[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6106389B2 - Pre-installed semiconductor sealing film - Google Patents

Pre-installed semiconductor sealing film Download PDF

Info

Publication number
JP6106389B2
JP6106389B2 JP2012201146A JP2012201146A JP6106389B2 JP 6106389 B2 JP6106389 B2 JP 6106389B2 JP 2012201146 A JP2012201146 A JP 2012201146A JP 2012201146 A JP2012201146 A JP 2012201146A JP 6106389 B2 JP6106389 B2 JP 6106389B2
Authority
JP
Japan
Prior art keywords
component
semiconductor
film
parts
sealing film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012201146A
Other languages
Japanese (ja)
Other versions
JP2014055245A (en
Inventor
吉田 真樹
真樹 吉田
里美 川本
里美 川本
慎 寺木
慎 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2012201146A priority Critical patent/JP6106389B2/en
Priority to TW102132545A priority patent/TWI593768B/en
Publication of JP2014055245A publication Critical patent/JP2014055245A/en
Application granted granted Critical
Publication of JP6106389B2 publication Critical patent/JP6106389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Epoxy Resins (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、先設置型半導体封止用フィルムに関し、詳細には、フリップチップボンディングで使用される先設置型半導体封止用フィルムに関する。   The present invention relates to a pre-installed semiconductor sealing film, and more particularly to a pre-installed semiconductor sealing film used in flip chip bonding.

近年、半導体装置のさらなる配線等の高密度化、高周波化に対応可能な半導体チップの実装方式として、フリップチップボンディングが利用されている。一般的に、フリップチップボンディングでは、半導体チップと基板の間隙を、アンダーフィルと呼ばれる材料で封止する。   In recent years, flip chip bonding has been used as a semiconductor chip mounting method that can cope with higher density and higher frequency of wiring and the like of semiconductor devices. Generally, in flip chip bonding, a gap between a semiconductor chip and a substrate is sealed with a material called underfill.

従来、フリップチップボンディングでは、半導体チップと基板をはんだ付け等で接合した後、半導体チップと基板の間隙に、熱硬化性の液状封止樹脂組成物であるアンダーフィル剤を充填して半導体装置を製造する方法が行われていた。近年では、まず、アンダーフィル剤を基板に塗布し、半導体チップを載せた後、アンダーフィル剤の硬化と、半導体チップと基板の接続とを同時に行うことにより、工程の短縮および硬化時間の短縮を可能とし、その結果、低コストかつ低エネルギーで半導体装置を作製できる、先供給型フリップチップボンディングプロセスが注目され、このプロセス向けの液状封止材樹脂組成物(以下、先供給型液状封止樹脂組成物という)が検討されている。   Conventionally, in flip chip bonding, after bonding a semiconductor chip and a substrate by soldering or the like, a gap between the semiconductor chip and the substrate is filled with an underfill agent, which is a thermosetting liquid sealing resin composition, and a semiconductor device is manufactured. The manufacturing method was performed. In recent years, first, after applying an underfill agent to a substrate and mounting a semiconductor chip, the underfill agent is cured and the semiconductor chip and the substrate are connected at the same time, thereby shortening the process and shortening the curing time. As a result, a pre-supplied flip chip bonding process that can manufacture a semiconductor device at low cost and low energy has attracted attention. A liquid encapsulant resin composition for this process (hereinafter referred to as a pre-supplied liquid encapsulating resin) Called composition).

しかしながら、先供給型液状封止樹脂組成物を用いたフリップチップボンディングプロセスでは、半導体チップ上面へのブリードが問題となっている。図1に、先供給型液状封止樹脂組成物を用いたフリップチップボンディングプロセスでのブリード現象を説明するための断面の模式図を示す。図1は、配線22を形成した基板21上に、先供給型液状封止樹脂組成物20を塗布した後、バンプ23を形成した半導体チップ24を載せた図である。このとき、先供給型液状封止樹脂組成物20の供給量が多くなってしまうと、半導体チップ24の側面に先供給型液状封止樹脂組成物20がはい上がるブリード20Bが発生し、さらには半導体チップ24の上面にまで先供給型液状封止樹脂組成物20がはい上がるブリード20Cが発生する、という問題がある。   However, in the flip chip bonding process using the pre-supplied liquid sealing resin composition, bleeding on the upper surface of the semiconductor chip is a problem. FIG. 1 is a schematic cross-sectional view for explaining a bleed phenomenon in a flip chip bonding process using a pre-supplied liquid sealing resin composition. FIG. 1 is a diagram in which a semiconductor chip 24 on which bumps 23 are formed is placed on a substrate 21 on which wirings 22 are formed after applying a pre-feed type liquid sealing resin composition 20. At this time, if the supply amount of the pre-feed type liquid sealing resin composition 20 is increased, a bleed 20B is generated on the side surface of the semiconductor chip 24, and the pre-feed type liquid sealing resin composition 20 rises. There is a problem that a bleed 20 </ b> C in which the pre-feed type liquid sealing resin composition 20 rises up to the upper surface of the semiconductor chip 24 is generated.

この問題を解決するために、先供給型液状封止樹脂組成物の替わりに、先設置型半導体封止用フィルムの使用する実装方法(以下、先設置型フリップチップ実装という)が検討されている。先設置型フリップチップ実装では、先設置型半導体封止用フィルムの厚さと面積により、先設置型半導体封止用フィルムの供給量を制御することができるため、先設置型半導体封止用フィルムの供給量の制御が容易になるためである。この先設置型半導体封止用フィルムには、一般的な封止材としての特性に加えて、可撓性や、フリップチップ実装のための、例えば60〜80℃での、プレヒート時に硬化しないことが要求される。なお、先供給型と同様に、先設置型フリップチップ実装も、低コストかつ低エネルギーでフリップチップ実装された半導体装置を作製することができる。   In order to solve this problem, a mounting method using a pre-installed semiconductor sealing film (hereinafter referred to as pre-installed flip chip mounting) is being considered instead of the pre-supplied liquid sealing resin composition. . In the pre-installation type flip chip mounting, the supply amount of the pre-installation type semiconductor encapsulation film can be controlled by the thickness and area of the pre-installation type semiconductor encapsulation film. This is because the supply amount can be easily controlled. In addition to the properties as a general sealing material, this pre-installed semiconductor sealing film may be flexible and not harden during preheating at, for example, 60 to 80 ° C. for flip chip mounting. Required. As in the case of the pre-feed type, the pre-installed flip chip mounting can produce a semiconductor device that is flip-chip mounted at low cost and low energy.

先設置型半導体封止用フィルムの成分としては、一般的な封止材としての要求を満たすためにエポキシ樹脂を用い、さらに、フィルムとした後に硬化させるために潜在性硬化剤を使用することが考えられる。潜在性硬化剤を使用したエポキシ樹脂組成物としては、(a)エポキシ樹脂、(b)エポキシ樹脂に溶解可能な熱可塑性樹脂、(c)70〜90℃で活性化する加熱硬化型の潜在性硬化剤から成るエポキシ樹脂組成物が開示されている(特許文献1)。しかしながら、このエポキシ樹脂組成物は、潜在性硬化剤が、70〜90℃で活性化するため、エポキシ樹脂組成物が硬化してしまい、先設置型半導体封止用フィルムとしては使用することができない。   As a component of the pre-installed semiconductor sealing film, an epoxy resin is used to satisfy the requirements as a general sealing material, and a latent curing agent may be used to cure after forming a film. Conceivable. The epoxy resin composition using a latent curing agent includes (a) an epoxy resin, (b) a thermoplastic resin that can be dissolved in the epoxy resin, and (c) a latent heat curing type that is activated at 70 to 90 ° C. An epoxy resin composition comprising a curing agent is disclosed (Patent Document 1). However, in this epoxy resin composition, since the latent curing agent is activated at 70 to 90 ° C., the epoxy resin composition is cured and cannot be used as a pre-installed semiconductor sealing film. .

一方、潜在性硬化剤としては、アミン系硬化剤(A)を含むコアと、及び該コアを被覆するカプセル膜を含み、該カプセル膜が、アミン系硬化剤(A)を硬化剤とするエポキシ樹脂の硬化物を含む、カプセル型硬化剤が開示されている(特許文献2)。しかしながら、このカプセル型硬化剤は、低温又は短時間の硬化条件であっても、高い接続信頼性、接着強度、及び高い封止性が得られることを目的とする(特許文献2の「発明の開示」の第2〜5行)ため、フリップチップ実装のためのプレヒート時に硬化してしまい、そのままでは、先設置型半導体封止用フィルムの潜在性硬化剤として使用することができない。   On the other hand, the latent curing agent includes an amine-based curing agent (A) -containing core, and a capsule film covering the core, and the capsule film has an amine-based curing agent (A) as a curing agent. A capsule-type curing agent containing a cured product of a resin is disclosed (Patent Document 2). However, this capsule-type curing agent is intended to obtain high connection reliability, adhesive strength, and high sealing performance even under low temperature or short-time curing conditions (see “Invention of Patent Document 2”). Therefore, it cannot be used as a latent curing agent for a pre-installed semiconductor sealing film as it is.

特開平6−9758号公報JP-A-6-9758 国際公開第2004/037885号International Publication No. 2004/037885

本発明は、フリップチップ実装のためのプレヒート時には硬化しないが、フリップチップ実装時には硬化するため、先設置型フリップチップ実装で使用可能な先設置型半導体封止用フィルムを提供することを課題とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a pre-installed semiconductor sealing film that can be used in pre-installation type flip chip mounting because it does not harden during pre-heating for flip chip mounting but cures during flip chip mounting. .

本発明は、以下の構成を有することによって上記問題を解決した先設置型半導体封止用フィルムに関する。
〔1〕(A)液状エポキシ樹脂、(B)熱可塑性樹脂、(C)硬化剤、(D)50〜100℃で加熱処理した潜在性硬化促進剤、および(E)無機フィラーを含むことを特徴とする、先設置型半導体封止用フィルム。
〔2〕(B)成分が、先設置型半導体封止用フィルム:100質量部に対して、10〜30質量部である、上記〔1〕記載の先設置型半導体封止用フィルム。
〔3〕(B)成分が、(A)成分と(B)成分の合計:100質量部に対して、15〜65質量部である、上記〔1〕または〔2〕記載の先設置型半導体封止用フィルム。
〔4〕(D)成分が、先設置型半導体封止用フィルム:100質量部に対して、2〜5質量部である、上記〔1〕〜〔3〕のいずれか記載の先設置型半導体封止用フィルム。
〔5〕(E)成分が、先設置型半導体封止用フィルム:100質量部に対して、40〜70質量部である、上記〔1〕〜〔4〕のいずれか記載の先設置型半導体封止用フィルム。
〔6〕上記〔1〕〜〔5〕のいずれか記載の先設置型半導体封止用フィルムを用いて製造された半導体装置。
The present invention relates to a pre-installed semiconductor sealing film that has solved the above problems by having the following configuration.
[1] It contains (A) a liquid epoxy resin, (B) a thermoplastic resin, (C) a curing agent, (D) a latent curing accelerator heat-treated at 50 to 100 ° C., and (E) an inorganic filler. A pre-installed film for semiconductor encapsulation, which is characterized.
[2] The pre-installed semiconductor sealing film according to [1], wherein the component (B) is 10 to 30 parts by mass with respect to 100 parts by mass of the pre-installed semiconductor sealing film.
[3] The preinstalled semiconductor according to [1] or [2], wherein the component (B) is 15 to 65 parts by mass with respect to 100 parts by mass of the total of the components (A) and (B). Film for sealing.
[4] The preinstalled semiconductor according to any one of [1] to [3], wherein the component (D) is 2 to 5 parts by mass with respect to 100 parts by mass of the preinstalled semiconductor sealing film. Film for sealing.
[5] The preinstalled semiconductor according to any one of [1] to [4], wherein the component (E) is 40 to 70 parts by mass with respect to 100 parts by mass of the preinstalled semiconductor sealing film. Film for sealing.
[6] A semiconductor device manufactured using the pre-installed semiconductor sealing film according to any one of [1] to [5].

本発明〔1〕によれば、フリップチップ実装のためのプレヒート時には硬化しないが、フリップチップ実装時には硬化するため、先設置型フリップチップ実装で使用可能な先設置型半導体封止用フィルムを提供することができる。   According to the present invention [1], there is provided a pre-installed semiconductor sealing film that is not cured during preheating for flip chip mounting but is cured during flip chip mounting. be able to.

本発明〔6〕によれば、低コストで、低エネルギーの先設置型フリップチップ実装で製造できる半導体装置を得ることができる。   According to the present invention [6], it is possible to obtain a semiconductor device that can be manufactured by low-cost, low-energy pre-installed flip chip mounting at low cost.

先供給型液状封止樹脂組成物を用いたフリップチップボンディングプロセスでのブリード現象を説明するための断面の模式図である。It is a schematic diagram of the cross section for demonstrating the bleed phenomenon in the flip chip bonding process using the pre-feed type liquid sealing resin composition. 半導体封止用フィルムを用いたフリップチップ実装を説明するための断面の模式図である。It is a schematic diagram of the cross section for demonstrating the flip chip mounting using the film for semiconductor sealing. 実施例1で用いた(D)成分のDSCでの測定結果を示す図である。It is a figure which shows the measurement result in DSC of (D) component used in Example 1. FIG. 実施例7の断面の走査型電子顕微鏡写真である。10 is a scanning electron micrograph of the cross section of Example 7. 実施例1の断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the cross section of Example 1. FIG. 比較例1の断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the cross section of Comparative Example 1. 基板と半導体チップとの接着強度の評価方法を説明する模式図である。It is a schematic diagram explaining the evaluation method of the adhesive strength of a board | substrate and a semiconductor chip.

本発明の先設置型半導体封止用フィルム(以下、半導体封止用フィルムという)は、(A)液状エポキシ樹脂、(B)熱可塑性樹脂、(C)硬化剤、(D)50〜100℃で加熱処理した潜在性硬化促進剤、および(E)無機フィラーを含むことを特徴とする。   The pre-installed semiconductor sealing film of the present invention (hereinafter referred to as a semiconductor sealing film) includes (A) a liquid epoxy resin, (B) a thermoplastic resin, (C) a curing agent, and (D) 50 to 100 ° C. And a latent curing accelerator heat-treated with (E) and an inorganic filler.

(A)成分は、半導体封止用フィルムに、硬化性、耐熱性、接着性を付与し、硬化後の半導体封止用フィルムに、耐久性を付与する。(A)成分としては、液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ナフタレン型エポキシ樹脂、液状アミノフェノール型エポキシ樹脂、液状ビフェニル型エポキシ樹脂、液状水添ビスフェノール型エポキシ樹脂、液状脂環式エポキシ樹脂、液状アルコールエーテル型エポキシ樹脂、液状環状脂肪族型エポキシ樹脂、液状フルオレン型エポキシ樹脂等が挙げられ、液状ナフタレン型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ビスフェノールA型エポキシ樹脂、液状アミノフェノール型エポキシ樹脂、および液状ビフェニル型エポキシ樹脂が、硬化性、耐熱性、接着性、耐久性の観点から好ましい。また、(A)成分のエポキシ当量は、反応性、硬化密度の観点から、80〜250g/eqが好ましい。市販品としては、新日鐵化学製ビスフェノールA型エポキシ樹脂(品名:YD−128)、新日鐵化学製ビスフェノールF型エポキシ樹脂(品名:YDF870GS)、三菱化学製アミノフェノール型エポキシ樹脂(グレード:JER630、JER630LSD)、DIC製ナフタレン型エポキシ樹脂(品名:HP4032D)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン製(品名:TSL9906)等が挙げられる。(A)成分は、単独でも2種以上を併用してもよい。   (A) A component provides sclerosis | hardenability, heat resistance, and adhesiveness to the film for semiconductor sealing, and provides durability to the film for semiconductor sealing after hardening. As component (A), liquid bisphenol A type epoxy resin, liquid bisphenol F type epoxy resin, liquid naphthalene type epoxy resin, liquid aminophenol type epoxy resin, liquid biphenyl type epoxy resin, liquid hydrogenated bisphenol type epoxy resin, liquid fat Cyclic epoxy resin, liquid alcohol ether type epoxy resin, liquid cyclic aliphatic type epoxy resin, liquid fluorene type epoxy resin, etc., liquid naphthalene type epoxy resin, liquid bisphenol F type epoxy resin, liquid bisphenol A type epoxy resin, A liquid aminophenol type epoxy resin and a liquid biphenyl type epoxy resin are preferred from the viewpoints of curability, heat resistance, adhesiveness, and durability. The epoxy equivalent of the component (A) is preferably 80 to 250 g / eq from the viewpoints of reactivity and curing density. Commercially available products include Nippon Steel Chemical's bisphenol A type epoxy resin (product name: YD-128), Nippon Steel Chemical's bisphenol F type epoxy resin (product name: YDF870GS), Mitsubishi Chemical's aminophenol type epoxy resin (grade: JER630, JER630LSD), DIC naphthalene type epoxy resin (product name: HP4032D), Momentive Performance Materials Japan (product name: TSL9906), and the like. (A) A component may be individual or may use 2 or more types together.

(B)成分は、半導体封止用フィルムに、可撓性を付与する。(B)成分としては、フェノキシ樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリエステル、ポリエーテル、ポリアミド、ポリエーテルエステルアミドが挙げられ、硬化後の半導体封止用フィルムの内部応力の緩和の観点から、フェノキシ樹脂が好ましい。ここで、フェノキシ樹脂は、二価フェノールとエピクロルヒドリンの直接反応による方法、または二価フェノールのジグリシジルエーテルと二価フェノールの付加重合反応により合成される高分子ポリヒドロキシポリエーテル(熱可塑性樹脂)であり、重量平均分子量が10,000以上の高分子をいう。重量平均分子量は、10,000〜100,000が好ましく、40,000〜80,000がより好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。   The component (B) imparts flexibility to the semiconductor sealing film. Examples of the component (B) include phenoxy resins, polyimide resins, polyethylene resins, polystyrene resins, polyesters, polyethers, polyamides, and polyether ester amides. From the viewpoint of alleviating internal stress of the cured semiconductor sealing film. A phenoxy resin is preferred. Here, the phenoxy resin is a polymer polyhydroxy polyether (thermoplastic resin) synthesized by a direct reaction of a dihydric phenol and epichlorohydrin or an addition polymerization reaction of a diglycidyl ether of a dihydric phenol and a dihydric phenol. Yes, a polymer having a weight average molecular weight of 10,000 or more. The weight average molecular weight is preferably 10,000 to 100,000, more preferably 40,000 to 80,000. Here, the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.

二価フェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタレン、ビスフェノールD、ビスフェノールE、ビスフェノールZ、ビスフェノールフルオレン、ビスクレゾールフルオレン、ビフェノール、カテコール、レゾルシン、ハイドロキノン、2,5−ジ−t−ブチルハイドロキノン、もしくはブロム化ビスフェノールA等のハロゲン化ビスフェノール類、10−(2,5−ジヒドロキシフェニル)−10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10−(2,7−ジヒドロキシナフチル)−10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、ジフェニルホスフィニルハイドロキノン、ジフェニルホスフィニルナフトキノン、シクロオクチレンホスフィニル−1,4−ベンゼンジオール、もしくはシクロオクチレンホスフィニル−1,4−ナフタレンジオール等のホスフィン含有フェノール類等が挙げられ、フェノキシ樹脂としては、これらの二価フェノール類とエピクロルヒドリンの直接反応によって製造されたもの、または上記二価フェノール類とそれらのジグリシジルエーテル化合物の付加重合反応によって合成されたもの等が挙げられる。(B)成分としては、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA−ビスフェノールF共重合型フェノキシ樹脂等が、より好ましい。(B)成分がフェノキシ樹脂であると、硬化後の先設置型半導体封止用フィルムの内部応力を緩和するため、半導体チップ−基板間の応力が緩和され、また、半導体チップ−基板間に(B)成分が存在することで密着性が向上する、と考えられる。(B)成分の市販品としては、新日鐵化学製フェノキシ樹脂(品名:YP−50S)等が挙げられる。(B)成分は、単独でも2種以上を併用してもよい。   Dihydric phenols include bisphenol A, bisphenol F, bisphenol S, dihydroxynaphthalene, bisphenol D, bisphenol E, bisphenol Z, bisphenol fluorene, biscresol fluorene, biphenol, catechol, resorcin, hydroquinone, 2,5-di-t. -Halogenated bisphenols such as butyl hydroquinone or brominated bisphenol A, 10- (2,5-dihydroxyphenyl) -10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2, 7-dihydroxynaphthyl) -10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinylhydroquinone, diphenylphosphinylnaphthoxy Phosphine-containing phenols such as cyclooctylene phosphinyl-1,4-benzenediol or cyclooctylene phosphinyl-1,4-naphthalenediol, and the like. Examples include those produced by direct reaction of phenols and epichlorohydrin, or those synthesized by addition polymerization reaction of the above dihydric phenols and their diglycidyl ether compounds. As the component (B), bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, bisphenol A-bisphenol F copolymer type phenoxy resin, and the like are more preferable. When the component (B) is a phenoxy resin, the stress between the semiconductor chip and the substrate is relieved to relieve the internal stress of the pre-installed semiconductor sealing film after curing, and between the semiconductor chip and the substrate ( It is considered that the adhesion is improved by the presence of the component B). (B) As a commercial item of a component, Nippon Steel Chemical phenoxy resin (product name: YP-50S) etc. are mentioned. (B) A component may be individual or may use 2 or more types together.

(C)成分は、(A)成分の硬化能を有するものであればよく、(C)成分としては、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤が挙げられ、反応性、安定性の観点から、フェノール系硬化剤が好ましい。フェノール系硬化剤としては、フェノールノボラック、クレゾールノボラック等が挙げられ、フェノールノボラックが好ましい。アミン系硬化剤としては、鎖状脂肪族アミン、環状脂肪族アミン、脂肪芳香族アミン、芳香族アミン等が挙げられ、芳香族アミンが好ましい。酸無水物系硬化剤としては、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸二無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、ドデセニル無水コハク酸、脂肪族二塩基酸ポリ無水物、クロレンド酸無水物、メチルブテニルテトラヒドロフタル酸無水物、アルキル化テトラヒドロフタル酸無水物、メチルハイミック酸無水物、アルケニル基で置換されたコハク酸無水物、グルタル酸無水物等が挙げられ、メチルブテニルテトラヒドロフタル酸無水物が好ましい。市販品としては、DIC製フェノール樹脂硬化剤(品名:KA−1160)、明和化成製フェノール硬化剤(品名:MEH8000、MEH8005)、日本化薬製アミン硬化剤(品名:カヤハードA−A)、三菱化学製酸無水物(グレード:YH306、YH307)、日立化成工業製3 or 4−メチル−ヘキサヒドロ無水フタル酸(品名:HN−5500)等が挙げられる。(C)成分は、単独でも2種以上を併用してもよい。   The component (C) only needs to have the curing ability of the component (A). Examples of the component (C) include phenolic curing agents, amine-based curing agents, and acid anhydride-based curing agents, and are reactive. From the viewpoint of stability, a phenolic curing agent is preferred. Examples of the phenolic curing agent include phenol novolak and cresol novolak, and phenol novolak is preferable. Examples of amine-based curing agents include chain aliphatic amines, cycloaliphatic amines, aliphatic aromatic amines, aromatic amines, and the like, and aromatic amines are preferred. Examples of acid anhydride curing agents include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, hydrogenated methylnadic acid anhydride, and trialkyltetrahydroanhydride. Phthalic acid, methylcyclohexene tetracarboxylic dianhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, ethylene glycol bisanhydro trimellitate, glycerin bis (anhydro trimelli Tate) Monoacetate, dodecenyl succinic anhydride, aliphatic dibasic acid polyanhydride, chlorendic anhydride, methylbutenyl tetrahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, methyl hymic anhydride, alkenyl In succinic anhydride substituted, glutaric anhydride and the like, methyl butenyl tetrahydrophthalic acid anhydride are preferred. Commercially available products include DIC phenol resin curing agents (product name: KA-1160), Meiwa Kasei phenol curing agents (product names: MEH8000, MEH8005), Nippon Kayaku amine curing agents (product name: Kayahard A-A), Mitsubishi. Examples thereof include chemical acid anhydrides (grade: YH306, YH307), 3 or 4-methyl-hexahydrophthalic anhydride (product name: HN-5500) manufactured by Hitachi Chemical. (C) A component may be individual or may use 2 or more types together.

(D)成分により、フリップチップ実装のためのプレヒート時には半導体封止用フィルムを硬化させないが、フリップチップ実装時には半導体封止用フィルムを硬化させることが可能となる。ここで、潜在性硬化促進剤は、ウレタン樹脂などをシェルに、硬化促進剤をコアにして、マイクロカプセル化されたものであり、エポキシ樹脂とマスターバッチ化されたものが、作業性、硬化速度、保存安定性の観点から、好ましい。エポキシ樹脂とマスターバッチ化された潜在性硬化促進剤を50〜100℃で加熱処理することにより、シェルのウレタン樹脂が適度に重合する、と考えられる。潜在性硬化促進剤の加熱処理温度が50℃未満では、プレヒート時での安定性、フリップチップ実装の接続性が十分ではなくなり、潜在性硬化促進剤の加熱処理温度が100℃を超えると、エポキシ樹脂と潜在性硬化促進剤とのマスターバッチが、半硬化または硬化してしまう。(D)成分の加熱処理温度は、60〜100℃であると好ましく、70〜100℃であると、より好ましく、70〜90℃であると、さらに好ましい。   The component (D) does not cure the semiconductor sealing film during preheating for flip chip mounting, but allows the semiconductor sealing film to be cured during flip chip mounting. Here, the latent curing accelerator is microencapsulated with urethane resin as the shell and curing accelerator as the core, and the epoxy resin and masterbatch are the workability and curing speed. From the viewpoint of storage stability, it is preferable. It is considered that the urethane resin in the shell is appropriately polymerized by heat-treating the epoxy resin and the masterbatch latent curing accelerator at 50 to 100 ° C. If the heat treatment temperature of the latent curing accelerator is less than 50 ° C., the stability during preheating and the connectivity of flip chip mounting are not sufficient, and if the heat treatment temperature of the latent curing accelerator exceeds 100 ° C., epoxy The master batch of the resin and the latent curing accelerator is semi-cured or cured. (D) The heat processing temperature of a component is preferable in it being 60-100 degreeC, it is more preferable in it being 70-100 degreeC, and it is further more preferable in it being 70-90 degreeC.

(D)成分の加熱処理時間は、6〜72時間であると好ましい。なお、(D)成分の加熱処理温度が50℃の場合には、48時間以上であると好ましく、(D)成分の加熱処理温度が100℃の場合には、48時間以下であると好ましく、12時間以下であると、より好ましい。   (D) It is preferable that the heat processing time of a component is 6 to 72 hours. In addition, when the heat processing temperature of (D) component is 50 degreeC, it is preferable that it is 48 hours or more, and when the heat processing temperature of (D) component is 100 degreeC, it is preferable that it is 48 hours or less, It is more preferable that it is 12 hours or less.

また、(D)成分は、反応開始温度が、110〜150℃であると好ましく、120〜142℃であると、より好ましい。ここで、反応開始温度は、DSC(示差走査熱量測定)で測定する。ここで、反応開始温度は、(D)成分が半導体封止用フィルム中で、潜在性硬化剤が硬化反応を開始させる温度をいい、DSCでは、(D)成分の発熱が開始する温度として観察される。   Moreover, (D) component has preferable reaction start temperature in 110-150 degreeC, and it is more preferable in it being 120-142 degreeC. Here, the reaction start temperature is measured by DSC (differential scanning calorimetry). Here, the reaction start temperature is a temperature at which the latent curing agent starts a curing reaction in the film for semiconductor encapsulation (D), and is observed as a temperature at which the exotherm of the (D) component starts in DSC. Is done.

潜在性硬化促進剤としては、ウレタン樹脂などでマイクロカプセル化されたイミダゾール化合物硬化促進剤が、保存安定性の観点から好ましく、液状ビスフェノールA型等の液状エポキシ樹脂中に分散され、マスターバッチ化された、マイクロカプセル化イミダゾール化合物硬化促進剤が、作業性、硬化速度、保存安定性の点からより好ましい。イミダゾール硬化剤としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)]エチル−s−トリアジン、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール等を挙げることができ、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)]エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1)−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン等が、硬化速度、作業性、耐湿性の観点から好ましい。   As the latent curing accelerator, an imidazole compound curing accelerator microencapsulated with a urethane resin or the like is preferable from the viewpoint of storage stability, and is dispersed in a liquid epoxy resin such as liquid bisphenol A to be masterbatched. Further, a microencapsulated imidazole compound curing accelerator is more preferable from the viewpoints of workability, curing speed, and storage stability. Examples of imidazole curing agents include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2,4- Diamino-6- [2'-methylimidazolyl- (1 ')] ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2, 3-dihydro-1H-pyrrolo [1,2-a] benzimidazole can be mentioned, and 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)] ethyl-s-triazine, 2 , 4-Diamino-6- [2'-undecylimidazolyl- (1) -ethyl-s-triazine, 2, - diamino-6- [2'-ethyl-4'-methylimidazolyl- - (1 ')] - ethyl -s- triazine, and curing rate, workability, preferable from the viewpoint of moisture resistance.

エポキシ樹脂とマスターバッチ化された潜在性硬化促進剤の市販品としては、旭化成イーマテリアルズ製マイクロカプセル化イミダゾール化合物硬化剤(品名:ノバキュア4982(極厚型)、ノバキュア3932(中厚型)、ノバキュア4921(薄型)、HX3722、HXA3932HP)等が挙げられ、旭化成イーマテリアルズ製マイクロカプセル化イミダゾール化合物硬化剤(品名:ノバキュア4982(極厚型))が好ましい。ここで、極厚型は、ゲル化温度が140〜150℃の潜在性硬化促進剤であり、中厚型は、ゲル化温度が100〜110℃の潜在性硬化促進剤であり、薄型は、ゲル化温度が70〜80℃の潜在性硬化促進剤である。ゲル化温度は、JIS K5600―9−1に準拠してゲルタイム5分未満の温度を測定する。(D)成分は、単独でも2種以上を併用してもよい。   As a commercial product of the epoxy resin and the masterbatch latent latent accelerator, a microencapsulated imidazole compound curing agent manufactured by Asahi Kasei E-materials (product name: NovaCure 4982 (very thick type), NovaCure 3932 (medium thickness type), NovaCure 4921 (thin type), HX3722, HXA3932HP), and the like, and a microencapsulated imidazole compound curing agent (product name: NovaCure 4982 (extra-thick type)) manufactured by Asahi Kasei E-Materials is preferred. Here, the very thick type is a latent curing accelerator having a gelation temperature of 140 to 150 ° C., the middle thickness type is a latent curing accelerator having a gelation temperature of 100 to 110 ° C., and the thin type is It is a latent curing accelerator having a gelation temperature of 70 to 80 ° C. The gelation temperature is measured at a gel time of less than 5 minutes according to JIS K5600-9-1. (D) A component may be individual or may use 2 or more types together.

(E)成分により、硬化後の半導体封止用フィルムの弾性率および熱膨張係数を、調整する。(E)成分としては、コロイダルシリカ、疎水性シリカ、微細シリカ、ナノシリカ等のシリカフィラー、窒化アルミニウム、アルミナ、窒化ケイ素、窒化ホウ素が挙げられ、汎用性、電気特性などの観点からシリカフィラーが好ましい。また、(E)成分の平均粒径(粒状でない場合は、その平均最大径)は、特に限定されないが、0.05〜50μmであることが、半導体封止用フィルム中にフィラーを均一に分散させるうえで好ましい。0.05μm未満だと、実装時に半導体封止用フィルムの粘度が上昇して、流動性が悪化するおそれがある。50μm超だと、半導体封止用フィルム中にフィラーを均一に存在させることが困難になり、かつ半導体と基板の接続が困難になるおそれがある。(E)成分の平均粒径は、0.1〜30μmであることがより好ましく、0.1〜5μmであることがさらに好ましい。市販品としては、アドマテックス製シリカ(製品名:SO−E2、平均粒径:0.5μm)、DENKA製シリカ(品名:FB−5D、平均粒径:5μm)、扶桑化学工業製(製品名:SP03B、平均粒径:300nm)等が挙げられる。ここで、(E)成分の平均粒径は、動的光散乱式ナノトラック粒度分析計により測定する。(E)成分は、単独でも2種以上を併用してもよい。   (E) The elasticity modulus and thermal expansion coefficient of the film for semiconductor sealing after hardening are adjusted with a component. Examples of the component (E) include silica fillers such as colloidal silica, hydrophobic silica, fine silica, and nano silica, aluminum nitride, alumina, silicon nitride, and boron nitride. Silica filler is preferable from the viewpoint of versatility and electrical characteristics. . Moreover, the average particle diameter of the component (E) (if it is not granular, the average maximum diameter) is not particularly limited, but is 0.05 to 50 μm, and the filler is uniformly dispersed in the film for semiconductor encapsulation It is preferable to make it. When the thickness is less than 0.05 μm, the viscosity of the semiconductor sealing film increases during mounting, and the fluidity may be deteriorated. If it exceeds 50 μm, it may be difficult to make the filler uniformly present in the semiconductor sealing film, and the connection between the semiconductor and the substrate may be difficult. (E) As for the average particle diameter of a component, it is more preferable that it is 0.1-30 micrometers, and it is further more preferable that it is 0.1-5 micrometers. Commercially available products include silica manufactured by Admatex (product name: SO-E2, average particle size: 0.5 μm), silica made by DENKA (product name: FB-5D, average particle size: 5 μm), manufactured by Fuso Chemical Industries (product name) : SP03B, average particle diameter: 300 nm) and the like. Here, the average particle diameter of the component (E) is measured by a dynamic light scattering nanotrack particle size analyzer. (E) A component may be individual or may use 2 or more types together.

半導体封止用フィルムは、(B)成分を、半導体封止用フィルム:100質量部に対して、7〜30質量部含むと好ましく、10〜30質量部含むと、より好ましい。7質量部以上であれば、半導体封止用フィルムの可撓性が十分になり、30質量部以下であると、半導体封止用フィルムに十分に可撓性があるからである。30重量部以上であると、半導体封止フィルムが脆くなり易く、可撓性があるフィルム状を保つことが困難になり易い。   The film for semiconductor encapsulation preferably contains the component (B) in an amount of 7 to 30 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the semiconductor encapsulation film. This is because if the amount is 7 parts by mass or more, the semiconductor sealing film has sufficient flexibility, and if it is 30 parts by mass or less, the semiconductor sealing film has sufficient flexibility. If it is 30 parts by weight or more, the semiconductor sealing film tends to be brittle and it is difficult to maintain a flexible film shape.

また、半導体封止用フィルムは、(B)成分が、(A)成分と(B)成分の合計:100質量部に対して、15〜65質量部であると好ましく、15〜55質量部であると、より好ましい。15質量部以上であれば、半導体封止用フィルムの可撓性が十分になり、65質量部以下であると、半導体封止用フィルムに十分に可撓性があるからである。   Moreover, as for the film for semiconductor sealing, as for (B) component, it is preferable in it being 15-65 mass parts with respect to the sum total: 100 mass parts of (A) component and (B) component. More preferably. This is because if the amount is 15 parts by mass or more, the flexibility of the semiconductor sealing film is sufficient, and if it is 65 parts by mass or less, the semiconductor sealing film is sufficiently flexible.

(C)成分の硬化剤当量は、(A)成分のエポキシ当量の0.1〜1.1倍であると好ましく、0.1倍未満では、(A)成分との硬化が十分では無くなり易く、接着が不十分になり易い。一方、(C)成分の硬化剤当量が1.1倍を超えると、(A)成分との硬化が不十分になり易く、ボイド発生が起き易くなってしまう。また、(C)成分の硬化剤当量は、(B)成分の官能基当量の0.1〜0.5倍である、と好ましく、0.1倍未満では、硬化が不十分になり易く、0.5倍を超えると硬化後、硬く脆くなり易くなってしまう。以上から、(C)成分の硬化剤当量は、(A)成分のエポキシ当量と(B)成分の官能基当量の合計に対して、0.2〜1.6倍であると、好ましい。ここで、(C)成分の硬化剤当量は、例えば、(C)成分がフェノール系硬化剤のときにはフェノール当量、アミン系硬化剤のときにはアミン当量、酸無水物系硬化剤のときには酸無水当量である。   The curing agent equivalent of the component (C) is preferably 0.1 to 1.1 times the epoxy equivalent of the component (A), and if it is less than 0.1 times, the curing with the component (A) tends to be insufficient. Adhesion tends to be insufficient. On the other hand, when the curing agent equivalent of the component (C) exceeds 1.1 times, curing with the component (A) tends to be insufficient, and voids are likely to occur. Further, the curing agent equivalent of the component (C) is preferably 0.1 to 0.5 times the functional group equivalent of the component (B), and if it is less than 0.1 times, curing tends to be insufficient. If it exceeds 0.5 times, it tends to be hard and brittle after curing. From the above, the curing agent equivalent of the component (C) is preferably 0.2 to 1.6 times the total of the epoxy equivalent of the component (A) and the functional group equivalent of the component (B). Here, the curing agent equivalent of the component (C) is, for example, a phenol equivalent when the component (C) is a phenolic curing agent, an amine equivalent when the component is an amine curing agent, and an acid anhydride equivalent when the component is an acid anhydride curing agent. is there.

(D)成分は、フリップチップ実装のためのプレヒート時には半導体封止用フィルムを硬化させないが、フリップチップ実装時には半導体封止用フィルムを硬化させるため、半導体封止用フィルム:100質量部に対して、2〜5質量部であると好ましい。なお、潜在性硬化剤が、エポキシ樹脂とマスターバッチ化されている場合には、(D)成分の好ましい量は、当然、マスターバッチ中の潜在性硬化剤の量で計算する。   The component (D) does not cure the semiconductor sealing film during preheating for flip chip mounting, but cures the semiconductor sealing film during flip chip mounting. 2-5 parts by mass is preferable. In addition, when the latent hardening | curing agent is masterbatched with the epoxy resin, naturally the preferable amount of (D) component calculates with the quantity of the latent hardening | curing agent in a masterbatch.

(E)成分は、硬化後の半導体封止用フィルムの弾性率と熱膨張係数の観点から、先設置型半導体封止用フィルム:100質量部に対して、30〜80質量部であると好ましく、40〜70質量部であると、より好ましい。   (E) From a viewpoint of the elasticity modulus and thermal expansion coefficient of the film for semiconductor sealing after hardening, it is preferable in it being 30-80 mass parts with respect to 100 mass parts of pre-installed type semiconductor sealing films. 40-70 parts by mass is more preferable.

半導体封止用フィルムには、本発明の目的を損なわない範囲で、更に必要に応じ、配線やバンプのマイグレーション防止のためのイオントラップ剤、ロジン系フラックス剤、酸無水物系、ヒドラジド系、カルボン酸系等のフラックス剤、シランカップリング剤等のカップリング剤、カーボンブラックなどの顔料、染料、消泡剤、酸化防止剤、レベリング剤、揺変剤、応力緩和剤、その他の添加剤等を配合することができる。特に、カーボンブラックは、隠蔽性の観点から添加されることが好ましい。なお、フリップチップ実装時のボイド抑制の観点から、有機溶媒、特に低沸点の有機溶媒は含有させないことが好ましい。   In the film for semiconductor encapsulation, an ion trap agent for preventing migration of wiring and bumps, rosin flux agent, acid anhydride, hydrazide, carbon, and the like, as long as the object of the present invention is not impaired. Acid-based fluxing agents, coupling agents such as silane coupling agents, pigments such as carbon black, dyes, antifoaming agents, antioxidants, leveling agents, thixotropic agents, stress relaxation agents, other additives, etc. Can be blended. In particular, carbon black is preferably added from the viewpoint of concealment. From the viewpoint of suppressing voids during flip chip mounting, it is preferable not to include an organic solvent, particularly a low boiling point organic solvent.

半導体封止用フィルムの厚さは、フリップチップと基板との間隙、ならびに半導体チップのバンプの高さと基板の配線の高さとの観点から、10〜100μmであると好ましい。   The thickness of the semiconductor sealing film is preferably 10 to 100 μm from the viewpoint of the gap between the flip chip and the substrate, and the height of the bump of the semiconductor chip and the height of the wiring on the substrate.

半導体封止用フィルムの溶融粘度は、貼り付け時のボイド抑制、フリップチップ実装時のボイド抑制の観点から、10,000〜40,000Pa・sであると好ましい。   The melt viscosity of the semiconductor sealing film is preferably 10,000 to 40,000 Pa · s from the viewpoint of suppressing voids at the time of bonding and suppressing voids at the time of flip chip mounting.

半導体封止用フィルムは、支持体上に、半導体封止用フィルム形成用組成物を塗布し、次いで乾燥させて形成することができる。支持体としては、ポリエチレンテレフタレート(PET)フィルム等が挙げられる。   The film for semiconductor encapsulation can be formed by applying a film-forming composition for semiconductor encapsulation on a support and then drying it. Examples of the support include a polyethylene terephthalate (PET) film.

半導体封止用フィルム形成用組成物は、例えば、(A)成分〜(E)成分およびその他の添加剤等を同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。   The composition for forming a film for semiconductor encapsulation, for example, stirs, melts, mixes, and disperses components (A) to (E) and other additives simultaneously or separately, with heat treatment as necessary. Can be obtained. The mixing, stirring, dispersing and the like devices are not particularly limited, and a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Moreover, you may use combining these apparatuses suitably.

支持体上に、半導体封止用フィルム形成用組成物を塗布する方法は、特に限定されないが、薄膜化・膜厚制御の点からは、マイクログラビア法、スロットダイ法、ドクターブレード法が好ましい。   The method for applying the semiconductor sealing film-forming composition on the support is not particularly limited, but the microgravure method, the slot die method, and the doctor blade method are preferable from the viewpoint of thinning and film thickness control.

支持体上に塗布された半導体封止用フィルム形成用組成物の乾燥条件は、塗布の厚み等に応じて、適宜、設定することができ、例えば、60〜120℃で、1〜30分程度とすることができる。このようにして得られた半導体封止用フィルムは、未硬化の状態である。   The drying conditions of the film forming composition for encapsulating a semiconductor applied on a support can be appropriately set according to the thickness of the application, for example, at 60 to 120 ° C. for about 1 to 30 minutes. It can be. The semiconductor sealing film thus obtained is in an uncured state.

図2に、半導体封止用フィルムを用いた先設置型フリップチップ実装を説明するための断面の模式図を示す。図2(A)に示すように、まず、配線12が形成された基板11を準備する。次に、図2(B)に示すように、配線12が形成された基板11上に、半導体封止用フィルム10を設置し、プレヒートする。この後、図2(C)に示すように、基板11上の配線12に対応するように、半導体チップ14に形成されたバンプ13を位置合わせする。ここで、配線12と、バンプ13には、共に、表面にはんだ層が形成されている。最後に、図2(D)に示すように、基板11上の配線12と、半導体チップ14上のバンプ13を接触させた後、加熱し、基板11上の配線12と半導体チップ14上のバンプ13とのはんだ接合と、半導体封止用フィルムの硬化を同時に行う。半導体封止用フィルムは、硬化した先設置型半導体封止用フィルム10Aになる。   In FIG. 2, the schematic diagram of the cross section for demonstrating the front-installation type flip chip mounting using the film for semiconductor sealing is shown. As shown in FIG. 2A, first, a substrate 11 on which wirings 12 are formed is prepared. Next, as shown in FIG. 2B, the semiconductor sealing film 10 is placed on the substrate 11 on which the wiring 12 is formed, and preheated. Thereafter, as shown in FIG. 2C, the bumps 13 formed on the semiconductor chip 14 are aligned so as to correspond to the wirings 12 on the substrate 11. Here, both the wiring 12 and the bump 13 have a solder layer formed on the surface thereof. Finally, as shown in FIG. 2D, after the wiring 12 on the substrate 11 and the bump 13 on the semiconductor chip 14 are brought into contact with each other, the wiring 12 on the substrate 11 and the bump on the semiconductor chip 14 are heated. 13 and the semiconductor sealing film are simultaneously cured. The semiconductor sealing film becomes the cured first-installation type semiconductor sealing film 10A.

半導体封止用フィルムのフリップチップ実装時の硬化は、180〜300℃で、5〜30秒間行うことが好ましく、特に15秒以内で硬化させると生産性向上の観点から好ましい。   Curing at the time of flip-chip mounting of the semiconductor sealing film is preferably performed at 180 to 300 ° C. for 5 to 30 seconds, and particularly preferably within 15 seconds from the viewpoint of improving productivity.

このように、本発明の先設置型半導体封止用フィルムは、フリップチップ実装のためのプレヒート時には硬化しないが、フリップチップ実装時には硬化するため、先設置型フリップチップ実装に使用可能である。また、実装後に加熱工程を入れ、半導体封止フィルムの硬化を促進させることもできる。   Thus, the pre-installed semiconductor sealing film of the present invention is not cured at the time of preheating for flip chip mounting, but is cured at the time of flip chip mounting, so that it can be used for the pre-installed flip chip mounting. Moreover, a heating process can be put after mounting and the hardening of a semiconductor sealing film can also be accelerated | stimulated.

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。   The present invention will be described with reference to examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and mass% unless otherwise specified.

〔実施例1〜20、比較例1〜5、参考例1〜3〕
表1〜3に示す配合で、半導体封止用フィルム形成用組成物を調整した。メチルエチルケトンに、(A)〜(D)成分を混合した後、(E)成分を混合し、半導体封止用フィルム形成用組成物を得た。得られた半導体封止用フィルム形成用組成物を、ドクターブレードを用いて塗布した後、乾燥して、厚さ:50μmの半導体封止用フィルムを得た。また、表1〜3に、NETZSCH製DSC(型番:DSC204 F1 Phoenix)で測定した(D)成分の反応開始温度を示す。なお、表3で、(D)成分の代わりにイミダゾールを使用した比較例4、5では、反応開始温度または活性開始温の欄に、イミダゾールの活性開始温度を示す。ここで、活性開始温度は、イミダゾールが単体で活性化する温度をいい、DSCで発熱が開始する温度から測定した。図3に、実施例1で用いた(D)成分のDSCでの測定結果を示す。図3の破線は、ベースラインを示す。図3からわかるように、実施例1で用いた(D)成分の発熱開始温度は、110℃であった。
[Examples 1 to 20, Comparative Examples 1 to 5, Reference Examples 1 to 3]
The composition for film formation for semiconductor sealing was adjusted with the composition shown in Tables 1-3. The components (A) to (D) were mixed with methyl ethyl ketone, and then the component (E) was mixed to obtain a film forming composition for semiconductor encapsulation. The obtained semiconductor sealing film-forming composition was applied using a doctor blade and then dried to obtain a semiconductor sealing film having a thickness of 50 μm. In addition, Tables 1 to 3 show the reaction start temperatures of the component (D) measured by a NETZSCH DSC (model number: DSC204 F1 Phoenix). In Table 3, in Comparative Examples 4 and 5 using imidazole instead of the component (D), the activity start temperature of imidazole is shown in the column of reaction start temperature or activity start temperature. Here, the activation start temperature refers to the temperature at which imidazole is activated alone, and was measured from the temperature at which DSC started to generate heat. In FIG. 3, the measurement result in DSC of (D) component used in Example 1 is shown. A broken line in FIG. 3 indicates a baseline. As can be seen from FIG. 3, the heat generation start temperature of the component (D) used in Example 1 was 110 ° C.

〔先設置時の安定性の評価〕
先設置型フリップチップ実装での先設置時の安定性を評価するために、半導体封止用フィルムの最低溶融粘度(初期の最低溶融粘度)を、Viscoanalyser製VAR100により測定した。次に、70℃で3時間保持した後の最低溶融粘度を、同様に測定した。先設置時の安定性(単位:%)を、下記式:
(先設置時の安定性)=(3時間後の最低溶融粘度)/(初期の最低溶融粘度)
×100
により求めた。設置時の安定は、160%以下であれば、良好である。表1〜表3に、設置時の安定性の評価結果を示す。
[Evaluation of stability during installation]
In order to evaluate the stability at the time of pre-installation in the pre-installation type flip chip mounting, the minimum melt viscosity (initial minimum melt viscosity) of the semiconductor sealing film was measured by VAR100 manufactured by Viscoanalyzer. Next, the minimum melt viscosity after being held at 70 ° C. for 3 hours was similarly measured. The stability at the time of installation (unit:%) is expressed by the following formula:
(Stability at installation) = (Minimum melt viscosity after 3 hours) / (Initial minimum melt viscosity)
× 100
Determined by The stability at the time of installation is good if it is 160% or less. Tables 1 to 3 show the evaluation results of stability at the time of installation.

〔基板上の配線と半導体チップ上のバンプとの接続性の評価〕
30μmのバンプが、50μmピッチで544個形成された幅:7mm、長さ:7mm、厚さ:125μmのSiチップを準備した。バンプは、Cuピラーにはんだキャップされたバンプである。また、シリコンチップのバンプパターンに対応した配線を有する基板厚さ:350μmのガラスエポキシ基板を準備した。この配線を有する基板に半導体封止用フィルムを載置し、70℃でプレヒートを行った。プレヒートされた基板上の配線の上に、フリップチップボンダーを用いて、Siチップ上のバンプと、基板上の配線を、荷重30N、200℃で1.2秒接触させた後、昇温し、280℃で10秒保持した後、200℃まで冷却して、フリップチップボンダーから取り出し、評価サンプルを作製した。Siチップ上のバンプと、基板上の配線間の抵抗値をアジレント・テクノロジー社製マルチメーター(型番:HP34401A)で測定し、抵抗値が設計値の1.1倍未満である場合を「◎」、設計値の1.1倍以上であるが測定器の測定範囲内であった場合を「○」、測定器の測定レンジ外であるため、測定できなかった場合を「×」とした。ここで、抵抗値の設計値は、29Ωであった。表1〜表3に、基板上の配線と半導体チップ上のバンプとの接続性の評価結果(表には、接続性と記載した)を示す。
[Evaluation of connectivity between wiring on substrate and bump on semiconductor chip]
A Si chip having a width of 7 mm, a length of 7 mm, and a thickness of 125 μm in which 544 bumps of 30 μm were formed at a pitch of 50 μm was prepared. The bumps are bumps that are solder-capped with Cu pillars. Further, a glass epoxy substrate having a substrate thickness: 350 μm having wiring corresponding to the bump pattern of the silicon chip was prepared. A film for sealing a semiconductor was placed on the substrate having the wiring and preheated at 70 ° C. Using a flip chip bonder, the bump on the Si chip and the wiring on the substrate were brought into contact with each other at a load of 30 N and 200 ° C. for 1.2 seconds on the preheated wiring on the substrate, and then the temperature was raised. After maintaining at 280 ° C. for 10 seconds, the sample was cooled to 200 ° C. and taken out from the flip chip bonder to prepare an evaluation sample. When the resistance value between the bump on the Si chip and the wiring on the substrate is measured with a multimeter (model number: HP34001A) manufactured by Agilent Technologies, the resistance value is less than 1.1 times the design value. The case where it was 1.1 times or more of the design value but was within the measurement range of the measuring device was “◯”, and the case where it was not possible to measure because it was outside the measuring range of the measuring device was “×”. Here, the design value of the resistance value was 29Ω. Tables 1 to 3 show the evaluation results of the connectivity between the wiring on the substrate and the bumps on the semiconductor chip (shown as connectivity in the table).

図4に、実施例7の断面の走査型電子顕微鏡写真を示す。図5に、実施例1の断面の走査型電子顕微鏡写真を示す。図6に、比較例1の断面の走査型電子顕微鏡写真を示す。図4は、この接続性評価の結果が「◎」の場合であり、図5は、「○」の場合であり、図6は「×」の場合である。図6では、基板上の配線と半導体チップ上のバンプとの間に、半導体封止用フィルムが残存していた。   In FIG. 4, the scanning electron micrograph of the cross section of Example 7 is shown. In FIG. 5, the scanning electron micrograph of the cross section of Example 1 is shown. In FIG. 6, the scanning electron micrograph of the cross section of the comparative example 1 is shown. FIG. 4 shows a case where the connectivity evaluation result is “◎”, FIG. 5 shows a case where “◯”, and FIG. 6 shows a case where “×”. In FIG. 6, the semiconductor sealing film remains between the wiring on the substrate and the bump on the semiconductor chip.

〔ボイド発生率の評価〕
基板上の配線と半導体チップ上のバンプとの接続性の評価のために作製した評価サンプルを、超音波顕微鏡で測定し、ボイド発生率の評価を行った。ボイド発生率(単位:%)は、下記式:
(ボイド発生率)=(ボイド面積)/(チップ面積)×100
で求めた。表1〜表3に、ボイド発生率の評価結果を示す。
[Evaluation of void generation rate]
An evaluation sample prepared for evaluating the connectivity between the wiring on the substrate and the bump on the semiconductor chip was measured with an ultrasonic microscope, and the void generation rate was evaluated. The void generation rate (unit:%) is expressed by the following formula:
(Void occurrence rate) = (Void area) / (Chip area) × 100
I asked for it. Tables 1 to 3 show the evaluation results of the void generation rate.

〔基板と半導体チップとの接着強度の評価〕
基板上の配線と半導体チップ上のバンプとの接続性の評価のために作製した評価サンプルを用いた。図7に、基板と半導体チップとの接着強度の評価方法を説明する模式図を示す。基板31として、150℃で20分乾燥したFR−4基板と、半導体チップ34として、2mm角のSiN膜付きSiチップを準備した。1mm角の半導体封止用フィルムを、基板31上に載置して、半導体封止用フィルム上に、半導体チップ34をマウントした。この後、160℃で60分間、半導体封止用フィルムを硬化させ、硬化した半導体封止用フィルム30Aを形成した。アイコ−エンジニアリング製卓上強度試験器(型番:1605HTP)を使用して、剪断強度(単位:N/mm)を測定した。剪断強度は、3.0N/mm以上であると良好である。表1〜表3に、基板と半導体チップとの剪断強度(表には接着強度と記載した)の評価結果を示す。
[Evaluation of bonding strength between substrate and semiconductor chip]
An evaluation sample prepared for evaluating the connectivity between the wiring on the substrate and the bump on the semiconductor chip was used. FIG. 7 is a schematic diagram illustrating a method for evaluating the adhesive strength between the substrate and the semiconductor chip. An FR-4 substrate dried at 150 ° C. for 20 minutes as a substrate 31 and a 2 mm square SiN film-attached Si chip as a semiconductor chip 34 were prepared. A 1 mm square semiconductor sealing film was placed on the substrate 31, and the semiconductor chip 34 was mounted on the semiconductor sealing film. Thereafter, the semiconductor sealing film was cured at 160 ° C. for 60 minutes to form a cured semiconductor sealing film 30A. Shear strength (unit: N / mm 2 ) was measured using an Aiko-Engineering tabletop strength tester (model number: 1605HTP). The shear strength is preferably 3.0 N / mm 2 or more. Tables 1 to 3 show the evaluation results of the shear strength (described as adhesive strength in the table) between the substrate and the semiconductor chip.

試験結果をまとめると、実施例1〜21の全てで、先設置時の安定性、基板上の配線と半導体チップ上のバンプとの接続性、ボイド発生率、基板と半導体チップとの接着強度の評価結果が良好であった。特に、実施例2〜18、20では、基板上の配線と半導体チップ上のバンプとの接続性の評価結果が、非常に良好であった。これに対して、潜在性硬化促進剤を40℃で加熱処理した比較例1は、先設置時の安定性と接続性が悪く、潜在性硬化促進剤を110℃で加熱処理した比較例2は、エポキシ樹脂と潜在性硬化剤とのマスターバッチを加熱処理したときに、マスターバッチが半硬化してしまい、半導体封止用フィルム形成用組成物の混合ができなかった。加熱処理をしていない潜在性硬化促進剤を使用した比較例3は、先設置時の安定性と接続性が悪かった。参考例1は、エポキシ樹脂と潜在性硬化剤とのマスターバッチを加熱処理したときに、マスターバッチが硬化してしまい、半導体封止用フィルム形成用組成物の混合ができなかった。(D)成分の代わりにイミダゾール1を用いた比較例4は、ボイド発生率が高かった。(D)成分の代わりにイミダゾール2を用いた比較例5は、基板上の配線と半導体チップ上のバンプとの接続性が悪く、先設置時の安定性の評価試験で半硬化してしまった。(D)成分として、50℃で12時間の加熱処理をした潜在性硬化剤を用いた参考例2は、先設置時の安定性と接続性が悪かった。   To summarize the test results, in all of Examples 1 to 21, the stability of the previous installation, the connectivity between the wiring on the substrate and the bump on the semiconductor chip, the void generation rate, the adhesive strength between the substrate and the semiconductor chip. The evaluation result was good. In particular, in Examples 2 to 18 and 20, the evaluation results of the connectivity between the wiring on the substrate and the bump on the semiconductor chip were very good. In contrast, Comparative Example 1 in which the latent curing accelerator was heat-treated at 40 ° C. had poor stability and connectivity at the time of installation, and Comparative Example 2 in which the latent curing accelerator was heat-treated at 110 ° C. When the master batch of the epoxy resin and the latent curing agent was heat-treated, the master batch was semi-cured, and the film forming composition for semiconductor encapsulation could not be mixed. Comparative Example 3 using a latent curing accelerator that was not heat-treated had poor stability and connectivity at the time of installation. In Reference Example 1, when the master batch of the epoxy resin and the latent curing agent was heat-treated, the master batch was cured, and the composition for forming a film for semiconductor encapsulation could not be mixed. In Comparative Example 4 using imidazole 1 instead of the component (D), the void generation rate was high. In Comparative Example 5 using imidazole 2 instead of the component (D), the connectivity between the wiring on the substrate and the bump on the semiconductor chip was poor, and it was semi-cured in the stability evaluation test at the time of installation. . Reference Example 2 using a latent curing agent that was heat-treated at 50 ° C. for 12 hours as the component (D) had poor stability and connectivity at the time of previous installation.

本発明の先設置型半導体封止用フィルムは、フリップチップ実装のためのプレヒート時には硬化しないが、フリップチップ実装時には硬化するため、先設置型フリップチップ実装に使用可能である。このため、本発明の先設置型半導体封止用フィルムを用いることにより、低コストで、低エネルギーの先設置型フリップチップ実装で製造された半導体装置を得ることができる。   The pre-installed semiconductor sealing film of the present invention is not cured during preheating for flip chip mounting, but is cured during flip chip mounting, and thus can be used for pre-installed flip chip mounting. For this reason, by using the pre-installed semiconductor sealing film of the present invention, a semiconductor device manufactured by low-cost, low-energy pre-installed flip chip mounting can be obtained.

1、2 半導体装置
10 先設置型半導体封止用フィルム
10A、30A 硬化した先設置型半導体封止用フィルム
11、21、31 基板
12、22 配線
13、23 バンプ
14、24、34 半導体チップ
20 先供給型液状封止樹脂組成物
20B、20C ブリード
35 シェアツール
DESCRIPTION OF SYMBOLS 1, 2 Semiconductor device 10 Pre-installation type semiconductor sealing film 10A, 30A Cured pre-installation type semiconductor sealing film 11, 21, 31 Substrate 12, 22 Wiring 13, 23 Bump 14, 24, 34 Semiconductor chip 20 Supply type liquid sealing resin composition 20B, 20C Bleed 35 Share tool

Claims (5)

(A)液状ナフタレン型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、および液状ビスフェノールA型エポキシ樹脂を含む液状エポキシ樹脂、(B)フェノキシ樹脂である熱可塑性樹脂、(C)フェノール系硬化剤、(D)50〜100℃で加熱処理した、DSCの発熱が開始する反応開始温度が110〜150℃である潜在性硬化促進剤、および(E)無機フィラーを含み、かつ(D)成分を、先設置型半導体封止用フィルム:100質量部に対して、2〜5質量部含むことを特徴とする、先設置型半導体封止用フィルム。 (A) Liquid naphthalene type epoxy resin, liquid bisphenol F type epoxy resin, and liquid epoxy resin containing liquid bisphenol A type epoxy resin, (B) thermoplastic resin which is phenoxy resin, (C) phenolic curing agent, (D ) was heated at 50 to 100 ° C., latent curing accelerator reaction starting temperature heat generation of DSC starts is 110 to 150 ° C., and unrealized, and the component (D) to (E) an inorganic filler, previously stationary semiconductor sealing film with respect to 100 parts by weight, and wherein 2 to 5 parts by weight including Mukoto, film for previously installed semiconductor encapsulation. (B)成分が、先設置型半導体封止用フィルム:100質量部に対して、10〜30質量部である、請求項1記載の先設置型半導体封止用フィルム。   (B) The pre-installed type semiconductor sealing film according to claim 1, wherein the component is 10 to 30 parts by mass with respect to 100 parts by mass of the pre-installed semiconductor sealing film. (B)成分が、(A)成分と(B)成分の合計:100質量部に対して、15〜65質量部である、請求項1または2記載の先設置型半導体封止用フィルム。   The pre-installed semiconductor sealing film according to claim 1 or 2, wherein the component (B) is 15 to 65 parts by mass with respect to 100 parts by mass of the total of the component (A) and the component (B). (E)成分が、先設置型半導体封止用フィルム:100質量部に対して、40〜70質量部である、請求項1〜のいずれか1項記載の先設置型半導体封止用フィルム。 The film for semiconductor device sealing of any one of Claims 1-3 whose (E) component is 40-70 mass parts with respect to 100 mass parts of film | membrane for pre-installation type semiconductor sealing. . 請求項1〜のいずれか1項記載の先設置型半導体封止用フィルムの硬化物を含む半導体装置。 The semiconductor device containing the hardened | cured material of the film for semiconductor device sealing of any one of Claims 1-4 .
JP2012201146A 2012-09-13 2012-09-13 Pre-installed semiconductor sealing film Active JP6106389B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012201146A JP6106389B2 (en) 2012-09-13 2012-09-13 Pre-installed semiconductor sealing film
TW102132545A TWI593768B (en) 2012-09-13 2013-09-10 Film for package of pre-installed type semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201146A JP6106389B2 (en) 2012-09-13 2012-09-13 Pre-installed semiconductor sealing film

Publications (2)

Publication Number Publication Date
JP2014055245A JP2014055245A (en) 2014-03-27
JP6106389B2 true JP6106389B2 (en) 2017-03-29

Family

ID=50612846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201146A Active JP6106389B2 (en) 2012-09-13 2012-09-13 Pre-installed semiconductor sealing film

Country Status (2)

Country Link
JP (1) JP6106389B2 (en)
TW (1) TWI593768B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339410B (en) * 2014-06-04 2019-08-20 日立化成株式会社 The manufacturing method of membranaceous composition epoxy resin, the manufacturing method of membranaceous composition epoxy resin and semiconductor device
KR102319292B1 (en) 2014-10-10 2021-11-01 나믹스 가부시끼가이샤 Thermosetting resin composition and manufacturing method therefor
JP6837237B2 (en) * 2017-05-11 2021-03-03 ナミックス株式会社 Die bonding agent
KR102488314B1 (en) * 2018-12-27 2023-01-13 주식회사 두산 Non-conductive adhesive film for semiconductor package and method for manufacturing semiconductor packag using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600536B2 (en) * 1991-10-02 1997-04-16 日立化成工業株式会社 Method for producing adhesive composition
JPH0786465A (en) * 1993-09-16 1995-03-31 Toshiba Corp Epoxy resin composition for sealing semiconductor
CN1957012B (en) * 2004-03-31 2011-07-20 旭化成电子材料株式会社 Hardener for epoxy resin and epoxy resin composition
US20080036097A1 (en) * 2006-08-10 2008-02-14 Teppei Ito Semiconductor package, method of production thereof and encapsulation resin
JP4962554B2 (en) * 2009-11-27 2012-06-27 オムロン株式会社 One-part epoxy resin composition and use thereof
WO2012070387A1 (en) * 2010-11-25 2012-05-31 旭化成イーマテリアルズ株式会社 Epoxy resin and resin composition
JP2012158719A (en) * 2011-02-02 2012-08-23 Hitachi Chemical Co Ltd Epoxy resin composition for sealing and filling semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2014055245A (en) 2014-03-27
TW201410820A (en) 2014-03-16
TWI593768B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
KR101031151B1 (en) Liquid resin composition for electronic part sealing, and electronic part apparatus utilizing the same
JP5228426B2 (en) Liquid resin composition for electronic component sealing and electronic component device using the same
JP6570259B2 (en) Resin composition, insulating film, and semiconductor device
WO2016158828A1 (en) Resin composition, electroconductive resin composition, adhesive, electroconductive adhesive, paste for forming electrodes, and semiconductor device
JP6657104B2 (en) Thermosetting resin composition and method for producing the same
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
JP3971995B2 (en) Electronic component equipment
JP5681432B2 (en) Epoxy resin composition and semiconductor device using the same
JP4656269B2 (en) Liquid epoxy resin composition and semiconductor device
JP6106389B2 (en) Pre-installed semiconductor sealing film
JP5788107B2 (en) Adhesive for semiconductor
JP2009167372A (en) Adhesive for electrical part
JP2010280804A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
KR20110123731A (en) Adhesive for electronic components
JP6125262B2 (en) Liquid molding agent and method for producing liquid molding agent
JP2018039992A (en) Resin composition and three-dimensional laminated type semiconductor device using the resin composition
JPWO2015107990A1 (en) Adhesive composition, adhesive film having the same, substrate with adhesive composition, semiconductor device, and manufacturing method thereof
JP2009256466A (en) Adhesive for electronic part
JP5552788B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP5593259B2 (en) Liquid epoxy resin composition
JP2010239106A (en) Adhesive for bonding semiconductor chip
JP5614022B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP5445005B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250