[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6198875B2 - Optical scanning device and image forming apparatus having the same - Google Patents

Optical scanning device and image forming apparatus having the same Download PDF

Info

Publication number
JP6198875B2
JP6198875B2 JP2016058945A JP2016058945A JP6198875B2 JP 6198875 B2 JP6198875 B2 JP 6198875B2 JP 2016058945 A JP2016058945 A JP 2016058945A JP 2016058945 A JP2016058945 A JP 2016058945A JP 6198875 B2 JP6198875 B2 JP 6198875B2
Authority
JP
Japan
Prior art keywords
optical
scanning device
holding member
light beam
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058945A
Other languages
Japanese (ja)
Other versions
JP2016153902A (en
Inventor
上田 篤
篤 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2016058945A priority Critical patent/JP6198875B2/en
Publication of JP2016153902A publication Critical patent/JP2016153902A/en
Application granted granted Critical
Publication of JP6198875B2 publication Critical patent/JP6198875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、光ビームにより被走査体を走査する光走査装置、及びそれを備えた画像形成装置に関する。   The present invention relates to an optical scanning apparatus that scans an object to be scanned with a light beam, and an image forming apparatus including the optical scanning apparatus.

例えば、電子写真方式の画像形成装置では、感光体(被走査体)表面を均一に帯電させてから、光ビームにより感光体表面を走査して、静電潜像を感光体表面に形成し、トナーにより感光体表面の静電潜像を現像して、感光体表面にトナー像を形成し、トナー像を感光体から記録用紙に転写している。   For example, in an electrophotographic image forming apparatus, the surface of a photoreceptor (scanned body) is uniformly charged, and then the surface of the photoreceptor is scanned with a light beam to form an electrostatic latent image on the surface of the photoreceptor. The electrostatic latent image on the surface of the photoconductor is developed with toner, a toner image is formed on the surface of the photoconductor, and the toner image is transferred from the photoconductor to a recording sheet.

光ビームによる感光体表面の走査は、光走査装置により行われる。この光走査装置では、光ビームを出射する半導体レーザ等の発光素子、光ビームを反射するポリゴンミラー等の複数のミラー、光ビームを偏向するfθレンズ等の複数のレンズを備え、半導体レーザの光ビームを各ミラー及び各レンズ等の光学部材により感光体表面へと導き、光ビームにより感光体表面を走査して、感光体表面に静電潜像を形成する。   The photoconductor surface is scanned by the light beam by an optical scanning device. The optical scanning device includes a light emitting element such as a semiconductor laser that emits a light beam, a plurality of mirrors such as a polygon mirror that reflects the light beam, and a plurality of lenses such as an fθ lens that deflects the light beam. The beam is guided to the surface of the photoreceptor by optical members such as mirrors and lenses, and the surface of the photoreceptor is scanned by the light beam to form an electrostatic latent image on the surface of the photoreceptor.

ところで、このような光走査装置においては、光ビームが入射、出射、又は反射される光学部材の面の向きを高精度で調節して、半導体レーザから感光体表面への光ビームの光路を設定している。しかしながら、光学部材の面の向きを高精度で調節しても、光学部材を取付けた光学装置の本体(筐体やフレーム等)が熱膨張により伸縮すると、光学部材の面の向きがずれて、感光体表面における光ビームの入射位置が大幅にずれることがあった。例えば、光学部材を保持した保持部材を光学装置の筐体に載せて支持し、保持部材上で光学部材の光入射面の向きを調節設定する構成においては、保持部材の位置を固定しても、光学装置の筐体が熱膨張すると、保持部材の位置が変位して、光学部材の面の向きが変化し、これにより光ビームの向きが変化して、感光体表面における光ビームの入射位置が大幅にずれた。   By the way, in such an optical scanning device, the direction of the surface of the optical member on which the light beam is incident, emitted, or reflected is adjusted with high accuracy, and the optical path of the light beam from the semiconductor laser to the photosensitive member surface is set. doing. However, even if the orientation of the surface of the optical member is adjusted with high accuracy, the orientation of the surface of the optical member is shifted when the main body (housing, frame, etc.) of the optical device to which the optical member is attached expands and contracts due to thermal expansion. In some cases, the incident position of the light beam on the surface of the photosensitive member is significantly shifted. For example, in a configuration in which a holding member holding an optical member is supported by being placed on the housing of the optical device and the direction of the light incident surface of the optical member is adjusted and set on the holding member, the position of the holding member may be fixed. When the housing of the optical device is thermally expanded, the position of the holding member is displaced, and the direction of the surface of the optical member is changed, thereby changing the direction of the light beam, and the incident position of the light beam on the surface of the photoconductor Was significantly out of alignment.

このため、特許文献1では、光学部材の保持部材の複数箇所をそれぞれの板バネによりベースに押し当てるだけにして、ベース上で保持部材を変位可能に支持し、保持部材を固定していない。この場合は、ベースが熱膨張しても、保持部材がベースに追従して変位せず、光学部材の面の向きが変化し難く、光ビームの向きも変化し難い。   For this reason, in Patent Document 1, the holding member is supported on the base so as to be displaceable by merely pressing a plurality of locations of the holding member of the optical member against the base by the respective leaf springs, and the holding member is not fixed. In this case, even if the base is thermally expanded, the holding member is not displaced following the base, the direction of the surface of the optical member is difficult to change, and the direction of the light beam is also difficult to change.

また、特許文献2では、光学部材ではなく、ヒートシンクであるが、ヒートシンクの熱膨張により基板が撓むため、バネ状のネジを用いて、ヒートシンクを基板に取付け、熱膨張によるヒートシンクの伸縮分をバネ状のネジで吸収している。   In Patent Document 2, although the heat sink is not an optical member, the substrate bends due to thermal expansion of the heat sink. Therefore, the heat sink is attached to the substrate using spring-like screws, and the expansion and contraction of the heat sink due to thermal expansion is reduced. Absorbs with spring-like screws.

特開2006−251517号公報JP 2006-251517 A 特開平05−321914号公報JP 05-321914 A

しかしながら、特許文献1、2では、板バネやバネ状のネジだけを用いて光学部材やヒートシンクを取付けているので、光学部材やヒートシンクを確実に位置決めすることができない。特に、光学部材の場合は、光学部材の面の向きがずれると、感光体表面における光ビームの入射位置が大幅にずれるため、板バネだけによる光学部材の取付けは好ましくない。例えば、ポリゴンミラーの回転駆動に伴う振動や外部からの振動が光学部材に作用した場合は、板バネやバネ状のネジにより光学部材が押付けられていても、光学部材が振動して、光学部材の面の向きが徐々にずれて行く。   However, in Patent Documents 1 and 2, since the optical member and the heat sink are attached using only a leaf spring and a spring-like screw, the optical member and the heat sink cannot be reliably positioned. In particular, in the case of an optical member, if the direction of the surface of the optical member is deviated, the incident position of the light beam on the surface of the photosensitive member is greatly deviated, so that it is not preferable to attach the optical member only by the leaf spring. For example, when the vibration accompanying the rotational drive of the polygon mirror or the vibration from the outside acts on the optical member, the optical member vibrates even if the optical member is pressed by a leaf spring or a spring-like screw. The direction of the surface gradually shifts.

そこで、本発明は、上記従来の問題点に鑑みなされたものであり、装置本体が熱膨張により伸縮しても、また振動が光学部材に作用しても、光学部材の面の向きがずれることがない光走査装置、及びそれを備えた画像形成装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described conventional problems, and even if the apparatus main body expands or contracts due to thermal expansion or vibration acts on the optical member, the direction of the surface of the optical member is shifted. An object of the present invention is to provide an optical scanning device having no image and an image forming apparatus including the same.

本発明に係る光走査装置は、発光素子から被走査体までの光ビームの光路上に配置された光学部材を保持部材により保持し、前記保持部材を装置本体に取付けた光走査装置であって、前記保持部材の固定部位を前記装置本体に固定する締結部材と、前記保持部材の第1支持部位を前記装置本体に押し当てて、前記第1支持部位を変位可能に支持する第1押圧部材とを備え、前記保持部材に保持される光学部材は、前記光ビームの光路上に配置された複数の光学部材のうちの1つであって、ミラーまたはレンズであることを特徴とする。An optical scanning device according to the present invention is an optical scanning device in which an optical member disposed on an optical path of a light beam from a light emitting element to a scanned object is held by a holding member, and the holding member is attached to the apparatus main body. A fastening member for fixing the fixing part of the holding member to the apparatus main body, and a first pressing member for pressing the first support part of the holding member against the apparatus main body and supporting the first support part displaceably The optical member held by the holding member is one of a plurality of optical members arranged on the optical path of the light beam, and is a mirror or a lens.

本発明に係る光走査装置では、前記第1押圧部材は、弾性を有する弾性部材と前記弾性部材を押圧するワッシャとを含む構成としてもよい。In the optical scanning device according to the present invention, the first pressing member may include an elastic member having elasticity and a washer that presses the elastic member.

本発明に係る光走査装置では、前記光学部材は、前記光学部材の面の向きを変更するネジ部材と、前記保持部材に設けられた凸部とで支持されている構成としてもよい。In the optical scanning device according to the present invention, the optical member may be supported by a screw member that changes the orientation of the surface of the optical member and a convex portion provided on the holding member.

本発明に係る画像形成装置は、本発明に係る光走査装置を備え、前記光走査装置により被走査体上に潜像を形成し、前記被走査体上の潜像を可視像に現像して、前記可視像を前記被走査体から用紙に転写形成することを特徴とする。An image forming apparatus according to the present invention includes the optical scanning device according to the present invention, forms a latent image on a scanned object by the optical scanning device, and develops the latent image on the scanned object into a visible image. The visible image is transferred from the scanned body to a sheet.

本発明では、締結部材により保持部材の固定部位を装置本体に固定し、第1押圧部材により保持部材の第1支持部位を装置本体に押し当てて変位可能に支持している。従って、保持部材の2箇所を支持していることになり、保持部材及び光学部材を安定的に支持することができる。また、締結部材により保持部材の固定部位を装置本体に固定しているので、保持部材を確実に位置決めすることができ、振動が保持部材及び光学部材に作用しても、保持部材の位置がずれることはなく、光学部材の面の向きを維持することができる。更に、第1押圧部材により保持部材の第1支持部位を装置本体に押し当てて変位可能に支持しているので、熱膨張により装置本体が伸縮しても、保持部材の第1支持部位が装置本体に追従して変位せず、保持部材の固定部位と第1支持部位との位置関係が保たれて、装置本体の伸縮による保持部材の歪や固定部位の変位を抑制することができる。このため、保持部材により保持された光学部材の面の向きが変化することはなく、光ビームの向きが変化することもなく、被走査体における光ビームの入射位置がずれることがない。   In the present invention, the fixing member fixing part is fixed to the apparatus main body by the fastening member, and the first supporting part of the holding member is pressed against the apparatus main body by the first pressing member so as to be displaceable. Therefore, two places of the holding member are supported, and the holding member and the optical member can be stably supported. Further, since the fixing member fixing portion is fixed to the apparatus main body by the fastening member, the holding member can be reliably positioned, and even if vibration acts on the holding member and the optical member, the position of the holding member is shifted. The surface orientation of the optical member can be maintained. Further, since the first support portion of the holding member is pressed against the apparatus main body by the first pressing member so as to be displaceable, even if the apparatus main body expands and contracts due to thermal expansion, the first support portion of the holding member becomes the device. The positional relationship between the holding part of the holding member and the first support part is maintained without being displaced following the main body, and distortion of the holding member due to expansion and contraction of the apparatus main body and displacement of the fixing part can be suppressed. For this reason, the direction of the surface of the optical member held by the holding member does not change, the direction of the light beam does not change, and the incident position of the light beam on the scanned object does not shift.

本発明の光走査装置の一実施形態を備えた画像形成装置を示す断面図である。1 is a cross-sectional view illustrating an image forming apparatus including an embodiment of an optical scanning device of the present invention. 上蓋を外した状態での光走査装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the optical scanning apparatus in the state which removed the upper cover. 光走査装置の光学系を概略的に示す斜視図である。1 is a perspective view schematically showing an optical system of an optical scanning device. 光走査装置の中間ミラーの支持構造を示す斜視図である。It is a perspective view which shows the support structure of the intermediate | middle mirror of an optical scanning device. 中間ミラーの支持構造を示す平面図である。It is a top view which shows the support structure of an intermediate | middle mirror. 図5のA−Aに沿う断面図である。It is sectional drawing which follows AA of FIG. 光走査装置の保持部材を示す斜視図である。It is a perspective view which shows the holding member of an optical scanning device. 光走査装置の筐体の基盤の保持部材取付け領域付近を示す斜視図である。It is a perspective view which shows the holding member attachment area | region vicinity of the base | substrate of the housing | casing of an optical scanning device. 光走査装置の弾性支持枠を示す斜視図である。It is a perspective view which shows the elastic support frame of an optical scanning device. 光走査装置の側壁を背面側から見て示す斜視図である。It is a perspective view which shows the side wall of an optical scanning device seeing from the back side.

以下、本発明の実施形態を添付図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の光走査装置の一実施形態を適用した画像形成装置を示す断面図である。この画像形成装置1は、モノクロ画像を記録用紙に形成するものであり、その構成を大別すると、原稿用紙搬送部(ADF)11、画像読取り部12、印字部13、記録用紙搬送部14、及び給紙部15等からなる。   FIG. 1 is a sectional view showing an image forming apparatus to which an embodiment of an optical scanning device of the present invention is applied. The image forming apparatus 1 forms a monochrome image on a recording sheet. The configuration of the image forming apparatus 1 is roughly divided into a document sheet conveying unit (ADF) 11, an image reading unit 12, a printing unit 13, a recording sheet conveying unit 14, and the like. And a sheet feeder 15 and the like.

原稿用紙搬送部11では、原稿用紙を1枚ずつ原稿セットトレイ21から引き出して原稿搬送経路22を通じて搬送し、この原稿用紙を排紙トレイ23に排出する。   The original paper transport unit 11 pulls out original paper one by one from the original set tray 21 and transports it through the original transport path 22, and discharges the original paper onto the paper discharge tray 23.

画像読取り部12は、原稿用紙の搬送中に、第1走査ユニット24の光源によって原稿用紙表面を照明し、第1及び第2走査ユニット24、25のミラーによって原稿用紙表面からの反射光を結像レンズ26へと導き、結像レンズ26によって原稿用紙表面の画像をCCD(Charge Coupled Device)27上に結像する。CCD27は、原稿用紙表面の画像を主走査方向に繰り返し読取り、原稿用紙表面の画像を示す画像データを出力する。また、CIS28(Contact Image Sensor)は、原稿用紙の搬送中に、原稿用紙裏面を照明して、原稿用紙裏面の画像を主走査方向に繰り返し読取り、原稿用紙裏面の画像を示す画像データを出力する。   The image reading unit 12 illuminates the surface of the original paper by the light source of the first scanning unit 24 while conveying the original paper, and condenses the reflected light from the surface of the original paper by the mirrors of the first and second scanning units 24 and 25. The image is guided to the image lens 26, and an image on the surface of the original paper is formed on a CCD (Charge Coupled Device) 27 by the imaging lens 26. The CCD 27 repeatedly reads an image on the surface of the original paper in the main scanning direction, and outputs image data indicating the image on the surface of the original paper. A CIS 28 (Contact Image Sensor) illuminates the back side of the original paper while the original paper is being transported, repeatedly reads the image on the back side of the original paper in the main scanning direction, and outputs image data indicating the image on the back side of the original paper. .

また、原稿用紙が画像読取り部12上面のプラテンガラス29上に置かれた場合は、第1及び第2走査ユニット24、25を相互に所定の速度関係を維持しつつ移動させ、第1走査ユニット24の光源によってプラテンガラス29上の原稿用紙表面を照明し、第1及び第2走査ユニット24、25のミラーによって原稿用紙表面からの反射光を結像レンズ26へと導き、結像レンズ26によって原稿用紙表面の画像をCCD27上に結像する。   When the original paper is placed on the platen glass 29 on the upper surface of the image reading unit 12, the first and second scanning units 24 and 25 are moved while maintaining a predetermined speed relationship with each other. The light source 24 illuminates the surface of the original paper on the platen glass 29, the reflected light from the original paper surface is guided to the imaging lens 26 by the mirrors of the first and second scanning units 24, 25, and the imaging lens 26 An image on the surface of the original paper is formed on the CCD 27.

CCD27、CIS28から出力された画像データは、マイクロコンピュータ等の制御回路により各種の画像処理を施されてから、印字部13に出力される。 The image data output from the CCD 27 and the CIS 28 is subjected to various image processing by a control circuit such as a microcomputer and then output to the printing unit 13.

次に、印字部13は、画像データによって示される原稿を用紙に記録するものであって、感光体ドラム31、帯電装置32、光走査装置33、現像装置34、転写装置35、クリーニング装置36、及び定着装置37等を備えている。 Next, the printing unit 13 records a document indicated by the image data on a sheet, and includes a photosensitive drum 31, a charging device 32, an optical scanning device 33, a developing device 34, a transfer device 35, a cleaning device 36, And a fixing device 37 and the like.

感光体ドラム31は、一方向に回転しており、その表面をクリーニング装置36によりクリーニングされてから、その表面を帯電装置32により均一に帯電される。光走査装置33は、画像データを入力し、この画像データに応じて光ビーム(レーザ光)を変調し、この光ビームを感光体ドラム31に照射して、感光体ドラム31表面に静電潜像を形成する。現像装置34は、トナーを感光体ドラム31表面に供給して、静電潜像を現像し、トナー像を感光体ドラム31表面に形成する。転写装置35は、感光体ドラム31表面のトナー像を記録用紙搬送部14により搬送されてきた記録用紙に転写する。定着装置37は、記録用紙を加熱及び加圧して、記録用紙上のトナー像を定着させる。この後、記録用紙は、排紙トレイ38へと更に搬送されて排出される。   The photosensitive drum 31 rotates in one direction. After the surface is cleaned by the cleaning device 36, the surface is uniformly charged by the charging device 32. The optical scanning device 33 inputs image data, modulates a light beam (laser light) in accordance with the image data, irradiates the photosensitive drum 31 with this light beam, and electrostatic latent image on the surface of the photosensitive drum 31. Form an image. The developing device 34 supplies toner to the surface of the photosensitive drum 31 to develop the electrostatic latent image, and forms a toner image on the surface of the photosensitive drum 31. The transfer device 35 transfers the toner image on the surface of the photosensitive drum 31 onto the recording paper conveyed by the recording paper conveyance unit 14. The fixing device 37 heats and pressurizes the recording paper to fix the toner image on the recording paper. Thereafter, the recording paper is further conveyed to the paper discharge tray 38 and discharged.

記録用紙搬送部14は、記録用紙を搬送するための複数の搬送ローラ41、レジストローラ42、搬送経路43、及び排紙ローラ46等を備えおり、記録用紙を給紙部15から受け取って、記録用紙の先端をレジストローラ42に突き当てて揃えた後、記録用紙を印字部13の転写装置35へと搬送し、更に排紙ローラ46により記録用紙を排紙トレイ38へと搬送する。   The recording paper conveyance unit 14 includes a plurality of conveyance rollers 41 for conveying the recording paper, a registration roller 42, a conveyance path 43, a paper discharge roller 46, and the like. After the leading end of the sheet is brought into contact with the registration roller 42 and aligned, the recording sheet is conveyed to the transfer device 35 of the printing unit 13, and the recording sheet is further conveyed to the sheet discharge tray 38 by the sheet discharge roller 46.

給紙部15は、複数の給紙トレイ51を備えている。各給紙トレイ51は、記録用紙を蓄積しておくためのトレイであり、ピックアップローラ52により記録用紙を一枚ずつ引き出して記録用紙搬送部14の搬送経路43へと送り出す。   The paper feed unit 15 includes a plurality of paper feed trays 51. Each paper feed tray 51 is a tray for accumulating recording paper, and the recording paper is pulled out one by one by a pickup roller 52 and sent out to the conveyance path 43 of the recording paper conveyance unit 14.

次に、本実施形態の光走査装置33の構成について図2、図3を用いて詳細に説明する。図2は、上蓋を外した状態での光走査装置33の要部を示す斜視図である。また、図3は、光走査装置33の光学系を概略的に示す斜視図である。尚、図3では、光学系を図2の背面側から見て示している。   Next, the configuration of the optical scanning device 33 according to the present embodiment will be described in detail with reference to FIGS. FIG. 2 is a perspective view showing a main part of the optical scanning device 33 with the upper lid removed. FIG. 3 is a perspective view schematically showing an optical system of the optical scanning device 33. In FIG. 3, the optical system is shown as viewed from the back side of FIG.

図2に示すように光走査装置33の筐体53は、合成樹脂製のものであって、その内部には、半導体レーザ101、ポリゴンミラー102、コリメータレンズ103、凹レンズ104、シリンドリカルレンズ105、中間ミラー106、第1fθレンズ107、第2fθレンズ108、及び出射折り返しミラー109等が配置されている。   As shown in FIG. 2, the housing 53 of the optical scanning device 33 is made of synthetic resin, and includes a semiconductor laser 101, a polygon mirror 102, a collimator lens 103, a concave lens 104, a cylindrical lens 105, and an intermediate. A mirror 106, a first fθ lens 107, a second fθ lens 108, an output folding mirror 109, and the like are disposed.

図3に示すように光走査装置33では、半導体レーザ101から出射された光ビームBMをミラーやレンズ等により矢印方向に回転駆動されているポリゴンミラー102の反射面へと導き、光ビームBMをポリゴンミラー102の反射面で反射して偏向させ、更に反射された光ビームBMをミラーやレンズ等により感光体ドラム31へと導き、光ビームBMにより感光体ドラム31の表面を主走査方向Yに繰り返し走査するというものである。   As shown in FIG. 3, in the optical scanning device 33, the light beam BM emitted from the semiconductor laser 101 is guided to the reflection surface of the polygon mirror 102 that is rotationally driven in the direction of the arrow by a mirror, a lens or the like, and the light beam BM is emitted. The light beam BM is reflected and deflected by the reflecting surface of the polygon mirror 102, and the reflected light beam BM is guided to the photosensitive drum 31 by a mirror or a lens. The surface of the photosensitive drum 31 is moved in the main scanning direction Y by the light beam BM. Repeated scanning.

半導体レーザ101からポリゴンミラー102までの光路には、半導体レーザ101からポリゴンミラー102へと向う順に、コリメータレンズ103、凹レンズ104、シリンドリカルレンズ105、中間ミラー106等の各光学部材が配置されている。   In the optical path from the semiconductor laser 101 to the polygon mirror 102, optical members such as a collimator lens 103, a concave lens 104, a cylindrical lens 105, and an intermediate mirror 106 are arranged in the order from the semiconductor laser 101 to the polygon mirror 102.

コリメータレンズ103は、半導体レーザ101から出射された光ビームBMを平行光に変換する。凹レンズ104は、平行光に一旦変換された光ビームBMを拡散させる。シリンドリカルレンズ105は、副走査方向Xについて光ビームBMを再度収束させ、副走査方向Xと直交する主走査方向Yについて光ビームBMをそのまま拡散光として出射する。中間ミラー106は、シリンドリカルレンズ105からの光ビームBMを反射し、ポリゴンミラー102に入射させる。これにより、主走査方向についてはポリゴンミラー102の一反射面に対する光ビームBMの照射領域が該一反射面よりも僅かに大きくされる(オーバーフィルドと称す)。   The collimator lens 103 converts the light beam BM emitted from the semiconductor laser 101 into parallel light. The concave lens 104 diffuses the light beam BM once converted into parallel light. The cylindrical lens 105 converges the light beam BM again in the sub-scanning direction X, and emits the light beam BM as diffuse light as it is in the main scanning direction Y orthogonal to the sub-scanning direction X. The intermediate mirror 106 reflects the light beam BM from the cylindrical lens 105 and makes it incident on the polygon mirror 102. As a result, in the main scanning direction, the irradiation region of the light beam BM on one reflecting surface of the polygon mirror 102 is slightly larger than the one reflecting surface (referred to as overfilled).

次に、ポリゴンミラー102から感光体ドラム31までの光路には、ポリゴンミラー102から感光体ドラム31へと向う順に、第1fθレンズ107、第2fθレンズ108、及び出射折り返しミラー109等の各光学部材が配置されている。   Next, in the optical path from the polygon mirror 102 to the photosensitive drum 31, optical members such as the first fθ lens 107, the second fθ lens 108, and the output folding mirror 109 are arranged in the order from the polygon mirror 102 to the photosensitive drum 31. Is arranged.

第1fθレンズ107は、副走査方向Xについてポリゴンミラー102で反射された光ビームBMを平行光に変換し、主走査方向Yについてポリゴンミラー102で反射された平行光の光ビームBMを感光体ドラム31の表面で所定のビーム径となるように集光して出射する。また、第1fθレンズ107は、ポリゴンミラー102の等角速度運動により主走査方向Yに等角速度で偏向されている光ビームBMを感光体ドラム31上の主走査線上で等線速度で移動するように変換する。   The first fθ lens 107 converts the light beam BM reflected by the polygon mirror 102 in the sub-scanning direction X into parallel light, and converts the parallel light beam BM reflected by the polygon mirror 102 in the main scanning direction Y into the photosensitive drum. The light is condensed and emitted so as to have a predetermined beam diameter on the surface of 31. The first fθ lens 107 moves the light beam BM deflected at a constant angular velocity in the main scanning direction Y by the constant angular velocity movement of the polygon mirror 102 on the main scanning line on the photosensitive drum 31 at a constant linear velocity. Convert.

第2fθレンズ108は、副走査方向Xについて第1fθレンズ107で平行光となった光ビームBMを感光体ドラム31上で所定のビーム径となるように集光し、主走査方向Yについて第1fθレンズ107で収束光となった光ビームBMをそのまま感光体ドラム31に入射させる。   The second fθ lens 108 condenses the light beam BM, which has been collimated by the first fθ lens 107 in the sub-scanning direction X, on the photosensitive drum 31 so as to have a predetermined beam diameter, and the first fθ in the main scanning direction Y. The light beam BM that has been converged by the lens 107 is directly incident on the photosensitive drum 31.

出射折り返しミラー109は、第2fθレンズ108を透過した光ビームBMを反射し、光ビームBMを筐体53の基盤53aのスリット53b(図2に示す)を介して感光体ドラム31に入射させる。この結果、光ビームBMのスポットが感光体ドラム31の表面に形成され、光ビームBMにより感光体ドラム31の表面が主走査される。   The exit folding mirror 109 reflects the light beam BM transmitted through the second fθ lens 108 and causes the light beam BM to enter the photosensitive drum 31 through the slit 53 b (shown in FIG. 2) of the base 53 a of the housing 53. As a result, a spot of the light beam BM is formed on the surface of the photosensitive drum 31, and the surface of the photosensitive drum 31 is main-scanned by the light beam BM.

また、ポリゴンミラー102で反射された光ビームBMは、該光ビームBMによる感光体ドラム31の主走査が開始される直前に、検出ミラー111で反射されてBDセンサ112に入射する。BDセンサ112は、感光体ドラム31の主走査を開始する直前のタイミングで光ビームBMを受光して、この主走査開始直前のタイミングを示すBD信号を出力する。このBD信号に応じて光ビームBMによる感光体ドラム31の主走査の開始タイミングが判定され、画像データに応じた光ビームBMの変調が開始される。   The light beam BM reflected by the polygon mirror 102 is reflected by the detection mirror 111 and enters the BD sensor 112 immediately before the main scanning of the photosensitive drum 31 by the light beam BM is started. The BD sensor 112 receives the light beam BM at a timing immediately before the main scanning of the photosensitive drum 31 is started, and outputs a BD signal indicating the timing immediately before the main scanning is started. The start timing of the main scanning of the photosensitive drum 31 by the light beam BM is determined according to the BD signal, and the modulation of the light beam BM according to the image data is started.

このように光走査装置33においては、光ビームBMがポリゴンミラー102の反射面で反射されて偏向され感光体ドラム31に入射して、光ビームBMにより感光体ドラム31の表面が繰返し主走査される。その一方で、感光体ドラム31が回転駆動されるので、光ビームBMにより感光体ドラム31の2次元表面(周面)が走査され、感光体ドラム31の表面に静電潜像が形成される。    As described above, in the optical scanning device 33, the light beam BM is reflected and deflected by the reflecting surface of the polygon mirror 102, enters the photosensitive drum 31, and the surface of the photosensitive drum 31 is repeatedly main-scanned by the light beam BM. The On the other hand, since the photosensitive drum 31 is rotationally driven, the two-dimensional surface (circumferential surface) of the photosensitive drum 31 is scanned by the light beam BM, and an electrostatic latent image is formed on the surface of the photosensitive drum 31. .

ところで、このような光走査装置33においては、各レンズ103〜105、107、108の入射面又は出射面やミラー102、106、109の反射面の向きを高精度で調節して、半導体レーザ101から感光体ドラム31表面への光ビームBMの光路を設定している。   By the way, in such an optical scanning device 33, the direction of the entrance surface or exit surface of each of the lenses 103 to 105, 107, and 108 and the reflection surface of the mirrors 102, 106, and 109 is adjusted with high precision, so that the semiconductor laser 101 The optical path of the light beam BM to the surface of the photosensitive drum 31 is set.

しかしながら、レンズやミラーの面の向きを高精度で調節しても、仮に、熱膨張による筐体53の伸縮や、ポリゴンミラー102を回転駆動するモータや画像形成装置1の各種のモータの振動が原因となって、筐体53に取付けられたレンズやミラーの面の向きがずれたならば、感光体ドラム31表面における光ビームの入射位置が大幅にずれる。特に、中間ミラー106については、中間ミラー106の反射面の向きが僅かでも変化すると、ポリゴンミラー102の反射面に対する入射位置が大幅にずれ、ポリゴンミラー102から感光体ドラム31までの光路も大幅にずれて、感光体ドラム31の表面における光ビームBMの入射位置が大幅にずれる。   However, even if the direction of the surface of the lens or mirror is adjusted with high accuracy, the expansion / contraction of the casing 53 due to thermal expansion, the vibration of the motor that rotationally drives the polygon mirror 102, and the various motors of the image forming apparatus 1 are assumed. If the direction of the surface of the lens or mirror attached to the casing 53 is deviated due to the cause, the incident position of the light beam on the surface of the photosensitive drum 31 is greatly shifted. In particular, with respect to the intermediate mirror 106, if the direction of the reflection surface of the intermediate mirror 106 changes even slightly, the incident position with respect to the reflection surface of the polygon mirror 102 is greatly shifted, and the optical path from the polygon mirror 102 to the photosensitive drum 31 is also greatly increased. As a result, the incident position of the light beam BM on the surface of the photosensitive drum 31 is significantly shifted.

そこで、本実施形態の光走査装置33では、熱膨張により筐体53が伸縮しても、あるいはポリゴンミラー102を回転駆動するモータや画像形成装置1の各種のモータの振動が中間ミラー106に作用しても、中間ミラー106の反射面の向きが変化しないように、筐体53の基盤53a上で中間ミラー106を支持している。   Therefore, in the optical scanning device 33 according to the present embodiment, even if the housing 53 expands or contracts due to thermal expansion, vibrations of a motor that rotates the polygon mirror 102 and various motors of the image forming apparatus 1 act on the intermediate mirror 106. Even so, the intermediate mirror 106 is supported on the base 53a of the housing 53 so that the direction of the reflecting surface of the intermediate mirror 106 does not change.

次に、中間ミラー106の支持構造を詳しく説明する。図4、図5は、中間ミラー106の支持構造を示す斜視図及び平面図である。また、図6は、図5のA−Aに沿う断面図である。図4及び図5に示すように筐体53の基盤53aには、保持部材121が取付けられ、この保持部材121上に弾性支持枠122が固定され、弾性支持枠122により中間ミラー106が支持されている。尚、図5に示す仮想直線Dは、基盤53aに対する鉛直方向から見て、中間ミラー106の反射面と略平行な線である。   Next, the support structure for the intermediate mirror 106 will be described in detail. 4 and 5 are a perspective view and a plan view showing a support structure of the intermediate mirror 106. FIG. 6 is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 4 and 5, a holding member 121 is attached to the base 53 a of the housing 53, an elastic support frame 122 is fixed on the holding member 121, and the intermediate mirror 106 is supported by the elastic support frame 122. ing. Note that the virtual straight line D shown in FIG. 5 is a line substantially parallel to the reflecting surface of the intermediate mirror 106 when viewed from the vertical direction with respect to the base 53a.

図7は、保持部材121を示す斜視図である。図7に示すように保持部材121は、L字型に折り曲げられた金属板であり、底板121a及び立設板121bを有する。底板121aには、固定孔121c、長形ガイド孔121d、ネジ孔121e、2つの矩形孔121f、及び4つの突起121gが形成されている。また、立設板121bには、該立設板121bの矩形対角線上に並ぶ2つのネジ孔121h、及び一方のネジ孔121hの上方に配された凸部121iが形成されている。   FIG. 7 is a perspective view showing the holding member 121. As shown in FIG. 7, the holding member 121 is a metal plate bent in an L shape, and includes a bottom plate 121a and a standing plate 121b. The bottom plate 121a is formed with a fixing hole 121c, a long guide hole 121d, a screw hole 121e, two rectangular holes 121f, and four protrusions 121g. Further, the standing plate 121b is formed with two screw holes 121h arranged on a rectangular diagonal line of the standing plate 121b, and a convex portion 121i disposed above one screw hole 121h.

図8は、保持部材121が取付けられる基盤53aの領域付近を示す斜視図である。図8に示すように基盤53aには、低いボス53c及び高いボス53dが突設され、低いボス53cの周囲及び高いボス53dの周囲にそれぞれのスペーサー状リブ53e、53fが形成され、更にコの字型の枠部53g及びスペーサー状リブ53hが形成されている。低いボス53cと高いボス53dとを結ぶ直線が仮想直線D(中間ミラー106の反射面)と略平行であり、各スペーサー状リブ53e、53f、53hの上面が同一高さにされている。 FIG. 8 is a perspective view showing the vicinity of the region of the base 53a to which the holding member 121 is attached. As shown in FIG. 8, the base 53a is provided with a low boss 53c and a high boss 53d, and spacer ribs 53e and 53f are formed around the low boss 53c and the high boss 53d, respectively. A character-shaped frame portion 53g and spacer-like ribs 53h are formed. A straight line connecting the low boss 53c and the high boss 53d is substantially parallel to the virtual straight line D (the reflection surface of the intermediate mirror 106), and the upper surfaces of the spacer-like ribs 53e, 53f, 53h are the same height.

また、基盤53aの一端には、側壁53iが立設され、基盤53aにおける側壁53iの近傍箇所に2つの柱状突起53jが突設されている。更に、側壁53iには、2つの調整孔53kが形成されている。   Further, a side wall 53i is erected at one end of the base 53a, and two columnar protrusions 53j protrude from the base 53a near the side wall 53i. Further, two adjustment holes 53k are formed in the side wall 53i.

図4〜図5に示すように基盤53aの低いボス53c及び高いボス53dを保持部材121の底板121aの固定孔121c及び長形ガイド孔121dに挿し通し、基盤53aの各柱状突起53jを底板121aの各矩形孔121fに挿し通して、底板121aを位置決めし、底板121aを各スペーサー状リブ53e、53f、53hの上面に安定的に載せている。   As shown in FIGS. 4 to 5, the low boss 53c and the high boss 53d of the base 53a are inserted into the fixing holes 121c and the long guide holes 121d of the bottom plate 121a of the holding member 121, and the columnar protrusions 53j of the base 53a are inserted into the bottom plate 121a. The bottom plate 121a is positioned, and the bottom plate 121a is stably placed on the upper surfaces of the spacer-like ribs 53e, 53f, and 53h.

保持部材121の底板121aの固定孔121cの内径が基盤53aの低いボス53cの外径よりも僅かに大きく、低いボス53cが底板121aの固定孔121cにガタツキなく差し込まれる。また、スペーサー状リブ53e上面からの低いボス53cの高さが底板121aの厚みと略同一であり、低いボス53cにねじ込まれたネジ123とスペーサー状リブ53eとの間に底板121aが挟まれて締め付けられる。これにより、スペーサー状リブ53e上で、底板121aの固定孔121cの部位が固定される。   The inner diameter of the fixing hole 121c of the bottom plate 121a of the holding member 121 is slightly larger than the outer diameter of the lower boss 53c of the base 53a, and the lower boss 53c is inserted into the fixing hole 121c of the bottom plate 121a without rattling. Further, the height of the low boss 53c from the upper surface of the spacer-like rib 53e is substantially the same as the thickness of the bottom plate 121a, and the bottom plate 121a is sandwiched between the screw 123 screwed into the low boss 53c and the spacer-like rib 53e. Tightened. Thereby, the part of the fixing hole 121c of the bottom plate 121a is fixed on the spacer-like rib 53e.

また、保持部材121の底板121aの長形ガイド孔121dの短径が基盤53aの高いボス53dの外径よりも僅かに大きく、長形ガイド孔121dの長径が高いボス53dの外径よりも充分に長くて仮想直線D(中間ミラー106の反射面)と略平行な方向に延在している。仮想直線Dと直交する方向では、高いボス53dが底板121aの長形ガイド孔121dの短径側でガタツキなく挟み込まれ、また仮想直線Dと平行な方向では、基盤53aに対して底板121aの長形ガイド孔121dの部位が変位可能である。この高いボス53dにコイルバネ124を差し込み、ネジ125にワッシャ126を通して、ネジ125を高いボス53dにねじ込み、底板121aとワッシャ126の間にコイルバネ124を短縮して挟みこみ、コイルバネ124の付勢力により底板121aをスペーサー状リブ53fに押し当てて支持している。これにより、スペーサー状リブ53f上で、底板121aの長形ガイド孔121dの部位が、基盤53aに対して仮想直線Dと直交する方向で固定されかつ仮想直線Dと平行な方向で変位可能に支持される。   Further, the short diameter of the long guide hole 121d of the bottom plate 121a of the holding member 121 is slightly larger than the outer diameter of the high boss 53d of the base 53a, and the long diameter of the long guide hole 121d is sufficiently larger than the outer diameter of the boss 53d. And extends in a direction substantially parallel to the virtual straight line D (the reflection surface of the intermediate mirror 106). In the direction orthogonal to the imaginary straight line D, the high boss 53d is sandwiched without rattling on the short diameter side of the long guide hole 121d of the bottom plate 121a, and in the direction parallel to the imaginary straight line D, the length of the bottom plate 121a is long. The part of the shape guide hole 121d can be displaced. The coil spring 124 is inserted into the high boss 53d, the washer 126 is passed through the screw 125, the screw 125 is screwed into the high boss 53d, and the coil spring 124 is shortened and sandwiched between the bottom plate 121a and the washer 126. 121a is pressed against and supported by the spacer-like rib 53f. As a result, on the spacer-like rib 53f, the portion of the long guide hole 121d of the bottom plate 121a is fixed in a direction orthogonal to the virtual straight line D with respect to the base 53a and is supported so as to be displaceable in a direction parallel to the virtual straight line D. Is done.

更に、保持部材121の底板121aの一端121jを基盤53aの枠部53gから僅かに離して配置し、底板121aをスペーサー状リブ53hに載せ、板バネ127の一端を枠部53gの内側に嵌め入れ、板バネ127の他端を底板121aの一端121jの上に載せて、板バネ127の孔を通じてネジ128を枠部53gの内側にねじ込んで締め付け、板バネ127を変形させ、板バネ127の付勢力により底板121aの一端121jをスペーサー状リブ53hに押し当てて支持している。これにより、スペーサー状リブ53h上で、基盤53aに対して底板121aの一端121jがネジ128の軸周り360°いずれの方向にも変位可能に支持される。   Further, one end 121j of the bottom plate 121a of the holding member 121 is disposed slightly apart from the frame portion 53g of the base 53a, the bottom plate 121a is placed on the spacer-like rib 53h, and one end of the leaf spring 127 is fitted inside the frame portion 53g. The other end of the leaf spring 127 is placed on the one end 121j of the bottom plate 121a, and the screw 128 is screwed into the frame 53g through the hole of the leaf spring 127 and tightened to deform the leaf spring 127, and the leaf spring 127 is attached. One end 121j of the bottom plate 121a is pressed against and supported by the spacer-shaped rib 53h by the force. Thereby, on the spacer-like rib 53h, one end 121j of the bottom plate 121a is supported so as to be displaceable in any direction of 360 ° around the axis of the screw 128 with respect to the base 53a.

従って、保持部材121の底板121aの固定孔121cの部位が基盤53aに固定され、底板121aの長形ガイド孔121dの部位が基盤53aに対して仮想直線Dと直交する方向で固定されかつ仮想直線Dと平行な方向で変位可能に支持され、底板121aの一端121jが基盤53aに対して360°いずれの方向にも変位可能に支持されている。また、各ボス53c、53d及び枠部53gが二等辺三角形の各頂点の位置にあり、各ボス53c、53dを結ぶ線分が二等辺三角形の底辺に対応する。このため、保持部材121の底板121aが3箇所で支持され、保持部材121及び中間ミラー106が安定的に支持される。更に、コイルバネ124により底板121aがスペーサー状リブ53fに押付けられる押圧力を板バネ127により底板121aがスペーサー状リブ53hに押付けられる押圧力よりも小さくして、板バネ127により底板121aの一端121jをより安定的に支持し、またコイルバネ124により底板121aの長形ガイド孔121dの部位をより移動し易い状態で支持している。   Accordingly, the portion of the fixing hole 121c of the bottom plate 121a of the holding member 121 is fixed to the base 53a, and the portion of the long guide hole 121d of the bottom plate 121a is fixed to the base 53a in a direction orthogonal to the virtual straight line D and the virtual straight line D is supported to be displaceable in a direction parallel to D, and one end 121j of the bottom plate 121a is supported to be displaceable in any direction of 360 ° with respect to the base 53a. The bosses 53c and 53d and the frame portion 53g are at the positions of the vertices of the isosceles triangle, and the line segment connecting the bosses 53c and 53d corresponds to the base of the isosceles triangle. For this reason, the bottom plate 121a of the holding member 121 is supported at three locations, and the holding member 121 and the intermediate mirror 106 are stably supported. Further, the pressing force by which the bottom plate 121a is pressed against the spacer-shaped rib 53f by the coil spring 124 is made smaller than the pressing force by which the bottom plate 121a is pressed by the spacer-shaped rib 53h by the plate spring 127, and the end 121j of the bottom plate 121a is moved by the plate spring 127. It is supported more stably, and the portion of the long guide hole 121d of the bottom plate 121a is supported by the coil spring 124 so as to be easily moved.

図9は、中間ミラー106を取外した状態の弾性支持枠122を示す斜視図である。図9に示すように弾性支持枠122は、薄い金属板を打ち抜いて折り曲げ加工したものであり、底板122a、底板122aの一端中央で折り曲げられた柱部122b、柱部122bの上端で折り曲げられた押え部122c、及び底板122aの一端両側で折り曲げられた各把持爪部122dを有している。底板122aには、円形孔122e及び長形孔122fが形成されている。   FIG. 9 is a perspective view showing the elastic support frame 122 with the intermediate mirror 106 removed. As shown in FIG. 9, the elastic support frame 122 is formed by punching a thin metal plate and bending it. The bottom plate 122a, the column portion 122b bent at the center of one end of the bottom plate 122a, and bent at the upper end of the column portion 122b. Each of the holding claw portions 122d is bent at both ends of the presser portion 122c and the bottom plate 122a. A circular hole 122e and an elongated hole 122f are formed in the bottom plate 122a.

図4〜図6に示すように弾性支持枠122の底板122aの円形孔122e及び長形孔122fを保持部材121の底板121aの各突起121gに嵌め入れ、ネジ131を弾性支持枠122の底板122aの穿孔(図示せず)を介して保持部材121の底板121aのネジ孔121eにねじ込んで、保持部材121の底板121a上で弾性支持枠122を位置決め固定している。   As shown in FIGS. 4 to 6, the circular holes 122 e and the elongated holes 122 f of the bottom plate 122 a of the elastic support frame 122 are fitted into the protrusions 121 g of the bottom plate 121 a of the holding member 121, and screws 131 are inserted into the bottom plate 122 a of the elastic support frame 122. The elastic support frame 122 is positioned and fixed on the bottom plate 121a of the holding member 121 by being screwed into the screw holes 121e of the bottom plate 121a of the holding member 121 through the perforations (not shown).

そして、中間ミラー106を弾性支持枠122の柱部122bと各把持爪部122dの間に差し入れて挟み込んでいる。同時に、中間ミラー106の下端を保持部材121の底板121aの各突起121gの上に載せ、弾性支持枠122の押え部122cにより中間ミラー106の上端を押さえ付けて、中間ミラー106の上下を保持している。更に、中間ミラー106を各柱状突起53jの間に配置している。   The intermediate mirror 106 is inserted and sandwiched between the column portion 122b of the elastic support frame 122 and each gripping claw portion 122d. At the same time, the lower end of the intermediate mirror 106 is placed on the projections 121g of the bottom plate 121a of the holding member 121, and the upper end of the intermediate mirror 106 is pressed by the pressing portion 122c of the elastic support frame 122 to hold the upper and lower sides of the intermediate mirror 106. ing. Further, the intermediate mirror 106 is disposed between the columnar protrusions 53j.

また、図5に示すように中間ミラー106の裏面を保持部材121の立設板121bの凸部121iに当接させ、保持部材121の立設板121bの各ネジ孔121hにそれぞれの虫ネジ132をねじ込んで、各虫ネジ132の先端を中間ミラー106の裏面に当接させ、中間ミラー106の裏面を凸部121iと各虫ネジ132の先端により3点支持し、中間ミラー106の反射面の向きを設定している。   Further, as shown in FIG. 5, the back surface of the intermediate mirror 106 is brought into contact with the convex portion 121 i of the standing plate 121 b of the holding member 121, and the worm screw 132 is inserted into each screw hole 121 h of the standing plate 121 b of the holding member 121. And the tip of each bug screw 132 is brought into contact with the back surface of the intermediate mirror 106, and the back surface of the intermediate mirror 106 is supported at three points by the convex portion 121i and the tip of each bug screw 132. The direction is set.

ここで、弾性支持枠122が弾性を有し、また中間ミラー106と各柱状突起53jの間に遊びを設けているので、弾性支持枠122を弾性変形させて、中間ミラー106の反射面の向きを変更することが可能である。詳しくは、図10に示すように筐体53の側壁53iの各調整孔53kを通じて、ドライバにより各虫ネジ132を回転させて、各虫ネジ132の先端の突出長さを変更し、各虫ネジ132の先端による中間ミラー106の裏面のそれぞれの押し出し長さを変える。これにより、中間ミラー106の裏面が立設板121bの凸部121iの当接位置を中心にいずれの方向にも回転して、中間ミラー106の反射面が起伏旋回し、反射面の向きが変わる。例えば、立設板121bの凸部121i下方のネジ孔121hにねじ込まれた虫ネジ132の先端の突出長さを変更すると、中間ミラー106の裏面が凸部121iの当接位置を中心に概ね上下方向に回転して、中間ミラー106の反射面が概ね起伏する。また、立設板121bの凸部121i横方向のネジ孔121hにねじ込まれた虫ネジ132の先端の突出長さを変更すると、中間ミラー106の裏面が凸部121iの当接位置を中心に概ね左右方向に回転して、中間ミラー106の反射面が概ね旋回する。   Here, since the elastic support frame 122 has elasticity and play is provided between the intermediate mirror 106 and each columnar protrusion 53j, the elastic support frame 122 is elastically deformed, and the direction of the reflecting surface of the intermediate mirror 106 is changed. It is possible to change. Specifically, as shown in FIG. 10, each worm screw 132 is rotated by a screwdriver through each adjustment hole 53 k on the side wall 53 i of the housing 53 to change the protruding length of the tip of each worm screw 132. The extrusion length of the back surface of the intermediate mirror 106 by the tip of 132 is changed. As a result, the back surface of the intermediate mirror 106 rotates in any direction around the contact position of the convex portion 121i of the standing plate 121b, and the reflection surface of the intermediate mirror 106 swings up and down, changing the direction of the reflection surface. . For example, when the protruding length of the tip of the worm screw 132 screwed into the screw hole 121h below the convex portion 121i of the standing plate 121b is changed, the back surface of the intermediate mirror 106 is generally vertically moved around the contact position of the convex portion 121i. Rotating in the direction, the reflecting surface of the intermediate mirror 106 is roughly undulated. Further, when the projecting length of the tip of the bug screw 132 screwed into the screw hole 121h in the lateral direction of the convex portion 121i of the standing plate 121b is changed, the back surface of the intermediate mirror 106 is generally centered on the contact position of the convex portion 121i. By rotating in the left-right direction, the reflecting surface of the intermediate mirror 106 is generally turned.

このように中間ミラー106の反射面の向きを調節することにより、中間ミラー106からポリゴンミラー102を介して感光体ドラム31までの光路を適宜設定し、感光体ドラム31の表面における光ビームBMの入射位置を設定する。   By adjusting the direction of the reflecting surface of the intermediate mirror 106 in this way, an optical path from the intermediate mirror 106 to the photosensitive drum 31 via the polygon mirror 102 is appropriately set, and the light beam BM on the surface of the photosensitive drum 31 is set. Set the incident position.

一方、筐体53並びに基盤53aが合成樹脂製で、保持部材121が金属製であり、一般に、合成樹脂の熱膨張率が金属の熱膨張率よりも極めて大きいため、熱膨張により基盤53aが保持部材121よりも大きく伸縮する。また、ポリゴンミラー102を回転駆動するモータや画像形成装置1の各種のモータの振動が基盤53aを通じて保持部材121や中間ミラー106に伝わる。従って、中間ミラー106の反射面の向きがずれる原因が存在する。   On the other hand, the casing 53 and the base 53a are made of synthetic resin, and the holding member 121 is made of metal. Generally, since the thermal expansion coefficient of the synthetic resin is much larger than that of the metal, the base 53a is held by thermal expansion. It expands and contracts larger than the member 121. In addition, vibrations of a motor that rotates the polygon mirror 102 and various motors of the image forming apparatus 1 are transmitted to the holding member 121 and the intermediate mirror 106 through the base 53a. Therefore, there is a cause of the orientation of the reflection surface of the intermediate mirror 106 being deviated.

ところが、本実施形態の光走査装置33では、ネジ123により保持部材121の固定孔121cの部位が基盤53aに固定されているので、各種のモータの振動が基盤53aを通じて保持部材121に伝わっても、保持部材121の位置がずれることはなく、中間ミラー106の反射面の向きを維持することができる。また、底板121aの長形ガイド孔121dの部位が基盤53aに対して仮想直線Dと直交する方向で固定されかつ仮想直線Dと平行な方向で変位可能に支持され、底板121aの一端121jが基盤53aに対して360°いずれの方向にも変位可能に支持されているので、熱膨張により基盤53aが伸縮しても、底板121aの長形ガイド孔121d及び底板121aの一端121jが基盤53aに追従して変位せず、底板121aの固定孔121cに対する長形ガイド孔121dと一端121jの位置関係が保たれて、保持部材121に歪が生じることはなく、固定孔121cの部位の変位が抑制され、中間ミラー106の反射面の向きを維持することができる。すなわち、各種のモータの振動が基盤53aを通じて保持部材121に伝わっても、熱膨張により基盤53aが伸縮しても、保持部材121により保持された中間ミラー106の反射面の向きが変化することはなく、光ビームBMの向きが変化することもなく、感光体ドラム31表面における光ビームの入射位置がずれることがない。   However, in the optical scanning device 33 of the present embodiment, since the portion of the fixing hole 121c of the holding member 121 is fixed to the base 53a by the screw 123, even if the vibrations of various motors are transmitted to the holding member 121 through the base 53a. The position of the holding member 121 is not displaced, and the orientation of the reflecting surface of the intermediate mirror 106 can be maintained. A portion of the long guide hole 121d of the bottom plate 121a is fixed to the base 53a in a direction orthogonal to the virtual straight line D and supported so as to be displaceable in a direction parallel to the virtual straight line D, and one end 121j of the bottom plate 121a is supported by the base Since the base 53a is expanded and contracted due to thermal expansion, the long guide hole 121d of the bottom plate 121a and the one end 121j of the bottom plate 121a follow the base 53a. Thus, the positional relationship between the long guide hole 121d and the one end 121j with respect to the fixing hole 121c of the bottom plate 121a is maintained, the holding member 121 is not distorted, and the displacement of the fixing hole 121c is suppressed. The orientation of the reflecting surface of the intermediate mirror 106 can be maintained. That is, even if the vibrations of various motors are transmitted to the holding member 121 through the base 53a or the base 53a expands or contracts due to thermal expansion, the direction of the reflecting surface of the intermediate mirror 106 held by the holding member 121 changes. In addition, the direction of the light beam BM does not change, and the incident position of the light beam on the surface of the photosensitive drum 31 does not shift.

また、底板121aの長形ガイド孔121dの部位が基盤53aに対して仮想直線Dと平行な方向で変位可能に支持されているので、基盤53aに対する長形ガイド孔121dの変位により中間ミラー106の反射面を回転させる方向の力が保持部材121に作用することはなく、中間ミラー106の反射面の向きが一定に維持される。   Further, since the portion of the long guide hole 121d of the bottom plate 121a is supported so as to be displaceable in a direction parallel to the virtual straight line D with respect to the base 53a, the displacement of the long guide hole 121d with respect to the base 53a causes the intermediate mirror 106 to move. The force in the direction of rotating the reflecting surface does not act on the holding member 121, and the orientation of the reflecting surface of the intermediate mirror 106 is kept constant.

特に、本実施形態の光走査装置33では、主走査方向についてはポリゴンミラー102の一反射面に対する光ビームBMの照射領域を該一反射面よりも大きくするというオーバーフィルドを適用していることから、光ビームBMの光路の位置を高精度で維持する必要があり、基盤53aの熱膨張の影響を受けずに、中間ミラー106の反射面の向きを維持することは有意義である。   In particular, in the optical scanning device 33 of the present embodiment, in the main scanning direction, an overfilling is applied in which the irradiation area of the light beam BM on one reflecting surface of the polygon mirror 102 is made larger than the one reflecting surface. It is necessary to maintain the position of the optical path of the light beam BM with high accuracy, and it is meaningful to maintain the orientation of the reflecting surface of the intermediate mirror 106 without being affected by the thermal expansion of the base 53a.

また、コイルバネ124による押圧力を板バネ127による押圧力よりも小さくして、コイルバネ124により底板121aの長形ガイド孔121dの部位をより移動し易い状態で支持しているので、熱膨張による基盤53aの伸縮長さを中間ミラー106の反射面と平行な方向に容易に逃がすことができ、保持部材121の歪みや固定孔121cの部位の変位をより効果的に防止することができる。   Further, the pressing force by the coil spring 124 is made smaller than the pressing force by the leaf spring 127, and the portion of the long guide hole 121d of the bottom plate 121a is supported by the coil spring 124 in a state where it can be moved more easily. The stretchable length of 53a can be easily released in a direction parallel to the reflecting surface of the intermediate mirror 106, and the distortion of the holding member 121 and the displacement of the fixing hole 121c can be more effectively prevented.

更に、各ボス53c、53d及び枠部53gが二等辺三角形の各頂点の位置にあり、各ボス53c、53dを結ぶ線分が二等辺三角形の底辺に対応し、各ボス53c、53dの間に中間ミラー106が配置されていることから、中間ミラー106に対して入射及び反射する光ビームBMの光路が枠部53gの上方を通過することになるが、枠部53gに固定された板バネ127により底板121aの一端121jを押付ける構成であって、板バネ127の高さが低いことから、板バネ127が光ビームBMの光路を遮ることはない。   Further, the bosses 53c and 53d and the frame portion 53g are at the positions of the vertices of the isosceles triangle, the line segment connecting the bosses 53c and 53d corresponds to the base of the isosceles triangle, and between the bosses 53c and 53d. Since the intermediate mirror 106 is disposed, the optical path of the light beam BM incident and reflected on the intermediate mirror 106 passes above the frame portion 53g, but the leaf spring 127 fixed to the frame portion 53g. Accordingly, the one end 121j of the bottom plate 121a is pressed, and the height of the leaf spring 127 is low, so that the leaf spring 127 does not block the optical path of the light beam BM.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. It is understood.

1 画像形成装置
11 原稿用紙搬送部(ADF)
12 画像読取り部
13 印字部
14 記録用紙搬送部
15 給紙部
31 感光体ドラム(被走査体)
32 帯電装置
33 光走査装置
34 現像装置
35 転写装置
36 クリーニング装置
37 定着装置
53 筐体(装置本体)
101 半導体レーザ
102 ポリゴンミラー
103 コリメータレンズ
104 凹レンズ
105 シリンドリカルレンズ
106 中間ミラー(光学部材)
107 第1fθレンズ
108 第2fθレンズ
109 出射折り返しミラー
121 保持部材
121c 固定孔(固定部位)
121d 長形ガイド孔(第1支持部位、ガイド部)
121j 一端(第2支持部位)
122 弾性支持枠(弾性支持部材)
123 ネジ(締結部材)
125、128、131 ネジ
124 コイルバネ(第1押圧部材)
126 ワッシャ
127 板バネ(第2押圧部材)
132 虫ネジ(ネジ部材)
DESCRIPTION OF SYMBOLS 1 Image forming apparatus 11 Document paper conveyance part (ADF)
12 Image reading unit 13 Printing unit 14 Recording paper transport unit 15 Paper feeding unit 31 Photosensitive drum (scanned body)
32 Charging device 33 Optical scanning device 34 Developing device 35 Transfer device 36 Cleaning device 37 Fixing device 53 Case (device main body)
101 Semiconductor Laser 102 Polygon Mirror 103 Collimator Lens 104 Concave Lens 105 Cylindrical Lens 106 Intermediate Mirror (Optical Member)
107 First fθ lens 108 Second fθ lens 109 Output folding mirror 121 Holding member 121c Fixing hole (fixed part)
121d Long guide hole (first support part, guide part)
121j One end (second support part)
122 Elastic support frame (elastic support member)
123 Screw (fastening member)
125, 128, 131 Screw 124 Coil spring (first pressing member)
126 Washer 127 Leaf spring (second pressing member)
132 Bug screw (screw member)

Claims (5)

発光素子から被走査体までの光ビームの光路上に配置された光学部材を保持部材により保持し、前記保持部材を装置本体に取付けた光走査装置であって、
前記保持部材の固定部位を前記装置本体に固定する締結部材と、
前記保持部材の第1支持部位を前記装置本体に押し当てて、前記第1支持部位を変位可能に支持する第1押圧部材とを備え、
前記保持部材に保持される光学部材は、前記光ビームの光路上に配置された複数の光学部材のうちの1つであって、ミラーまたはレンズとされ、2つのネジ部材と、前記保持部材に設けられた凸部とで支持され、
前記光学部材の面に対して、矩形対角線上となる位置に前記2つのネジ部材が配置され、前記2つのネジ部材と異なる角に前記凸部が配置されており、
前記光学部材は、前記2つのネジ部材の突出長さを変えることで、それぞれ異なる方向へ面の向きを変更すること
を特徴とする光走査装置。
An optical scanning device in which an optical member disposed on an optical path of a light beam from a light emitting element to a scanned object is held by a holding member, and the holding member is attached to an apparatus main body,
A fastening member for fixing the fixing portion of the holding member to the apparatus main body;
A first pressing member that presses the first support part of the holding member against the apparatus main body and supports the first support part in a displaceable manner;
The optical member held by the holding member is one of a plurality of optical members arranged on the optical path of the light beam, and is a mirror or a lens . Two screw members, and the holding member Supported by the provided convex part,
The two screw members are arranged at a position on a diagonal diagonal with respect to the surface of the optical member, and the convex portions are arranged at different corners from the two screw members,
The optical scanning device according to claim 1, wherein the optical member changes the direction of the surface in a different direction by changing a protruding length of the two screw members .
請求項1に記載の光走査装置であって、
前記第1押圧部材は、弾性を有する弾性部材と前記弾性部材を押圧するワッシャとで構成されていること
を特徴とする光走査装置。
The optical scanning device according to claim 1,
The optical scanner according to claim 1, wherein the first pressing member includes an elastic member having elasticity and a washer that presses the elastic member.
請求項1または請求項2に記載の光走査装置であって、The optical scanning device according to claim 1 or 2,
前記保持部材は、前記装置本体に対向する面に開口した孔が設けられ、The holding member is provided with a hole opened in a surface facing the apparatus main body,
前記装置本体は、前記孔に面する位置に設けられた柱状突起が突設され、The apparatus main body is provided with a columnar protrusion provided at a position facing the hole,
前記柱状突起は、前記孔に挿し通されて、前記保持部材を位置決めすることThe columnar protrusion is inserted through the hole to position the holding member.
を特徴とする光走査装置。An optical scanning device characterized by the above.
請求項1から請求項3までのいずれか1つに記載の光走査装置であって、An optical scanning device according to any one of claims 1 to 3, wherein
前記装置本体は、前記ネジ部材に面して開口した調整孔が設けられていることThe apparatus body is provided with an adjustment hole that opens to face the screw member.
を特徴とする光走査装置。An optical scanning device characterized by the above.
請求項1から請求項4までのいずれか1つに記載の光走査装置を備え、前記光走査装置により被走査体上に潜像を形成し、前記被走査体上の潜像を可視像に現像して、前記可視像を前記被走査体から用紙に転写形成する画像形成装置。 A light scanning device according to claim 1 is provided, a latent image is formed on a scanned object by the light scanning device, and the latent image on the scanned material is a visible image. An image forming apparatus that develops the visible image and transfers the visible image from the scanned body onto a sheet.
JP2016058945A 2016-03-23 2016-03-23 Optical scanning device and image forming apparatus having the same Active JP6198875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058945A JP6198875B2 (en) 2016-03-23 2016-03-23 Optical scanning device and image forming apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058945A JP6198875B2 (en) 2016-03-23 2016-03-23 Optical scanning device and image forming apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012056182A Division JP5908755B2 (en) 2012-03-13 2012-03-13 Optical scanning device and image forming apparatus having the same

Publications (2)

Publication Number Publication Date
JP2016153902A JP2016153902A (en) 2016-08-25
JP6198875B2 true JP6198875B2 (en) 2017-09-20

Family

ID=56761128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058945A Active JP6198875B2 (en) 2016-03-23 2016-03-23 Optical scanning device and image forming apparatus having the same

Country Status (1)

Country Link
JP (1) JP6198875B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171712U (en) * 1987-10-29 1989-05-15
JPH06123849A (en) * 1992-10-09 1994-05-06 Canon Inc Scanning optical device
JP4294806B2 (en) * 1999-08-23 2009-07-15 株式会社Ihi Optical element angle adjustment device for optical equipment
JP2001242406A (en) * 2000-02-28 2001-09-07 Fuji Xerox Co Ltd Optical scanner
JP4080208B2 (en) * 2002-01-22 2008-04-23 フジノン株式会社 Reflector holding structure
JP4508996B2 (en) * 2005-09-21 2010-07-21 シャープ株式会社 Optical unit, image forming apparatus, and optical component unit fixing method
JP2008191227A (en) * 2007-02-01 2008-08-21 Fuji Xerox Co Ltd Optical scanner
JP4979081B2 (en) * 2007-08-09 2012-07-18 シャープ株式会社 Optical scanning device

Also Published As

Publication number Publication date
JP2016153902A (en) 2016-08-25

Similar Documents

Publication Publication Date Title
US6657761B2 (en) Optical scanning device, image forming apparatus, and optical scanning method
US7760410B2 (en) Mirror support device and optical scanning apparatus adopting the same
JP2009157182A (en) Image forming apparatus
US8314827B2 (en) Image forming apparatus with optical scanner
JP6198875B2 (en) Optical scanning device and image forming apparatus having the same
US20070013988A1 (en) Optical scanner, and image forming apparatus with the same
JP5153586B2 (en) Optical scanning device
JP5908755B2 (en) Optical scanning device and image forming apparatus having the same
JPH02253274A (en) Optical scanning device
JP2014209161A (en) Optical device, optical scanner, and image forming apparatus
KR102559729B1 (en) Optical scanning apparatus and image forming apparatus
JP5985262B2 (en) Optical scanning device and image forming apparatus having the same
JP5797589B2 (en) Optical scanning device and image forming apparatus having the same
JP3654491B2 (en) Sliding body of image reading unit
JP7394590B2 (en) Optical scanning device and image forming device equipped with the same
JP4113645B2 (en) Image forming apparatus
JPH10282399A (en) Light reflecting mirror
JP2011215312A (en) Optical scanner
JP2583154B2 (en) Optical system mirror holding device
JP2008122616A (en) Scanning optical device and image forming apparatus
JP6315210B2 (en) Method for adjusting natural frequency of carriage mounted on image reading apparatus, and image forming apparatus
JP6008885B2 (en) Image forming apparatus
JP4541288B2 (en) Solid-state image sensor mounting structure, image reading unit, and image forming apparatus
JP4789906B2 (en) Optical writing unit and image forming apparatus
JP3612476B2 (en) CCD mounting structure and image reading apparatus employing the structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150