JP6198232B1 - Hull shape and propulsion device - Google Patents
Hull shape and propulsion device Download PDFInfo
- Publication number
- JP6198232B1 JP6198232B1 JP2016182451A JP2016182451A JP6198232B1 JP 6198232 B1 JP6198232 B1 JP 6198232B1 JP 2016182451 A JP2016182451 A JP 2016182451A JP 2016182451 A JP2016182451 A JP 2016182451A JP 6198232 B1 JP6198232 B1 JP 6198232B1
- Authority
- JP
- Japan
- Prior art keywords
- ship
- water
- bow
- speed
- stern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 195
- 230000008859 change Effects 0.000 claims description 2
- 230000005484 gravity Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000000446 fuel Substances 0.000 description 8
- 230000001141 propulsive effect Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 241001604129 Polydactylus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000003152 motion sickness Diseases 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/12—Use of propulsion power plant or units on vessels the vessels being motor-driven
- B63H21/17—Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/32—Other means for varying the inherent hydrodynamic characteristics of hulls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/02—Arrangements on vessels of propulsion elements directly acting on water of paddle wheels, e.g. of stern wheels
- B63H5/04—Arrangements on vessels of propulsion elements directly acting on water of paddle wheels, e.g. of stern wheels with stationary water-guiding elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
【課題】船の経済性を保持しつつ、船舶の航行速度の高速化を実現する。【解決手段】船首1から船尾2に通過する水路6を設け、船首の水を前記水路を通して前記船尾に流すことによって、水面を走る船の3つの抵抗、すなわち、造波抵抗、粘性圧力抵抗、粘性摩擦抵抗、の内の前2つをほとんど無くし、さらに水路の構造により高速航行時の安定性を増し、さらにスクリュープロペラで発生するプロペラ後方の旋回流などの損失が生じない複列配置した水車14の構造により、推進効率と推進力を増やす。【選択図】図1An object of the present invention is to increase the navigation speed of a ship while maintaining the economy of the ship. By providing a water channel 6 passing from the bow 1 to the stern 2, and flowing the water of the bow through the water channel to the stern, three resistances of the ship running on the water surface, namely, wave resistance, viscous pressure resistance, Water turbines in a double row that eliminate the viscous frictional resistance, the front two of them, increase the stability during high-speed navigation due to the structure of the waterway, and also eliminate the loss of swirling flow behind the propeller generated by the screw propeller. 14 structure increases propulsion efficiency and propulsion. [Selection] Figure 1
Description
本発明は、水面を走る船に関するものである。 The present invention relates to a ship running on the water surface.
水面を走る船は3つの抵抗、すなわち、造波抵抗、粘性圧力抵抗、粘性摩擦抵抗、を持ち、推進力と抵抗力の均衡が船速である。各抵抗は速度の2乗に比例して増加する。主抵抗は、低速で粘性摩擦抵抗、高速で造波抵抗、である。造波抵抗は高速で急増する。 A ship running on the surface of the water has three resistances: wave resistance, viscous pressure resistance, and viscous friction resistance, and the balance between propulsive force and resistance force is the ship speed. Each resistance increases in proportion to the square of the speed. The main resistances are viscous friction resistance at low speed and wave-making resistance at high speed. Wave resistance increases rapidly at high speed.
造波抵抗は船の速度の2乗と前面投影面積に比例する。速度を2倍にすると造波抵抗が4倍になり、必要な推進力も4倍になる。太った船形にすると造波抵抗が増える。やせ型にすると造波抵抗を減らせるが、復元力が弱くなるので、船の長さと幅の比は一般的には6から7であり、8が上限である。 Wave resistance is proportional to the square of the ship's speed and the projected area of the front. If the speed is doubled, the wave resistance will be quadrupled and the required driving force will also be quadrupled. A thick ship shape increases the wave resistance. Although the wave-making resistance can be reduced by using a thin type, since the restoring force is weakened, the ratio of the length and width of the ship is generally 6 to 7, and 8 is the upper limit.
現行の船の多くは、水面の上に浮き、胴体が1つの単胴船である。(以下、「現行の船」と記述する)。低速で走る場合に最適の構造であり、現在の主力を占める理由であるが、長さと幅の比が6から7は高速で大きな造波抵抗を生む形状であり、現行の船は本質的に高速航行は不向きである。 Many of the current ships are single hulls that float above the surface of the water and have one fuselage. (Hereafter referred to as “current ship”). It is the most suitable structure for running at low speed, and is the reason why it occupies the current main force, but the ratio of length to width is 6 to 7 and it is a shape that generates high wave resistance at high speed. High-speed navigation is not suitable.
現行の船を速く経済的に走らせるために、水の抵抗すなわちエネルギー損失を減らすべく、船形を滑らかにしたり、発生した波の一部を打ち消す役目のバルバスバウ(球状船首)を設けたりと、色々な努力(例えば、特許文献1参照)が行われて来たが十分とは言えない。 In order to make the current ship run fast and economically, in order to reduce the resistance of water, that is, energy loss, the ship's shape is smoothed, and a barbus bow (spherical bow) is provided to counteract some of the generated waves. Efforts have been made (see, for example, Patent Document 1), but this is not sufficient.
また、現行の船は高速航行すると、船底の形状により揚力が発生し、船が浮き上がり、安定性が下がり、転覆の危険性が生じる。さらに、大波と激突し、船首が激しく上下したり、船が飛び上がったりして、横転や沈没の危険性が生じる。高速で不安定になる現行の船の形状は、本質的に高速航行は不向きである。 In addition, when a current ship sails at a high speed, lift is generated due to the shape of the bottom of the ship, the ship is lifted, the stability is lowered, and there is a risk of capsize. In addition, it collides with a large wave, the bow moves up and down violently, and the ship jumps up, causing the risk of rollover and sinking. Current ship shapes that become unstable at high speeds are inherently unsuitable for high speed navigation.
さらに、高速航行には高速な推進装置が必要になるが、現行の船の多くが採用しているプロペラ推進装置は、進行方向と直角にプロペラを回し、プロペラ後方にエネルギーの損失となる旋回流を作る。旋回流の水を回すのに必要な加速度は回転速度の2乗に比例するから、回転速度を上げると、推進力は回転速度に比例して増えるのに対して、回転に必要な力は回転速度の2乗で急増して行く。 In addition, high-speed navigation requires a high-speed propulsion device, but the propeller propulsion device used by many current ships rotates the propeller perpendicular to the direction of travel and causes a swirl flow that causes energy loss behind the propeller. make. The acceleration required to rotate the swirling water is proportional to the square of the rotational speed. Therefore, when the rotational speed is increased, the propulsive force increases in proportion to the rotational speed, whereas the force necessary for the rotation rotates. It increases rapidly with the square of the speed.
加えて、プロペラの回転速度を高速にすると、プロペラ廻りの水が気化して推力が低下するキャビテーション現象が発生する。回転速度を高速にする代わりに、プロペラを大きくしても、推進力を向上できるが、喫水や船底までの深さの制約もあり、余り大きくできない。 In addition, when the rotation speed of the propeller is increased, the cavitation phenomenon occurs in which the water around the propeller is vaporized and the thrust is reduced. The propulsion force can be improved by increasing the propeller instead of increasing the rotation speed, but it cannot be increased too much due to restrictions on the draft and the depth to the bottom of the ship.
現行の船を速く経済的に走らせるために、プロペラ後方の旋回流すなわちエネルギー損失を減らすべく、2重プロペラ、可変ピッチプロペラ、ポッド推進装置、など推進装置の効率向上の色々な努力が行われて来たが、(発生した波を打ち消すバルバスバウと同様に)、十分とは言えない。 In order to make current ships run faster and more economically, various efforts have been made to improve the efficiency of propulsion devices such as double propellers, variable pitch propellers, pod propulsion devices, etc. in order to reduce the swirling flow behind the propellers, ie energy loss. But it is not enough (similar to Barbusbau to cancel the generated waves).
現行の高速航行にはウォータージェット推進装置が使われているが、海水を取り込み高圧に圧縮して高速で吹出す仕組みにより、装置が高圧処理でコスト高になり、かつ、エネルギーのロスが大きく、建造と運航の双方で経済性を失い、限られた一部の用途しか普及していない。 A water jet propulsion device is used for current high-speed navigation, but due to the mechanism that takes in seawater and compresses it to high pressure and blows it out at high speed, the device becomes high-cost due to high-pressure processing, and energy loss is large, It loses economic efficiency in both construction and operation, and only a limited number of uses are widespread.
一方、地球温暖化対策面から、500kmから2000km程度の中長距離において、高速性で貨物輸送に絶対的な強みを持つがCO2排出量の多いトラック輸送から、(高速性と大量輸送力を持ち)CO2排出量の少ない船舶輸送への、モーダルシフトが求められている。 On the other hand, from the viewpoint of global warming countermeasures, it has an absolute strength in cargo transportation at high speeds over medium and long distances of about 500 to 2000 km, but from truck transportation with high CO2 emissions (with high speed and mass transportation capacity). ) A modal shift to ship transport with low CO2 emissions is required.
本発明が解決しようとする課題は、前記の欠点を改善するものである。 The problem to be solved by the present invention is to improve the above-mentioned drawbacks.
現在行われている船形を滑らかにする改良などでは、現在の主流となっている水面の上に浮かぶ単胴船が、船首の水を両舷の外に追い出すことによって生じた波の損失エネルギーを回収することは現実的に不可能であり、発生する波を少なくする程度の進歩で足踏みしている。 In current improvements such as smoothing the ship shape, the energy loss of the waves generated by the monohull floating above the water surface, which is currently mainstream, drives the bow water out of both sides. Recovering is practically impossible, and is taking a step forward with the progress to reduce the generated waves.
現在行われている、プロペラの形状改良、2重反転プロペラ、可変ピッチプロペラ、ポッド推進、などの改良では、推進効率を多少向上する程度であり、高速化で新たに発生するプロペラが本質的に持つ色々な障害の解決には程遠く、高速で急増する水の抵抗を上回る高速航行を実現する推進力は得られない。 Improvements in propeller shape improvement, double reversing propellers, variable pitch propellers, pod propulsion, etc. that are currently being carried out only improve propulsion efficiency to a certain extent. It is far from solving the various obstacles that it has, and it does not have the driving force to realize high-speed navigation that surpasses the resistance of rapidly increasing water.
このため、船速を増すと、1.船首の前の水を両舷の外に追い出しながら船が進むために必要な加速度、すなわち水の抵抗は、船速の2乗で急増し、2.プロペラ後方の旋回流の水を回すのに必要な加速度、すなわち水の抵抗も、船速の2乗で急増し、1と2の相乗効果により、水の抵抗が速度の3乗で増加するため、主機として強力なエンジンが必要になる。 For this reason, when the ship speed is increased, 1. 1. The acceleration required for the ship to advance while driving the water in front of the bow out of both sides, that is, the resistance of the water, increases rapidly with the square of the ship speed. The acceleration required to rotate the swirling water behind the propeller, that is, the water resistance, also increases rapidly with the square of the ship speed, and the water resistance increases with the cube of the speed due to the synergistic effect of 1 and 2. As a main engine, a powerful engine is required.
現行の船の船形での経済的な限界速度は、時速60キロメートル前後と言われている。単胴船で、この速度を超える船は、巡視船や軍船など、経済性を無視できる、商船以外の船となる。 It is said that the economical speed limit of the current ship shape is around 60 kilometers per hour. A single-hull ship that exceeds this speed will be a non-commercial ship, such as a patrol ship or a military ship, whose economic efficiency can be ignored.
現在の航行速度への関心は、限界に達した航行速度のさらなる向上よりもむしろ、経済的な航行速度にある。景気悪化や船腹過剰や燃料費高騰などで海運市況が悪化すると、速度減よりも燃料消費量減が大きいために、陸揚げして船形を変更した後に、低速航行で燃料費を節約する経済航行を始める船が出るほどである。 The interest in current navigation speed is in economic navigation speed, rather than a further increase in navigation speed that has reached its limit. If the shipping market conditions deteriorate due to the economic downturn, excessive hulls and soaring fuel costs, fuel consumption will decrease more than speed reduction. There are enough ships to start.
単胴船以外では、水中翼船やホーバークラフトやウェーブ・ピアーサーなどが実用化されているが、荒天に運航できなかったり、大型船に不向きだったり、積載貨物量が少なかったり、建造費や保守費が高価過ぎたり、燃費が悪かったり、等で世界的に大きなシェアを獲得するに至っていない。 Other than single-hull ships, hydrofoil ships, hovercraft, wave piercers, etc. have been put into practical use, but they cannot be operated in stormy weather, are not suitable for large ships, the amount of cargo loaded is small, construction costs and maintenance costs Has not yet gained a large market share globally due to its high price and poor fuel economy.
本発明の発明者は、上記の課題を解決する手段として、船内に船首の水を流す水路を設ける。この設けた水路を通して船首の前の水を船尾の後に流し、さらに推進装置として水車の複列配置によって、経済性を保持しながら航行速度の高速化を実現する。 The inventor of the present invention provides a channel for flowing the bow water in the ship as means for solving the above-described problems. The water in front of the bow is allowed to flow after the stern through the provided water channel, and the speed of the navigation speed is increased while maintaining economy by the double row arrangement of water turbines as a propulsion device.
手段の説明その1/2:水路について
Explanation of
はじめに、「水路」について記述する。船が進む時には、船の前にある水をどこかに移動し、通り過ぎた後に移動した水を戻しておく必要がある。 First, “Waterway” is described. As the ship travels, it is necessary to move the water in front of the ship somewhere and return the moved water after passing.
現行の船では、水に急速な移動エネルギーを加えて、両舷の外に追い出して、引き波を起こしながら、船は進む。高速航行すると、加える移動エネルギー、すなわち造波抵抗、が急増する。追い出すから、エネルギーは回収できなくなる。 In the current ship, rapid moving energy is added to the water, it is driven out of both sides, and the ship advances while causing a pulling wave. When traveling at high speed, the applied kinetic energy, that is, wave resistance, increases rapidly. Since it is driven out, energy cannot be recovered.
本発明の船では、水に低速な移動エネルギーを、現行の船よりゆっくり、移動幅も小さく、加えて、水路の中を水は進む。移動速度と移動幅が共に小さいので、水の移動に必要なエネルギーは微小となる。また、両舷の外に水を追い出さないから、エネルギーのロスとなる引き波を起こさない。水を追い出さなかったから、船尾の後ろで発生する渦による粘性圧力抵抗の打ち消しに利用できる。 In the ship of the present invention, low-speed movement energy is added to the water more slowly than the current ship, and the movement width is small. In addition, the water advances through the water channel. Since both the moving speed and the moving width are small, the energy required for water movement is very small. In addition, since water is not driven out of both sides, it does not cause a pulling wave that causes energy loss. Because it did not expel water, it can be used to counteract viscous pressure resistance due to vortices behind the stern.
現行の船では、船が通り過ぎた船尾の後の低圧部に、渦を起こしながら周囲の水を引き寄せる。水を引き寄せるエネルギーのロス、すなわち、粘性圧力抵抗が発生することになり、船足を遅くする作用が働く。船首の前の水を両舷の外に追い出してしまったために、船尾ではロス発生を前提として周囲の水を引き寄せることになる。 In the current ship, the surrounding water is drawn to the low-pressure part behind the stern that the ship has passed, generating a vortex. Loss of energy that draws water, that is, viscous pressure resistance is generated, and the action of slowing the stern works. Because the water in front of the bow has been expelled from both sides, the stern will draw the water around it on the assumption that a loss will occur.
本発明の船では、水路の中を進んで来た水を船尾で水面に戻す。両舷の外に水を追い出さなかったから、船首で水路の中に取り込んだ水を、船尾の後で水面に戻すことができる訳である。船が通り過ぎた後に周囲の水を引き寄せる必要がなく、粘性圧力抵抗が発生しないようにする事ができる。 In the ship of the present invention, the water that has advanced through the water channel is returned to the water surface by the stern. Since the water was not expelled from both sides, the water taken into the water channel at the bow could be returned to the water surface after the stern. There is no need to draw the surrounding water after the ship has passed, and viscous pressure resistance can be prevented.
まとめると、現行の船は、両舷の外に水を追い出しながら、引き波を起こしながら航行しているが、本発明の船は、その位置で水が上下し、上下する水の下を船の下部が通り過ぎて行く。これは波が伝搬して行く時に、水そのものは移動して行かないで、その場で上下運動する現象に似ている。 In summary, the current ship is navigating while pulling out the water out of both sides and generating a wave, but the ship of the present invention moves up and down at that position. The lower part of the road passes by. This is similar to the phenomenon that water itself does not move and moves up and down on the spot when waves propagate.
念のため書いておくが、水中翼船と本発明の船は、ともに水中を潜行する部分があるが、全く別の物である。前者は水路(の壁)を持たず、後者は水路(の壁)を持つ。前者は翼の揚力を航行時の主な浮力とし、後者は船の水面下の容積を主な浮力とする。航行時に、前者は揚力で船体を持ち上げ、後者は水路を流れる水が船全体を押し下げる。前者は翼の容積が非常に小さく、後者は船の上部構造を水面上に保持するほど容積が大きい。 As a precaution, the hydrofoil ship and the ship of the present invention both have submerged parts, but they are completely different. The former does not have a waterway (wall), and the latter has a waterway (wall). The former uses the lift of the wing as the main buoyancy during navigation, and the latter uses the volume below the surface of the ship as the main buoyancy. During navigation, the former lifts the hull with lift, and the latter pushes the entire ship down with water flowing through the waterways. The former has a very small wing volume, while the latter has a larger volume to keep the ship's superstructure above the water surface.
手段の説明その2/2:推進装置について
次に、「推進装置」について記述する。推進装置の課題を解決する手段として、本発明は、船底および、または水路に配置し、船の横方向を回転軸に前後方向へ回転する水車を用いる。以下、詳細を説明する。 Next, “propulsion device” will be described. As a means for solving the problems of the propulsion device, the present invention uses a water wheel that is arranged on the ship bottom and / or water channel and rotates in the front-rear direction about the horizontal direction of the ship as a rotation axis. Details will be described below.
現行の船の推進装置の多くはプロペラ(スクリュープロペラ)である。プロペラは飛行機の翼と同様に、翼の両面を通過する流体の密度差によって生じる揚力を利用する。現行の低速な航行速度、現行のプロペラ回転速度、では経済的に最適な、他に代替がない、推進装置である。 Many of the current ship propulsion devices are propellers (screw propellers). Propellers, like airplane wings, make use of the lift created by the density difference of the fluid passing through both sides of the wing. It is a propulsion device that is economically optimal and has no alternatives at the current low speed navigation and current propeller speed.
現行の船のプロペラは、進行方向に対して横方向に(プロペラの先端が船速より数倍速く)回転することにより、プロペラ後方の旋回流がエネルギーの(プロペラが1基の場合、駆動軸のエネルギーの約1/3が)損失となる。対して、本発明の水車は、進行方向(の逆方向)に回転することにより、旋回流などの横方向のエネルギーの損失は生じず、推進効率が良い。 The propeller of the current ship rotates transversely to the direction of travel (the tip of the propeller is several times faster than the ship speed), so that the swirl flow behind the propeller is energy (if there is one propeller, the drive shaft About 1/3 of the energy is lost. On the other hand, the water turbine of the present invention rotates in the direction of travel (the opposite direction), so that there is no loss of lateral energy such as a swirling flow and the propulsion efficiency is good.
現行の船のプロペラは、横方向に回転し揚力を発生する構造により、回転数を高めたり、ピッチを強めたりすれば、ブレード面が作る負圧が水圧より大きくなって、細かな気泡が生じるキャビテーションという現象が起きて、推進効率が急速に悪化する。対して、本発明の水車は、揚力を使わない構造で、進行方向(の逆方向)に回転し水を押し出すことにより、推進力の障害となるキャビテーションが発生しない。 The current ship's propeller has a structure that rotates laterally and generates lift, so if the rotation speed is increased or the pitch is increased, the negative pressure created by the blade surface becomes greater than the water pressure and fine bubbles are generated. The phenomenon of cavitation occurs and propulsion efficiency deteriorates rapidly. On the other hand, the water turbine of the present invention has a structure that does not use lift, and does not generate cavitation that impedes propulsion by rotating in the direction of travel (the opposite direction) and pushing out water.
現行の船のプロペラは、横回転するプロペラの回転域内で水を後方に押し出して船を推進するが、水面下の前面投影面積に比べて、プロペラ回転範囲の面積が小さく、船速に比べてより高速に水を後方に押し出さないと、必要な推進力が得られない。(ウォータージェット方式ほど押し出す面積は小さくないが)エネルギー効率が悪い。対して、本発明の水車は、船の横幅いっぱいに水車を配置でき、プロペラ方式よりもゆっくり後方に押し出して、同じ推進力が得られる。エネルギー効率が良い。 The propeller of the current ship propels the ship by pushing water backwards within the rotation area of the propeller that rotates laterally, but the area of the propeller rotation range is smaller than the front projection area under the water surface, compared with the ship speed If the water is not pushed backward at a higher speed, the necessary driving force cannot be obtained. (Although the area to be pushed out is not as small as the water jet type), energy efficiency is poor. On the other hand, the water wheel of the present invention can arrange the water wheel to the full width of the ship, and can be pushed backward more slowly than the propeller system to obtain the same propulsive force. Energy efficient.
現行の船のプロペラは、船尾下部に取り付けてある。空荷の貨物船は喫水線が下がり、船の安定性が下がると共に、プロペラが水面に出て障害となるため、バラスト水を注入して喫水線を上げて航行する。載貨重量トン数に対するバラストタンク容量は概ね、コンテナ船で30%、原油タンカーは40%、LNGタンカーでは80%に達する。経済価値のないバラスト水を積むことは、船の燃費を考える上ではマイナス要素であり、生態系への影響もあり、ノンバラスト船の研究等が進められている。 Current ship propellers are installed at the bottom of the stern. An empty cargo ship has a lower waterline, lowering the stability of the ship, and propellers coming out of the water and obstructing the water. Ballast tank capacity relative to the tonnage of cargo is generally 30% for container ships, 40% for crude oil tankers, and 80% for LNG tankers. Loading ballast water that has no economic value is a negative factor in considering the fuel efficiency of ships and has an impact on the ecosystem, and research on non-ballast ships is underway.
対して、本発明の水車は、船底に配置し、かつ、航行時は水路上を通過する水が船体を押し下げる一種のバラスト効果もあり、この障害が発生しない。 On the other hand, the water wheel of the present invention is arranged on the bottom of the ship and has a kind of ballast effect that the water passing on the water channel pushes down the hull at the time of navigation, and this obstacle does not occur.
本発明の水車は、進行方向(の逆方向)に回転し水を後方に押し出して反発力で船を進める仕組みは外輪船と同じであるが、外輪船は、1.水車の過半が水上にある(荒天時に波の力で水車の羽根が壊れ易い)、2.水車が船外の横または船尾にある、3.遠心力による損失対策を考慮していない、などが異なる。 The mechanism of the water wheel of the present invention is the same as that of an outer ring ship in which the water wheel rotates in the traveling direction (the opposite direction), pushes water backward and advances the ship with a repulsive force. The majority of water turbines are on the water (the blades of the water turbines are easily broken by the force of waves during stormy weather). 2. The water wheel is on the side or stern outside the ship. It does not take into account measures against loss due to centrifugal force.
本発明の水車は、水を後方に押し出す羽根部分は水流の中に置き、推進に役立たず、むしろ水の流れを阻害する、回転ドラム部分や折り返し回転中の羽根の部分は、流路とならない推進室に配置して、(推進速度を落とすことになる)エネルギー損失の発生を防ぐ。 In the water wheel of the present invention, the blade portion that pushes water backward is placed in the water flow, which is not useful for propulsion, but rather the rotation drum portion and the portion of the blade that is rotating in rotation, which inhibits the flow of water, do not serve as a flow path. Place in the propulsion room to prevent energy loss (which will slow down propulsion speed).
本発明の水車は、水車を逆回転することにより、船の速度を落としたり、後進ができる。また、複列に配置することにより、単一の横長水車の回転軸より偏心率を緩くでき、かつ、各水車の回転を個々に制御して(舵が無くても)船の進行方向を変えることができる。 The water turbine according to the present invention can reduce the speed of the ship or move backward by rotating the water wheel in the reverse direction. Also, by arranging in double rows, the eccentricity can be relaxed from the rotation axis of a single horizontally long turbine, and the rotation direction of each turbine can be controlled individually (even if there is no rudder) to change the traveling direction of the ship be able to.
本発明の水車は、各水車毎に取り付けた電動モーターで駆動する。現行の船の多くは急速な速度変動が苦手なディーゼル機関で駆動しているが、本発明では、急激で細やかな速度制御が得意なインバータ制御の電動モーターを使う事によって、速度制御や進路制御が自由にできる。 The water wheel of the present invention is driven by an electric motor attached to each water wheel. Many of the current ships are driven by diesel engines that are not good at rapid speed fluctuations. In the present invention, speed control and course control are achieved by using an inverter-controlled electric motor that is good at rapid and precise speed control. Can be free.
本発明の推進装置の範囲に入らないが、ロープ、流木、などのゴミの流入を防ぐスリットを、水車に水を取り入れる前方に取り付けて、水車部を大きなゴミから防護する仕組みを設けることになる。 Although it does not fall within the scope of the propulsion device of the present invention, a mechanism that protects the water turbine part from large garbage is installed by attaching a slit for preventing inflow of garbage such as ropes, driftwood, etc. to the front of the water turbine. .
本発明の水車の羽根が船底の下に出っ張る構造になっている。岩礁や浅瀬に乗り上げると推進装置を破壊し、船が推進力を失う。電子海図と連動したオートパイロットや、設定した水深より浅くなった場合は自動的に警報を出す水深ソナー、などを装備して海難事故を防いで航行することが望まれる。 The blades of the water wheel of the present invention protrude from the bottom of the ship. Riding on reefs and shallows destroys the propulsion device and the ship loses propulsion. It is desirable to navigate to prevent marine accidents by installing an autopilot linked with an electronic chart and a water depth sonar that automatically alerts when the water depth is lower than the set depth.
以上の説明のように、現行の船の推進装置は、船首船尾の前後方向に対して横方向に回転するという、高速航行に不向きな構造的特性を持ちながら、低速航行では顕在化せず、シンプルな構造で低コストな、スクリュープロペラ方式で発生する損失の課題を、本発明の水車は、船首船尾の前後方向に回転する水車方式の手段で、減少や解消して、高速航行に必要な推進力を実現する。 As described above, the current ship propulsion device has a structural characteristic unsuitable for high-speed navigation that rotates laterally with respect to the fore-and-aft direction of the bow stern. The water turbine of the present invention reduces or eliminates the problem of loss generated by the screw propeller system with a simple structure and low cost, and is necessary for high-speed navigation by reducing or eliminating it by means of a water turbine system that rotates in the forward and backward direction of the bow stern. Realize the driving force.
本発明によれば、船と水面の間に生じる造波抵抗と粘性圧力抵抗の損失がほとんどなくなり、水車を使った損失の少ない推進装置と合わせて、経済性を確保しつつ、船の高速性を向上することが実現できる。 According to the present invention, the loss of wave resistance and viscous pressure resistance generated between the ship and the water surface is almost eliminated, and in combination with the propulsion device using a water turbine with low loss, while ensuring economic efficiency, the high speed of the ship. Can be improved.
船の高速性の向上を実現すると、航行時間が短縮できる。高速性を確保しつつ、船の抵抗損失の低減を実現すると、推進に使う各種装置が小型化でき、加えて燃料消費量を低減できる。 By improving the speed of the ship, the navigation time can be shortened. By reducing the resistance loss of the ship while ensuring high speed, various devices used for propulsion can be reduced in size, and fuel consumption can be reduced.
高速航行による航行時間の短縮は、ドア・ツー・ドアのトータル運搬時間の短縮、同一航路の運行頻度の増加、船の建造資金の早期回収、1航行当たりの船員費の低下、トラック輸送との競争資格取得、等のメリットをもたらす。 Shorter navigation time due to high-speed navigation reduces the total door-to-door transportation time, increases the frequency of operations on the same route, early recovery of ship construction funds, lower sailor costs per navigation, truck transportation It brings merit such as acquisition of competition qualification.
推進抵抗の低減効果は、主機エンジンの小型化、馬力アップ用の過給機の撤去、燃料タンクの小型化、推進プロペラ(あるいは水車)の小型化、などがある。船の建造費や保守費を低減できる。 The propulsion resistance can be reduced by reducing the size of the main engine, removing the turbocharger for boosting horsepower, reducing the size of the fuel tank, and reducing the size of the propeller (or water turbine). Ship construction costs and maintenance costs can be reduced.
燃料消費量の低減効果は、燃料費の低減による運航費の低減、CO2排出量の低減、競合するトラック輸送との燃費競争の加点、などがある。 The effects of reducing fuel consumption include a reduction in operating costs due to a reduction in fuel costs, a reduction in CO2 emissions, and additional fuel consumption competition with competing trucking.
さらに本発明によって、高速航行しても、大波との激突、船首部分の激しい上昇下降、などによる船体激動、船体破損、転覆、沈没、の危険もない。このことによって、貨物の荷崩れや破損も少なくなり、かつ、悪天候下の航行の安全性が向上する。 Further, according to the present invention, there is no risk of hull turbulence, hull breakage, capsizing, sinking, etc. due to a collision with a large wave, a sharp rise and fall of the bow portion, even when navigating at high speed. This reduces cargo collapse and breakage, and improves navigation safety under bad weather conditions.
さらに、現行の船で発生している船の揺れの、船首(Yawing)横(Rolling)縦(Pitching)左右(Swaying)前後(Surging)上下(Heaving)、のすべてが無くなる。このことによって、乗組員の船内居住環境が改善する。船酔いで旅行客に嫌われている客船の復権が計れる。 In addition, all of the swaying of the ship that occurs on the current ship, Yawing, Rolling, Pitching, Swaying, Surging, Up and down (Heaving), is eliminated. This improves the crew's inboard environment. Regain power of passenger ships that are hated by tourists due to seasickness.
以下、本発明に係る実施の形態の、船および船の高速化の方法について、図面を参照しながら説明する。図1に示すように、本発明の実施の形態の船は、船の中に水路空間6を持ち、この水路空間6を通して、船首1の前の水を、船尾2の後ろに流す。
Hereinafter, a method for speeding up a ship and a ship according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the ship according to the embodiment of the present invention has a
本発明の船は、図2に示すように、水と接する部分が薄く尖った船首1、同様の船尾2、推進用水車の羽根が出ている船底3、船底3と下甲板5に挟まれ船の浮力空間の主体であり船を進める推進室4、船首1から船尾2に向かって流れる水路の床となる下甲板5、流れる水の水路空間6、船賃を稼ぐ客室・貨物室7、船の上部構造を支え上部と下部をつなぐ水路壁9および両舷の壁となる側外板10の間の空間の側室8、操船する船橋11、想定を超える大波の水を逃がす逃水口12、船首1と船尾2の先端部の矢尻13、水車部分14、15、16、17、18、などで構成する。
As shown in FIG. 2, the ship of the present invention is sandwiched between a
液体、粉、顆粒など、貨物の種類によっては、推進室4の一部を貨物室にする。 Depending on the type of cargo, such as liquid, powder, granule, etc., a part of the propulsion room 4 is made into a cargo room.
船を高速航行する場合、水の抵抗だけでなく、空気の抵抗も無視できなくなる。水面より上にある、図2の、客室・貨物室7、側室8、船橋11、を空気抵抗の少ない形状とする。コンテナなどの貨物は剥き出し状態で積置せず、上部ハッチカバーなどで四方を全て覆い、出っ張りを減らし、空気抵抗を少なくする。 When navigating a ship at high speed, not only water resistance but also air resistance cannot be ignored. The cabin / cargo compartment 7, the side compartment 8, and the bridge 11 in FIG. 2, which are above the water surface, have a shape with low air resistance. Cargo such as containers should not be placed in an exposed state. Cover all four sides with an upper hatch cover, etc. to reduce the bulge and reduce air resistance.
図2の断上面図に示すように、側室8の船首1と船尾2の先端を鋭くして、空気抵抗を小さくする。図2の側面図に示すように、客室・貨物室7の船首1と船尾2、および船橋11、を空気抵抗を少なくする丸みのある形状とする。
As shown in the sectional top view of FIG. 2, the tip of the
図3は、造波抵抗を発生する基となる船首角度を、現行の船と本発明の船で比較したものである。前述したように、現行の船の長さと幅の比は6から7であり、幅は数メートルから数十メートルであり、水を切り分ける船首角度は30度−45度を持つ。 FIG. 3 is a comparison of the bow angle that is the basis for generating the wave resistance between the current ship and the ship of the present invention. As described above, the ratio of the length and width of the current ship is 6 to 7, the width is several meters to several tens of meters, and the bow angle for separating water has 30 degrees to 45 degrees.
一方、本発明の船は船底3と下甲板5が船首1で合体しており、板厚は数センチメートル程度で先端部の矢尻13を加えても数十センチメートルであり、水を切り分ける船首角度を現行の船に比べて非常に小さく構成できる。
On the other hand, in the ship of the present invention, the ship bottom 3 and the lower deck 5 are united at the
図4は、船首角度と、水を移動する時に必要となる加速度、の関係を示す。45度の時の加速度を1とすると、60度の時は1.73倍に増加する。30度の時は0.58倍に減少する。90度の時は無限大に増加する。0度の時はゼロに減少する。 FIG. 4 shows the relationship between the bow angle and the acceleration required when moving water. Assuming that the acceleration at 45 degrees is 1, it increases by 1.73 times at 60 degrees. At 30 degrees, it decreases to 0.58 times. At 90 degrees, it increases to infinity. When it is 0 degree, it decreases to zero.
従って、本発明の船は、船首1でほとんど造波抵抗を発生しない。また、両舷の外に水を追い出さないので、ここでもエネルギーのロスが生じない。さらに、前述したように、船首1で水路6に取り込んだ水を船尾2の後に戻すことで、粘性圧力抵抗の発生も抑えられる。
Therefore, the ship of the present invention hardly generates wave resistance at the
図5は、本発明の船の、停泊時と航行時の、水の状態を示したものである。現行の船との大きな違いは、本発明の船は下甲板5の上に水が常時乗っていることである。この水が絶えず下甲板5を下に押していることにより、水面の変化に、現行の船のように揺れることもなく、安定である。 FIG. 5 shows the state of water when the ship of the present invention is anchored and sailed. The major difference from the current ship is that the ship of the present invention always has water on the lower deck 5. Since this water constantly pushes the lower deck 5 down, the water surface is stable without being shaken like a current ship.
図5の下図に示すように、本発明の船の停泊時は、水面より下の容積、すなわち排水量相当の浮力が、船の総重量と均衡している。下甲板5の上の水が下甲板5を下に押している。波が押し寄せて来ると、砂浜に押し寄せた波のように、波は下甲板5の上を駆け上がり、船を揺らすことはない。 As shown in the lower part of FIG. 5, when the ship of the present invention is anchored, the volume below the surface of the water, that is, the buoyancy equivalent to the amount of drainage, is balanced with the total weight of the ship. Water on the lower deck 5 pushes the lower deck 5 down. When the waves come in, the waves run up on the lower deck 5 and do not shake the ship, just like the waves rushing to the sandy beach.
図5の中図に示すように、本発明の船の航行時は、水面(平水面)より下の容積の浮力が、水面(平水面)より上にある水の重量に船の総重量を加えた重さと均衡している。水面(平水面)より上にある水の重量分だけ船は沈んで航行する。図6に示すように、波は水路の水面の上を流れ、船を揺らすことはない。 As shown in the middle of FIG. 5, when the ship of the present invention navigates, the buoyancy of the volume below the water surface (flat water surface) is the total weight of the ship in the weight of the water above the water surface (flat water surface). It is in balance with the added weight. The ship sails for the weight of water above the surface of the water (flat water). As shown in FIG. 6, the waves flow over the surface of the waterway and do not shake the ship.
図7は、現行の船の重力と浮力、本発明の船の重力と浮力、を示した図である。図7の上図は現行の船のデフォルメ(強調)図で、上から船の重量a、下から浮力a、が加わり均衡を保っている。波で水面(すなわち水面下の容積)が上下すると浮力が増減し、船は上下する。 FIG. 7 is a diagram showing the gravity and buoyancy of the current ship and the gravity and buoyancy of the ship of the present invention. The upper diagram of FIG. 7 is a deformation (emphasis) diagram of the current ship, and the balance is maintained by adding the weight a of the ship from the top and the buoyancy a from the bottom. When the surface of the water (that is, the volume below the surface) rises and falls due to waves, the buoyancy increases and decreases, and the ship moves up and down.
図7の下図は、本発明の船の停泊時で、上から船の重力aと下甲板5の上に乗る水の重力b、下から浮力a+b、が加わり均衡を保っている。波が打ち寄せて水面が上下し、水の重力が増減すると、浮力も同量増減し、船は上下しない。 The lower diagram of FIG. 7 shows a state where the ship of the present invention is anchored, and the gravity a of the ship and the gravity b of the water on the lower deck 5 are added from above, and the buoyancy a + b is added from below. When waves hit and rise and fall and the gravity of the water increases and decreases, the buoyancy increases and decreases by the same amount, and the ship does not move up and down.
図7の中図は、本発明の船の航行時で、上から船の重量aと下甲板5の上に乗る水の重力b+c、下から浮力a+b+c、が加わり、船は下に沈み均衡を保つ。図6のように、悪天候航行時に、下甲板5の上の水路の水面が波で上下し、水の重力が増減すると、浮力も同量増減し、船は上下しない。 The middle diagram of FIG. 7 shows the weight of the ship a from above and the gravity b + c of the water on the lower deck 5 and the buoyancy a + b + c from the bottom. keep. As shown in FIG. 6, when navigating in bad weather, if the water surface of the water channel above the lower deck 5 is moved up and down by waves and the gravity of the water increases or decreases, the buoyancy also increases or decreases by the same amount, and the ship does not move up and down.
図2の水路空間6は、船首1の前の水を船尾2の後へと流すものであるが、波は水路の水面の上を伝わって行く。荒天の時にも、船の上部部分の客室・貨物室7に、大波がぶつからない高さを確保しておく必要がある。もしぶつかると、上部構造に破壊的な衝撃を加えることになるので留意が必要である。
The
もし、ぶつかるような大波に遭遇した場合は、船速を落とし、水路空間6に流れる水の水位を下げて航行することが必要である。水位を下げればぶつからなくなる。またぶつかった場合でも、進行速度が遅くなっていれば衝撃が小さくなる。
If it encounters a big wave that hits, it is necessary to lower the boat speed and lower the water level flowing in the
図2の逃水口12は、荒天時に想定外の大きな波が来た時に、船の上部部分の客室・貨物室7に波がぶつからないために、水を両舷の外に逃がす開口部である。逃水口12によって、荒天時の、万が一の安全性を高めることができる。 The water outlet 12 in FIG. 2 is an opening that allows water to escape from both sides to prevent the waves from colliding with the cabin / cargo compartment 7 in the upper part of the ship when an unexpected large wave comes during stormy weather. . In the event of stormy weather, the water outlet 12 can enhance the safety of the emergency.
現行の船は、図7の上図に示すように、自船の重量だけで船を下に押しており、荒天の時に横から大波を受けると船が反対側に傾き易い。本発明の船は、図7の中図に示すように、自船の重量に加えて水路空間6を流れる水が下甲板5を下に押さえており、横から大波を受けてもほとんど傾かない。
As shown in the upper diagram of FIG. 7, the current ship pushes the ship down only by its own weight, and the ship tends to tilt to the opposite side when a heavy wave is received from the side during stormy weather. In the ship of the present invention, as shown in the middle diagram of FIG. 7, in addition to the weight of the ship, the water flowing through the
現行の船は、船首の水を左右均等に掻き分けて直進しており、船の斜め前方から大波を受けると、進行中の船首側面と激突し、船が反対側に傾く。同時に、受けた舷側の水位が上がり浮力も増し、逆に反対舷側は水位が下がり浮力も下がり、さらに傾きを増し、最悪の場合は転覆する。 The current ship travels straight with the water at the bow divided equally between the left and right, and when it receives a large wave from the front of the ship, it collides with the side of the bow and the ship tilts to the other side. At the same time, the water level on the dredging side rises and buoyancy increases, conversely, on the opposite dredging side, the water level falls and buoyancy decreases, and the slope increases further.
本発明の船は、船の斜め前方から大波を受けると、両舷の先端のエッジで波を切り分ける。舷の外側の波は舷の側外板10の壁に沿って上下する。内側に入った波は水路空間6の水路壁9で反射を繰り返しながら船尾2へと流れて行く。船首角度が図8の拡大図に示すように薄く鋭い形状により、波と激突することはなく、かつ、水路空間6を流れる水の重さで、船が傾くことはない。
When the ship of the present invention receives a large wave from the diagonally forward side of the ship, the wave is cut at the edges of the ends of both sides. Waves outside the heel move up and down along the walls of the
水面に浮いて波と衝突しながら航行する現行の船の船形は、高速航行に不向きである。速度を増して行くと、衝突のエネルギーで船が空中に浮いたり、喫水線が下がり浮力と重力のバランスが崩れて不安定になり、最悪の場合は転覆してしまう。 The hull form of the current ship that floats on the surface of the water and collides with waves is not suitable for high-speed navigation. Increasing the speed will cause the ship to float in the air due to the energy of the collision, the waterline will fall and the balance between buoyancy and gravity will become unstable, and in the worst case, it will capsize.
本発明の船の船形は、高速航行に適している。図2の船底3は平な形状で揚力が発生しない。かつ、水路空間6を流れる水が絶えず船を押し下げており、速度を増して行っても船が浮き上がることはない。重心が上がり転覆し易くなる現行の船の事態、そのものが生じない。
The ship form of the present invention is suitable for high-speed navigation. The ship bottom 3 in FIG. 2 is flat and does not generate lift. In addition, the water flowing through the
現行の船の船形は、高速航行に不向きである。大波の中を高速に航行すると、波と船首が激しくぶつかるパンチング、波に乗り上げ船が空中に浮いてしまい、次の瞬間、強い衝撃とともに、船底が水面に叩き突けられるスラミング、で船が激しく揺れる。最悪の場合、船が破壊されてしまう。 The shape of the current ship is not suitable for high-speed navigation. When sailing at high speed in a big wave, the ship shakes violently with punching where the wave and the bow collide violently, the ship climbs on the wave and floats in the air, the next moment, with strong impact and slamming that the bottom of the ship hits the water surface . In the worst case, the ship will be destroyed.
本発明の船の船形は、高速航行に適している。大波の中を高速に航行しても、船首1は薄く鋭い形状により波とぶつかることはなく、かつ、船底3は常時水面下にあり、波は水路の上を流れて行き、波によって船底が空中に打ち上げられる現行の船の現象、そのものがない。
The ship form of the present invention is suitable for high-speed navigation. Even when sailing at a high speed in a large wave, the
上記を含め、サギング、ホギング、パンチング、スラミング、バウダイビング、ブローチング、等の水面に浮いて航行する現行の船が本質的に持つ危険性が、船体下部が潜行し下甲板5の水の上を波が流れて行く本発明の船の形状によって、大きく改善する。 Including the above, sagging, hogging, punching, slamming, bow diving, broaching, etc., the inherent danger of current ships floating on the water surface is that the lower part of the hull is submerged and above the water on the lower deck 5 This is greatly improved by the shape of the ship of the present invention in which waves flow.
高速航行に限らないが、現行の船で発生する船の揺れの、回転運動3軸の船首(Yawing)横(Rolling)縦(Pitching)、並行運動3軸の左右(Swaying)前後(Surging)上下(Heaving)、のいずれもが、船体下部が潜行し下甲板5の水の上を波が流れて行く本発明の船では発生しない。 Although not limited to high-speed navigation, the swaying of the ship that occurs on the current ship, three-axis rotation (Yawing) horizontal (Pitching), three-axis parallel movement (Swaying) before and after (Surging) up and down (Surging) None of (Heaving) occurs in the ship of the present invention in which the lower part of the hull is submerged and waves flow over the water on the lower deck 5.
以下、本発明に係る実施の形態の、推進装置の高速化の方法について、図面を参照しながら説明する。 Hereinafter, a method for speeding up a propulsion device according to an embodiment of the present invention will be described with reference to the drawings.
図9に示すように、本発明の推進装置は、船底3に水車14と隔壁16と電動モーター18と整流板17を持ち、この水車14を回して、水車14の前の水を、水車14の後ろに流す。この反作用で船は進む。
As shown in FIG. 9, the propulsion device of the present invention has a
水車14は水に接し、隔壁16によって駆動部の電動モーター18などと仕切られている。水車14は、シール・リングや軸受を通して個々に接続する、片側、または、両側、の電動モーター18で駆動される。隣り合う水車14の間の水路は、隔壁16と整流板17で仕切られており、それぞれの水車14の前の水を、同じ水車14の後ろに流し、別の水車14に流れ込むことはない。
The
水車14の下方の羽根15の部分は、水を前から後ろに掻き出し、反作用で推進力を生む。水車14の上方の、ドラム部分と羽根15の部分は推力を生まず、かつ、水の流れの障壁になるので、推進室4の部分に配置して、水の流れの障壁となるのを避ける。
The portion of the
水車14の下にある整流板17は、水車の羽根15が遠心力で水を遠方に押し出すのを防ぎ、水を前方から後方へと流す。水は回転する羽根15で次々に押し出されて行くので、スクリュープロペラの低圧力個所で生じるキャビテーションが、本発明の水車14では生じない。
The
水車14は船底3の幅いっぱいの複列配置と水車14の大きな回転直径によって、船底3の大量の水を(横方向に動かすことによるエネルギー損失を生じることなく)後方に押し出すことができる。水車14の直径が大きいほど推進効率は良くなるが、推進室4の高さの制限、電動モーター18の駆動力、その他の制約を受ける。
The
製造上で許容できる回転軸の偏心率、水車14の回転強度、電動モーター18の駆動力、などで水車14の1個の横幅が決まる。船底3の横幅で複列配置する水車14の数が決まる。別の表現をすれば、船を大型化する場合に、各水車14のトルクを増やす代わりに、水車14の数を増やして対応できる。
The width of one
水車14には個々に電動モーター18が繋がっており、既に述べたように、各水車14を個々に回転制御することにより、前進、減速、後進、また舵がなくても船の進路制御ができる。また、壊れる等で少数個の水車14が回転力を失っても、残りの水車14により(航行速度は落ちるが)航行を継続できる。
図10は、本発明の水車の羽根15の形状例である。図左の羽根15の形状は平板である。制作は平易であるが、遠心力で水が外に追い出されるのを防ぐ整流板が必須である。水車14の下を整流板17で覆うと保守性が悪くなる。
FIG. 10 is a shape example of the
図中央の羽根15の形状は湾曲板である。制作の難易度が上がるが、遠心力で水を外に追い出すのを防ぐ効果がある。湾曲の曲がりは巡航時の水車14の回転速度に合わせる。水車14の下の整流板17を無くして保守性を向上できる。水車14を逆回転した時に、逆湾曲の形状となり、推進力が弱くなる。
The shape of the
図右の羽根15の形状は湾曲板に返しを付加してある。制作の難易度がさらに上がるが、水車14を逆回転した時の、逆湾曲の推進力低下を多少補う。
The shape of the
図11は、水車14を下甲板(水路床)5と船底3の2個所に設置した例である。建造費用が増えるが、1個所の場合より推進力を増やすことができる。水車の個別故障に対する耐性(故障しても航行を継続)が強くなる。航行の状況によって、2個所推進、1個所推進、を使い分ける。
FIG. 11 shows an example in which the
1 船首
2 船尾
3 船底
4 推進室(水路下空間)
5 下甲板(水路床)
6 水路(水路空間)
7 客室・貨物室
8 側室(両舷室)
9 水路壁
10 側外板
11 船橋(操船室)
12 逃水口
13 矢尻
14 水車
15 水車の羽根
16 隔壁
17 整流板
18 電動モーター
a 船の重量と、対する浮力
b 下甲板の上にある水の、下に押す重力と、対抗して船底を上に押す圧力
c 下甲板の形状で、平水面より上に持ち上げられた水の重力と、対抗して船底を上に押す圧力
1
5 Lower deck (aqueduct floor)
6 waterway (waterway space)
7 Guest rooms / cargo rooms 8 Side rooms (both rooms)
12
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016182451A JP6198232B1 (en) | 2016-09-18 | 2016-09-18 | Hull shape and propulsion device |
PCT/JP2017/029448 WO2018051711A1 (en) | 2016-09-18 | 2017-08-16 | Hull shape and propulsion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016182451A JP6198232B1 (en) | 2016-09-18 | 2016-09-18 | Hull shape and propulsion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6198232B1 true JP6198232B1 (en) | 2017-09-20 |
JP2018043740A JP2018043740A (en) | 2018-03-22 |
Family
ID=59895758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016182451A Active JP6198232B1 (en) | 2016-09-18 | 2016-09-18 | Hull shape and propulsion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6198232B1 (en) |
WO (1) | WO2018051711A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116788423A (en) * | 2020-03-07 | 2023-09-22 | 茂名高新技术产业开发区嘉舟创新科技有限公司 | Water airship |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51109687A (en) * | 1975-03-20 | 1976-09-28 | Mitsubishi Heavy Ind Ltd | |
US4004544A (en) * | 1975-12-24 | 1977-01-25 | Moore John J | Twin turbine-wheel driven boat |
JPS6061389A (en) * | 1983-09-16 | 1985-04-09 | Mitsuo Okamoto | Vessel having reduced wave making resistance |
JPS6418793A (en) * | 1987-07-13 | 1989-01-23 | Iwami Seiichi | Boat with less wave-form resistance |
JPH03281495A (en) * | 1990-03-30 | 1991-12-12 | Japan Aircraft Mfg Co Ltd | Sailing body in fluid |
-
2016
- 2016-09-18 JP JP2016182451A patent/JP6198232B1/en active Active
-
2017
- 2017-08-16 WO PCT/JP2017/029448 patent/WO2018051711A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51109687A (en) * | 1975-03-20 | 1976-09-28 | Mitsubishi Heavy Ind Ltd | |
US4004544A (en) * | 1975-12-24 | 1977-01-25 | Moore John J | Twin turbine-wheel driven boat |
JPS6061389A (en) * | 1983-09-16 | 1985-04-09 | Mitsuo Okamoto | Vessel having reduced wave making resistance |
JPS6418793A (en) * | 1987-07-13 | 1989-01-23 | Iwami Seiichi | Boat with less wave-form resistance |
JPH03281495A (en) * | 1990-03-30 | 1991-12-12 | Japan Aircraft Mfg Co Ltd | Sailing body in fluid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116788423A (en) * | 2020-03-07 | 2023-09-22 | 茂名高新技术产业开发区嘉舟创新科技有限公司 | Water airship |
Also Published As
Publication number | Publication date |
---|---|
WO2018051711A1 (en) | 2018-03-22 |
JP2018043740A (en) | 2018-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3763810A (en) | High speed boat with planing hull | |
US6167829B1 (en) | Low-drag, high-speed ship | |
US5129343A (en) | Monohull fast ship | |
JP3660683B2 (en) | Watercraft | |
WO2021164777A1 (en) | Deployment and installation method for direct-suction jet propulsion in underwater vehicle, and installation structure | |
JP2015131529A (en) | Main propeller, ship equipped with additional propeller, and its hybrid navigation method | |
US5231946A (en) | Monohull fast sealift or semi-planing monohull ship | |
WO2001032500A1 (en) | Way as acronym for wave avoidance yacht | |
US5832856A (en) | Monohull fast ship with improved loading mechanism | |
US6966271B2 (en) | Waveless hull | |
JP6198232B1 (en) | Hull shape and propulsion device | |
RU2416543C1 (en) | Method of ship motion and ship moved by proposed method | |
US9193423B2 (en) | Hull configuration for submarines and vessel of the displacement type with multihull structure | |
KR970006351B1 (en) | Mono hull fast ship | |
JP6975724B2 (en) | Large displacement vessels | |
JP2023067297A (en) | Thrust generation system of sailing body, sailing body, and drag reduction method of sailing body | |
JP2023067295A (en) | Sailing body and viscous drag reduction method of sailing body | |
JP6182788B2 (en) | Single propeller, front twin ladder ship | |
JP2008230439A (en) | Fin thrustor | |
JP2023067296A (en) | Arrangement system of propulsion equipment for on-water sailing body and maneuvering method of on-water sailing body | |
WO2024201284A1 (en) | Catamaran hull with variable geometry propuls ive torpedo | |
JP2023076363A (en) | Gliding vessel | |
AU781474B2 (en) | Wave avoidance yacht (way) | |
AU2023201693B1 (en) | Vessel with minimum pressure wave | |
KR20240131264A (en) | A pair of extended arms coupled to a vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6198232 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |