
In order to form the multilayer wiring film for electronic parts of the present invention, a sputtering method using a sputtering target is suitable. As the sputtering method, a method of forming a film using a Cu or Cu alloy sputtering target having the same composition as the main conductive layer and the coating layer is preferable. Since the present invention can perform normal sputtering, deposition of nodules on the sputtering target can be suppressed, abnormal discharge can be prevented, and film formation can be performed stably and easily without generation of particles.
In order to form the coating layer of the multilayer wiring film for electronic parts of the present invention, the coating layer is stably formed by using a Cu alloy sputtering target containing 20 to 60 atomic% of Al and the balance Cu and unavoidable impurities. it can.
Further, as described above, in order to obtain high adhesion and heat resistance with the substrate as the coating layer, it is preferable that Al contained in the Cu alloy sputtering target is 25 to 35 atomic%.
また、上述したCu合金スパッタリングターゲット材の製造方法としては、所定の組成に調合した原料を溶解―鋳造して作製したインゴットを機械加工により製造する方法や、Cu合金の粉末をアトマイズまたはインゴットを粉砕した粉末を焼結する方法で製造することが可能である。製造方法に関してはスパッタリングターゲット材の大きさ形状により安価かつ安定的に製造できる方法を適宜適応することが可能である。 In addition, as a method for producing the above-mentioned Cu alloy sputtering target material, a method of producing an ingot produced by melting and casting a raw material prepared to a predetermined composition, or a process of atomizing or grinding an ingot of Cu alloy powder It is possible to manufacture by the method of sintering the obtained powder. Regarding the manufacturing method, it is possible to appropriately apply a method that can be manufactured inexpensively and stably depending on the size and shape of the sputtering target material.
本発明の電子部品用積層配線膜の被覆層であるCu合金層においては、下地層として用いる際の基板との密着性や、キャップ層として用いる際の耐熱性を確保するためには、必須元素であるAl以外の残部を占めるCu以外の不可避的不純物の含有量は少ないことが好ましい。但し、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素や炭素、遷移金属であるFe、半金族のSi等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素は各々1000質量ppm以下、炭素は200質量ppm以下、Feは500質量ppm以下、Siは100質量ppm以下等であり、ガス成分を除いた純度は99.9%以上であることが好ましい。 In the Cu alloy layer that is a coating layer of the multilayer wiring film for electronic parts of the present invention, in order to ensure adhesion with a substrate when used as a base layer and heat resistance when used as a cap layer, an essential element It is preferable that the content of unavoidable impurities other than Cu occupying the balance other than Al is low. However, inevitable impurities such as oxygen, nitrogen and carbon, which are gas components, Fe which is a transition metal, and semi-metallic Si may be included as long as the effects of the present invention are not impaired. For example, oxygen and nitrogen of gas components are each 1000 ppm by mass or less, carbon is 200 ppm by mass or less, Fe is 500 ppm by mass or less, Si is 100 ppm by mass or less, and the purity excluding gas components is 99.9%. The above is preferable.
先ず、被覆層となるCu合金層を形成するためのスパッタリングターゲット材を作製した。表1に示す所定の組成となるように秤量した後、真空溶解炉にて溶解し、鋳造してCu合金のインゴットを作製した。その後、各インゴットを機械加工により、直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。
また、主導電層を形成するためのCuスパッタリングターゲット材は、日立電線株式会社製の無酸素銅(OFC)素材から切り出して作製した。また、Alスパッタリングターゲット材は、住友化学株式会社製のスパッタリングターゲット材を用いた。
First, a sputtering target material for forming a Cu alloy layer to be a coating layer was produced. After weighing to a predetermined composition shown in Table 1, it was melted in a vacuum melting furnace and cast to prepare a Cu alloy ingot. Thereafter, a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining each ingot.
The Cu sputtering target material for forming the main conductive layer was cut out from an oxygen-free copper (OFC) material manufactured by Hitachi Cable, Ltd. Moreover, the sputtering target material by Sumitomo Chemical Co., Ltd. was used for Al sputtering target material.
上記で作製した各スパッタリングターゲット材をCu製のバッキングプレートにろう付けして株式会社アルバック製の型式:CS−200のスパッタリング装置に取り付けた。
25mm×50mmのガラス基板上に、準備した各スパッタリングターゲット材を用いて、被覆層であるCu合金層と主導電層であるCu層を、図1に示す構成となるように、それぞれ表1に示す膜厚でスパッタリング法にて形成して電子部品用積層配線膜を得た。また、比較のために、純Cuの単層、AlとCuの積層膜、MoとAlの積層膜を同様に形成した。
Each sputtering target material produced above was brazed to a Cu backing plate and attached to a sputtering apparatus of model number CS-200 manufactured by ULVAC.
Using each prepared sputtering target material on a glass substrate of 25 mm × 50 mm, a Cu alloy layer as a coating layer and a Cu layer as a main conductive layer are respectively shown in Table 1 so as to have the configuration shown in FIG. A multilayer wiring film for electronic parts was obtained by sputtering using the film thickness shown. For comparison, a single layer of pure Cu, a laminated film of Al and Cu, and a laminated film of Mo and Al were similarly formed.
密着性の評価は、各積層配線膜をJIS K5400で規定された方法で実施した。先ず、上記の各積層配線膜上に住友スリーエム株式会社製の透明粘着テープ(製品名:透明美色)を貼り、2mm間隔で碁盤目状に切り欠きを入れ、透明粘着テープを引きはがして、電子部品用積層配線膜の残ったマス目を全体の分率を求めて評価した。その結果を表1に示す。
耐熱性の評価は、大気中にて150℃、200℃、250℃、300℃、350℃で1時間、各電子部品用積層配線膜を加熱した後の電気抵抗値の変化を測定した。電気抵抗値は、三菱油化株式会社(現 株式会社ダイヤインスツルメンツ)製の4端子薄膜抵抗率測定器、型式:MCP−T400を用いて測定した。その結果を表1に示す。
The evaluation of adhesion was performed for each laminated wiring film by a method defined in JIS K5400. First, a transparent adhesive tape (product name: transparent beautiful color) manufactured by Sumitomo 3M Co., Ltd. is pasted on each of the above laminated wiring films, cut into a grid pattern at intervals of 2 mm, and the transparent adhesive tape is peeled off. The remaining squares of the multilayer wiring film for electronic parts were evaluated by obtaining the total fraction. The results are shown in Table 1.
Evaluation of heat resistance was performed by measuring a change in electric resistance value after heating each multilayer wiring film for electronic components at 150 ° C., 200 ° C., 250 ° C., 300 ° C., and 350 ° C. for 1 hour in the air. The electrical resistance value was measured using a 4-terminal thin film resistivity meter, model: MCP-T400, manufactured by Mitsubishi Yuka Co., Ltd. (currently Dia Instruments Co., Ltd.). The results are shown in Table 1.
表1に示すように、被覆層を形成していない比較例の試料No.1は密着性が低く、大気中で加熱すると250℃以上で酸化してしまい、導通が得られなくなり電気抵抗値の測定ができなかった。また、比較例のCuにAlを3原子%添加した被覆層を形成した試料No.2においては、試料No.1と同様に、密着性が低く、250℃以上で酸化してしまい、導通が得られなくなり電気抵抗値の測定ができなかった。また、比較例のCuにAlを15原子%添加した被覆層を形成した試料No.3においても、密着性に劣ることが確認された。また、比較例の被覆層としてAlの被覆層を形成した試料No.10は、密着性には優れるものの、250℃以上に加熱すると大幅に電気抵抗値が上昇し、耐熱性に劣ることが確認された。 As shown in Table 1, the sample No. of the comparative example in which the coating layer is not formed. No. 1 had low adhesion, and when heated in the atmosphere, it was oxidized at 250 ° C. or higher, and continuity could not be obtained and the electric resistance value could not be measured. Sample No. 1 in which a coating layer in which 3 atomic% of Al was added to Cu of Comparative Example was formed. In sample No. 2, sample no. As in No. 1, the adhesion was low, and oxidation occurred at 250 ° C. or higher, so that no electrical continuity was obtained and the electric resistance value could not be measured. Sample No. 1 in which a coating layer in which 15 atomic% of Al was added to Cu of Comparative Example was formed. 3 was confirmed to be inferior in adhesion. Sample No. 1 in which an Al coating layer was formed as the coating layer of the comparative example. Although No. 10 was excellent in adhesiveness, it was confirmed that when it was heated to 250 ° C. or higher, the electrical resistance value was significantly increased and the heat resistance was poor.
これに対して、Cuに本発明の範囲でAlを添加した被覆層を形成した試料No.4〜No.8の電子部品用積層配線膜は、基板との密着性が90%以上と高く、Al添加量が25原子%以上でまったく剥がれない十分な密着性を有し、それ以上の添加量でも同様に高い密着性を確保できることが確認できた。
また、本発明の電子部品用積層配線膜は、250℃以上に加熱しても、電気抵抗値に大きな変動はなく、主導電層のCuの酸化を抑制できるキャップ層としての高い耐熱性も有していることが確認できた。
比較例となる、CuにAlを15原子%添加した被覆層を持つ試料No.3の電子部品用積層配線膜の構造をX線回折法で確認したところ、主にCuの回折線が確認され、Cu合金層はCu同様の結晶質であることが確認された。
これに対して、本発明例となるCuにAlを25原子%添加した被覆層を持つ試料No.5の電子部品用積層配線膜では、Cuの回折線以外に、低角域に明確なピークを示さないブロードな非晶質に近い回折線が確認され、Cu合金層は非晶質に近い構造であると推察される。この結果から、Cu合金層が非晶質に近い構造となることで結晶粒界が減少し、主導電層であるCuへの酸素の進入を抑制し、酸化を防ぐことで低い電気抵抗値を維持していると考えられる。
In contrast, Sample No. 1 in which a coating layer in which Al was added to Cu within the scope of the present invention was formed. 4-No. The laminated wiring film for electronic parts No. 8 has a high adhesion to the substrate of 90% or more, and has sufficient adhesion that does not peel at all when the Al addition amount is 25 atomic% or more. It was confirmed that high adhesion could be secured.
In addition, the multilayer wiring film for electronic parts of the present invention does not change greatly in the electric resistance value even when heated to 250 ° C. or higher, and has high heat resistance as a cap layer that can suppress oxidation of Cu in the main conductive layer. I was able to confirm.
Sample No. having a coating layer in which 15 atomic% of Al was added to Cu as a comparative example. When the structure of the multilayer wiring film 3 for electronic parts was confirmed by X-ray diffractometry, Cu diffraction lines were mainly confirmed, and the Cu alloy layer was confirmed to be crystalline similar to Cu.
On the other hand, sample No. 1 having a coating layer in which 25 atomic% of Al was added to Cu as an example of the present invention. In the multilayer wiring film for electronic components of 5, a diffraction line close to a broad amorphous state showing no clear peak in the low angle region is confirmed in addition to the Cu diffraction line, and the Cu alloy layer has a structure close to an amorphous state. It is guessed that. From this result, the grain boundary is reduced by making the Cu alloy layer close to an amorphous structure, oxygen entry into Cu as the main conductive layer is suppressed, and oxidation is prevented, resulting in a low electrical resistance value. It is thought that it is maintained.
次にエッチング性の評価を行った。関東化学株式会社製のCu用エッチャントCu−02を用いて、実施例1で基板上に作成した電子部品用積層配線膜上の半分の面積にのみフォトレジストを塗布して乾燥させ、エッチャント液に浸漬して、未塗布部分をエッチングした。浸漬時間は、目視でエッチングが完了した後10秒保持し、未溶解のものについては最長で5分とした。
エッチャントから引き上げた基板を純水で洗浄し、乾燥させ、溶解部分とレジストを塗布した未溶解部分の境目近傍を光学顕微鏡で観察した。その結果を表1に示す。
比較例となる試料No.10のAlは、Cu用エッチャントには不溶であった。また、比較例となる試料No.7〜No.9では、未溶解部分で段差が生じたり残渣が生じたりしていることが確認された。
これに対して、本発明例では、特にAl添加量が35原子%までは良好なエッチング性を有しており、Al添加量が60原子%までは段差や残渣もなく、エッチング性が良好であることが確認できた。
Next, the etching property was evaluated. Using an etchant Cu-02 for Cu manufactured by Kanto Kagaku Co., Ltd., a photoresist is applied to only half the area on the multilayer wiring film for electronic parts prepared on the substrate in Example 1 and dried to obtain an etchant solution. Immersion was performed and the uncoated part was etched. The immersion time was maintained for 10 seconds after the completion of etching visually, and the maximum time for the undissolved one was 5 minutes.
The substrate pulled up from the etchant was washed with pure water, dried, and the vicinity of the boundary between the dissolved portion and the undissolved portion coated with the resist was observed with an optical microscope. The results are shown in Table 1.
Sample No. as a comparative example. 10 Al was insoluble in the etchant for Cu. In addition, Sample No. 7-No. In No. 9, it was confirmed that a step or residue was generated in the undissolved portion.
On the other hand, in the examples of the present invention, the etching property is good especially when the Al addition amount is up to 35 atomic%, and there is no step or residue until the Al addition amount is 60 atomic%, and the etching property is good. It was confirmed that there was.
実施例1で作成した表2に示す各スパッタリングターゲットを用いて、100mm×100mmのポリイミドフィルム上に実施例1と同様の条件で電子部品用積層配線膜を形成した。各電子部品用積層配線膜を直径10mmのガラス管に巻き付け、電子部品用積層配線膜の表面に幅25mmの住友スリーエム株式会社製の透明粘着テープ(製品名:透明美色)をゴム製の箆で気泡が残らないように貼り、斜め45°の角度で剥がして密着性の評価を行った。その結果を表2に示す。 Using each sputtering target shown in Table 2 prepared in Example 1, a multilayer wiring film for electronic components was formed on a 100 mm × 100 mm polyimide film under the same conditions as in Example 1. Each electronic component laminated wiring film is wound around a glass tube having a diameter of 10 mm, and a transparent adhesive tape (product name: transparent beautiful color) of 25 mm width made by Sumitomo 3M Co., Ltd. is used on the surface of the electronic component laminated wiring film. The film was attached so that no bubbles remained, and was peeled off at an angle of 45 ° to evaluate the adhesion. The results are shown in Table 2.
表2に示すように、比較例となる試料No.16のAl膜では、所々に膜剥がれが生じていることを確認した。これに対し、本発明例となる試料No.12〜No.15の電子部品用積層配線膜では、膜剥がれがなく、フィルム上でも高い密着性を有することが確認できた。 As shown in Table 2, sample No. In the 16 Al film, it was confirmed that film peeling occurred in some places. On the other hand, sample no. 12-No. It was confirmed that 15 laminated wiring films for electronic parts had no film peeling and high adhesion even on the film.
1 基板
2 被覆層(下地層)
3 主導電層
4 被覆層(キャップ層)
1 substrate 2 coating layer (underlayer)
3 Main conductive layer 4 Cover layer (cap layer)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012277916A JP6108210B2 (en) | 2012-01-31 | 2012-12-20 | Multilayer wiring film for electronic parts |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012018170 | 2012-01-31 | ||
JP2012018170 | 2012-01-31 | ||
JP2012277916A JP6108210B2 (en) | 2012-01-31 | 2012-12-20 | Multilayer wiring film for electronic parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013179265A JP2013179265A (en) | 2013-09-09 |
JP6108210B2 true JP6108210B2 (en) | 2017-04-05 |
Family
ID=48837569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012277916A Active JP6108210B2 (en) | 2012-01-31 | 2012-12-20 | Multilayer wiring film for electronic parts |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6108210B2 (en) |
KR (1) | KR101421881B1 (en) |
CN (1) | CN103227195B (en) |
TW (1) | TWI482256B (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290150A (en) * | 1986-06-09 | 1987-12-17 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
JPH05102155A (en) * | 1991-10-09 | 1993-04-23 | Sony Corp | Copper wiring structure and its manufacture |
JP4432206B2 (en) * | 2000-05-18 | 2010-03-17 | 株式会社ブリヂストン | Method for forming laminated film |
US6727593B2 (en) * | 2001-03-01 | 2004-04-27 | Kabushiki Kaisha Toshiba | Semiconductor device with improved bonding |
CN101090123A (en) * | 2006-06-16 | 2007-12-19 | 台湾薄膜电晶体液晶显示器产业协会 | Film transistor with copper wire structure and its manufacturing method |
WO2008047726A1 (en) * | 2006-10-13 | 2008-04-24 | Kabushiki Kaisha Kobe Seiko Sho | Thin film transistor substrate and display device |
CN102097472A (en) * | 2006-12-28 | 2011-06-15 | 株式会社爱发科 | Process for forming a wiring film, a transistor, and an electronic device |
KR101135418B1 (en) * | 2006-12-28 | 2012-04-17 | 가부시키가이샤 알박 | Method for forming wiring film, transistor, and electronic device |
CN101971349B (en) * | 2008-04-25 | 2013-03-27 | 株式会社爱发科 | Method for producing thin film transistor and thin film transistor |
JP5354781B2 (en) | 2009-03-11 | 2013-11-27 | 三菱マテリアル株式会社 | Thin film transistor having barrier layer as constituent layer and Cu alloy sputtering target used for sputtering film formation of said barrier layer |
JP2011091364A (en) * | 2009-07-27 | 2011-05-06 | Kobe Steel Ltd | Wiring structure and method of manufacturing the same, as well as display apparatus with wiring structure |
-
2012
- 2012-12-20 JP JP2012277916A patent/JP6108210B2/en active Active
-
2013
- 2013-01-21 KR KR1020130006456A patent/KR101421881B1/en active IP Right Grant
- 2013-01-30 TW TW102103400A patent/TWI482256B/en active
- 2013-01-31 CN CN201310038870.3A patent/CN103227195B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI482256B (en) | 2015-04-21 |
CN103227195B (en) | 2015-10-28 |
CN103227195A (en) | 2013-07-31 |
KR20130088768A (en) | 2013-08-08 |
JP2013179265A (en) | 2013-09-09 |
TW201332076A (en) | 2013-08-01 |
KR101421881B1 (en) | 2014-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI443207B (en) | Multilayer wiring film for electronic parts and sputtering target forming sputtering target | |
TWI583801B (en) | A sputtering target for forming a wiring film for an electronic component and a coating layer material | |
TWI604066B (en) | A multilayer wiring film for electronic components and a sputtering target for forming a coating layer | |
JP6292471B2 (en) | Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation | |
JP4655281B2 (en) | Thin film wiring layer | |
TWI576454B (en) | Spraying target for forming wiring film and coating layer for electronic parts | |
JP6037208B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP6292466B2 (en) | Metal thin film and Mo alloy sputtering target material for metal thin film formation | |
JP6361957B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP6108210B2 (en) | Multilayer wiring film for electronic parts | |
JP2013038393A (en) | Multilayer wiring film for electronic component | |
JP4470147B2 (en) | Thin film wiring layer | |
JP2004238648A (en) | Ag-ALLOY FILM FOR ELECTRONIC PART, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR DEPOSITING Ag-ALLOY FILM FOR ELECTRONIC PART |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170223 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6108210 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |