[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6104107B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6104107B2
JP6104107B2 JP2013177978A JP2013177978A JP6104107B2 JP 6104107 B2 JP6104107 B2 JP 6104107B2 JP 2013177978 A JP2013177978 A JP 2013177978A JP 2013177978 A JP2013177978 A JP 2013177978A JP 6104107 B2 JP6104107 B2 JP 6104107B2
Authority
JP
Japan
Prior art keywords
exhaust gas
passage
plates
flow
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013177978A
Other languages
Japanese (ja)
Other versions
JP2015045481A (en
Inventor
健 篠▲崎▼
健 篠▲崎▼
一法師 茂俊
茂俊 一法師
智広 奥村
智広 奥村
川崎 真一
真一 川崎
壮士 井階
壮士 井階
槙司 高下
槙司 高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013177978A priority Critical patent/JP6104107B2/en
Publication of JP2015045481A publication Critical patent/JP2015045481A/en
Application granted granted Critical
Publication of JP6104107B2 publication Critical patent/JP6104107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、エンジンの排気ガスを吸気通路へ循環させる通路内のEGR(Exhaust Gas Recirculation)クーラ等に用いられる熱交換器に関するものである。   The present invention relates to a heat exchanger used for an EGR (Exhaust Gas Recirculation) cooler in a passage for circulating exhaust gas of an engine to an intake passage.

例えば特許文献1に係るEGRクーラは、冷却水を通流するシェル本体内に、排気ガスの流路を形成する複数の伝熱管が配設され、当該伝熱管内を通流する高温の排気ガスが管壁を隔ててその外側を通流する冷却水との熱交換により冷却される構造であった。
伝熱管を用いる場合、排気ガス側の境界層の発達を阻止し乱流を促進して熱交換性能を高めるために、伝熱管内に突条を設けたり、伝熱管形状をスパイラルにしたりといった構成にする必要があり、加工コストが増大してしまう。
For example, in an EGR cooler according to Patent Document 1, a plurality of heat transfer tubes forming exhaust gas flow paths are disposed in a shell body through which cooling water flows, and high-temperature exhaust gas flowing through the heat transfer tubes. Was cooled by heat exchange with cooling water flowing outside the tube wall.
When using a heat transfer tube, a configuration is used in which a protrusion is provided in the heat transfer tube or the shape of the heat transfer tube is spiraled in order to prevent the development of the boundary layer on the exhaust gas side and promote turbulent flow to improve heat exchange performance. This increases the processing cost.

他方、例えば特許文献2に係る熱交換器は、伝熱筒と外筒の2重筒からなり、当該伝熱筒の内外表面に流通孔を配した多数の伝熱フィンを設けて熱交換する2流体の通路を形成し、一方の流路に気液2相流の冷媒を通流させ、他方の流路に高温の流体を通流させる構造であった。
伝熱フィンを用いる場合、伝熱管への特殊な加工等をする必要がなく、コスト低減が可能となる。
On the other hand, for example, a heat exchanger according to Patent Document 2 includes a double cylinder of a heat transfer cylinder and an outer cylinder, and heat is exchanged by providing a large number of heat transfer fins with flow holes provided on the inner and outer surfaces of the heat transfer cylinder. A two-fluid passage was formed, a gas-liquid two-phase refrigerant was passed through one flow path, and a high-temperature fluid was passed through the other flow path.
When heat transfer fins are used, it is not necessary to perform special processing or the like on the heat transfer tubes, and costs can be reduced.

特開2007−225137号公報JP 2007-225137 A 特開昭59−115983号公報JP 59-115983 A

しかしながら、上記特許文献2のように伝熱フィンを用いる場合、高温流体側の伝熱フィンの流通孔が重なっているので層流のまま通過しやすく、乱流が発生しにくかった。そのため、熱交換性能が低いという課題があった。   However, when heat transfer fins are used as in Patent Document 2, since the flow holes of the heat transfer fins on the high-temperature fluid side overlap, it is easy to pass through laminar flow, and turbulent flow is difficult to occur. For this reason, there is a problem that the heat exchange performance is low.

なお、上記特許文献2において気液2相流の冷媒側の伝熱フィンの開口比を冷媒の蒸発が進行する方向に大きくして流速を小さくしているが、これは冷媒の蒸発で気相体積が増加することによる圧力損失の増加を抑制するためのものであり、流通孔をずらして乱流の発生を促進させるものではない。   In Patent Document 2, the opening ratio of the heat transfer fins on the refrigerant side of the gas-liquid two-phase flow is increased in the direction in which the evaporation of the refrigerant proceeds to reduce the flow velocity. This is for suppressing an increase in pressure loss due to an increase in volume, and does not promote the generation of turbulent flow by shifting the flow holes.

この発明は、上記のような課題を解決するためになされたもので、加工コストを抑えつつ、高い熱交換性能を得ることのできる熱交換器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger that can obtain high heat exchange performance while suppressing processing costs.

第1流体が流れる第1通路と当該第1流体を冷却する第2流体が流れる第2通路が設けられたハウジングと、第1流体を通す流通孔が多数形成され、第1通路において第1流体の流れる方向に間隔をあけて複数枚配置された多孔プレートと、隣り合う多孔プレートに当接させて配置され、外周面が第1通路の内周面に密着する筒状部材とを備え、多孔プレートは、隣り合う多孔プレート間で流通孔の位置がずれているものである。 A housing provided with a first passage through which the first fluid flows, a second passage through which the second fluid for cooling the first fluid flows, and a plurality of flow holes through which the first fluid passes are formed, and the first fluid is formed in the first passage. A plurality of perforated plates arranged at intervals in the flow direction, and a cylindrical member disposed in contact with an adjacent perforated plate and having an outer peripheral surface in close contact with the inner peripheral surface of the first passage. In the plate, the positions of the flow holes are shifted between adjacent porous plates.

この発明によれば、隣り合う多孔プレート間で流通孔の位置をずらすようにしたので、第1流体が流通孔を通過する際にかく乱されて乱流が発生しやすくなり、熱交換が促進される。従って、従来必要だった伝熱管形状を複雑化するための加工コストを抑えつつ、高い熱交換性能を得ることのできる熱交換器を提供することができる。   According to this invention, since the positions of the flow holes are shifted between the adjacent perforated plates, the first fluid is disturbed when passing through the flow holes, so that turbulent flow is easily generated, and heat exchange is promoted. The Therefore, it is possible to provide a heat exchanger that can obtain high heat exchange performance while suppressing the processing cost for complicating the shape of the heat transfer tube, which has been conventionally required.

この発明の実施の形態1に係るEGRクーラの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the EGR cooler which concerns on Embodiment 1 of this invention. 実施の形態1に係るEGRクーラの構成を示す外観斜視図である。1 is an external perspective view showing a configuration of an EGR cooler according to Embodiment 1. FIG. 実施の形態1に係るEGRクーラの多孔プレートの構成を示す外観斜視図である。1 is an external perspective view showing a configuration of a perforated plate of an EGR cooler according to Embodiment 1. FIG. 実施の形態1に係るEGRクーラの多孔プレートの構成を示す平面図であり、排気ガス流通孔の位置関係の一例を示す。It is a top view which shows the structure of the porous plate of the EGR cooler which concerns on Embodiment 1, and shows an example of the positional relationship of an exhaust-gas circulation hole. 実施の形態1に係るEGRクーラの多孔プレートの構成を示す平面図であり、排気ガス流通孔の位置関係の別の例を示す。It is a top view which shows the structure of the porous plate of the EGR cooler which concerns on Embodiment 1, and shows another example of the positional relationship of an exhaust-gas circulation hole. 実施の形態1に係るEGRクーラの多孔プレートの変形例を示す外観斜視図である。6 is an external perspective view showing a modification of the perforated plate of the EGR cooler according to Embodiment 1. FIG.

実施の形態1.
以下では、本発明に係る熱交換器を、エンジンの排気ガスを吸気通路へ循環させる通路内のEGRクーラとして用いる場合を例に説明する。
Embodiment 1 FIG.
Below, the case where the heat exchanger concerning the present invention is used as an EGR cooler in a passage which circulates engine exhaust gas to an intake passage is explained as an example.

図1の縦断面図および図2の外観斜視図に示すEGRクーラにおいて、円筒状のハウジング1の内側を排気ガス通路2(第1通路)とし、排気ガス(第1流体)を流通させる。このハウジング1の外側に2本の水冷通路3(第2通路)を設けて冷却水(第2流体)を流通させ、水冷によりハウジング1を冷却する。排気ガス通路2には、多数の排気ガス流通孔4a,5aを形成した多孔プレート4,5を互い違いに設置して、ハウジング1により多孔プレート4,5を冷却する。高温の排気ガスは、多孔プレート4,5に接触しながら排気ガス流通孔4a,5aを通過することで冷却される。   In the EGR cooler shown in the longitudinal sectional view of FIG. 1 and the external perspective view of FIG. 2, the inside of the cylindrical housing 1 is an exhaust gas passage 2 (first passage), and exhaust gas (first fluid) is circulated. Two water cooling passages 3 (second passages) are provided outside the housing 1 to allow cooling water (second fluid) to flow, and the housing 1 is cooled by water cooling. In the exhaust gas passage 2, porous plates 4, 5 having a large number of exhaust gas circulation holes 4 a, 5 a are installed alternately, and the porous plates 4, 5 are cooled by the housing 1. The hot exhaust gas is cooled by passing through the exhaust gas circulation holes 4 a and 5 a while being in contact with the perforated plates 4 and 5.

多孔プレート4,5は、例えば圧入またはインサート鋳造により、排気ガス通路2の内部に固定される。水冷通路3の冷却水の流通方向は、排気ガス通路2の排気ガスと同じ方向でもよいし反対方向でもよい。
なお、図1では排気ガス流通孔4aと排気ガス流通孔5aの位置関係を分かり易くするために、孔の数を減らしている。
The perforated plates 4 and 5 are fixed inside the exhaust gas passage 2 by, for example, press fitting or insert casting. The flow direction of the cooling water in the water cooling passage 3 may be the same direction as the exhaust gas in the exhaust gas passage 2 or the opposite direction.
In FIG. 1, the number of holes is reduced in order to facilitate understanding of the positional relationship between the exhaust gas circulation holes 4a and the exhaust gas circulation holes 5a.

図3は多孔プレート4の外観斜視図、図4は多孔プレート4の平面図である。
多孔プレート4は、多数の丸い排気ガス流通孔4aが形成された円板と、この円板の周縁に設けられた円筒状の筒状スペーサ4b(筒状部材)とから構成されている。この筒状スペーサ4bを多孔プレート5に当接させてプレート間距離を調節する。また、筒状スペーサ4bを設けることで、排気ガス通路2の内壁面との接触面積が増え、冷却能力が向上する。なお、排気ガス流通孔4aの数を増やすか開口面積を大きくすることで、EGRクーラを通過する際の排気ガスの圧力損失を防止できる。
多孔プレート5も多孔プレート4と同様の構造であり、図1に示すように排気ガス流通孔5aと多孔プレート5bとから構成されている。
FIG. 3 is an external perspective view of the porous plate 4, and FIG. 4 is a plan view of the porous plate 4.
The perforated plate 4 is composed of a disc in which a large number of round exhaust gas circulation holes 4a are formed, and a cylindrical tubular spacer 4b (cylindrical member) provided on the periphery of the disc. The cylindrical spacer 4b is brought into contact with the perforated plate 5 to adjust the distance between the plates. Further, by providing the cylindrical spacer 4b, the contact area with the inner wall surface of the exhaust gas passage 2 is increased, and the cooling capacity is improved. By increasing the number of exhaust gas circulation holes 4a or increasing the opening area, it is possible to prevent exhaust gas pressure loss when passing through the EGR cooler.
The perforated plate 5 has the same structure as the perforated plate 4, and is composed of an exhaust gas flow hole 5a and a perforated plate 5b as shown in FIG.

本発明のEGRクーラは、排気ガスの流通方向において排気ガス流通孔4a,5aをずらすことにより、排気ガス流をかく乱させて乱流を発生させ、熱交換を促進させる。
図4では、排気ガス流通孔4aと排気ガス流通孔5aが重ならないように、多孔プレート4の排気ガス流通孔4aの配列と多孔プレート5の排気ガス流通孔5aの配列を変えている。従って、多孔プレート4とその表裏に設置された多孔プレート5とで排気ガス流通孔4a,5aがずれていることにより排気ガス流がかく乱され、乱流の発生が促進される。
In the EGR cooler of the present invention, the exhaust gas flow holes 4a and 5a are shifted in the exhaust gas flow direction so as to disturb the exhaust gas flow to generate a turbulent flow and promote heat exchange.
In FIG. 4, the arrangement of the exhaust gas circulation holes 4a of the perforated plate 4 and the arrangement of the exhaust gas circulation holes 5a of the perforated plate 5 are changed so that the exhaust gas circulation holes 4a and the exhaust gas circulation holes 5a do not overlap. Therefore, the exhaust gas flow holes 4a and 5a are displaced between the perforated plate 4 and the perforated plate 5 installed on the front and back thereof, thereby disturbing the exhaust gas flow and promoting the generation of the turbulent flow.

これに対して図5では、多孔プレート4の排気ガス流通孔4aの配列と多孔プレート5の排気ガス流通孔5aの配列は同じであるが、多孔プレート4と多孔プレート5の設置角度を変えることにより排気ガス流通孔4aと排気ガス流通孔5aをずらしている。
図5の場合、排気ガス流通孔4a,5aの配列の仕方によっては排気ガス流通孔4a,5aすべてを完全に重ならないようにすることが難しいので、図4の場合に比べて乱流促進効果が低くなるデメリットはあるが、1種類の多孔プレートを多孔プレート4,5として用いることができるのでコスト低減のメリットがある。
なお、図4および図5の多孔プレート4,5を取り混ぜて排気ガス通路2に内装しても構わない。
On the other hand, in FIG. 5, the arrangement of the exhaust gas circulation holes 4a of the perforated plate 4 and the arrangement of the exhaust gas circulation holes 5a of the perforated plate 5 are the same, but the installation angle of the perforated plate 4 and the perforated plate 5 is changed. Thus, the exhaust gas circulation hole 4a and the exhaust gas circulation hole 5a are shifted.
In the case of FIG. 5, it is difficult to prevent the exhaust gas circulation holes 4a and 5a from completely overlapping depending on the arrangement of the exhaust gas circulation holes 4a and 5a. However, since one kind of perforated plate can be used as the perforated plates 4 and 5, there is a merit of cost reduction.
Note that the perforated plates 4 and 5 of FIGS. 4 and 5 may be mixed and installed in the exhaust gas passage 2.

図4および図5のいずれの場合でもハウジング1の排気ガス通路2に多孔プレート4,5を内装するだけで高い熱交換性能が得られるので、先立って説明した特許文献1の多管式熱交換器のように伝熱管形状を複雑にするための加工コストが不要となり、低コスト化を実現できる。
また、多管式熱交換器では熱交換器の全長を変更する際に伝熱管の長さも変更する必要があったが、図4および図5ではハウジング1の全長を変更する際に多孔プレート4,5の枚数を変更するだけでよい。
In either case of FIG. 4 or FIG. 5, high heat exchange performance can be obtained simply by installing the porous plates 4, 5 in the exhaust gas passage 2 of the housing 1. The processing cost for complicating the shape of the heat transfer tube as in the case becomes unnecessary, and the cost can be reduced.
Further, in the multi-tube heat exchanger, it is necessary to change the length of the heat transfer tube when changing the total length of the heat exchanger, but in FIGS. 4 and 5, the perforated plate 4 is used when changing the total length of the housing 1. , 5 need only be changed.

さらに、図4および図5の場合、排気ガス通路2に内装する多孔プレート4,5の枚数に応じて、容易に冷却能力を調整できる。また、プレート間距離に応じて容易に冷却効率を調整できる。例えば多孔プレート4,5の枚数を増やしてプレート間距離を短くすることにより、冷却能力と冷却効率が向上する。   Further, in the case of FIGS. 4 and 5, the cooling capacity can be easily adjusted according to the number of the perforated plates 4 and 5 provided in the exhaust gas passage 2. Further, the cooling efficiency can be easily adjusted according to the distance between the plates. For example, the cooling capacity and the cooling efficiency are improved by increasing the number of the perforated plates 4 and 5 to shorten the distance between the plates.

なお、ハウジング1および多孔プレート4,5は、排気ガス通路2に挿入可能、即ち排気ガス通路2の内壁面に対し移動可能な程度のクリアランスがあっても十分に熱伝導が可能な銅、アルミ等の熱伝導率が高い材質を用いることが望ましい。ハウジング1と多孔プレート4,5に異なる材質を用いてもよいが、筒状スペーサ4b,5bの外周面が排気ガス通路2の内壁面に接触することで効率よく多孔プレート4,5を冷却できるので、熱膨張率が同等の材質を選択することが望ましい。   The housing 1 and the perforated plates 4, 5 can be inserted into the exhaust gas passage 2, that is, copper, aluminum that can sufficiently conduct heat even if there is a clearance that can move with respect to the inner wall surface of the exhaust gas passage 2. It is desirable to use a material having high thermal conductivity such as. Different materials may be used for the housing 1 and the porous plates 4, 5, but the outer peripheral surfaces of the cylindrical spacers 4 b, 5 b come into contact with the inner wall surface of the exhaust gas passage 2 so that the porous plates 4, 5 can be efficiently cooled. Therefore, it is desirable to select a material having the same thermal expansion coefficient.

以上より、実施の形態1によれば、EGRクーラは、排気ガスが流れる排気ガス通路2と当該排気ガスを冷却する冷却水が流れる水冷通路3が設けられたハウジング1と、排気ガスを通す排気ガス流通孔4a,4bが多数形成された多孔プレート4,5とを備え、多孔プレート4,5を、排気ガス通路2において排気ガスの流れる方向に間隔をあけて複数枚配置し、隣り合う多孔プレート4,5間で排気ガス流通孔4a,5aの位置をずらす構成にした。このため、排気ガスが排気ガス流通孔4a,5aを通過する際にかく乱されて乱流が発生しやすくなり、熱交換が促進される。従って、従来の多管式熱交換器のように伝熱管形状を複雑化する必要がなく、加工コストを抑えつつ高い熱交換性能を得ることのできるEGRクーラを提供することができる。   As described above, according to the first embodiment, the EGR cooler includes the housing 1 provided with the exhaust gas passage 2 through which the exhaust gas flows, the water cooling passage 3 through which the cooling water for cooling the exhaust gas flows, and the exhaust gas through which the exhaust gas passes. A plurality of perforated plates 4 and 5 in which a large number of gas flow holes 4a and 4b are formed, and a plurality of perforated plates 4 and 5 are arranged in the exhaust gas passage 2 at intervals in the exhaust gas flow direction. The positions of the exhaust gas flow holes 4a and 5a are shifted between the plates 4 and 5. For this reason, when the exhaust gas passes through the exhaust gas circulation holes 4a and 5a, it is disturbed and turbulent flow is easily generated, and heat exchange is promoted. Therefore, it is not necessary to complicate the shape of the heat transfer tube as in the conventional multi-tube heat exchanger, and it is possible to provide an EGR cooler that can obtain high heat exchange performance while suppressing processing costs.

また、実施の形態1によれば、図4に示したように、隣り合う多孔プレート4,5同士の排気ガス流通孔4a,5aを異なる配列にしたので、排気ガス流通孔4a,5aが完全に重ならない配置にして乱流促進効果を高めることができる。   Further, according to the first embodiment, as shown in FIG. 4, the exhaust gas circulation holes 4a and 5a between the adjacent porous plates 4 and 5 are arranged differently, so that the exhaust gas circulation holes 4a and 5a are completely formed. It is possible to enhance the effect of promoting turbulence by arranging so as not to overlap.

また、実施の形態1によれば、図5に示したように、隣り合う多孔プレート4,5同士の排気ガス流通孔4a,5aは同一の配列であって、当該多孔プレート4,5同士の設置角度を変えることで排気ガス流通孔4a,5aの位置をずらすようにしたので、多孔プレートの種類を減らしてコストを低減できる。   Further, according to the first embodiment, as shown in FIG. 5, the exhaust gas flow holes 4a, 5a of the adjacent porous plates 4, 5 are in the same arrangement, and the porous plates 4, 5 are Since the positions of the exhaust gas circulation holes 4a and 5a are shifted by changing the installation angle, the types of perforated plates can be reduced to reduce the cost.

また、実施の形態1によれば、多孔プレート4,5に筒状スペーサ4b,5bを設け、当該筒状スペーサ4b,5bの外周面が隣り合う多孔プレート4,5間において排気ガス通路2の内壁面に密着するようにしたので、多孔プレート4,5とハウジング1との接触面積を確保でき冷却能力を高めることができる。   Further, according to the first embodiment, the cylindrical spacers 4b and 5b are provided in the porous plates 4 and 5, and the outer peripheral surfaces of the cylindrical spacers 4b and 5b are disposed between the porous plates 4 and 5 adjacent to each other. Since it is made to adhere to the inner wall surface, the contact area between the perforated plates 4 and 5 and the housing 1 can be secured, and the cooling capacity can be increased.

なお、多孔プレートは、図1〜図5に示した多孔プレート4,5に限定されるものではない。以下、図6(a)〜(d)に多孔プレートの変形例を示す。
図6(a)の多孔プレート6は、多数の排気ガス流通孔6aが形成された円板と、この円板の周縁に設けられた円筒状の筒状スペーサ6bとから構成されている。図3の多孔プレート4では円板の表裏いずれか一方向に筒状スペーサ4bを立設したのに対し、図6(a)の多孔プレート6では円板の表裏両方向に筒状スペーサ6bを立設している。
In addition, a perforated plate is not limited to the perforated plates 4 and 5 shown in FIGS. Hereinafter, the modification of a perforated plate is shown in Drawing 6 (a)-(d).
The perforated plate 6 in FIG. 6 (a) is composed of a disc in which a large number of exhaust gas flow holes 6a are formed, and a cylindrical cylindrical spacer 6b provided on the periphery of the disc. In the perforated plate 4 in FIG. 3, the cylindrical spacer 4b is erected in either one direction of the disk, whereas in the perforated plate 6 in FIG. 6A, the cylindrical spacer 6b is erected in both the front and back sides of the disk. Has been established.

図6(b)〜図6(d)の多孔プレート7〜9は、多数の排気ガス流通孔7a〜9aが形成された円板である。排気ガス流通孔は図6(b)の丸孔に限らず、図6(c)の四角形、図6(d)の六角形などの多角形でもよいし、楕円形などでもよい。また、1枚の多孔プレートに形状または大きさの異なる排気ガス流通孔が混在していてもよい。   The perforated plates 7 to 9 in FIGS. 6B to 6D are discs in which a large number of exhaust gas flow holes 7a to 9a are formed. The exhaust gas circulation hole is not limited to the round hole in FIG. 6B, but may be a polygon such as a quadrangle in FIG. 6C, a hexagon in FIG. 6D, or an ellipse. Further, exhaust gas circulation holes having different shapes or sizes may be mixed in one perforated plate.

なお、円板状の多孔プレート7〜9を排気ガス通路2に設置する場合、プレート間距離を調節するために、図6(b)に示すような筒状スペーサ10を多孔プレート間に挟んだり、多孔プレート7〜9と図6(a)の多孔プレート6を交互に配置したりしてもよい。
また、図1では2種類の多孔プレート4,5を排気ガス通路2に交互に設置したが、3種類以上の多孔プレートを取り混ぜて設置してもよい。
When the disk-shaped perforated plates 7 to 9 are installed in the exhaust gas passage 2, a cylindrical spacer 10 as shown in FIG. 6B is sandwiched between the perforated plates in order to adjust the distance between the plates. Alternatively, the perforated plates 7 to 9 and the perforated plates 6 shown in FIG. 6A may be alternately arranged.
In FIG. 1, two types of perforated plates 4 and 5 are alternately installed in the exhaust gas passage 2, but three or more types of perforated plates may be mixed and installed.

上記以外にも、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。   In addition to the above, within the scope of the invention, the invention of the present application can be modified with any component of the embodiment or omitted with any component of the embodiment.

1 ハウジング、2 排気ガス通路(第1通路)、3 水冷通路(第2通路)、4〜9 多孔プレート、4a〜9a 排気ガス流通孔、4b,5b,6b,10 筒状スペーサ(筒状部材)。   DESCRIPTION OF SYMBOLS 1 Housing, 2 Exhaust gas passage (1st passage), 3 Water cooling passage (2nd passage), 4-9 Porous plate, 4a-9a Exhaust gas circulation hole, 4b, 5b, 6b, 10 Cylindrical spacer (cylindrical member ).

Claims (3)

第1流体が流れる第1通路と当該第1流体を冷却する第2流体が流れる第2通路が設けられたハウジングと、
前記第1流体を通す流通孔が多数形成され、前記第1通路において前記第1流体の流れる方向に間隔をあけて複数枚配置された多孔プレートと
隣り合う前記多孔プレートに当接させて配置され、外周面が前記第1通路の内周面に密着する筒状部材とを備え、
前記多孔プレートは、前記隣り合う多孔プレート間で前記流通孔の位置がずれていることを特徴とする熱交換器。
A housing provided with a first passage through which a first fluid flows and a second passage through which a second fluid for cooling the first fluid flows;
A plurality of flow holes through which the first fluid passes , and a plurality of perforated plates arranged at intervals in the direction of flow of the first fluid in the first passage ;
A cylindrical member disposed in contact with the adjacent perforated plate and having an outer peripheral surface in close contact with the inner peripheral surface of the first passage;
The perforated plate heat exchanger, characterized in that is misaligned in the communication holes between the adjacent engagement cormorants multi-hole plate.
前記隣り合う多孔プレート同士の前記流通孔は同一の配列であって、当該多孔プレート同士の設置角度を変えることで前記流通孔の位置をずらしたことを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the flow holes of the adjacent porous plates have the same arrangement, and the positions of the flow holes are shifted by changing an installation angle between the porous plates. . 前記隣り合う多孔プレート同士の前記流通孔が異なる配列であることを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the flow holes of the adjacent porous plates are arranged differently.
JP2013177978A 2013-08-29 2013-08-29 Heat exchanger Active JP6104107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177978A JP6104107B2 (en) 2013-08-29 2013-08-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177978A JP6104107B2 (en) 2013-08-29 2013-08-29 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2015045481A JP2015045481A (en) 2015-03-12
JP6104107B2 true JP6104107B2 (en) 2017-03-29

Family

ID=52671108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177978A Active JP6104107B2 (en) 2013-08-29 2013-08-29 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6104107B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833952B1 (en) 2016-07-06 2018-03-02 한국에너지기술연구원 Light absorbing Panel Module Having Stacked Fluid Path
CN109186312B (en) * 2018-10-23 2023-09-26 辽宁科技大学 Heat radiator with scale-removing baffle plate
JP2020121909A (en) * 2019-01-31 2020-08-13 株式会社グラヴィトン Sodium hydride production system
JP2020121908A (en) * 2019-01-31 2020-08-13 株式会社グラヴィトン Sodium hydride production system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032119B2 (en) * 1977-12-07 1985-07-26 株式会社日立製作所 Heat exchanger
JPS56165893A (en) * 1980-05-23 1981-12-19 Fukuizumi Kogyo:Kk Exhaust gas heat-powered hot air supplier
JPS58219392A (en) * 1982-06-15 1983-12-20 Matsushita Electric Ind Co Ltd Heat exchanger
JPS59115983A (en) * 1982-12-21 1984-07-04 Matsushita Electric Ind Co Ltd Heat exchanger
US5365887A (en) * 1992-04-27 1994-11-22 Frontier, Inc. Ultra-high efficiency on-demand water heater and heat exchanger
JP2001073754A (en) * 1999-09-08 2001-03-21 Isuzu Ceramics Res Inst Co Ltd Heat exchanger for recovering exhaust gas energy

Also Published As

Publication number Publication date
JP2015045481A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP6567097B2 (en) Plate heat exchanger and heat pump heating / hot water system equipped with the same
KR100679002B1 (en) Gas cooling device
JP6075381B2 (en) Heat exchanger
JP2007078194A (en) Heat transfer tube for heat exchanger
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
US9874407B2 (en) Heat exchanger
JP2010114174A (en) Core structure for heat sink
JP6104107B2 (en) Heat exchanger
JP2011112331A (en) Heat exchanger for exhaust gas
JP5921413B2 (en) Tube for heat exchanger
JP2009014220A (en) Heat exchanger
JP6708172B2 (en) Intercooler
JP2013122368A (en) Vehicle heat exchanger
JP5961639B2 (en) Heat transfer pipe for heat exchanger
JP2017106648A (en) Heat exchanger
JP4607626B2 (en) Efficient heat exchanger and engine using the same
JP2010121925A (en) Heat exchanger
JP2012172907A (en) Heat exchanger of shell-and-tube system with fin arranged in spiral staircase shape
JP2010276298A (en) Heat exchanger
JP2011169526A (en) Laminated heat exchanger
JP2016200071A (en) EGR gas cooler
JP7294126B2 (en) Cooler
JP2016149449A (en) Semiconductor module
JP4759367B2 (en) Laminate heat exchanger
JPWO2019131569A1 (en) Header plateless heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6104107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350