[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6195147B2 - Isocitrate dehydrogenase mutation detection marker - Google Patents

Isocitrate dehydrogenase mutation detection marker Download PDF

Info

Publication number
JP6195147B2
JP6195147B2 JP2013055767A JP2013055767A JP6195147B2 JP 6195147 B2 JP6195147 B2 JP 6195147B2 JP 2013055767 A JP2013055767 A JP 2013055767A JP 2013055767 A JP2013055767 A JP 2013055767A JP 6195147 B2 JP6195147 B2 JP 6195147B2
Authority
JP
Japan
Prior art keywords
acid
idh
isocitrate dehydrogenase
marker
mutation detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013055767A
Other languages
Japanese (ja)
Other versions
JP2014181970A (en
Inventor
五月 宮田
五月 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jichi Medical University
Original Assignee
Jichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jichi Medical University filed Critical Jichi Medical University
Priority to JP2013055767A priority Critical patent/JP6195147B2/en
Publication of JP2014181970A publication Critical patent/JP2014181970A/en
Application granted granted Critical
Publication of JP6195147B2 publication Critical patent/JP6195147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、イソクエン酸脱水素酵素(以下、IDHということがある。)変異検出用マーカおよびIDH変異の検出方法に関する。より詳細に、本発明は、脳腫瘍、白血病、大腸がん、胃がん、甲状腺がん、悪性黒色腫などの癌におけるIDH変異を検出するためのマーカおよび方法に関する。   The present invention relates to an isocitrate dehydrogenase (hereinafter sometimes referred to as IDH) mutation detection marker and an IDH mutation detection method. More specifically, the present invention relates to markers and methods for detecting IDH mutations in cancers such as brain tumors, leukemias, colon cancers, stomach cancers, thyroid cancers, malignant melanomas.

原発性脳腫瘍の中で最も頻度の高い腫瘍をグリオーマ(神経膠腫)という。グリオーマの中で最も悪性度の高いグリオブラストーマの生存期間中央値は、約21.4か月と他の癌腫と比較して極端に悪い。脳腫瘍の網羅的遺伝子解析の結果、IDH1に変異がみられないグリオーマでは、IDH2のアミノ酸類似体(R172)に影響を及ぼす変異が高頻度に認められたが、IDH1,IDH2のいずれかが変異したグリオーマは特徴的な遺伝的特性と臨床的特性をもっており、このような変異型のIDHを有する患者は、正常型のIDHを有する患者よりも転帰(変異型31か月、正常型15か月)が優れていたと非特許文献2は報告している。   The most common tumor among primary brain tumors is called glioma. The median survival of glioblastoma, the most aggressive glioma, is about 21.4 months, which is extremely poor compared to other carcinomas. As a result of comprehensive gene analysis of brain tumors, mutations affecting IDH2 amino acid analog (R172) were frequently observed in gliomas in which no mutation was observed in IDH1, but either IDH1 or IDH2 was mutated Glioma has distinct genetic and clinical characteristics, and patients with such a variant IDH have a better outcome than patients with normal IDH (mutant 31 months, normal 15 months) Non-Patent Document 2 has reported that it was excellent.

脳腫瘍、白血病、大腸がん、胃がん、甲状腺がん、悪性黒色腫などの癌において、イソクエン酸脱水素酵素をコードする遺伝子IDH1およびIDH2の変異が見つかっている。変異型IDH群のゲノムDNAにおいてCpGサイトの過剰メチル化(hypermethylation)が報告されている(非特許文献5)。MGMT(methyl guanine methyl transferase)プロモータ領域の過剰メチル化によって化学療法感受性増大により予後良好の機序になるとの報告がなされている(非特許文献4)。MGMTは抗がん剤により生じるDNA障害を修復する働きがある。過剰メチル化によってMGMTの働きが弱まり、抗がん剤が有効になり、予後良好となる。   Mutations in genes IDH1 and IDH2 encoding isocitrate dehydrogenase have been found in cancers such as brain tumors, leukemias, colon cancers, stomach cancers, thyroid cancers, and malignant melanomas. Hypermethylation of CpG sites has been reported in the genomic DNA of mutant IDH groups (Non-patent Document 5). It has been reported that hypermethylation of the MGMT (methyl guanine methyl transferase) promoter region leads to a good prognosis mechanism due to increased sensitivity to chemotherapy (Non-patent Document 4). MGMT works to repair DNA damage caused by anticancer drugs. Hypermethylation weakens the function of MGMT, makes anticancer agents effective, and improves the prognosis.

変異型IDHは2−ヒドロキシグルタル酸(2HG)を産生することが知られている(非特許文献1)。産生する2HGの量を測定することによってIDH変異の有無を検出することができる。2HGの測定法として磁気共鳴分光法を用いた方法が知られている(非特許文献3)。ところが、2HGに由来する化学シフトの位置は他の物質(グルタル酸やグルタミンなど)の化学シフトの位置と重なるので、2HGは明確なピークとして表れず、IDH変異検出の信頼性が然程高くないと言われている。   Mutant IDH is known to produce 2-hydroxyglutaric acid (2HG) (Non-patent Document 1). The presence or absence of an IDH mutation can be detected by measuring the amount of 2HG produced. As a method for measuring 2HG, a method using magnetic resonance spectroscopy is known (Non-Patent Document 3). However, since the position of chemical shift derived from 2HG overlaps with the position of chemical shift of other substances (glutaric acid, glutamine, etc.), 2HG does not appear as a clear peak, and the reliability of IDH mutation detection is not so high. It is said.

特許第4441622号公報Japanese Patent No. 4444122 特許第4865377号公報Japanese Patent No. 4865377

Reitman et al. "Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome" 3270-3275, Proc. Natl. Acad. Sci., Feb. 22, 2011, Vol. 108, No. 8Reitman et al. "Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome" 3270-3275, Proc. Natl. Acad. Sci., Feb. 22, 2011, Vol. 108, No. 8 Yan et al. "IDH1 and IDH2 Mutations in Glimas" N. Engl, J. Med. 360; 8 NEJM. Org. Feb. 19, 2009, p765-773Yan et al. "IDH1 and IDH2 Mutations in Glimas" N. Engl, J. Med. 360; 8 NEJM. Org. Feb. 19, 2009, p765-773 Pope et al. "Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy" J. Neurooncol (2012) 107 : 197-205Pope et al. "Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy" J. Neurooncol (2012) 107: 197-205 Sanson et al., J. Clin. Oncol. 2009Sanson et al., J. Clin. Oncol. 2009 Christensen et al., J. Natl. Cancer Inst. 2011Christensen et al., J. Natl. Cancer Inst. 2011

本発明の課題は、脳腫瘍、白血病、大腸がん、胃がん、甲状腺がん、悪性黒色腫などの疾患における、IDH変異を検出するための新規なマーカおよび方法を提供することである。   An object of the present invention is to provide a novel marker and method for detecting an IDH mutation in diseases such as brain tumor, leukemia, colon cancer, stomach cancer, thyroid cancer, malignant melanoma and the like.

本発明者らは、上記課題を解決すべく鋭意研究した結果、下記の形態を包含する本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention including the following forms.

〔1〕 トランス−グルタコン酸、シトラコン酸、5−オキソ−テトラヒドロフラン−2−カルボン酸、トリゴネリン、ジヒドロタキステロール、4−アミノ−3−ヒドロキシ酪酸、5−アミノ吉草酸、ホモセリン、イソバレリルカルニチン、N8−アセチルスペルミジン、オクタノイルカルニチン、ケノデオキシコール酸、およびウルソデオキシコール酸からなる群より選ばれる少なくとも一つを含む
イソクエン酸脱水素酵素変異検出用マーカ。
〔2〕 イソクエン酸脱水素酵素変異が検出される疾患が、脳腫瘍、白血病、大腸がん、胃がん、甲状腺がんおよび悪性黒色腫からなる群より選ばれる少なくとも一つである、〔1〕に記載の検出用マーカ。
[1] trans-glutaconic acid, citraconic acid, 5-oxo-tetrahydrofuran-2-carboxylic acid, trigonelline, dihydrotaxosterol, 4-amino-3-hydroxybutyric acid, 5-aminovaleric acid, homoserine, isovalerylcarnitine, An isocitrate dehydrogenase mutation detection marker comprising at least one selected from the group consisting of N8-acetylspermidine, octanoylcarnitine, chenodeoxycholic acid, and ursodeoxycholic acid.
[2] The disease in which the isocitrate dehydrogenase mutation is detected is at least one selected from the group consisting of brain tumor, leukemia, colon cancer, stomach cancer, thyroid cancer, and malignant melanoma. Detection marker.

〔3〕 トランス−グルタコン酸、シトラコン酸、5−オキソ−テトラヒドロフラン−2−カルボン酸、トリゴネリン、ジヒドロタキステロール、4−アミノ−3−ヒドロキシ酪酸、5−アミノ吉草酸、ホモセリン、イソバレリルカルニチン、N8−アセチルスペルミジン、オクタノイルカルニチン、ケノデオキシコール酸、およびウルソデオキシコール酸からなる群より選ばれる少なくとも一つを測定することを含む、イソクエン酸脱水素酵素変異の検出方法。 [3] trans-glutaconic acid, citraconic acid, 5-oxo-tetrahydrofuran-2-carboxylic acid, trigonelline, dihydrotaxosterol, 4-amino-3-hydroxybutyric acid, 5-aminovaleric acid, homoserine, isovalerylcarnitine, A method for detecting an isocitrate dehydrogenase mutation, comprising measuring at least one selected from the group consisting of N8-acetylspermidine, octanoylcarnitine, chenodeoxycholic acid, and ursodeoxycholic acid.

〔4〕 イソクエン酸脱水素酵素変異が検出される疾患が、脳腫瘍、白血病、大腸がん、胃がん、甲状腺がんおよび悪性黒色腫からなる群より選ばれる少なくとも一つである、〔3〕に記載の検出方法。
〔5〕 測定を磁気共鳴法にて行う〔3〕に記載の検出方法。
〔6〕 測定を採取した血液の検査で行う〔3〕に記載の検出方法。
[4] The disease in which the isocitrate dehydrogenase mutation is detected is at least one selected from the group consisting of brain tumor, leukemia, colon cancer, stomach cancer, thyroid cancer, and malignant melanoma. Detection method.
[5] The detection method according to [3], wherein the measurement is performed by a magnetic resonance method.
[6] The detection method according to [3], wherein the measurement is performed by examining the collected blood.

本発明のIDH変異検出用マーカおよびIDH変異検出方法によれば、磁気共鳴法(MRI、MRSなど)や血液検査などの比較的に侵襲の少ない方法を採用することができ、また、従来の2HGによる検出法に代えてまたは併用することによってIDH変異検出の信頼性を高めることができる。IDH変異を有する癌患者は予後が良好であるので、そのような患者には侵襲の大きい外科的療法の代わりに、放射線療法、免疫療法、化学療法などを行って、患者の精神的または肉体的負担を軽減することができる。   According to the IDH mutation detection marker and IDH mutation detection method of the present invention, a relatively less invasive method such as a magnetic resonance method (MRI, MRS, etc.) or a blood test can be employed. The reliability of IDH mutation detection can be improved by replacing or in combination with the detection method according to. Cancer patients with IDH mutations have a good prognosis, and such patients are treated with radiation therapy, immunotherapy, chemotherapy, etc. instead of highly invasive surgical therapy, and the patient's mental or physical The burden can be reduced.

細胞解析実験に基づくメタボローム解析の一例を示す図である。It is a figure which shows an example of the metabolome analysis based on a cell analysis experiment. 臨床組織解析実験に基づくメタボローム解析の一例を示す図である。It is a figure which shows an example of the metabolome analysis based on a clinical tissue analysis experiment. 細胞解析実験で解析された空(GFP)、変異型および正常型におけるマーカの産生量の一例を示す図である。It is a figure which shows an example of the production amount of the marker in the sky (GFP) analyzed by the cell analysis experiment, a mutant type, and a normal type. 臨床組織解析実験で解析された変異型(MT)および正常型(NT)におけるマーカの産生量の一例を示す図である。It is a figure which shows an example of the production amount of the marker in the mutant type (MT) and the normal type (NT) analyzed by the clinical tissue analysis experiment. 臨床組織解析実験で解析された変異型(MT)および正常型(NT)におけるマーカの産生量の一例を示す図である。It is a figure which shows an example of the production amount of the marker in the mutant type (MT) and the normal type (NT) analyzed by the clinical tissue analysis experiment.

本発明の一実施形態に係るIDH変異検出用マーカは、トランス−グルタコン酸(Trans-Glutaconic acid)、シトラコン酸(Citraconic acid)、5−オキソ−テトラヒドロフラン−2−カルボン酸(5-Oxo-2-tetrahydrofurancarboxylic acid)、トリゴネリン(Trigonelline)、ジヒドロタキステロール(Dihydrotachysterol)、4−アミノ−3−ヒドロキシ酪酸(4-Amino-3-hydroxybutyric acid)、5−アミノ吉草酸(5-Aminovaleric acid)、ホモセリン(Homoserine)、イソバレリルカルニチン(Isovalerylcarnitine)、N8−アセチルスペルミジン(N8-Acetylspermidine)、オクタノイルカルニチン(Octanoylcarnitine)、ケノデオキシコール酸(Chenodeoxycholic acid)、およびウルソデオキシコール酸(Ursodeoxycholic acid)からなる群より選ばれる少なくとも一つを含むものである。   The marker for detecting an IDH mutation according to an embodiment of the present invention includes trans-Glutaconic acid, citraconic acid, 5-oxo-tetrahydrofuran-2-carboxylic acid (5-Oxo-2-). furthercarboxylic acid), Trigonelline, Dihydrotachysterol, 4-Amino-3-hydroxybutyric acid, 5-Aminovaleric acid, Homoserine ), Isovalerylcarnitine, N8-acetylspermidine, octanoylcarnitine, chenodeoxycholic acid, and ursodeoxycholic acid Includes one.

これらの物質のうち、トランス−グルタコン酸(Trans-Glutaconic acid)、シトラコン酸(Citraconic acid)、5−オキソ−テトラヒドロフラン−2−カルボン酸(5-Oxo-2-tetrahydrofurancarboxylic acid)、トリゴネリン(Trigonelline)、およびジヒドロタキステロール(Dihydrotachysterol)は、IDH変異によって産生量が有意に増える物質(図4)であり、
4−アミノ−3−ヒドロキシ酪酸(4-Amino-3-hydroxybutyric acid)、5−アミノ吉草酸(5-Aminovaleric acid)、ホモセリン(Homoserine)、イソバレリルカルニチン(Isovalerylcarnitine)、N8−アセチルスペルミジン(N8-Acetylspermidine)、オクタノイルカルニチン(Octanoylcarnitine)、ケノデオキシコール酸(Chenodeoxycholic acid)、およびウルソデオキシコール酸(Ursodeoxycholic acid)は、IDH変異によって産生量が有意に減る物質(図5)である。
Among these substances, trans-Glutaconic acid, citraconic acid, 5-oxo-tetrahydrofurancarboxylic acid, trigonelline, And dihydrotachysterol is a substance (Fig. 4) whose production is significantly increased by IDH mutation,
4-Amino-3-hydroxybutyric acid, 5-aminovaleric acid, homoserine, isovalerylcarnitine, N8-acetylspermidine (N8) -Acetylspermidine, octanoylcarnitine, chenodeoxycholic acid, and ursodeoxycholic acid are substances whose production is significantly reduced by IDH mutation (FIG. 5).

これらの物質からなるマーカは、磁気共鳴法(MRS、MRIなど)によって非侵襲にて測定することができる。また、採取した血液をCE/MS(キャピラリー電気泳動−質量分析)法、およびLC/MS(液体クロマトグラフ質量分析)法にて分析することによってもマーカの量を測定することができる。   Markers made of these substances can be measured non-invasively by magnetic resonance methods (MRS, MRI, etc.). The amount of the marker can also be measured by analyzing the collected blood by the CE / MS (capillary electrophoresis-mass spectrometry) method and the LC / MS (liquid chromatograph mass spectrometry) method.

このようにして測定されたマーカの量を、正常型IDHによる代謝で産生するマーカの量(基準値)と比較し、有意に増加または減少している場合にはIDHが変異していると判定することができる。   The amount of the marker thus measured is compared with the amount (reference value) of the marker produced by metabolism by normal IDH, and if it is significantly increased or decreased, it is determined that IDH is mutated. can do.

まず、細胞解析実験を行い、その結果を網羅的代謝解析した。
(細胞解析実験−メタボローム解析)
正常型IDH1発現プラスミド(IDH1WT-myc-IRES-EGFP)を導入したU87膠芽腫細胞、変異型IDH1発現プラスミド(IDH1R132H-myc-IRES-EGFP)を導入したU87膠芽腫細胞、およびIDH1が空(GFP)のプラスミド(myc-IRES-EGFP)を導入したU87膠芽腫細胞を、それぞれ48時間培養して、RNAおよび細胞ライセートを調製した。これらから代謝産物を抽出して、CE/MS(キャピラリー電気泳動−質量分析)法およびLC/MS(液体クロマトグラフ質量分析)法を用いて分析を行った。
その結果をメタボローム解析した。その結果の一例を図1に示す。図3にマーカの産生量を示す棒グラフの一例を示す。左から右に、GFP、変異型、正常型である。
First, cell analysis experiments were performed, and the results were comprehensively analyzed for metabolism.
(Cell analysis experiment-Metabolome analysis)
U87 glioblastoma cells introduced with normal IDH1 expression plasmid (IDH1 WT -myc-IRES-EGFP), U87 glioblastoma cells introduced with mutant IDH1 expression plasmid (IDH1 R132H -myc -IRES-EGFP), and IDH1 U87 glioblastoma cells into which an empty plasmid (GFP) (myc-IRES-EGFP) was introduced were each cultured for 48 hours to prepare RNA and cell lysate. Metabolites were extracted from these and analyzed using CE / MS (capillary electrophoresis-mass spectrometry) and LC / MS (liquid chromatograph mass spectrometry) methods.
The results were metabolomically analyzed. An example of the result is shown in FIG. FIG. 3 shows an example of a bar graph showing the amount of marker produced. From left to right, GFP, mutant type, and normal type.

次に臨床組織解析実験を行い、その結果を網羅的代謝解析した。
(臨床組織解析実験−メタボローム解析)
WHOグレードII〜IVの患者から腫瘍組織を摘出し、それらを、それぞれ48時間培養して、RNAおよび細胞ライセートを調製した。これらから代謝産物を抽出して、CE/MS(キャピラリー電気泳動−質量分析)法およびLC/MS(液体クロマトグラフ質量分析)法を用いて分析を行った。
その結果をメタボローム解析した。その結果の一例を図2に示す。図4および図5にマーカの代謝産生量を示す棒グラフの一例を示す。左から右に、変異型、正常型である。
Next, clinical tissue analysis experiments were conducted, and the results were comprehensively analyzed for metabolism.
(Clinical tissue analysis experiment-Metabolome analysis)
Tumor tissues were removed from WHO grade II-IV patients and cultured for 48 hours each to prepare RNA and cell lysate. Metabolites were extracted from these and analyzed using CE / MS (capillary electrophoresis-mass spectrometry) and LC / MS (liquid chromatograph mass spectrometry) methods.
The results were metabolomically analyzed. An example of the result is shown in FIG. FIG. 4 and FIG. 5 show an example of a bar graph showing the metabolic production amount of the marker. From left to right, they are mutant and normal.

細胞解析実験からの解析結果と臨床組織解析実験からの解析結果との間で矛盾のないものを抽出した。その結果、正常型IDHに比べて変異型IDHは、トランス−グルタコン酸、シトラコン酸、5−オキソ−テトラヒドロフラン−2−カルボン酸、トリゴネリン、およびジヒドロタキステロールの産生量が有意に多くなっていた(図4)。特に、トランス−グルタコン酸およびシトラコン酸の産生量の増加は顕著であった。   The consistent results were extracted between the analysis results from the cell analysis experiment and the analysis results from the clinical tissue analysis experiment. As a result, compared to normal IDH, mutant IDH produced significantly higher amounts of trans-glutaconic acid, citraconic acid, 5-oxo-tetrahydrofuran-2-carboxylic acid, trigonelline, and dihydrotaxosterol ( FIG. 4). In particular, the increase in the production amount of trans-glutaconic acid and citraconic acid was remarkable.

正常型IDHに比べて変異型IDHは、4−アミノ−3−ヒドロキシ酪酸、5−アミノ吉草酸、ホモセリン、イソバレリルカルニチン、N8−アセチルスペルミジン、オクタノイルカルニチン、ケノデオキシコール酸、およびウルソデオキシコール酸の産生量が有意に少なくなっていた(図5)。特に、5−アミノ吉草酸、ホモセリン、およびN8−アセチルスペルミジンの産生量の減少が顕著であった。
なお、この解析から、従来から知られている2−ヒドロキシグルタル酸(2HG)の算出量も、正常型IDHに比べて変異型IDHは、増加していることが確かめられた。
Compared to normal IDH, mutant IDH is composed of 4-amino-3-hydroxybutyric acid, 5-aminovaleric acid, homoserine, isovalerylcarnitine, N8-acetylspermidine, octanoylcarnitine, chenodeoxycholic acid, and ursodeoxycholic acid. Was significantly reduced (FIG. 5). In particular, the decrease in the production amount of 5-aminovaleric acid, homoserine, and N8-acetylspermidine was remarkable.
In addition, from this analysis, it was confirmed that the calculated amount of 2-hydroxyglutaric acid (2HG), which is conventionally known, is increased in the mutant IDH as compared with the normal IDH.

網羅的代謝解析によって、さらに、次のようなことが明らかになった。1)解糖系の亢進、TCA回路が抑制され、lactateの上昇傾向が認められた。2)細胞増殖、分裂に必要な材料(アミノ酸、核酸、エネルギー)の低下が認められた。3)脂質代謝は亢進していた。4)酸化ストレスの傾向にあった。   An exhaustive metabolic analysis further revealed the following. 1) Increased glycolysis, TCA cycle was suppressed, and lactate increased. 2) Decreased materials (amino acids, nucleic acids, energy) necessary for cell growth and division were observed. 3) Lipid metabolism was enhanced. 4) There was a tendency of oxidative stress.

また、臨床組織解析実験に協力して頂いた患者のうち、変異型IDHを有する患者は、正常型IDHを有する患者に比べて、無増悪生存期間(PFS: Progression-Free Survival)および全生存期間(OS: Overall Survival)がいずれも長かった。結果の一部を表1に示す。   Among patients who participated in clinical tissue analysis experiments, patients with mutant IDH had progression-free survival (PFS) and overall survival compared to patients with normal IDH. (OS: Overall Survival) was long. A part of the results is shown in Table 1.

Figure 0006195147
Figure 0006195147

これらの結果から、本発明の一実施形態に係るマーカを測定することによって、その患者の予後が予測できる。マーカの量によって予後が良好であると考えられる患者には、外科的療法を避け、侵襲の少ない化学療法、免疫療法、放射線療法などを行うという治療方針を立てることができる。   From these results, the prognosis of the patient can be predicted by measuring the marker according to one embodiment of the present invention. For patients who are considered to have a good prognosis due to the amount of marker, it is possible to establish a treatment policy that avoids surgical therapy and performs less invasive chemotherapy, immunotherapy, radiation therapy, and the like.

Claims (3)

トランス−グルタコン酸およびシトラコン酸からなる群より選ばれる少なくとも一つを含むイソクエン酸脱水素酵素変異検出用マーカ。   An isocitrate dehydrogenase mutation detection marker comprising at least one selected from the group consisting of trans-glutaconic acid and citraconic acid. トランス−グルタコン酸およびシトラコン酸からなる群より選ばれる少なくとも一つを測定することを含む、イソクエン酸脱水素酵素変異の検出方法。   A method for detecting isocitrate dehydrogenase mutation, comprising measuring at least one selected from the group consisting of trans-glutaconic acid and citraconic acid. 測定を磁気共鳴法にて行う請求項2に記載の検出方法。   The detection method according to claim 2, wherein the measurement is performed by a magnetic resonance method.
JP2013055767A 2013-03-18 2013-03-18 Isocitrate dehydrogenase mutation detection marker Expired - Fee Related JP6195147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055767A JP6195147B2 (en) 2013-03-18 2013-03-18 Isocitrate dehydrogenase mutation detection marker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055767A JP6195147B2 (en) 2013-03-18 2013-03-18 Isocitrate dehydrogenase mutation detection marker

Publications (2)

Publication Number Publication Date
JP2014181970A JP2014181970A (en) 2014-09-29
JP6195147B2 true JP6195147B2 (en) 2017-09-13

Family

ID=51700827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055767A Expired - Fee Related JP6195147B2 (en) 2013-03-18 2013-03-18 Isocitrate dehydrogenase mutation detection marker

Country Status (1)

Country Link
JP (1) JP6195147B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6967763B2 (en) * 2017-04-07 2021-11-17 学校法人自治医科大学 Therapeutic agent
CN108451958A (en) * 2018-05-11 2018-08-28 胡晨波 The purposes of ursodesoxycholic acid
WO2020204373A2 (en) * 2019-04-01 2020-10-08 국립암센터 Apparatus for diagnosing solid cancers and method for providing information on solid cancer diagnosis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441622B2 (en) * 2002-09-27 2010-03-31 学校法人慶應義塾 Diagnostic marker for gastritis, atrophic gastritis, or gastric cancer
JP4865377B2 (en) * 2006-03-28 2012-02-01 国立大学法人 新潟大学 Method for measuring human megalin
JP2011247869A (en) * 2010-04-27 2011-12-08 Kobe Univ Inspection method of specific disease using metabolome analysis method
EP2514765A1 (en) * 2011-04-18 2012-10-24 Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts Gpr177 as target and marker in tumors

Also Published As

Publication number Publication date
JP2014181970A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
Grommes et al. Comprehensive approach to diagnosis and treatment of newly diagnosed primary CNS lymphoma
Keshavarzi et al. Molecular imaging and oral cancer diagnosis and therapy
Sun et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management
Ansari et al. Pancreatic cancer: yesterday, today and tomorrow
Sen et al. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy
Rajeshkumar et al. Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function
Wong Current status of FDG‐PET for head and neck cancer
Kim et al. Elevated epithelial insulin-like growth factor expression is a risk factor for lung cancer development
Penet et al. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism
Dutta et al. Combining hyperpolarized real-time metabolic imaging and NMR spectroscopy to identify metabolic biomarkers in pancreatic cancer
Jacobson et al. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics
Babu et al. Clinical characteristics and treatment of malignant brainstem gliomas in elderly patients
Meng et al. An HDAC-targeted imaging probe LBH589–Cy5. 5 for tumor detection and therapy evaluation
Zhong et al. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging
Gerber et al. Concentration-dependent early antivascular and antitumor effects of itraconazole in non–small cell lung cancer
JP6195147B2 (en) Isocitrate dehydrogenase mutation detection marker
Leyton et al. Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901
Taglang et al. Deuterium magnetic resonance spectroscopy enables noninvasive metabolic imaging of tumor burden and response to therapy in low-grade gliomas
Dhar et al. Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer
Lee et al. A phase I multicenter study of antroquinonol in patients with metastatic non-small-cell lung cancer who have received at least two prior systemic treatment regimens, including one platinum-based chemotherapy regimen
Bauman et al. Strategies, considerations, and recent advancements in the development of liquid biopsy for glioblastoma: a step towards individualized medicine in glioblastoma
Billimoria et al. Senescence in cancer: Advances in detection and treatment modalities
Pan et al. Effects of icotinib on advanced non-small cell lung cancer with different EGFR phenotypes
Lee et al. [89Zr] ZrDFO-CR011 PET Correlates with Response to Glycoprotein Nonmetastatic Melanoma B–targeted Therapy in Triple-negative Breast Cancer
Zhao et al. Drug‐related adverse events may predict efficacy in sorafenib therapy for hepatocellular carcinoma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6195147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees