[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6196528B2 - Dissolved hydrogen concentration measuring method and electrolyzed water generator - Google Patents

Dissolved hydrogen concentration measuring method and electrolyzed water generator Download PDF

Info

Publication number
JP6196528B2
JP6196528B2 JP2013225385A JP2013225385A JP6196528B2 JP 6196528 B2 JP6196528 B2 JP 6196528B2 JP 2013225385 A JP2013225385 A JP 2013225385A JP 2013225385 A JP2013225385 A JP 2013225385A JP 6196528 B2 JP6196528 B2 JP 6196528B2
Authority
JP
Japan
Prior art keywords
water
hydrogen
hydrogen concentration
flow rate
dissolved hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013225385A
Other languages
Japanese (ja)
Other versions
JP2015087221A (en
Inventor
大治 雨森
大治 雨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Trim Co Ltd
Original Assignee
Nihon Trim Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Trim Co Ltd filed Critical Nihon Trim Co Ltd
Priority to JP2013225385A priority Critical patent/JP6196528B2/en
Publication of JP2015087221A publication Critical patent/JP2015087221A/en
Application granted granted Critical
Publication of JP6196528B2 publication Critical patent/JP6196528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、水を電気分解することによって、電解水を生成する電解水生成装置において、生成された水素水の溶存水素濃度を測定する方法、及び、水素水中の溶存水素濃度を算出する機能を備えた電解水生成装置に関する。   The present invention relates to a method for measuring the dissolved hydrogen concentration of generated hydrogen water in an electrolyzed water generating apparatus that generates electrolyzed water by electrolyzing water, and a function of calculating the dissolved hydrogen concentration in hydrogen water. The present invention relates to an electrolyzed water generating apparatus.

水を電気分解することによって電解水を生成する電解水生成装置は、陰極室と陽極室とが隔膜を挟んで区画された電解槽を備え、陰極室から水素水(還元水)が、陽極室から酸性水がそれぞれ吐水される。   An electrolyzed water generating device that generates electrolyzed water by electrolyzing water includes an electrolytic cell in which a cathode chamber and an anode chamber are partitioned with a diaphragm interposed therebetween, and hydrogen water (reduced water) is supplied from the cathode chamber to the anode chamber. Acid water is discharged from each.

水を電気分解することによって得られる水素水(以下、「電解水素水」ともいう。)は、アルカリ性を有するため、電解水素水の生成状態を示す指標として、電解水素水の水素イオン濃度(pH)を表示する機能を備えた電解水生成装置がある(特許文献1)。   Hydrogen water obtained by electrolyzing water (hereinafter, also referred to as “electrolytic hydrogen water”) has alkalinity. Therefore, hydrogen ion concentration (pH) of electrolytic hydrogen water is used as an index indicating the production state of electrolytic hydrogen water. ) Is an electrolyzed water generating device having a function of displaying (Patent Document 1).

近年、活性水素は、人の体内の活性酸素を除去する作用(抗酸化性)があるとされ、電解水素水中に含まれる溶存水素濃度が注目されている。電解水素水中の水素イオン濃度(pH)が同じ値でも、溶存水素濃度の値が違うことがあり、水の電気分解によって、所定の溶存水素濃度を有する電解水素水を得るには、溶存水素濃度を正確に測定する必要がある。   In recent years, active hydrogen is considered to have an action (antioxidant property) for removing active oxygen in a human body, and the concentration of dissolved hydrogen contained in electrolytic hydrogen water has attracted attention. Even if the hydrogen ion concentration (pH) in the electrolytic hydrogen water is the same, the value of the dissolved hydrogen concentration may be different. To obtain electrolytic hydrogen water having a predetermined dissolved hydrogen concentration by electrolysis of water, the dissolved hydrogen concentration Must be measured accurately.

溶存水素濃度の測定には、隔膜型ポーラログラフ法を用いた溶存水素センサーがある。これには、センサー本体の先端開口部に気体透過性の隔膜を使用し、この隔膜を通して水素をセンサー内部の電解液中に浸透・拡散させて、電解液中の電極間に水素ガスの酸化反応に起因する電流を生じさせ、その電流値から溶存水素濃度を求めるというものである。しかし、この種の溶存水素センサーは非常に高価であるため、電解水生成装置に取り付けることは、製造コストの面で採用することが難しい。   For measuring the dissolved hydrogen concentration, there is a dissolved hydrogen sensor using a diaphragm type polarographic method. For this, a gas permeable membrane is used at the tip opening of the sensor body, and hydrogen penetrates and diffuses into the electrolyte inside the sensor through this membrane, so that the oxidation reaction of hydrogen gas between the electrodes in the electrolyte The electric current resulting from is generated, and the dissolved hydrogen concentration is obtained from the electric current value. However, since this type of dissolved hydrogen sensor is very expensive, it is difficult to adopt it in terms of manufacturing cost to attach it to the electrolyzed water generator.

一方、酸化還元電位(ORP;Oxidation Reduction Potential)は、水溶液の酸化性や還元性を示す指標であるため、電解水素水中の酸化還元電位を測定し、校正表に基づいて電解水素水中の溶存水素濃度を求める方法が提案されている(特許文献2)。   On the other hand, Oxidation Reduction Potential (ORP) is an index indicating the oxidizability and reducibility of an aqueous solution. Therefore, the redox potential in electrolytic hydrogen water is measured and dissolved hydrogen in electrolytic hydrogen water based on a calibration table. A method for obtaining the concentration has been proposed (Patent Document 2).

特開平11−64274号公報JP-A-11-64274 特開2002−248471号公報JP 2002-248471 A

酸化還元電位は、水溶液の酸化性や還元性を示す指標であるため、溶存水素濃度とは、ある程度相関関係があり、酸化還元電位に基づく溶存水素濃度の測定は、隔膜型ポーラログラフ法による溶存水素センサーを用いた場合に較べて、比較的安価に行うことができる。   Since the oxidation-reduction potential is an index indicating the oxidizability and reducibility of an aqueous solution, it has a certain correlation with the dissolved hydrogen concentration. The measurement of the dissolved hydrogen concentration based on the oxidation-reduction potential is based on the dissolved polarimeter method. Compared to the case where a sensor is used, it can be performed at a relatively low cost.

しかしながら、電解水素水に水素以外の酸化性物質や還元性物質が含まれていると、水素だけの酸化還元電位を測定することはできず、酸化還元電位に基づく溶存水素濃度の測定は、必ずしも正確な値を示していない場合がある。そのため、酸化還元電位に基づき電解水素水の溶存水素濃度を正確に測定するためには、電解前と電解後の酸化還元電位を測定する必要があるので、電解水生成装置の構成が複雑になり、製造コストの上昇を招く。   However, if the electrolytic hydrogen water contains an oxidizing substance or reducing substance other than hydrogen, the oxidation-reduction potential of hydrogen alone cannot be measured, and the measurement of the dissolved hydrogen concentration based on the oxidation-reduction potential is not necessarily performed. May not show exact value. Therefore, in order to accurately measure the dissolved hydrogen concentration of electrolyzed hydrogen water based on the oxidation-reduction potential, it is necessary to measure the oxidation-reduction potential before and after electrolysis, which complicates the configuration of the electrolyzed water generator. Incurs an increase in manufacturing costs.

また、電解水素水の酸化還元電位を測定するには、電解水素水を吐水する吐水管に電極を入れる必要があるが、電気分解中に、Ca等のミネラルがメッキ状(スケール)になって電極に付着すると、酸化還元電位の測定精度が低下する。そのため、測定精度を維持するためには、電極のメンテナンスを頻繁に行う必要がある。   In addition, in order to measure the oxidation-reduction potential of electrolytic hydrogen water, it is necessary to put an electrode in a water discharge pipe for discharging electrolytic hydrogen water, but during electrolysis, minerals such as Ca are plated (scale). When attached to the electrode, the measurement accuracy of the oxidation-reduction potential decreases. Therefore, in order to maintain measurement accuracy, it is necessary to frequently perform electrode maintenance.

本発明は、上記課題を解決するためになされたもので、その主な目的は、メンテナンスが容易で、かつ安価な方法で電解水素水中の溶存水素濃度を測定することができる溶存水素濃度測定方法を提供することにある。また、このような測定方法によって、電解水素水中の溶存水素濃度を算出する機能を備えた電解水生成装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and its main object is to provide a method for measuring the dissolved hydrogen concentration which can measure the dissolved hydrogen concentration in the electrolytic hydrogen water by an easy and inexpensive method. Is to provide. Moreover, it aims at providing the electrolyzed water generating apparatus provided with the function which calculates the dissolved hydrogen concentration in electrolyzed hydrogen water by such a measuring method.

本発明は、予め、水の電気分解時の電流及び電解水素水の吐水流量と、電解水素水中の溶存水素濃度との相関関係を測定しておき、その測定データに基づいて、測定した電流及び吐水流量に応じて、電解水素水中の溶存水素濃度を算出する方法を採用する。   The present invention measures in advance the correlation between the current during electrolysis of water and the discharge flow rate of electrolytic hydrogen water and the dissolved hydrogen concentration in the electrolytic hydrogen water, and based on the measurement data, the measured current and A method of calculating the dissolved hydrogen concentration in the electrolytic hydrogen water according to the discharged water flow rate is adopted.

すなわち、本発明に係る溶存水素濃度測定方法は、陰極室と陽極室とを備えた電解槽に供給した水を電気分解することによって、陰極室で生成された水素水の溶存水素濃度を測定する方法であって、電気分解は、陰極室内に配設された陰極板及び陽極室内に配設された陽極板に印加する電圧の極性を反転した2種類の電極モードで行われ、陰極板と陽極板との間を流れる電流、及び陰極室で生成された水素水の吐水流量を測定する測定工程と、予め測定した電流、吐水流量、及び電極モードの種類と、水素水中の溶存水素濃度との相関関係を表すデータに基づいて、測定工程で測定した電流及び吐水流量、並びに電極モードの種類に応じて、陰極室で生成された水素水中の溶存水素濃度を算出する算出工程とを備えたことを特徴とする。 That is, the dissolved hydrogen concentration measuring method according to the present invention measures the dissolved hydrogen concentration of hydrogen water generated in the cathode chamber by electrolyzing water supplied to an electrolytic cell having a cathode chamber and an anode chamber. a method, electrolysis is carried out in two electrode mode by inverting the polarity of the voltage applied to the anode plate disposed to the cathode plate and anode chamber disposed in the cathode chamber, and the negative electrode plate and measuring step of measuring the water discharge flow rate of the hydrogen water produced by the current, and cathode chamber flows between the positive electrode plate, pre-measured current, the type of the water discharge flow rate, and the electrode mode, the dissolved hydrogen concentration of the hydrogen-water And a calculation step of calculating the dissolved hydrogen concentration in the hydrogen water generated in the cathode chamber according to the current and the water discharge flow rate measured in the measurement step and the type of the electrode mode based on the data representing the correlation with It is characterized by that.

また、本発明に係る電解水生成装置は、陰極室と陽極室とを備えた電解槽に供給した水を電気分解することによって、電解水を生成する電解水生成装置であって、陰極室内に配設された陰極板及び陽極室内に配設された陽極板に印加する電圧の極性を反転した2種類の電極モードを備え、陰極板と陽極板との間を流れる電流を測定する電流計と、陰極室で生成された水素水の吐水流量を測定する流量計と、予め測定した電流、吐水流量、及び電極モードの種類と、水素水中の溶存水素濃度との相関関係を表すデータを記憶した記憶部と、記憶部に記憶されたデータに基づいて、電流計で測定した電流及び流量計で測定した吐水流量、並びに電極モードの種類に応じて、陰極室で生成された水素水中の溶存水素濃度を算出する演算部とを備えたことを特徴とする。 Furthermore, electrolytic water generation apparatus according to the present invention, by electrolysis of water supplied to the electrolytic cell having a cathode compartment and an anode compartment, a electrolytic water generation apparatus for generating electrolytic water, to the cathode chamber e Bei two electrodes modes obtained by inverting the polarity of the voltage applied to the anode plate disposed disposed cathodic plate and anode compartment, a current meter for measuring the current flowing between the cathode plate and the anode plate And a flow meter that measures the discharge flow rate of hydrogen water generated in the cathode chamber, and stores data representing the correlation between the pre-measured current, discharge flow rate, electrode mode type, and dissolved hydrogen concentration in the hydrogen water And dissolved in the hydrogen water generated in the cathode chamber according to the current measured by the ammeter, the discharge flow rate measured by the flow meter, and the type of electrode mode based on the data stored in the storage unit. An arithmetic unit for calculating the hydrogen concentration And wherein the door.

本発明によれば、メンテナンスが容易で、かつ安価な方法で、電解水素水中の溶存水槽濃度を測定することができる。また、本発明によれば、メンテナンスが容易で、かつ安価な方法で電解水素水中の溶存水素濃度を算出する機能を備えた電解水生成装置を提供することができる。   According to the present invention, the concentration of the dissolved water tank in the electrolytic hydrogen water can be measured by an easy and inexpensive method. Moreover, according to the present invention, it is possible to provide an electrolyzed water generating device having a function of calculating the dissolved hydrogen concentration in the electrolyzed hydrogen water by an inexpensive method that is easy to maintain.

溶存水素濃度の電流に対する依存性を示したグラフである。It is the graph which showed the dependence with respect to the electric current of dissolved hydrogen concentration. 溶存水素濃度の吐水流量に対する依存性を示したグラフである。It is the graph which showed the dependence with respect to the discharged water flow rate of dissolved hydrogen concentration. 本発明における電解水素水中の溶存水素濃度を測定する方法を示したフローチャートである。It is the flowchart which showed the method of measuring the dissolved hydrogen concentration in the electrolytic hydrogen water in this invention. 本発明における電解水生成装置の構成を模式的に示した構成図である。It is the block diagram which showed typically the structure of the electrolyzed water generating apparatus in this invention. (a)及び(b)は、電極板に印加する電圧の極性を反転させても、吐水管から吐出される電解水の特性(水素水及び酸性水)が変わらない機構を示した図である。(A) And (b) is the figure which showed the mechanism in which the characteristic (hydrogen water and acidic water) discharged from a water discharge pipe does not change even if the polarity of the voltage applied to an electrode plate is reversed. . 電極モードを変えたときの、電流と溶存水素濃度との相関関係を示したグラフである。It is the graph which showed the correlation with an electric current and dissolved hydrogen concentration when changing an electrode mode. 電極モードを変えたときの、吐水流量と溶存水素濃度との相関関係を示したグラフである。It is the graph which showed the correlation of the discharged water flow rate and dissolved hydrogen concentration when changing an electrode mode.

本発明を説明する前に、本発明を想到するに至った経緯をまず説明する。   Before explaining the present invention, the background to the idea of the present invention will be described first.

電解水素水は、電解槽内に配設された陰極板と陽極板との間に電圧を印加し、電解槽内に供給された水を電気分解することによって生成される。従って、電解水素水中の溶存水素濃度は、電気分解時の電流値に依存することが予想される。また、電解槽内に水を連続的に供給して、電解水素水を連続的に生成する方式の場合は、電解水素水中の溶存水素濃度は、電解水素水の吐水流量にも依存することが予想される。   The electrolytic hydrogen water is generated by applying a voltage between a cathode plate and an anode plate disposed in the electrolytic cell, and electrolyzing the water supplied in the electrolytic cell. Therefore, it is expected that the dissolved hydrogen concentration in the electrolytic hydrogen water depends on the current value during electrolysis. In addition, in the case of a system in which water is continuously supplied into the electrolytic cell to generate electrolytic hydrogen water continuously, the dissolved hydrogen concentration in the electrolytic hydrogen water may depend on the discharge water flow rate of the electrolytic hydrogen water. is expected.

そこで、本願発明者等は、電解水素水中の溶存水素濃度の電流及び吐水水量に対する依存性を調べるために、陰極板と陽極板との間に流れる電流、及び陰極室で生成された水素水の吐水流量を、それぞれ変化させて、電解水素水を生成し、生成した電解水素水の溶存水素濃度を、隔膜型ポーラログラフ法による溶存水素センサーを用いて測定した。なお、電解水素水の吐水流量は、電解槽に供給する水の流量を変化させることによって、変化させた。   Therefore, in order to investigate the dependence of the dissolved hydrogen concentration in the electrolytic hydrogen water on the current and the amount of discharged water, the inventors of the present application investigated the current flowing between the cathode plate and the anode plate and the hydrogen water generated in the cathode chamber. Electrolytic hydrogen water was generated by changing the water discharge flow rate, respectively, and the dissolved hydrogen concentration of the generated electrolytic hydrogen water was measured using a dissolved hydrogen sensor by a diaphragm type polarographic method. The discharge water flow rate of the electrolytic hydrogen water was changed by changing the flow rate of water supplied to the electrolytic cell.

図1及び図2は、その結果を示したグラフである。図1は、溶存水素濃度[ppb]の電流[A]に対する依存性を示したグラフで、A〜Eで示した曲線は、順に、吐水流量を1,2,3,4,5L/minに変えたときの溶存水素濃度を示す。図1に示すように、電流が1Aのとき、曲線A(吐水流量が1L/min)では、約350ppbを示し、曲線E(吐水流量が5L/min)では、約90ppbを示す。また、電流が5Aのとき、曲線Aでは、約920ppbを示し、曲線Eでは、約390ppbを示す。   1 and 2 are graphs showing the results. FIG. 1 is a graph showing the dependence of the dissolved hydrogen concentration [ppb] on the current [A]. The curves indicated by A to E indicate the water discharge flow rate to 1, 2, 3, 4, 5 L / min in order. It shows the dissolved hydrogen concentration when changed. As shown in FIG. 1, when the current is 1 A, the curve A (water discharge flow rate is 1 L / min) shows about 350 ppb, and the curve E (water discharge flow rate is 5 L / min) shows about 90 ppb. When the current is 5 A, the curve A shows about 920 ppb, and the curve E shows about 390 ppb.

また、図2は、溶存水素濃度[ppb]の吐水流量[L/min]に対する依存性を示したグラフで、O〜Rで示した曲線は、順に、電流を5,4,3.2,1Aに変えたときの溶存水素濃度を示す。図2に示すように、吐水流量が1L/minのとき、曲線O(電流が5A)では、約930ppbを示し、曲線R(電流が1A)では、約340ppbを示す。また、吐水流量が5L/minのとき、曲線Oでは、約390ppbを示し、曲線Rでは、約90ppbを示す。   FIG. 2 is a graph showing the dependence of the dissolved hydrogen concentration [ppb] on the discharged water flow rate [L / min]. The curves indicated by O to R indicate currents of 5, 4, 3.2, in order. The dissolved hydrogen concentration when changed to 1A is shown. As shown in FIG. 2, when the water discharge flow rate is 1 L / min, the curve O (current is 5 A) shows about 930 ppb, and the curve R (current is 1 A) shows about 340 ppb. Further, when the water discharge flow rate is 5 L / min, the curve O shows about 390 ppb, and the curve R shows about 90 ppb.

図1及び図2に示すように、電解水素水の溶存水素濃度は、電流が増加すると、あるいは吐水流量が減少すると、増加するという一定の相関関係を示すことが分かった。また、この相関関係は、再現性があることも分かった。   As shown in FIGS. 1 and 2, it has been found that the dissolved hydrogen concentration of the electrolytic hydrogen water shows a certain correlation that increases when the current increases or when the discharge water flow rate decreases. It was also found that this correlation is reproducible.

このような知見から、本願発明者等は、陰極板と陽極板との間を流れる電流、及び電解水素水の吐水流量を測定することによって、予め測定した電流及び吐水流量と、水素水中の溶存水素濃度との相関関係を表すデータに基づいて、水素水中の溶存水素濃度を容易に算出できることに気がついた。   From such knowledge, the inventors of the present application measured the current flowing between the cathode plate and the anode plate, and the discharge flow rate of the electrolytic hydrogen water, so that the current and discharge flow rate measured in advance and the dissolved water in the hydrogen water were dissolved. It was found that the dissolved hydrogen concentration in the hydrogen water can be easily calculated based on the data representing the correlation with the hydrogen concentration.

また、陰極板と陽極板との間を流れる電流、及び電解水素水の吐水流量の各測定計は、電解水生成装置に本来的に装備されているため、予め、電流及び吐水流量と、電解水素水中の溶存水素濃度との相関関係を表すデータを用意しておくことによって、簡単、かつ安価に、電解水素水中の溶存水素濃度を求めることができる。   In addition, since the current flowing between the cathode plate and the anode plate and the meter for measuring the discharge flow rate of the electrolyzed hydrogen water are inherently provided in the electrolyzed water generation device, the current and discharge flow rate, By preparing data representing the correlation with the dissolved hydrogen concentration in the hydrogen water, the dissolved hydrogen concentration in the electrolytic hydrogen water can be obtained easily and inexpensively.

図3は、本発明における電解水素水中の溶存水素濃度を測定する方法を示したフローチャートである。なお、本発明における溶存水素濃度測定方法は、陰極室と陽極室とを備えた電解槽に供給した水を電気分解することによって、電解水を生成する電解水生成装置に適用される。   FIG. 3 is a flowchart showing a method for measuring the dissolved hydrogen concentration in the electrolytic hydrogen water in the present invention. In addition, the dissolved hydrogen concentration measuring method in this invention is applied to the electrolyzed water production | generation apparatus which produces | generates electrolyzed water by electrolyzing the water supplied to the electrolytic cell provided with the cathode chamber and the anode chamber.

まず、陰極板と陽極板との間に電圧を印加して、電解水を生成する(工程S10)。このとき、陰極室から水素水が、陽極室から酸性水がそれぞれ吐水される。   First, a voltage is applied between the cathode plate and the anode plate to generate electrolyzed water (step S10). At this time, hydrogen water is discharged from the cathode chamber, and acidic water is discharged from the anode chamber.

次に、陰極板と陽極板との間を流れる電流を測定する(工程S11)。さらに、陰極室で生成された水素水の吐水流量を測定する(工程S12)。ここで、電流及び吐水流量の測定は、例えば、電流計及び流量計を用いて測定することができる。なお、工程S11及び工程S12の順番は問わず、同時に行ってもよい。   Next, the current flowing between the cathode plate and the anode plate is measured (step S11). Further, the flow rate of discharged hydrogen water generated in the cathode chamber is measured (step S12). Here, the current and water discharge flow rate can be measured using, for example, an ammeter and a flow meter. In addition, you may perform simultaneously, regardless of the order of process S11 and process S12.

次に、予め測定した電流及び吐水流量と、電解水素水中の溶存水素濃度との相関関係を表すデータを用意する(工程S13)。このデータは、同じ電解水生成装置を用いて、陰極板と陽極板との間に流れる電流、及び陰極室で生成された水素水の吐水流量を、それぞれ変化させて、電解水素水を生成し、生成した電解水素水の溶存水素濃度を、隔膜型ポーラログラフ法による溶存水素センサーを用いて測定して求めたデータである。従って、工程S13は、工程S10〜S12の前に、予め行っておけばよい。なお、電流及び吐水流量と、水素水中の溶存水素濃度との相関関係を表すデータは、図1または図2に示した曲線を表す演算式、あるいは、テーブルとして用意しておけばよい。   Next, data representing a correlation between the current and flow rate of water measured in advance and the dissolved hydrogen concentration in the electrolytic hydrogen water is prepared (step S13). This data uses the same electrolyzed water generating device to generate electrolyzed hydrogen water by changing the current flowing between the cathode plate and the anode plate and the discharge flow rate of the hydrogen water generated in the cathode chamber. This is data obtained by measuring the dissolved hydrogen concentration of the generated electrolytic hydrogen water using a dissolved hydrogen sensor by a diaphragm type polarographic method. Therefore, step S13 may be performed in advance before steps S10 to S12. Note that data representing the correlation between the current and water discharge flow rate and the dissolved hydrogen concentration in the hydrogen water may be prepared as an arithmetic expression representing the curve shown in FIG. 1 or FIG.

次に、工程S13で用意したデータに基づいて、工程S11及びS12で測定した電流及び吐水流量に応じて、陰極室で生成された水素水中の溶存水素濃度を算出する(工程S14)。   Next, based on the data prepared in step S13, the dissolved hydrogen concentration in the hydrogen water generated in the cathode chamber is calculated according to the current measured in steps S11 and S12 and the discharge water flow rate (step S14).

このように、本発明における溶存水素濃度測定方法は、予め用意した電流及び吐水流量と、水素水中の溶存水素濃度との相関関係を表すデータに基づいて、電解水素水の溶存水素濃度を算出することができるため、従来の酸化還元電位を測定して溶存水素濃度を求める方法に較べて、簡単に、溶存水素濃度を求めることができる。   As described above, the dissolved hydrogen concentration measuring method according to the present invention calculates the dissolved hydrogen concentration of the electrolytic hydrogen water based on the data representing the correlation between the current and discharge water flow prepared in advance and the dissolved hydrogen concentration in the hydrogen water. Therefore, the dissolved hydrogen concentration can be easily determined as compared with the conventional method of measuring the redox potential and determining the dissolved hydrogen concentration.

また、酸化還元電位は、電解水素水を吐水する吐水管に電極を入れて測定する必要があるが、本発明における測定方法では、電解水生成装置に本来的に装備されている電流計や流量計を用いて測定することができるため、安価に、電解水素水中の溶存水素濃度を求めることができる。   In addition, the oxidation-reduction potential needs to be measured by putting an electrode in a water discharge pipe for discharging electrolytic hydrogen water. However, in the measurement method according to the present invention, an ammeter or a flow rate originally provided in the electrolyzed water generating apparatus is used. Since it can measure using a meter, the dissolved hydrogen concentration in electrolytic hydrogen water can be calculated | required cheaply.

さらに、酸化還元電位の測定に用いる電極にスケールが付着すると、酸化還元電位の測定精度が低下するため、電極のメンテナンスを頻繁に行う必要があるが、本発明の測定方法では、そのようなメンテナンスが不要である。従って、本発明における溶存水素濃度測定方法は、従来の酸化還元電位を測定して溶存水素濃度を求める方法に較べて、安定した測定を行うことができる。   Furthermore, if the scale is attached to the electrode used for measuring the oxidation-reduction potential, the measurement accuracy of the oxidation-reduction potential decreases, and therefore it is necessary to frequently perform maintenance of the electrode. In the measurement method of the present invention, such maintenance is performed. Is unnecessary. Therefore, the dissolved hydrogen concentration measuring method in the present invention can perform a stable measurement as compared with the conventional method for obtaining the dissolved hydrogen concentration by measuring the oxidation-reduction potential.

図4は、本発明における電解水生成装置1の構成を模式的に示した構成図で、本発明における溶存水素濃度測定方法によって、電解水素水中の溶存水素濃度を算出する機能を備えている。   FIG. 4 is a configuration diagram schematically showing the configuration of the electrolyzed water generating apparatus 1 in the present invention, which has a function of calculating the dissolved hydrogen concentration in the electrolyzed hydrogen water by the dissolved hydrogen concentration measuring method in the present invention.

図4に示すように、電解水生成装置1は、陰極室11と陽極室12とを備えた電解槽10に供給した水を電気分解することによって、電解水を生成する。電解槽10は、隔膜15によって、陰極室11と陽極室12とに区画され、それぞれ、陰極板13と陽極板14とが配設されている。供給管20から供給された水は、途中で分岐した供給管21、22を介して、陰極室11と陽極室12内に供給される。供給される水の量は、供給管20に設けたバルブ25の開閉により調整される。   As shown in FIG. 4, the electrolyzed water generating apparatus 1 generates electrolyzed water by electrolyzing water supplied to an electrolyzer 10 having a cathode chamber 11 and an anode chamber 12. The electrolytic cell 10 is partitioned into a cathode chamber 11 and an anode chamber 12 by a diaphragm 15, and a cathode plate 13 and an anode plate 14 are disposed respectively. The water supplied from the supply pipe 20 is supplied into the cathode chamber 11 and the anode chamber 12 through supply pipes 21 and 22 branched in the middle. The amount of water supplied is adjusted by opening and closing a valve 25 provided in the supply pipe 20.

陰極板13と陽極板14との間には、電源30から直流電圧が印加され、陰極室11及び陽極室12に供給された水は、電気分解されて電解水が生成される。陰極室11で生成された水素水は、吐水管23を介して、外部へ流出され、陽極室12で生成された酸性水は、吐水管24を介して、外部へ流出される。   A DC voltage is applied between the cathode plate 13 and the anode plate 14 from the power source 30, and the water supplied to the cathode chamber 11 and the anode chamber 12 is electrolyzed to generate electrolyzed water. The hydrogen water generated in the cathode chamber 11 flows out through the water discharge pipe 23, and the acidic water generated in the anode chamber 12 flows out through the water discharge pipe 24.

陰極板13及び陽極板14と電源30とを接続する導線に、電流計35が設けられており、電流計35により、陰極板13と陽極板14との間を流れる電流が測定される。また、陰極室11に繋がる吐水管23には、流量計80が設けられており、流量計80により、陰極室11で生成された水素水の吐水流量が測定される。   An ammeter 35 is provided on the conductive wire connecting the cathode plate 13 and the anode plate 14 and the power source 30, and the current flowing between the cathode plate 13 and the anode plate 14 is measured by the ammeter 35. The water discharge pipe 23 connected to the cathode chamber 11 is provided with a flow meter 80, and the flow rate of the hydrogen water generated in the cathode chamber 11 is measured by the flow meter 80.

予め測定した電流及び吐水流量と、水素水中の溶存水素濃度との相関関係を表すデータは、記憶部50に記憶されている。電流計35及び流量計80で測定した電流及び吐水流量は、演算部40に入力され、記憶部50に記憶されたデータに基づいて、測定した電流及び吐水流量に応じて、陰極室11で生成された水素水中の溶存水素濃度が算出される。   Data representing the correlation between the current and discharge flow rate measured in advance and the dissolved hydrogen concentration in the hydrogen water is stored in the storage unit 50. The current and water discharge flow rate measured by the ammeter 35 and the flow meter 80 are generated in the cathode chamber 11 according to the measured current and water discharge flow rate based on the data input to the calculation unit 40 and stored in the storage unit 50. The dissolved hydrogen concentration in the generated hydrogen water is calculated.

このように、本発明における電解水生成装置1は、予め測定した電流及び吐水流量と、水素水中の溶存水素濃度との相関関係を表すデータを記憶部50に記憶しておくことによって、記憶したデータに基づいて、測定した電流及び吐水流量に応じて、陰極室で生成された水素水中の溶存水素濃度を容易に算出することができる。これにより、メンテナンスが容易で、かつ安価な方法で電解水素水中の溶存水素濃度を算出する機能を備えた電解水生成装置を実現することができる。   As described above, the electrolyzed water generating apparatus 1 according to the present invention stores the data representing the correlation between the pre-measured current and the discharged water flow rate and the dissolved hydrogen concentration in the hydrogen water in the storage unit 50. Based on the data, the dissolved hydrogen concentration in the hydrogen water generated in the cathode chamber can be easily calculated according to the measured current and discharged water flow rate. Thereby, it is possible to realize an electrolyzed water generating device having a function of calculating the dissolved hydrogen concentration in the electrolyzed hydrogen water by an inexpensive method that is easy to maintain.

本発明において、演算部40で算出した水素水中の溶存水素濃度を、表示部70で表示させてもよい。この場合、表示部70に表示される水素水中の溶存水素濃度は、制御部60によって制御される。なお、表示部70は、溶存水素濃度の値(ppb)を表示するだけでなく、例えば、溶存水素濃度(ppb)を段階的に示した文字等の表記であってもよい。   In the present invention, the dissolved hydrogen concentration in the hydrogen water calculated by the calculation unit 40 may be displayed on the display unit 70. In this case, the dissolved hydrogen concentration in the hydrogen water displayed on the display unit 70 is controlled by the control unit 60. The display unit 70 may not only display the value of the dissolved hydrogen concentration (ppb), but also may be written in characters or the like that indicate the dissolved hydrogen concentration (ppb) in a stepwise manner.

また、演算部40で算出した水素水中の溶存水素濃度に基づいて、陰極室11で生成される水素水中の溶存水素濃度が所定値になるよう、制御部60によって、電源30から印加される直流電圧を調整して、陰極板13と陽極板14との間を流れる電流を制御してもよい。あるいは、制御部60によって、供給管20に設けたバルブ25の開閉を調整して、陰極室11で生成された水素水の吐水流量を制御してもよい。   Further, based on the dissolved hydrogen concentration in the hydrogen water calculated by the calculation unit 40, the direct current applied from the power source 30 by the control unit 60 so that the dissolved hydrogen concentration in the hydrogen water generated in the cathode chamber 11 becomes a predetermined value. The current flowing between the cathode plate 13 and the anode plate 14 may be controlled by adjusting the voltage. Alternatively, the controller 60 may adjust the opening and closing of the valve 25 provided in the supply pipe 20 to control the discharge flow rate of the hydrogen water generated in the cathode chamber 11.

ここで、陰極室11で生成された水素水の吐水流量は、電解槽10の下流側の吐水管23に設けた流量計80を用いて測定するようにしたが、電解槽10の上流側の供給管20に設けた流量計を用いて測定してもよい。この場合、供給管20に設けた流量計は、水の総供給流量を測定することになるが、電解水生成装置1が、予め、水素水と酸性水との生成比率を定めていれば、この比率に応じて、陰極室11で生成された水素水の吐水流量を求めることができる。   Here, the water discharge flow rate of the hydrogen water generated in the cathode chamber 11 is measured using the flow meter 80 provided in the water discharge pipe 23 on the downstream side of the electrolytic cell 10, but on the upstream side of the electrolytic cell 10. You may measure using the flowmeter provided in the supply pipe | tube 20. FIG. In this case, the flow meter provided in the supply pipe 20 measures the total supply flow rate of water, but if the electrolyzed water generating device 1 has previously determined the generation ratio of hydrogen water and acidic water, According to this ratio, the discharge flow rate of the hydrogen water generated in the cathode chamber 11 can be obtained.

ところで、水を電気分解するとき、水の中に含まれるミネラル等がメッキ状態(スケール)になって陰極板13及び陽極板14に付着すると、安定して電解水素水を生成することができない。そこで、陰極板13及び陽極板14にスケールが付着するのを防止するために、陰極板13及び陽極板14に印加する電圧の極性を制御する2種類の電極モードが電解水生成装置1に備えられている場合がある。具体的には、電解水生成装置1には、陰極板13を陰極とし、陽極板14を陽極として制御する電極モード(第1の電極モードという)と、陰極板13を陽極とし、陽極板14を陰極として制御する電極モード(第2の電極モードという)がある。第2の電極モードは、第1の電極モードにおける陰極板13及び陽極板14に印加する電圧の極性を反転させたものである。このとき、陰極板13及び陽極板14に印加する電圧の極性を反転させても、各吐水管23、24から吐出される電解水の特性(水素水及び酸性水)が変わらないことが好ましい。   By the way, when electrolyzing water, if minerals and the like contained in the water are in a plated state (scale) and adhere to the cathode plate 13 and the anode plate 14, the electrolytic hydrogen water cannot be generated stably. Therefore, in order to prevent the scale from adhering to the cathode plate 13 and the anode plate 14, the electrolyzed water generating apparatus 1 includes two types of electrode modes for controlling the polarity of the voltage applied to the cathode plate 13 and the anode plate 14. May have been. Specifically, the electrolyzed water generating apparatus 1 includes an electrode mode (referred to as a first electrode mode) in which the cathode plate 13 is used as a cathode and the anode plate 14 is used as an anode, and the cathode plate 13 is used as an anode. There is an electrode mode (referred to as a second electrode mode) for controlling as a cathode. In the second electrode mode, the polarity of the voltage applied to the cathode plate 13 and the anode plate 14 in the first electrode mode is reversed. At this time, even if the polarity of the voltage applied to the cathode plate 13 and the anode plate 14 is reversed, it is preferable that the characteristics (hydrogen water and acidic water) of the electrolyzed water discharged from the water discharge pipes 23 and 24 do not change.

図5(a)、(b)は、陰極板13及び陽極板14に印加する電圧の極性を反転させても、各吐水管23、24から吐出される電解水の特性(水素水及び酸性水)が変わらない機構を示した構成図である。   FIGS. 5A and 5B show characteristics of electrolyzed water (hydrogen water and acidic water) discharged from the water discharge pipes 23 and 24 even when the polarities of voltages applied to the cathode plate 13 and the anode plate 14 are reversed. It is the block diagram which showed the mechanism in which () does not change.

電解槽10内の陰極室11及び陽極室12が、図5(a)に示すような配置になっている場合(第1の電極モード)、供給管20aから供給された水は、切替弁90aを介して、供給管21から陰極室11に流入する。また、供給管20bから供給された水は、切替弁90aを介して、供給管22から陽極室12に流入する。一方、陰極室11で生成された水素水は、吐水管24bを経由して、切替弁90bを介して、吐水管23から取り出される。また、陽極室12で生成された酸性水は、吐水管24aを経由して、切替弁90bを介して、吐水管24から取り出される。   When the cathode chamber 11 and the anode chamber 12 in the electrolytic cell 10 are arranged as shown in FIG. 5A (first electrode mode), the water supplied from the supply pipe 20a is supplied from the switching valve 90a. Through the supply pipe 21 and into the cathode chamber 11. Moreover, the water supplied from the supply pipe 20b flows into the anode chamber 12 from the supply pipe 22 through the switching valve 90a. On the other hand, the hydrogen water generated in the cathode chamber 11 is taken out from the water discharge pipe 23 via the water discharge pipe 24b and the switching valve 90b. The acidic water generated in the anode chamber 12 is taken out from the water discharge pipe 24 via the water discharge pipe 24a and the switching valve 90b.

次に、図5(b)に示すように、陰極板13及び陽極板14に印加される電圧の極性が反転し、陰極室11及び陽極室12の配置が入れ替わった場合(第2の電極モード)、2つの切替弁90a、90bが同時に作動して、水及び電解水の流路が切り替えられる。すなわち、供給管20aから供給された水は、切替弁90aを介して、供給管22から陰極室11に流入する。また、供給管20bから供給された水は、切替弁90aを介して、供給管21から陽極室12に流入する。一方、陰極室11で生成された水素水は、吐水管24aを経由して、切替弁90bを介して、吐水管23から取り出される。また、陽極室12で生成された酸性水は、吐水管24bを経由して、切替弁90bを介して、吐水管24から取り出される。   Next, as shown in FIG. 5B, when the polarity of the voltage applied to the cathode plate 13 and the anode plate 14 is reversed and the arrangement of the cathode chamber 11 and the anode chamber 12 is switched (second electrode mode). ) The two switching valves 90a and 90b are operated at the same time, and the flow paths of water and electrolyzed water are switched. That is, the water supplied from the supply pipe 20a flows into the cathode chamber 11 from the supply pipe 22 via the switching valve 90a. Moreover, the water supplied from the supply pipe 20b flows into the anode chamber 12 from the supply pipe 21 via the switching valve 90a. On the other hand, the hydrogen water generated in the cathode chamber 11 is taken out from the water discharge pipe 23 via the water discharge pipe 24a and the switching valve 90b. The acidic water generated in the anode chamber 12 is taken out from the water discharge pipe 24 via the water discharge pipe 24b and the switching valve 90b.

このように、陰極板13及び陽極板14に印加される電圧の極性が反転したとき、2つの切替弁90a、90bを同時に作動させることによって、供給管20aから供給された水は、常に陰極室11に流入し、供給管20bから供給された水は、常に陽極室12に流入するように制御される。さらに、電解槽10から吐出された電解水のうち、水素水は、常に吐水管23から取り出され、酸性水は、常に吐水管24から取り出されるように制御される。これにより、陰極室11及び陽極室12への水の流入量を調整して、水素水及び酸性水の生成量を設定している場合、電極に供給される電圧の極性が反転しても、切り替えられた陰極室11及び陽極室12への水の流入量を一定にすることができるとともに、常に、同じ吐水管から同一特性の電解水を、同一の生成量でもって取り出すことができる。   As described above, when the polarities of the voltages applied to the cathode plate 13 and the anode plate 14 are reversed, the water supplied from the supply pipe 20a is always kept in the cathode chamber by simultaneously operating the two switching valves 90a and 90b. 11, the water supplied from the supply pipe 20 b is controlled so as to always flow into the anode chamber 12. Further, among the electrolyzed water discharged from the electrolytic cell 10, hydrogen water is always taken out from the water discharge pipe 23, and acidic water is controlled to be always taken out from the water discharge pipe 24. Thereby, when the amount of water flowing into the cathode chamber 11 and the anode chamber 12 is adjusted and the generation amount of hydrogen water and acidic water is set, even if the polarity of the voltage supplied to the electrodes is reversed, The amount of water flowing into the switched cathode chamber 11 and anode chamber 12 can be made constant, and electrolyzed water having the same characteristics can always be taken out from the same water discharge pipe with the same amount of generation.

ところが、このように制御された電解水生成装置を用いて電解水素水を生成し、電解水素水中の溶存水素濃度を、隔膜型ポーラログラフ法による溶存水素センサーを用いて測定したところ、同一の電流及び吐水流量で生成した電解水素水であっても、電極モードの種類によって、電解水素水中の溶存水素濃度が変化することが分かった。   However, electrolyzed hydrogen water was generated using the electrolyzed water generator controlled in this way, and the dissolved hydrogen concentration in the electrolyzed hydrogen water was measured using a dissolved hydrogen sensor by a diaphragm type polarographic method. It was found that the concentration of dissolved hydrogen in the electrolytic hydrogen water varies depending on the type of electrode mode even for the electrolytic hydrogen water generated at the discharge water flow rate.

図6及び図7が、その結果を示したグラフである。   6 and 7 are graphs showing the results.

図6は、電流[A]と溶存水素濃度[ppb]との相関関係を示したグラフで、実線で示した曲線A〜Eは、図1のA〜Eで示した曲線と同じで、第1の電極モードにける溶存水素濃度を示す。また、破線で示した曲線A’〜E’は、陰極板13及び陽極板14に印加される電圧の極性を反転させた第2の電極モードにおける溶存水素濃度を示す。なお、曲線A〜E、及びA’〜E’は、それぞれ、順に、吐水流量を1,2,3,4,5L/minに変えたときの溶存水素濃度を示す。例えば、図6に示すように、電流が5Aで、吐水流量が1L/minのとき、第1の電極モード(曲線A)では、約920ppbを示し、第2の電極モード(曲線A’)では、約800ppbを示す。また、電流が5Aで、吐水流量が2L/minのとき、第1の電極モード(曲線B)では、約700ppbを示し、第2の電極モード(曲線B’)では、約580ppbを示す。   FIG. 6 is a graph showing the correlation between the current [A] and the dissolved hydrogen concentration [ppb]. The curves A to E shown by solid lines are the same as the curves shown by A to E in FIG. The dissolved hydrogen concentration in 1 electrode mode is shown. Curves A ′ to E ′ indicated by broken lines indicate the dissolved hydrogen concentration in the second electrode mode in which the polarity of the voltage applied to the cathode plate 13 and the anode plate 14 is reversed. Curves A to E and A 'to E' indicate dissolved hydrogen concentrations when the water discharge flow rate is changed to 1, 2, 3, 4, 5 L / min, respectively. For example, as shown in FIG. 6, when the current is 5 A and the water discharge flow rate is 1 L / min, the first electrode mode (curve A) shows about 920 ppb, and the second electrode mode (curve A ′) About 800 ppb. When the current is 5 A and the water discharge flow rate is 2 L / min, the first electrode mode (curve B) shows about 700 ppb, and the second electrode mode (curve B ′) shows about 580 ppb.

図7は、吐水流量[L/min]と溶存水素濃度[ppb]との相関関係を示したグラフで、実線で示した曲線O〜Rは、図2のO〜Rで示した曲線と同じで、第1の電極モードにける溶存水素濃度を示す。また、破線で示した曲線O’〜R’は、陰極板13及び陽極板14に印加される電圧の極性を反転させた第2の電極モードにおける溶存水素濃度を示す。なお、曲線O〜R、及びO’〜R’は、それぞれ、順に、電流を5,4,3.2,1Aに変えたときの溶存水素濃度を示す。例えば、図7に示すように、吐水流量が1L/minで、電流が5Aのとき、第1の電極モード(曲線O)では、約920ppbを示し、第2の電極モード(曲線O’)では、約800ppbを示す。また、吐水流量が1L/minで、電流が4Aのとき、第1の電極モード(曲線P)では、約900ppbを示し、第2の電極モード(曲線P’)では、約690ppbを示す。   FIG. 7 is a graph showing the correlation between the water discharge flow rate [L / min] and the dissolved hydrogen concentration [ppb], and the curves O to R shown by solid lines are the same as the curves shown by O to R of FIG. The dissolved hydrogen concentration in the first electrode mode is shown. Curves O ′ to R ′ indicated by broken lines indicate dissolved hydrogen concentrations in the second electrode mode in which the polarities of the voltages applied to the cathode plate 13 and the anode plate 14 are reversed. Curves O to R and O 'to R' indicate dissolved hydrogen concentrations when the current is changed to 5, 4, 3.2, and 1 A, respectively. For example, as shown in FIG. 7, when the water discharge flow rate is 1 L / min and the current is 5 A, in the first electrode mode (curve O), about 920 ppb is shown, and in the second electrode mode (curve O ′). About 800 ppb. When the water discharge flow rate is 1 L / min and the current is 4 A, the first electrode mode (curve P) shows about 900 ppb, and the second electrode mode (curve P ′) shows about 690 ppb.

図6及び図7に示すように、電極モードの種類によって、電解水素水中の溶存水素濃度が変わることが分かる。その原因は、明らかでないが、次のように推測される。   As shown in FIG.6 and FIG.7, it turns out that the dissolved hydrogen concentration in electrolytic hydrogen water changes with the kind of electrode mode. The cause is not clear, but is presumed as follows.

例えば、電極板が5枚で構成されている場合、一方の電極モードでは、一番外側から順に、陰極、陽極、陰極、陽極、陰極となり、他方の電極モードでは、極性が反転して、一番外側から順に、陽極、陰極、陽極、陰極、陽極となる。また、一番外側の2つの電極板は、それぞれ、その外側の電解槽の側壁との間に隙間がある。従って、電解槽内に供給された水は、一番外側の電極板と電解槽の側壁との隙間にも流れる。このとき、一番外側が陰極である電極モードのときは、一番外側の陰極と電解槽の側壁との隙間に流れる水は、電気分解されない。従って、電解槽から吐出される水素水には、電気分解されない水も含まれるため、溶存水素濃度が低下したものと推測される。これに対して、一番外側が陽極である電極モードのときは、電解槽から吐出される水素水は、すべて陰極室で電気分解された水素水であるため、溶存水素濃度の低下が生じなかったと推測される。   For example, in the case of five electrode plates, in one electrode mode, the cathode, anode, cathode, anode, and cathode are sequentially from the outermost side, and in the other electrode mode, the polarity is reversed and In order from the outermost side, there are an anode, a cathode, an anode, a cathode, and an anode. In addition, there is a gap between the outermost two electrode plates and the side walls of the outer electrolytic cell. Therefore, the water supplied into the electrolytic cell also flows into the gap between the outermost electrode plate and the side wall of the electrolytic cell. At this time, in the electrode mode in which the outermost side is a cathode, the water flowing in the gap between the outermost cathode and the side wall of the electrolytic cell is not electrolyzed. Therefore, the hydrogen water discharged from the electrolytic cell includes water that is not electrolyzed, so it is presumed that the dissolved hydrogen concentration has decreased. On the other hand, in the electrode mode in which the outermost side is the anode, the hydrogen water discharged from the electrolytic cell is all hydrogen water electrolyzed in the cathode chamber, so that the dissolved hydrogen concentration did not decrease. Guessed.

従って、電解水生成装置が、陰極板13及び陽極板14に印加する電圧の極性を制御する2種類の電極モードを備えている場合には、電流及び吐水流量に電極モードの種類を加えた3つのパラメータと、電解水素水中の溶存水素濃度との相関関係を表すデータに基づいて、測定した電流及び吐水流量、並びに電極モードの種類に応じて、陰極室11で生成された水素水中の溶存水素濃度を算出することが好ましい。   Therefore, when the electrolyzed water generating apparatus has two types of electrode modes for controlling the polarity of the voltage applied to the cathode plate 13 and the anode plate 14, the type of the electrode mode is added to the current and the water discharge flow rate. Based on the data representing the correlation between the two parameters and the dissolved hydrogen concentration in the electrolytic hydrogen water, the dissolved hydrogen in the hydrogen water generated in the cathode chamber 11 according to the measured current and water discharge flow rate and the type of electrode mode It is preferable to calculate the concentration.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態では、電流及び吐水流量、あるいは、電流、吐水流量、及び電極モードの種類と、電解水素水中の溶存水素濃度との相関関係を表すデータに基づいて、測定した電流及び吐水流量、あるいは、測定した電流、吐水流量、及び電極モードの種類に応じて、電解水素水中の溶存水素濃度を算出したが、他のパラメータ(例えば、水の電気伝導度や、電極板の枚数等)が変わることによって、電解水素水中の溶存水素濃度が変わる場合には、当該パラメータを含めた電解水素水中の溶存水素濃度との相関関係を表すデータを予め用意し、このデータに基づいて、電解水素水中の溶存水素濃度を算出するようにしてもよい。これにより、より高精度に、電解水素水中の溶存水素濃度を算出することができる。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above embodiment, the measured current and discharge flow rate based on the data representing the correlation between the current and discharge flow rate, or the current, discharge flow rate, and the type of electrode mode and the dissolved hydrogen concentration in the electrolytic hydrogen water. Alternatively, the dissolved hydrogen concentration in the electrolytic hydrogen water was calculated according to the measured current, discharged water flow rate, and type of electrode mode, but other parameters (for example, electrical conductivity of water, number of electrode plates, etc.) If the dissolved hydrogen concentration in the electrolytic hydrogen water changes due to the change in the value, data indicating the correlation with the dissolved hydrogen concentration in the electrolytic hydrogen water including the parameter is prepared in advance, and based on this data, the electrolytic hydrogen The dissolved hydrogen concentration in water may be calculated. Thereby, the dissolved hydrogen concentration in the electrolytic hydrogen water can be calculated with higher accuracy.

1 電解水生成装置
10 電解槽
11 陰極室
12 陽極室
13 陰極板
14 陽極板
15 隔膜
20、21、22 供給管
23、24 吐水管
25 バルブ
30 電源
35 電流計
40 演算部
50 記憶部
60 制御部
70 表示部
80 流量計
90a、90b 切替弁
1 Electrolyzed water generator
10 Electrolysis tank
11 Cathode chamber
12 Anode chamber
13 Cathode plate
14 Anode plate
15 Diaphragm
20, 21, 22 Supply pipe
23, 24 Water discharge pipe
25 Valve
30 power supply
35 Ammeter
40 Calculation unit
50 storage unit
60 Control unit
70 Display section
80 Flow meter
90a, 90b switching valve

Claims (4)

陰極室と陽極室とを備えた電解槽に供給した水を電気分解することによって、前記陰極室で生成された水素水の溶存水素濃度を測定する方法であって、
前記電気分解は、前記陰極室内に配設された陰極板及び前記陽極室内に配設された陽極板に印加する電圧の極性を反転した2種類の電極モードで行われ、
記陰極板と陽極板との間を流れる電流、及び前記陰極室で生成された水素水の吐水流量を測定する測定工程と、
予め測定した前記電流、前記吐水流量、及び前記電極モードの種類と、水素水中の溶存水素濃度との相関関係を表すデータに基づいて、前記測定工程で測定した電流及び吐水流量、並びに前記電極モードの種類に応じて、前記陰極室で生成された水素水中の溶存水素濃度を算出する算出工程と
を備えた、溶存水素濃度測定方法。
A method for measuring a dissolved hydrogen concentration of hydrogen water generated in the cathode chamber by electrolyzing water supplied to an electrolytic cell including a cathode chamber and an anode chamber,
The electrolysis is performed in two types of electrode modes in which the polarity of the voltage applied to the cathode plate disposed in the cathode chamber and the anode plate disposed in the anode chamber is reversed,
A measurement step of the current flowing between the front Kikage plate and yang plate, and a water discharge flow rate of the hydrogen water produced in the cathode chamber measurements,
Based on the data representing the correlation between the current measured in advance, the water discharge flow rate, and the type of the electrode mode, and the dissolved hydrogen concentration in the hydrogen water, the current and water discharge flow rate measured in the measurement step, and the electrode mode And a calculating step of calculating a dissolved hydrogen concentration in the hydrogen water generated in the cathode chamber according to the type of the dissolved hydrogen concentration.
陰極室と陽極室とを備えた電解槽に供給した水を電気分解することによって、電解水を生成する電解水生成装置であって、
前記陰極室内に配設された陰極板及び前記陽極室内に配設された陽極板に印加する電圧の極性を反転した2種類の電極モードを備え
記陰極板と陽極板との間を流れる電流を測定する電流計と、
前記陰極室で生成された水素水の吐水流量を測定する流量計と、
予め測定した前記電流、前記吐水流量、及び前記電極モードの種類と、水素水中の溶存水素濃度との相関関係を表したデータを記憶した記憶部と、
前記記憶部に記憶されたデータに基づいて、前記電流計で測定した電流及び前記流量計で測定した吐水流量、並びに前記電極モードの種類に応じて、前記陰極室で生成された水素水中の溶存水素濃度を算出する演算部と
を備えた、電解水生成装置。
An electrolyzed water generating device for generating electrolyzed water by electrolyzing water supplied to an electrolyzer having a cathode chamber and an anode chamber,
Comprising two types of electrode modes in which the polarity of a voltage applied to the cathode plate disposed in the cathode chamber and the anode plate disposed in the anode chamber is reversed ;
A current meter for measuring the current flowing between the front Kikage plate and yang plate,
A flow meter for measuring the water discharge flow rate of hydrogen water generated in the cathode chamber;
A storage unit storing data representing a correlation between the current measured in advance, the water discharge flow rate, and the type of the electrode mode, and the dissolved hydrogen concentration in the hydrogen water;
Based on the data stored in the storage unit, dissolved in the hydrogen water generated in the cathode chamber according to the current measured by the ammeter, the water discharge flow rate measured by the flow meter, and the type of the electrode mode An electrolyzed water generating apparatus comprising an arithmetic unit that calculates a hydrogen concentration.
前記演算部で算出した水素水中の溶存水素濃度を表示する表示部をさらに備えた、請求項2に記載の電解水生成装置。   The electrolyzed water production | generation apparatus of Claim 2 further provided with the display part which displays the dissolved hydrogen concentration in the hydrogen water computed by the said calculating part. 前記演算部で算出した水素水中の溶存水素濃度に基づいて、前記陰極室で生成される水素水中の溶存水素濃度が所定値になるよう、前記陰極板と陽極板との間を流れる電流及び/又は前記陰極室で生成された水素水の吐水流量を制御する制御部をさらに備えた、請求項2に記載の電解水生成装置。   Based on the dissolved hydrogen concentration in the hydrogen water calculated by the calculation unit, the current flowing between the cathode plate and the anode plate so that the dissolved hydrogen concentration in the hydrogen water generated in the cathode chamber becomes a predetermined value and / or Or the electrolyzed water generating apparatus of Claim 2 further provided with the control part which controls the discharge flow rate of the hydrogenous water produced | generated in the said cathode chamber.
JP2013225385A 2013-10-30 2013-10-30 Dissolved hydrogen concentration measuring method and electrolyzed water generator Active JP6196528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013225385A JP6196528B2 (en) 2013-10-30 2013-10-30 Dissolved hydrogen concentration measuring method and electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013225385A JP6196528B2 (en) 2013-10-30 2013-10-30 Dissolved hydrogen concentration measuring method and electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2015087221A JP2015087221A (en) 2015-05-07
JP6196528B2 true JP6196528B2 (en) 2017-09-13

Family

ID=53050159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225385A Active JP6196528B2 (en) 2013-10-30 2013-10-30 Dissolved hydrogen concentration measuring method and electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP6196528B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6412447B2 (en) * 2015-03-09 2018-10-24 株式会社日本トリム Electrolyzed water generator
JP6521773B2 (en) * 2015-07-08 2019-05-29 東西化学産業株式会社 Dissolved hydrogen concentration measuring device and measuring method
JP6148759B1 (en) * 2016-05-11 2017-06-14 MiZ株式会社 Method for obtaining hydrogen concentration of hydrogen-containing liquid and hydrogen-containing liquid generator
JP6486864B2 (en) * 2016-05-23 2019-03-20 株式会社フラックス Hydrogen water production apparatus and dissolved hydrogen amount display method
JP6820599B2 (en) * 2017-04-17 2021-01-27 株式会社みらくる分析センター Method for measuring dissolved hydrogen content in water
KR101910883B1 (en) * 2017-06-07 2018-12-20 심영택 Systems and Methods of Monitoring Concentration of Dissolved Hydrogen in Water
JP6484296B2 (en) * 2017-07-05 2019-03-13 株式会社日本トリム Electrolyzed water generator
JP6810112B2 (en) * 2018-08-31 2021-01-06 株式会社日本トリム Electrolyzed water generator and electrolyzed water generation method
JP7349675B2 (en) * 2019-04-19 2023-09-25 陽吉 小川 Measuring method, measuring device, program, and computer-readable storage medium
JP7104837B1 (en) 2021-07-06 2022-07-21 株式会社日本トリム Dissolved gas concentration measuring method, dissolved hydrogen concentration measuring device and dialysate preparation water production device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557331B2 (en) * 1997-08-20 2004-08-25 グローリー機器株式会社 Ion concentration calculation method, ion concentration calculation device, and electrolyzed water generation device
JP2002116129A (en) * 2000-10-04 2002-04-19 Hoshizaki Electric Co Ltd Characteristic evaluating method of electrolytically produced water and producing method of electrolytically produced water based on this characteristic evaluating method
JP2002248471A (en) * 2001-02-23 2002-09-03 Hoshizaki Electric Co Ltd Electrolyzed water making apparatus
JP3611847B1 (en) * 2004-01-29 2005-01-19 中国電力株式会社 Alkaline ion water conditioner
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
WO2013051810A2 (en) * 2011-10-05 2013-04-11 Samsung Electronics Co., Ltd. Apparatus for producing reducing water

Also Published As

Publication number Publication date
JP2015087221A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6196528B2 (en) Dissolved hydrogen concentration measuring method and electrolyzed water generator
CN109494388A (en) A kind of method and system for real-time monitoring all-vanadium flow battery side reaction
CN105483748A (en) Disinfectant preparing device
US10486986B2 (en) Electrolyzed water-generating apparatus and electrolyzed water
JPH06246268A (en) Method and device for producing electrolyte
JP6917280B2 (en) Electrolyzed water generator
JP4371731B2 (en) Hypohalite generator and generation method
US11215579B2 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
JP3557341B2 (en) Ion concentration calculation method, ion concentration calculation device, and electrolyzed water generation device
JP6810112B2 (en) Electrolyzed water generator and electrolyzed water generation method
CN215813073U (en) Salt machine electrolytic sheet life detection system
JP2002248471A (en) Electrolyzed water making apparatus
JP2008086886A (en) Electrolytic water generator
WO2016102585A1 (en) Ph control method for upa cell
JP2006035107A (en) Electrolytic water maker
JP4217077B2 (en) Stabilization method of diaphragm type electrode
JP2016049517A (en) Hydrogen water generator
WO2014185114A1 (en) Functional water production apparatus
JPH06238275A (en) Alkali ion water preparation device
JPH06178981A (en) Ionizd water generating device
AU2014201454A1 (en) Chlorine detection and pH sensing methods and apparatus
JP3557331B2 (en) Ion concentration calculation method, ion concentration calculation device, and electrolyzed water generation device
JP5398859B2 (en) Acid water generator
JPH11192484A (en) Electrolytic device
WO2016147434A1 (en) Electrolytic water generation device, electrode unit, and electrolytic water generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6196528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250