JP6182725B2 - Damping alloy - Google Patents
Damping alloy Download PDFInfo
- Publication number
- JP6182725B2 JP6182725B2 JP2012287955A JP2012287955A JP6182725B2 JP 6182725 B2 JP6182725 B2 JP 6182725B2 JP 2012287955 A JP2012287955 A JP 2012287955A JP 2012287955 A JP2012287955 A JP 2012287955A JP 6182725 B2 JP6182725 B2 JP 6182725B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- deformation
- alloy
- damping alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 92
- 239000000956 alloy Substances 0.000 title claims description 92
- 238000013016 damping Methods 0.000 title claims description 77
- 229910000734 martensite Inorganic materials 0.000 claims description 65
- 229910052759 nickel Inorganic materials 0.000 claims description 35
- 229910052804 chromium Inorganic materials 0.000 claims description 34
- 229910001566 austenite Inorganic materials 0.000 claims description 32
- 238000007906 compression Methods 0.000 claims description 23
- 229910052748 manganese Inorganic materials 0.000 claims description 23
- 230000006835 compression Effects 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 2
- 239000011572 manganese Substances 0.000 description 65
- 230000035882 stress Effects 0.000 description 47
- 230000000052 comparative effect Effects 0.000 description 21
- 230000009466 transformation Effects 0.000 description 19
- 239000011162 core material Substances 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 14
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 230000000087 stabilizing effect Effects 0.000 description 12
- 238000007792 addition Methods 0.000 description 11
- 229910018643 Mn—Si Inorganic materials 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 230000003446 memory effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910002796 Si–Al Inorganic materials 0.000 description 3
- 229910000937 TWIP steel Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910018098 Ni-Si Inorganic materials 0.000 description 1
- 229910018529 Ni—Si Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000376 effect on fatigue Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Vibration Prevention Devices (AREA)
- Heat Treatment Of Steel (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
本発明は、低応力で弾塑性変形が可能で、かつ疲労特性に優れた制振合金に関する。 The present invention relates to a vibration damping alloy capable of elastic-plastic deformation with low stress and having excellent fatigue characteristics.
2011年3月11日に発生した東日本大震災とその後の活発な地震活動により、巨大災害に対する防災意識がかつてないほどに高まっている。特に、東海・東南海・南海地震や首都直下型地震等、巨大地震の発生が予測される地域に、大都市圏が含まれていることから、災害予測や防災体制の強化整備とともに、建築構造物を地震の被害から守る制振・免震技術などの工業的減災対策にも最大限の努力がなされている。 The Great East Japan Earthquake that occurred on March 11, 2011, and the subsequent active seismic activity, have heightened awareness of disaster preparedness for huge disasters. In particular, because large metropolitan areas are included in areas where major earthquakes such as the Tokai / Tonankai / Nankai earthquakes and earthquakes directly under the Tokyo metropolitan area are expected to occur, the building structure is improved along with disaster prediction and strengthening of the disaster prevention system. Efforts are also being made to maximize industrial disaster mitigation measures such as vibration control and seismic isolation technology that protects objects from earthquake damage.
制振ダンパーは、風や地震により建物に入力される振動エネルギーを吸収して、振動が構造物本体に及ばないようにする制振装置である。これまでに提案、開発されている制振ダンパーを大別すると、粘性ダンパー(特許文献1)、粘弾性ダンパー(特許文献2)、鉛ダンパー(特許文献3)、弾塑性ダンパー(特許文献4)などがある。 The vibration damping damper is a vibration damping device that absorbs vibration energy input to the building due to wind or earthquake so that the vibration does not reach the structure body. The vibration dampers that have been proposed and developed so far can be broadly classified into viscous dampers (Patent Document 1), viscoelastic dampers (Patent Document 2), lead dampers (Patent Document 3), and elastic-plastic dampers (Patent Document 4). and so on.
その中でも、特に地震時における構造物の揺れを低減する制振ダンパーとしては、低降伏点鋼を用いた弾塑性ダンパーが、性能、コスト、メンテナンス性において優れていることから、近年特に普及が進んでいる。 Among them, elasto-plastic dampers using low-yield point steel are particularly popular in recent years because they are superior in performance, cost, and maintainability as damping dampers that reduce the shaking of structures, especially during earthquakes. It is out.
この弾塑性ダンパーは、ダンパー用の芯材として用いられる合金の塑性変形により、建物へ入力される地震エネルギーを主に熱エネルギーとして吸収し、建物の振動を低減する機能を有するものである。 This elasto-plastic damper has a function of reducing vibration of a building by absorbing seismic energy input to a building mainly as thermal energy by plastic deformation of an alloy used as a core material for the damper.
制振ダンパーの性能には、芯材となる制振合金の塑性変形特性が重要な影響を及ぼす。この塑性変形特性は、構造物本体よりも早期に塑性変形させるために、制振合金の降伏応力又は耐力は低いことが望ましい。また、地震発生後、ダンパー用の芯材自体は繰り返し弾塑性変形してしまうため、長期使用の観点からは、繰り返し硬化による機械的性質の変化や金属疲労が課題である。 The plastic deformation characteristics of the damping alloy as the core material have an important influence on the performance of the damping damper. It is desirable that the yield stress or yield strength of the damping alloy is low in order to cause plastic deformation characteristics earlier than the structure body. In addition, after the earthquake occurs, the damper core itself is repeatedly elasto-plastically deformed. From the viewpoint of long-term use, changes in mechanical properties and metal fatigue due to repeated hardening are problems.
繰り返し硬化は、制振ダンパーとしての作動開始強度が上昇するなど、制振機能を著しく損なう原因となり、また金属疲労が進行すると最終的には疲労破断による制振装置自体の損壊にすら至るものである。このような状況を避けるため、繰り返し硬化率が低く、疲労寿命が長い制振合金が期待されている。 Repeated hardening causes the start-up strength of the vibration damper to increase, causing significant damage to the vibration damping function.Furthermore, when metal fatigue progresses, the vibration damping device itself may even be damaged due to fatigue fracture. is there. In order to avoid such a situation, a damping alloy having a low repeated hardening rate and a long fatigue life is expected.
現在最も広く用いられている制振合金は、降伏応力、あるいは0.2%耐力を100〜225MPa程度まで意図的に低下させた低降伏点鋼であるが、降伏応力が低いタイプほど弾塑性変形における初期の繰り返し硬化率が高く、また疲労寿命は、当然構造物の柱・梁といった主架構に用いる鋼材よりも優れてはいるが、疲労特性に著しい差がなく、明らかな優位性があるとは言い難い。 Currently, the most widely used damping alloy is a low yield point steel whose yield stress or 0.2% proof stress has been intentionally reduced to about 100 to 225 MPa. The initial repeated hardening rate is high, and the fatigue life is naturally superior to the steel used for the main frame such as columns and beams of the structure, but there is no significant difference in fatigue characteristics and there is a clear advantage. Is hard to say.
したがって、従来の低降伏点鋼制振ダンパーは、低ひずみ振幅(小振幅)で多数の繰り返しにさらされる風揺れに対しては、芯材を塑性化させない(弾性範囲)にとどめ、地震時のみ塑性化するように設計するなど、疲労損傷に配慮した設計を余儀なくされてきた。 Therefore, conventional low-yield point steel damping dampers do not plasticize the core material (elastic range) against wind fluctuations that are exposed to many repetitions with low strain amplitude (small amplitude), and only during earthquakes. Designs that take fatigue damage into account, such as designing to be plastic, have been forced.
また、大地震後には、繰り返し硬化による性能変化や累積疲労損傷の問題から、場合によっては点検・交換を必要とする場合がある。その結果、災害復旧期間や費用が発生することとなる。 In addition, after a major earthquake, inspection and replacement may be required in some cases due to performance changes due to repeated hardening and cumulative fatigue damage. As a result, disaster recovery periods and costs are incurred.
さらに、近年超高層ビル等においては、地震時に建物が共振し、比較的大きな変形の揺れが長時間続く、いわゆる長周期地震動問題に注目が集まることとなり、構造物の耐震安全性の確保の観点からも、より疲労寿命が長い制振合金に対する要請が高まっている。 Furthermore, in recent years, in high-rise buildings and the like, attention has been focused on the so-called long-period ground motion problem, in which buildings resonate during an earthquake and a relatively large amount of deformation continues for a long time. Therefore, there is an increasing demand for damping alloys having a longer fatigue life.
一方、NbCを含むFe−Mn−Si系形状記憶合金が構造物の制振合金として利用可能であることが発明者らによって開示されている(例えば、特許文献1を参照)。 On the other hand, the inventors have disclosed that an Fe—Mn—Si-based shape memory alloy containing NbC can be used as a damping alloy for a structure (see, for example, Patent Document 1).
これは、地震後に残留する塑性ひずみを、加熱による形状記憶効果で取り除き、初期の形状を回復できることに着目した発明である。また、引張圧縮塑性変形による合金の金属組織変化が、FCC型結晶(面心立方格子構造)のγオーステナイト相とHCP型結晶(六方最密充填構造)のεマルテンサイト相の間で可逆的に行われるために、繰り返し硬化率が低く、疲労寿命も長いなど、制振合金としての別の効果も見出された(例えば、非特許文献1を参照)。 This is an invention that pays attention to the fact that the plastic strain remaining after an earthquake can be removed by the shape memory effect by heating and the initial shape can be recovered. In addition, the metallographic change of the alloy due to tensile and compressive plastic deformation is reversible between the γ-austenite phase of the FCC type crystal (face centered cubic lattice structure) and the ε martensite phase of the HCP type crystal (hexagonal close-packed structure). As a result, other effects as a damping alloy such as a low repeated hardening rate and a long fatigue life have been found (for example, see Non-Patent Document 1).
通常、形状記憶効果を利用するためには、ダンパー部材を加熱する機構が必要であるが、上記の提案によれば、そのような加熱機構を設けなくとも、少なくとも繰り返し変形による硬化率が低く、疲労寿命が長いことで、長周期地震動に対しても有効に作動する高性能な制振合金として使用可能である。 Usually, in order to utilize the shape memory effect, a mechanism for heating the damper member is required, but according to the above proposal, at least without providing such a heating mechanism, the curing rate due to repeated deformation is low, Because of its long fatigue life, it can be used as a high-performance damping alloy that works effectively against long-period ground motion.
Fe−Mn−Si系形状記憶合金が、ほぼそのままの組成で制振合金としても有効であることは特許文献5で示唆されるところであるが、その後の研究の進展によって、形状記憶合金としての適正成分範囲と、制振合金としての適正成分範囲とは完全に一致しているわけではないことも明確になってきた。 Although it is suggested in Patent Document 5 that the Fe—Mn—Si-based shape memory alloy is effective as a vibration damping alloy with almost the same composition, the progress as a result of further research has made it appropriate as a shape memory alloy. It has also become clear that the component range and the proper component range as a damping alloy are not completely consistent.
特許文献5において、形状記憶特性を改善させるためにNbCを添加した合金は、振幅1%の繰り返し引張圧縮変形に対する応力振幅が650MPa以上と極めて高い。弾塑性ダンパー用の芯材は、構造物本体より先に弾塑性変形しなければ、構造物本体を保護する振動吸収効果は発揮できない。 In Patent Document 5, an alloy to which NbC is added to improve shape memory characteristics has an extremely high stress amplitude of 650 MPa or more with respect to repeated tensile compression deformation with an amplitude of 1%. If the core material for the elastoplastic damper is not elastoplastically deformed prior to the structure main body, the vibration absorbing effect for protecting the structure main body cannot be exhibited.
すなわち、強度が建物などの構造物本体よりも低くなければならない。したがって材料強度の高い素材をダンパー用の芯材に使用すると、ダンパーの断面積を小さくして構造物の強度を上回らないようにする必要がある。 That is, the strength must be lower than that of a structure body such as a building. Therefore, when a material having high material strength is used for the core material for the damper, it is necessary to reduce the cross-sectional area of the damper so as not to exceed the strength of the structure.
ところが、断面積の小さいダンパーは圧縮変形時に座屈の危険性が高くなるので、ダンパーとしての広い適用可能範囲を確保するには、ダンパー用の芯材はある程度材料強度の低い方が有利である。 However, a damper with a small cross-sectional area has a high risk of buckling during compression deformation. Therefore, in order to secure a wide applicable range as a damper, it is advantageous that the core material for the damper has a certain low material strength. .
この問題を解決するために、発明者らはさらに検討を進め、NbC等の析出物を含まないFe−30Mn−6Si形状記憶合金をベースに、Al添加による塑性変形特性の制御を試みた。 In order to solve this problem, the inventors further studied and attempted to control plastic deformation characteristics by adding Al based on a Fe-30Mn-6Si shape memory alloy containing no precipitate such as NbC.
その結果、Alを1〜3質量%含む合金が、振幅1%の繰り返し引張圧縮変形に対して300MPa程度の低い応力振幅で作動可能な制振合金として有用であることが開示されている(例えば、特許文献6を参照)。 As a result, it is disclosed that an alloy containing 1 to 3% by mass of Al is useful as a damping alloy that can operate at a stress amplitude as low as about 300 MPa with respect to repeated tensile compression deformation having an amplitude of 1% (for example, , See Patent Document 6).
一方、非特許文献2によれば、Fe−30Mn−6Si形状記憶合金への1質量%を超えるAlの添加は、形状記憶効果をほぼ消失させてしまうものであり、このことからも形状記憶合金と制振合金の最適成分範囲が必ずしも一致しないことは明らかである。 On the other hand, according to Non-Patent Document 2, the addition of more than 1% by mass of Al to the Fe-30Mn-6Si shape memory alloy almost eliminates the shape memory effect. It is clear that the optimum component range of the damping alloy does not always match.
また、弾塑性ダンパー用の芯材は、既存の量産製鉄設備を使って低コストで生産できることも構造物の耐震化を早期に進めるための重要な要請である。特許文献6で開示されている公知の制振合金は、Mnを30質量%と高濃度に含むため、アーク炉溶解など一般鋼材が生産される設備で作ることが難しい。 In addition, the core material for elasto-plastic dampers can be produced at low cost by using existing mass-production steel production equipment, which is an important requirement for promoting earthquake resistance of structures at an early stage. Since the known damping alloy disclosed in Patent Document 6 contains Mn at a high concentration of 30% by mass, it is difficult to make it with equipment for producing general steel materials such as arc furnace melting.
その理由は、Mnの沸点が2010℃とFeの3070℃に比較して非常に低く、更にFeよりも酸化物を生成し易いため、Mnの蒸発や酸化によるMn歩留の低下、溶解炉耐火物との反応などが避けられず、操業的にも、コスト的にも困難を伴うからである。したがって、経済的、かつ、技術的な要請から、Fe−Mn−Si系制振合金を量産化、実用化するにはMn含有量を更に低くした合金開発が必須である。 The reason for this is that the boiling point of Mn is very low compared to 2010 ° C and 3070 ° C of Fe, and oxides are more easily produced than Fe. This is because reaction with things is unavoidable, and it is difficult in terms of operation and cost. Therefore, in view of economic and technical demands, in order to mass-produce and put to practical use an Fe-Mn-Si vibration-damping alloy, it is essential to develop an alloy with a further lower Mn content.
なお、Fe−Mn−Si系形状記憶合金においては、耐食性改善のためにCrやNiでMnの一部を置換した成分系が公知であるが(例えば、非特許文献3を参照)、これは同時にMnの含有量を低下させるためにCrやNiによる置換が有効であることを示唆するものである。 In addition, in the Fe-Mn-Si-based shape memory alloy, a component system in which a part of Mn is replaced with Cr or Ni to improve corrosion resistance is known (for example, see Non-Patent Document 3). At the same time, it suggests that substitution with Cr or Ni is effective in order to reduce the Mn content.
しかし、CrやNiでMnを置換した形状記憶合金の疲労特性については、これまでに開示も示唆もされていない。上述したように、形状記憶合金の適正成分範囲と制振合金の適正成分範囲は必ずしも一致しない。したがって、制振合金としてのFe−Mn−Cr−Ni−Si系の最適成分範囲は不明である。非特許文献4によれば、CrやNiを添加したFe−Mn−Si系合金には、δフェライト相、シリサイド、α’マルテンサイト相などの第二相が形成されやすいが、これら第二相が疲労特性に及ぼす影響も不明である。 However, there has been no disclosure or suggestion about the fatigue characteristics of shape memory alloys in which Mn is replaced by Cr or Ni. As described above, the proper component range of the shape memory alloy does not necessarily match the proper component range of the damping alloy. Therefore, the optimum component range of the Fe—Mn—Cr—Ni—Si system as the damping alloy is unknown. According to Non-Patent Document 4, second phases such as δ ferrite phase, silicide, and α ′ martensite phase are easily formed in the Fe—Mn—Si based alloy to which Cr or Ni is added. The effect of aging on fatigue properties is also unclear.
一方、Fe−Mn系オーステナイト鋼の疲労特性については近年盛んに研究されている。これは、強度延性バランスに優れた新しい自動車用鋼板として注目されている、TWIP(Twinning Induced Plasticity:双晶誘起塑性)鋼において、γオーステナイト相の双晶変形が疲労特性にも良好な影響を与えることが認識されているからである(例えば、非特許文献5を参照)。 On the other hand, the fatigue properties of Fe-Mn austenitic steels have been actively studied in recent years. In TWIP (Twinning Induced Plasticity) steel, which is attracting attention as a new steel sheet for automobiles with an excellent balance of strength and ductility, twin deformation of the γ austenite phase has a good effect on fatigue properties. This is because it is recognized (see, for example, Non-Patent Document 5).
Fe−Mn−Cr−Ni系合金の疲労特性も同様の観点から調べられ、疲労特性と組織の関係が一部公知化されている(例えば非特許文献6を参照)。しかし、これらFe−Mn合金やFe−Mn−Cr−Ni合金の塑性変形組織は、変形双晶、α’マルテンサイト相、εマルテンサイト相、積層欠陥、転位などが組み合わされた複雑なものであり、疲労特性と組織の関係が十分に解明されたとはいえない状況である。 The fatigue characteristics of Fe-Mn-Cr-Ni alloys are also examined from the same viewpoint, and the relationship between the fatigue characteristics and the structure is partially publicized (see, for example, Non-Patent Document 6). However, the plastic deformation structure of these Fe-Mn alloys and Fe-Mn-Cr-Ni alloys is a complex one combining deformation twins, α 'martensite phase, ε martensite phase, stacking faults, dislocations, etc. Yes, it cannot be said that the relationship between fatigue properties and structure has been fully elucidated.
発明者らによるこれまでの実験・研究の結果、εマルテンサイトが疲労特性の改善に効果的であることが解明されているが、TWIP鋼やFe−Mn−Cr−Ni系合金では、εマルテンサイトが疲労特性に及ぼす影響についてはほとんど解明されていない。さらに、TWIP鋼を初めとするオーステナイト系構造鋼は、通常構造材料として降伏強度がなるべく高くなるよう成分設計されており、弾塑性ダンパー用の芯材には適さない。 As a result of experiments and research conducted by the inventors, it has been clarified that ε-martensite is effective in improving fatigue characteristics. However, in TWIP steel and Fe—Mn—Cr—Ni-based alloys, ε-martenite Little is known about the impact of sites on fatigue properties. Furthermore, austenitic structural steels such as TWIP steel are usually designed as components so that the yield strength is as high as possible as structural materials, and are not suitable as core materials for elastic-plastic dampers.
なお、εマルテンサイト相を利用する制振合金としてFe−Mn−Cr−Si−Al−C合金が開示されている(例えば、特許文献7を参照)。しかし、この制振合金は変形前の状態でγオーステナイト相中にεマルテンサイト相を15%以上含むことで弾性変形域における内部摩擦を向上させたものであり、弾塑性変形に対する疲労特性は開示されていない。 Note that an Fe—Mn—Cr—Si—Al—C alloy is disclosed as a vibration damping alloy using an ε martensite phase (see, for example, Patent Document 7). However, this damping alloy improves the internal friction in the elastic deformation region by containing 15% or more of the ε martensite phase in the γ austenite phase in the state before deformation, and the fatigue characteristics against elastoplastic deformation are disclosed. It has not been.
変形前の状態で既にεマルテンサイト相を含むことや、γオーステナイト相を固溶硬化させる性質が極めて強い炭素を含むために高強度であり、弾塑性ダンパー用の芯材には不向きである。したがって、制振合金に要求される低耐力、低応力振幅でかつ疲労寿命を増加させるための成分については開示も示唆もされていない。 Since it already contains an ε-martensite phase in a state before deformation and contains carbon having a very strong property of solid-solution hardening the γ-austenite phase, it is high in strength and is not suitable for a core material for an elastic-plastic damper. Therefore, there is no disclosure or suggestion of a component required to increase the fatigue life with a low proof stress, a low stress amplitude, and a damping alloy required.
以上に述べたように、建築構造物の制振装置における弾塑性ダンパー用の芯材として、主に地震から構造物を守る目的で使用される制振鋼又は制振合金に求められる性質は、低耐力、低繰り返し硬化率、大ひずみで疲労寿命が長い(破断繰り返し数が大きい)ことである。しかしながら、これら全ての性質をバランスよく具備する弾塑性ダンパー用の芯材としての制振合金は存在しなかった。 As described above, as a core material for an elasto-plastic damper in a damping device for a building structure, properties required for damping steel or damping alloy used mainly for the purpose of protecting the structure from earthquakes are: Low fatigue strength, low cure rate, large strain and long fatigue life (large number of repeated fractures). However, there has been no damping alloy as a core material for an elastoplastic damper having all these properties in a well-balanced manner.
本発明は、上記のような背景から従来の問題点を解消し、Fe−Mn−(Cr、Ni)−Si系合金において、耐力と繰り返し引張圧縮変形後の応力振幅を低下させ、かつ破断繰り返し数を増加させて、長周期地震動後もメンテナンスフリーで使用可能で、かつ量産可能な弾塑性ダンパー用の制振合金を提供することを課題としている。 The present invention eliminates the conventional problems from the background as described above, reduces the proof stress and the stress amplitude after repeated tensile and compressive deformation in Fe-Mn- (Cr, Ni) -Si based alloys, and repeats fracture. An object is to provide a damping alloy for an elasto-plastic damper that can be used without maintenance even after long-period ground motion and can be mass-produced.
即ち、本発明の制振合金は以下のことを特徴としている。 That is, the damping alloy of the present invention is characterized by the following.
第1に、少なくともCr、Niのいずれかを含有するFe−Mn−(Cr、Ni)−Si系の制振合金、又はさらにAlを含有する制振合金であって、成分組成として、5質量%≦Mn<20質量%、0質量%≦Cr≦15質量%、0質量%≦Ni<15質量%、2質量%≦Si<6.5質量%、0質量%≦Al<3質量%を含有し、残部Fe及び不可避不純物からなり、[%Ni]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al]、かつ、37<[%Mn]+[%Cr]+2[%Ni]+5[%Al]<45(式中[%Ni]、[%Mn]、[%Cr]、[%Si]、[%Al]は、Ni、Mn、Cr、Si、Alの質量%を意味する)の条件を満足することを特徴とする。 First, an Fe—Mn— (Cr, Ni) —Si vibration damping alloy containing at least one of Cr and Ni, or a vibration damping alloy further containing Al, having a component composition of 5 mass. % ≦ Mn <20 mass%, 0 mass% ≦ Cr ≦ 15 mass%, 0 mass% ≦ Ni <15 mass%, 2 mass% ≦ Si <6.5 mass%, 0 mass% ≦ Al <3 mass% . contained, the balance Fe and unavoidable impurities, [% Ni] +0.5 [% Mn]> 0.75 [% Cr] +1.125 [% Si] +2 [% Al], and, 37 <[% Mn ] + [% Cr] +2 [% Ni] +5 [% Al] <45 (where [% Ni], [% Mn], [% Cr], [% Si], [% Al] is Ni, Mn , Cr, Si, Al) (meaning mass%).
第2に、上記第1の発明の制振合金において、10質量%≦Mn<20質量%、2質量%≦Ni≦10質量%を含有することを特徴とする。 Secondly, the damping alloy of the first invention is characterized by containing 10 mass% ≦ Mn < 20 mass%, 2 mass% ≦ Ni ≦ 10 mass%.
第3に、上記第1又は第2の発明の制振合金において、2質量%≦Si≦6質量%を含有することを特徴とする。 Third, the damping alloy of the first or second invention contains 2% by mass ≦ Si ≦ 6% by mass.
第4に、上記第1から第3のいずれかの発明の制振合金において、塑性加工及び溶体化熱処理を施した後の合金の金属組織が、15体積%未満のεマルテンサイト相(HCP構造)、残部がγオーステナイト相(FCC構造)のみからなり、この状態からさらに、振幅1%の引張圧縮変形を100サイクル以上繰り返した後の状態が、50体積%未満のεマルテンサイト相、3体積%未満のα’マルテンサイト相、残部がγオーステナイト相であることを特徴とする。 Fourth, in the vibration damping alloy according to any one of the first to third inventions, the metal structure of the alloy after the plastic working and the solution heat treatment is less than 15% by volume of an ε martensite phase (HCP structure). ), The balance consists only of γ-austenite phase (FCC structure), and after this state, after repeating tensile and compressive deformation with an amplitude of 1% for 100 cycles or more, an ε-martensite phase of less than 50 volume%, 3 volumes % Α 'martensite phase and the balance is γ austenite phase.
第5に、上記第1から第4のいずれかの発明の制振合金において、耐力が280MPa以下、振幅1%の引張圧縮変形を100サイクル以上繰り返した後の応力振幅が400MPa以下、かつ、破断繰り返し数が2000サイクル以上であることを特徴とする。 Fifth, in the vibration-damping alloy of any one of the first to fourth inventions, the stress amplitude is 400 MPa or less after a tensile strength deformation of 280 MPa or less and an amplitude of 1% is repeated for 100 cycles or more, and the fracture. The number of repetitions is 2000 cycles or more.
本発明の制振合金は、Mnの添加量を28質量%以下としているので、従来のFe−30Mn−Si−Al系制振合金と比較して製造も容易である。特にMnの添加量を20質量%未満としたものについては、従来のFe−30Mn−Si−Al系制振合金が真空誘導加熱炉でしか溶解できなかったのに対し、アーク炉溶解できる可能性もあり、大幅なコスト低下が見込まれる。 Since the damping alloy of the present invention has an added amount of Mn of 28% by mass or less, it can be easily manufactured as compared with the conventional Fe-30Mn-Si-Al based damping alloy. In particular, when the amount of Mn added is less than 20% by mass, the conventional Fe-30Mn-Si-Al vibration damping alloy could only be melted in a vacuum induction heating furnace, but it could be melted in an arc furnace. Therefore, a significant cost reduction is expected.
さらに、従来の弾塑性ダンパー用の低降伏点鋼に比較して、破断繰り返し数がほぼ1桁長く、長周期地震動に対しても使用可能とすることができる。 Furthermore, compared with the conventional low yield point steel for elastoplastic dampers, the number of repetitions of fracture is almost one digit longer, and it can be used for long-period ground motion.
また、本発明で規定した条件の制振合金は、耐力が280MPa以下、振幅1%の引張圧縮変形を100回以上繰り返した後の応力振幅が400MPa以下で、破断繰り返し数2000サイクル以上であり、従来のNbCを含むFe−Mn−Si系形状記憶・制振合金に比較して、耐力や応力振幅が低く、低強度レベルで作動可能な弾塑性ダンパー用の制振合金として、制振部材への適用可能範囲が広いものとすることができる。
Moreover, the damping alloy under the conditions defined in the present invention has a proof stress of 280 MPa or less, a stress amplitude after repeating tensile compression deformation of 1
通常、制振合金とは、主として弾性変形域における内部摩擦を高め、金属材料としての高強度を両立させて、工作機械、精密機器、自動車等における機械振動を吸収する構造材料を指すものである。 Usually, a damping alloy refers to a structural material that absorbs mechanical vibrations in machine tools, precision equipment, automobiles, etc., mainly increasing internal friction in the elastic deformation region and achieving high strength as a metal material. .
一方、これと区別するために、主に地震動に対策する制振には「制震」の字が充てられることもあるが、地震の他、風揺れ等による日常振動の抑制も構造物用の制振ダンパーでは重要であることから、近年では「制振」の表記が主流になりつつある。 On the other hand, for the purpose of distinguishing from this, the term “seismic control” is sometimes used to control vibrations mainly against earthquake motions. In recent years, the notation of “vibration suppression” is becoming mainstream because it is important for vibration suppression dampers.
この動向にならい、本発明でも「制振」の表記を用いるが、その主対象は地震時の構造物に対する振動の抑制である。しかし、風揺れ等による比較的微小な振動の抑制もその効果のうちに含むものとする。 Following this trend, the present invention also uses the expression “vibration suppression”, the main object of which is suppression of vibrations to structures during an earthquake. However, the suppression of relatively minute vibrations caused by wind fluctuations is included in the effect.
本発明の制振合金は、Fe−Mn−(Cr、Ni)−Si系合金において、Mn、Cr、Ni、Siの含有量を調節することにより、弾塑性変形がγオーステナイト相とεマルテンサイト相の相互変換によって可逆的に進行する状況を作り出し、かつα’マルテンサイト相の形成などの不可逆な変形を抑制して、耐力が280MPa以下、振幅1%の繰り返し引張圧縮変形後の応力振幅が400MPa以下で、かつ、破断繰り返し数が2000サイクル以上の制振合金である。 The damping alloy of the present invention is an Fe-Mn- (Cr, Ni) -Si alloy, and by adjusting the contents of Mn, Cr, Ni, Si, elastic-plastic deformation is caused by γ austenite phase and ε martensite. Creates a situation that reversibly proceeds by phase interconversion and suppresses irreversible deformation such as the formation of α ′ martensite phase, and the stress amplitude after repeated tensile compression deformation with a yield strength of 280 MPa or less and an amplitude of 1%. It is a vibration-damping alloy having 400 MPa or less and having a repetition number of ruptures of 2000 cycles or more.
オーステナイト系鉄基合金における塑性変形機構は、一般的な金属の塑性変形機構である格子転位のすべり運動のほかに、格子転位が二つの部分転位とその間に挟まれた積層欠陥とに分解して運動する拡張転位のすべり運動、双晶変形、εマルテンサイト変態、α’マルテンサイト変態などの多様な形態をとり、通常複数の塑性変形機構が同時に発現する。 The plastic deformation mechanism in an austenitic iron-based alloy is not only the lattice dislocation sliding motion, which is a general metal plastic deformation mechanism, but also the lattice dislocations decompose into two partial dislocations and a stacking fault sandwiched between them. It takes various forms such as sliding motion of moving dislocations, twin deformation, ε martensitic transformation, α 'martensitic transformation, and usually multiple plastic deformation mechanisms are developed simultaneously.
本発明の制振合金では、引張圧縮塑性変形による構造変化が、γオーステナイト相とεマルテンサイト相との二方向マルテンサイト変態によって、可逆的に進行する状態を作り出すことにより、繰り返し硬化の抑制と破断繰り返し数の増加をはかる。 In the damping alloy of the present invention, the structural change caused by the tensile and compressive plastic deformation is caused by repetitive hardening by creating a state in which the structural change proceeds reversibly by the bidirectional martensitic transformation of the γ austenite phase and the ε martensite phase. Increase the number of repeated fractures.
そのためには、変形前の状態がγオーステナイト単相で、塑性変形機構は主としてεマルテンサイト変態によって進行することが望ましい。その際、εマルテンサイト変態に伴い、不可避的に同時発生する双晶変形、格子転位すべり、拡張転位すべりは一部含まれていてもよいが、α’マルテンサイト変態は合金を著しく硬化させるので発生を抑制しなければならない。 For this purpose, it is desirable that the state before deformation is a γ-austenite single phase, and the plastic deformation mechanism proceeds mainly by ε-martensite transformation. In that case, ε martensite transformation may contain some of the twin deformation, lattice dislocation slip, and extended dislocation slip that are inevitably simultaneously generated, but α 'martensite transformation significantly hardens the alloy. The occurrence must be suppressed.
Fe−Mn−(Cr、Ni)−Si系合金の塑性変形機構に中心的な影響をおよぼす必須添加元素はMnである。Mnは鉄基合金においてγオーステナイト相を安定化させるとともに、積層欠陥エネルギーを低下させてγオーステナイト相からεマルテンサイト相へのマルテンサイト変態が生じやすい状態を作り出す作用がある。 An essential additive element that exerts a central influence on the plastic deformation mechanism of the Fe—Mn— (Cr, Ni) —Si alloy is Mn. Mn stabilizes the γ austenite phase in the iron-based alloy and lowers the stacking fault energy to create a state in which martensitic transformation from the γ austenite phase to the ε martensite phase is likely to occur.
したがって、引張圧縮塑性変形時に、変形誘起γからεマルテンサイト変態とこの逆変態を交互発生させ、かつ、α’マルテンサイト相の形成を抑制して、疲労特性を改善することができる。 Therefore, during tensile compression plastic deformation, the ε martensite transformation and this reverse transformation are alternately generated from the deformation induced γ, and the formation of the α ′ martensite phase is suppressed to improve the fatigue characteristics.
なお、Mnのオーステナイト安定化作用は一部Niで代替が可能であり、積層欠陥エネルギーの低下作用は一部Crで代替可能である。 The austenite stabilizing action of Mn can be partially replaced by Ni, and the lowering effect of stacking fault energy can be partially replaced by Cr.
本発明では、溶解コストを低減するため、Mnの代替添加元素として、Cr若しくはNiを必ず含むものとする。更に、Fe−Mn−Si形状記憶合金の制振特性改善効果を有するAlもMn代替元素として添加してよい。 In the present invention, in order to reduce the melting cost, Cr or Ni is necessarily included as an alternative additive element of Mn. Furthermore, Al having an effect of improving the damping characteristics of the Fe—Mn—Si shape memory alloy may be added as a Mn substitute element.
Mn、Cr、Ni、Alが塑性変形機構におよぼす効果は、同等の効果を与えるMnの質量%で代表させることができる。本発明では、これをMn当量([%Mn]eq)と定義して、Mn当量を、各成分元素の含有量(質量%)を用いて以下の式(1)で表す。
Mn当量([%Mn]eq)=[%Mn]+[%Cr]+2[%Ni]+5[%Al] (1)
なお、式中の[%Mn]、[%Cr]、[%Ni]、[%Al]は、制振合金の化学成分としてのMn、Cr、Ni、Alの質量%を意味する。
The effect of Mn, Cr, Ni, and Al on the plastic deformation mechanism can be represented by the mass% of Mn that gives the same effect. In the present invention, this is defined as Mn equivalent ([% Mn] eq), and the Mn equivalent is expressed by the following formula (1) using the content (% by mass) of each component element.
Mn equivalent ([% Mn] eq) = [% Mn] + [% Cr] +2 [% Ni] +5 [% Al] (1)
[% Mn], [% Cr], [% Ni], and [% Al] in the formula mean mass% of Mn, Cr, Ni, and Al as chemical components of the damping alloy.
また、本発明では、γオーステナイト相−εマルテンサイト相間の二方向のマルテンサイト変態を発現させるためのMn当量の範囲は、以下式(2)で表す条件とする。
37<[%Mn]eq<45 (2)
Mn当量が37質量%以下になると、εマルテンサイト相の熱力学的安定性が非常に高くなるため、ひとたび変形誘起されたεマルテンサイト相は、その後逆方向に変形されてもγオーステナイト相に逆変態しなくなる。
Moreover, in this invention, the range of Mn equivalent for expressing the bi-directional martensitic transformation between (gamma) austenite phase-epsilon martensite phases is made into the conditions represented by Formula (2) below.
37 <[% Mn] eq <45 (2)
When the Mn equivalent is not more than 37% by mass, the thermodynamic stability of the ε-martensite phase becomes very high. Therefore, even if the ε-martensite phase induced by deformation once deforms in the reverse direction, it becomes a γ-austenite phase. No reverse transformation.
その結果、繰り返し引張圧縮変形によってεマルテンサイト相の体積率は単調に増加し、体積率が50体積%以上になると、形成されたεマルテンサイト相同士が互いに衝突する箇所で亀裂発生確率や亀裂伸展速度が上昇して破断繰り返し数が低下する。 As a result, the volume fraction of the ε-martensite phase monotonously increases due to repeated tensile and compressive deformation, and when the volume fraction reaches 50% by volume or more, the probability of crack occurrence and cracks at the locations where the formed ε-martensite phases collide with each other. The extension speed increases and the number of repeated ruptures decreases.
さらにMn当量が30質量%以下になると、溶体化熱処理温度から室温に冷却された時点で既に体積率が15体積%以上のεマルテンサイト相が形成され、その後の変形誘起εマルテンサイト相の形成に対する阻害要因となるため、破断繰り返し数が低下する。 Further, when the Mn equivalent is 30% by mass or less, when the solution heat treatment temperature is cooled to room temperature, an ε-martensite phase having a volume fraction of 15% by volume or more is already formed, and the subsequent deformation-induced ε-martensite phase is formed. The number of repetitions of breakage is reduced.
また、Mn当量が45質量%以上になると積層欠陥エネルギーが上昇してεマルテンサイトが形成されなくなる。 On the other hand, when the Mn equivalent is 45% by mass or more, the stacking fault energy increases and ε martensite is not formed.
一方、もう一つの必須添加元素であるSiは、Mn当量にはほとんど影響しないが、γオーステナイト相とεマルテンサイト相との二方向マルテンサイト変態の可逆性を向上させて、破断繰り返し数を改善させることが実験により明らかとなった。Siは無添加でも約2000サイクルの破断繰り返し数を達成することができるが、Si添加はさらに破断繰り返し数を飛躍的に増加させ、4質量%付近で最も効果を発揮する。 On the other hand, Si, which is another essential additive element, hardly affects the Mn equivalent, but improves the reversibility of the bi-directional martensitic transformation between the γ-austenite phase and the ε-martensite phase and improves the number of repetitions of fracture. It was clarified by experiment. Even when Si is not added, the number of repetitions of breakage of about 2000 cycles can be achieved. However, the addition of Si greatly increases the number of repetitions of breakage, and is most effective in the vicinity of 4% by mass.
しかしながら、Siを過度に添加すると、破断繰り返し数を低下させ、特に6.5質量%以上添加すると合金が著しく硬化して、繰り返し引張圧縮変形の応力振幅が上昇するなどの問題が生じる場合がある。 However, when Si is added excessively, the number of repetitions of fracture is decreased, and particularly when 6.5% by mass or more is added, the alloy may be remarkably hardened, resulting in a problem that the stress amplitude of repeated tensile compression deformation increases. .
Mn、Cr、Ni、Siの添加量については、変形前の金属組織がγオーステナイト単相となるように、オーステナイト安定化元素であるNi、Mn、の総量と、フェライト安定化元素であるCr、Si、Alの総量のバランス調整が重要である。フェライト安定化元素濃度が高く、オーステナイト安定化元素濃度が低くなるほどδフェライト相が形成されやすく、フェライト安定化元素濃度とオーステナイト安定化元素濃度がともに低い場合にはα’マルテンサイト相が形成されやすくなる。 Regarding the addition amount of Mn, Cr, Ni, Si, the total amount of Ni, Mn, which is an austenite stabilizing element, and Cr, which is a ferrite stabilizing element, so that the metal structure before deformation is a γ-austenite single phase. The balance adjustment of the total amount of Si and Al is important. The higher the ferrite stabilizing element concentration and the lower the austenite stabilizing element concentration, the more easily the δ ferrite phase is formed. When both the ferrite stabilizing element concentration and the austenite stabilizing element concentration are low, the α ′ martensite phase is easily formed. Become.
発明者らの実験の結果、本発明の合金系において、1000℃、1時間、溶体化熱処理後、水冷した場合に、δフェライト相形成を抑制してγオーステナイト単相をえるために成分元素の添加量が満足すべき条件は、以下式(3)で与えられることが判明した。
[%Ni]+0.5[%Mn]>0.75[%Cr]+1.125[%Si]+2[%Al] (3)
なお、式中の[%Ni]、[%Mn]、[%Cr]、[%Si]、[%Al]は、制振合金の化学成分としてのNi、Mn、Cr、Si、Alの質量%を意味する。
As a result of experiments by the inventors, in the alloy system of the present invention, in order to obtain a γ-austenite single phase by suppressing formation of δ-ferrite phase when water-cooled after solution heat treatment at 1000 ° C. for 1 hour. It was found that the condition that the addition amount should be satisfied is given by the following formula (3).
[% Ni] +0.5 [% Mn]> 0.75 [% Cr] +1.125 [% Si] +2 [% Al] (3)
[% Ni], [% Mn], [% Cr], [% Si], and [% Al] in the formula are the masses of Ni, Mn, Cr, Si, and Al as chemical components of the damping alloy. Means%.
以上の各条件の他、製造上の制約等によりMn、Cr、Ni、Si、Alの各成分元素の添加量は限定される。以下に詳細に説明する。
<Mn>
Mnは、オーステナイト安定化と積層欠陥エネルギー低下の二つの効果を持つ必須添加元素であるが、30質量%ものMnを添加する特許文献6の制振合金では、Mnの蒸発や酸化によるMn歩留の低下、溶解炉耐火物との反応などが避けられず、実用化可能なコストでの溶解が困難である。
In addition to the above conditions, the amount of each component element of Mn, Cr, Ni, Si, and Al is limited due to manufacturing restrictions and the like. This will be described in detail below.
<Mn>
Mn is an essential additive element that has two effects of stabilizing austenite and lowering stacking fault energy. However, in the damping alloy of Patent Document 6 in which as much as 30% by mass of Mn is added, the Mn yield due to evaporation or oxidation of Mn. It is difficult to melt at a cost that can be put to practical use.
本発明では、溶解コストを低下させるために、Cr若しくはNiの添加によりMnの添加量を28質量%以下とする。更にMnの添加量を20質量%未満とすれば、量産化に適したアーク炉溶解で合金を作製することも可能である。 In the present invention, in order to reduce the dissolution cost, the addition amount of Mn is set to 28% by mass or less by adding Cr or Ni. Further, if the amount of Mn added is less than 20% by mass, an alloy can be produced by melting in an arc furnace suitable for mass production.
一方、Mnの添加量が10質量%未満になると、積層欠陥エネルギー低下に効果があるCrと、オーステナイト安定化元素であるNiは両方を多量に添加しなければならず、溶解コストは低下するが材料コストが上昇する。 On the other hand, when the amount of Mn added is less than 10% by mass, both Cr, which is effective in reducing stacking fault energy, and Ni, which is an austenite stabilizing element, must be added in a large amount, but the dissolution cost decreases. Material costs increase.
更にMnの添加量が5質量%未満になると、Cr及びNiの添加量をどのように調整しても疲労特性に有害なα’マルテンサイト相の形成を避けることができない。以上より、本発明では、Mnの添加量を5質量%≦Mn≦28質量%、更に好ましくは10質量%≦Mn≦20質量%とする。
<Cr>
Crは、γオーステナイト相の積層欠陥エネルギーを低下させ、εマルテンサイト相へのマルテンサイト変態を促進して、本発明の制振合金の疲労特性を向上させる元素である。また、更に耐食性や耐高温酸化性を向上にも寄与する。しかし、Crの添加量が15質量%以上になると他の成分をどのように調整してもα’マルテンサイト相の形成を抑制することが難しくなり、さらにSiと低融点の金属間化合物を形成するため合金の溶製が困難となる。以上より、本発明ではCrの添加量は0質量%≦Cr≦15質量%の範囲とする。
<Ni>
Niは、Mnのオーステナイト安定化作用を代替する元素である。特にMnの添加量を20質量%未満とする場合には、オーステナイト安定化元素としてのNiを2質量%以上添加させなければ、変形前の状態としてγオーステナイト単相が得られなくなる。
Furthermore, if the amount of Mn added is less than 5% by mass, the formation of an α ′ martensite phase that is harmful to fatigue characteristics cannot be avoided no matter how the amount of Cr and Ni added is adjusted. From the above, in the present invention, the amount of Mn added is 5 mass% ≦ Mn ≦ 28 mass%, more preferably 10 mass% ≦ Mn ≦ 20 mass%.
<Cr>
Cr is an element that reduces the stacking fault energy of the γ austenite phase and promotes the martensitic transformation to the ε martensite phase to improve the fatigue characteristics of the vibration damping alloy of the present invention. Furthermore, it contributes to improving corrosion resistance and high-temperature oxidation resistance. However, when the amount of Cr added is 15% by mass or more, it becomes difficult to suppress the formation of the α 'martensite phase no matter how other components are adjusted, and further, Si and a low-melting intermetallic compound are formed. This makes it difficult to melt the alloy. From the above, in the present invention, the amount of Cr added is in the range of 0 mass% ≦ Cr ≦ 15 mass%.
<Ni>
Ni is an element that substitutes for the austenite stabilizing action of Mn. In particular, when the addition amount of Mn is less than 20% by mass, a γ-austenite single phase cannot be obtained as a state before deformation unless Ni as an austenite stabilizing element is added by 2% by mass or more.
一方、Niの添加量が15質量%以上になるとSiと低融点の金属間化合物を形成するため合金の熱間加工性を劣化させる。 On the other hand, when the added amount of Ni is 15% by mass or more, Si and a low-melting intermetallic compound are formed, so that the hot workability of the alloy is deteriorated.
また、材料コストの観点からは、高価な元素であるNiは10質量%未満であることが望ましい。以上より、本発明ではNiの添加量を0質量%≦Ni<15質量%、更に好ましくは2質量%≦Ni≦10質量%の範囲とする。 Further, from the viewpoint of material cost, Ni which is an expensive element is desirably less than 10% by mass. From the above, in the present invention, the amount of Ni added is in the range of 0 mass% ≦ Ni <15 mass%, more preferably 2 mass% ≦ Ni ≦ 10 mass%.
なお、上記Cr、Niについては、少なくともいずれか一方は本発明の制振合金に含有され、両者が共に0質量%となることはない。
<Si>
Siは、Fe−Mn−Si系形状記憶合金の必須元素でその成分範囲は3.5〜8質量%とされているが、工業的に利用可能な合金のSi濃度範囲は5〜6質量%以下である。
In addition, about said Cr and Ni, at least any one is contained in the damping alloy of this invention, and both do not become 0 mass%.
<Si>
Si is an essential element of the Fe—Mn—Si based shape memory alloy, and its component range is 3.5 to 8% by mass, but the Si concentration range of industrially available alloys is 5 to 6% by mass. It is as follows.
一方、本発明の制振合金においても、Siは破断繰り返し数改善のために重要な役割を果たす元素であるが、最適成分濃度は形状記憶合金と異なる。発明者らによる実験・研究の結果、本発明では、破断繰り返し数を2000サイクル以上とするため、Siの添加量を0質量%<Si<6.5質量%、更に好ましくは2質量%≦Si≦6質量%の範囲とする。
<Al>
Alは、Mn当量に係数5で影響する元素なので、Mnの代替元素として添加してもよい。しかし、フェライト安定化元素でもあるため、過剰にAlを添加するとδフェライト相が形成されやすくなる。大気中で熱処理すると、窒素と親和性が高いAlが窒化物を形成して合金を脆化させる可能性もある。
On the other hand, in the damping alloy of the present invention, Si is an element that plays an important role for improving the number of fracture repetitions, but the optimum component concentration is different from that of the shape memory alloy. As a result of the experiments and researches by the inventors, in the present invention, the amount of Si to be added is 0 mass% <Si <6.5 mass%, more preferably 2 mass% ≦ Si in order to make the number of
<Al>
Since Al is an element that affects the Mn equivalent by a factor of 5, it may be added as an alternative element for Mn. However, since it is also a ferrite stabilizing element, if an excessive amount of Al is added, a δ ferrite phase is likely to be formed. When heat-treated in the atmosphere, Al having a high affinity with nitrogen may form nitrides and embrittle the alloy.
このように、Alは微量でもMn当量の調整に有効である一方で、過剰添加した場合には弊害もあるため、添加量は0質量%≦Al<3質量%の範囲とする。
<その他>
本発明では、上記の他、Mn代替効果がある元素としてCo、Cu、C、N、を添加してもよい。しかし、Co、Cuの添加は材料コストの上昇に繋がるので、本発明ではCo<0.2質量%、Cu<2質量%の範囲とする。
Thus, while Al is effective in adjusting the Mn equivalent even in a small amount, there is a harmful effect when excessively added, so the addition amount is in the range of 0 mass% ≦ Al <3 mass%.
<Others>
In the present invention, in addition to the above, Co, Cu, C, N may be added as an element having an effect of substituting Mn. However, since addition of Co and Cu leads to an increase in material cost, in the present invention, Co <0.2 mass% and Cu <2 mass% are set.
また、CとNは合金を固溶硬化させる働きがあり、降伏強度を上昇させて弾塑性ダンパー用の芯材としての性能を損なうため、添加量の上限を、それぞれ、C<0.1質量%、N<0.08質量%の範囲とする。 Further, C and N have a function to solidify and harden the alloy, and increase the yield strength and impair the performance as a core material for an elastoplastic damper. %, N <0.08% by mass.
また、鉄基母相中に固溶する格子間元素CとNを取り除く目的で、CやNとの親和性が高いNb、Ta、V、Ti、Moなどの元素を添加して炭化物や窒化物を形成させることは当該分野で広く行われている。 In addition, for the purpose of removing interstitial elements C and N that are dissolved in the iron-based matrix, elements such as Nb, Ta, V, Ti, and Mo that have a high affinity with C and N are added to form carbides and nitrides. Forming objects is widely practiced in the field.
本発明の制振合金においては、耐力や繰り返し引張圧縮変形における応力振幅を低下させるために、格子間元素CやNによる母相の固溶強化の影響をなるべく小さくする必要がある。そこで、本発明においても従来の手法を適用して、固溶Cや固溶Nの除去のために、Nb、Ta、V、Ti、Moを添加してもよい。 In the vibration damping alloy of the present invention, it is necessary to reduce the influence of solid solution strengthening of the matrix phase by the interstitial elements C and N as much as possible in order to reduce the proof stress and the stress amplitude in repeated tensile and compressive deformation. Therefore, in the present invention, Nb, Ta, V, Ti, and Mo may be added to remove solid solution C or solid solution N by applying a conventional method.
ただし、各元素の添加量が多すぎると、形成される炭化物や窒化物の析出硬化により、却って耐力や応力振幅が増加する。これを避けるため、本発明では、Nb<0.05質量%、Ta<0.05質量%、V<0.05質量%、Ti<0.05質量%、Mo<0.05質量%の範囲とする。 However, if the amount of each element added is too large, the yield strength and the stress amplitude increase due to precipitation hardening of the formed carbides and nitrides. In order to avoid this, in the present invention, Nb <0.05 mass%, Ta <0.05 mass%, V <0.05 mass%, Ti <0.05 mass%, Mo <0.05 mass%. And
変形前の状態はγオーステナイト単相が望ましいが、少量であればεマルテンサイト相が含まれてもよい。変形によりεマルテンサイト変態が誘起されやすい状態に調整された合金は、環境の温度変化や加工の影響等により、意図せずにεマルテンサイト相が形成される場合がある。 The state before deformation is preferably a single γ-austenite phase, but may contain an ε-martensite phase if the amount is small. An alloy adjusted to a state in which ε martensite transformation is likely to be induced by deformation may cause an ε martensite phase to be formed unintentionally due to environmental temperature changes or processing effects.
これら意図せずに形成されたεマルテンサイト相は、通常結晶学的方位がその後変形誘起されたεマルテンサイト相とは異なり、変形誘起εマルテンサイト相の成長に対する障壁となるので、その体積率は15体積%未満とする。 These unintentionally formed ε-martensite phases, unlike the ε-martensite phases, whose crystallographic orientation is usually subsequently induced by deformation, serve as a barrier to the growth of deformation-induced ε-martensite phases, so their volume fraction Is less than 15% by volume.
本発明の制振合金の引張圧縮塑性変形は、主としてγオーステナイト相からεマルテンサイト相へのマルテンサイト変態とその逆変態が交互に発生することによって行われる。引張変形時に誘起されたεマルテンサイト相は、変形方向が圧縮に反転するとγオーステナイト相に逆変態する。 The tensile and compressive plastic deformation of the damping alloy of the present invention is mainly performed by alternately generating a martensitic transformation from the γ austenite phase to the ε martensite phase and its reverse transformation. The ε-martensite phase induced during tensile deformation reversely transforms into a γ-austenite phase when the deformation direction is reversed to compression.
一方、圧縮変形は引張誘起されたεマルテンサイト相の逆変態と同時に、引張変形時とは異なる結晶方位の新たなεマルテンサイト相を生じる。この圧縮誘起εマルテンサイト相も、変形が再び引張へと反転するとγオーステナイト相に逆変態する。このように引張誘起εと圧縮誘起εが、引張圧縮の繰り返しにより交互に発生・消滅を繰り返すことで、引張圧縮変形の繰り返しによるεマルテンサイト相の累積体積率増加が小さいことが、本発明の制振合金が疲労特性に優れている理由である。 On the other hand, compressive deformation produces a new ε-martensite phase with a crystal orientation different from that at the time of tensile deformation simultaneously with the reverse transformation of the tensile-induced ε-martensite phase. This compression-induced ε martensite phase also reversely transforms into a γ austenite phase when the deformation is reversed again to tension. As described above, the tensile-induced ε and the compression-induced ε are alternately generated and disappeared by repeated tensile compression, so that the cumulative volume fraction increase of the ε martensite phase due to repeated tensile compression deformation is small. This is the reason why the damping alloy is excellent in fatigue characteristics.
しかし、ひずみ振幅やサイクル数が増加するに従いεマルテンサイト相の体積率は徐々にではあるが増加していき、50体積%以上になると亀裂発生確率や亀裂伸展速度が増大して破断にいたる場合がある。従って、振幅1%の引張圧縮変形に対して破断繰り返し数を2000サイクル以上とするためには、2000サイクル変形した後のεマルテンサイトの体積率を50体積%未満とするのが望ましい。 However, as the strain amplitude and the number of cycles increase, the volume fraction of the ε-martensite phase gradually increases, but when it exceeds 50% by volume, the probability of crack generation and crack extension rate increase, leading to fracture. There is. Therefore, in order to set the number of repetitions of breakage to 2000 cycles or more with respect to a tensile compression deformation with an amplitude of 1%, it is desirable that the volume ratio of ε-martensite after 2000 cycles deformation is less than 50% by volume.
また、α’マルテンサイト相は合金を硬化させるため、その体積率は3体積%未満とすべきである。α’マルテンサイト相の体積率が3体積%以上になると、硬化することにより応力振幅が増大し、応力振幅の増大はさらなるα’マルテンサイト相変態を連鎖的に誘起するため、応力レベル上昇によるダンパー性能の低下のみならず、破断繰り返し数の低下にもつながる。 Also, since the α ′ martensite phase hardens the alloy, its volume fraction should be less than 3% by volume. When the volume fraction of the α ′ martensite phase is 3% by volume or more, the stress amplitude increases due to hardening, and the increase in the stress amplitude induces further α ′ martensite phase transformation in a chain, and therefore, the stress level increases. Not only does this reduce the damper performance, but it also leads to a reduction in the number of repeated fractures.
本発明の制振合金の耐力は280MPa以下とする。耐力がこれよりも高くなると、ダンパーの作動開始強度を最適化するためのダンパー用の芯材の断面積が小さくなりすぎて、弾塑性変形時に座屈しやすくなる。座屈を避けるためには座屈補剛治具を設置しなければならないが、座屈補剛治具の設置はダンパー部材の製造コストを上昇させてしまう。 The yield strength of the damping alloy of the present invention is 280 MPa or less. If the yield strength is higher than this, the cross-sectional area of the damper core material for optimizing the operation start strength of the damper becomes too small, and it becomes easy to buckle at the time of elastic-plastic deformation. In order to avoid buckling, a buckling stiffening jig must be installed. However, the installation of the buckling stiffening jig increases the manufacturing cost of the damper member.
また、引張圧縮変形を繰り返すと繰り返し硬化により応力振幅が増大するが、長期使用の観点からは、振幅1%の引張圧縮変形を100回以上繰り返した後の応力振幅を400MPa以下とするのが望ましい。 In addition, when the tensile and compressive deformation is repeated, the stress amplitude increases due to repeated curing. From the viewpoint of long-term use, it is desirable that the stress amplitude after repeating the tensile and compressive deformation with an amplitude of 1% 100 times or more is 400 MPa or less. .
応力振幅が400MPaを超えると、大地震発生後にはダンパー用の芯材の降伏強度が上昇して建物本体の強度を上回り、その後の地震においてダンパーとして作動することが難しくなる。本発明の制振合金は長周期地震動にも対応可能な制振ダンパー用の芯材として、高層ビル等の制振装置に用いることを目的とするものであるから、破断又は座屈にいたる最終繰り返し数は2000サイクル以上とする。 When the stress amplitude exceeds 400 MPa, the yield strength of the core material for the damper rises after the occurrence of a large earthquake and exceeds the strength of the building body, and it becomes difficult to operate as a damper in the subsequent earthquake. The damping alloy of the present invention is intended to be used for damping devices such as high-rise buildings as a core material for damping dampers that can cope with long-period ground motions. The number of repetitions is 2000 cycles or more.
以下に、実施例に基づいて本発明を具体的に説明する。もちろん本発明は、これらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. Of course, the present invention is not limited to these examples.
表1に示す実施例1〜4及び比較例1〜8の各配合化学成分の合金を、真空誘導溶解炉によりそれぞれ10kg作製し、1100℃で熱間鍛造及び熱間圧延を施した後、アルゴン雰囲気中で1000℃、1時間加熱後水冷してインゴットとした。なお、表1の各成分の添加量は質量%を表す。 10 kg of each of the chemical compositions of Examples 1 to 4 and Comparative Examples 1 to 8 shown in Table 1 were prepared in a vacuum induction melting furnace, subjected to hot forging and hot rolling at 1100 ° C., and then argon An ingot was obtained by heating in an atmosphere at 1000 ° C. for 1 hour and then cooling with water. In addition, the addition amount of each component of Table 1 represents the mass%.
表1中、実施例及び比較例の配合成分の特徴の理解を容易にするために、実施例1〜4は記号2S、4S、6S、2Aとしても示し、比較例1〜8は記号0S、8S、5M、25M、2N、15N、PRE、30M1Aとしても示している。
In Table 1, in order to facilitate understanding of the features of the formulation components of Examples and Comparative Examples, Examples 1-4 show symbols 2S, 4S, even if the 6S, 2 A, Comparative Examples 1-8
実施例1〜4及び比較例1〜8の各インゴットから、旋盤加工により平行部直径8mmでの低サイクル疲労試験片を作製し、室温大気中、0.1Hzの三角波、振幅1%のひずみ制御低サイクル疲労試験を行った。 From each ingot of Examples 1 to 4 and Comparative Examples 1 to 8, low cycle fatigue test pieces with a parallel part diameter of 8 mm were prepared by lathe processing, and a triangular wave of 0.1 Hz, strain control with an amplitude of 1% was performed in room temperature atmosphere. A low cycle fatigue test was conducted.
図1は実施例2(4S)の引張圧縮変形第1サイクル目における応力とひずみの関係を示したものである。変形無しの状態Oから、引張ひずみを増加していくと、弾性変形OAに続いて塑性変形を生じ引張ひずみ1%のB点に至る。 FIG. 1 shows the relationship between stress and strain in the first cycle of tensile compression deformation of Example 2 (4S). When the tensile strain is increased from the state O without deformation, plastic deformation is generated following the elastic deformation OA, and the point B reaches a tensile strain of 1%.
その後変形が圧縮に反転されると、引張ひずみの減少に比例して引張弾性応力が低下する弾性変形部BCに続いて引張塑性歪みも減少していき、D点でひずみゼロとなる。 Thereafter, when the deformation is reversed to compression, the tensile plastic strain also decreases following the elastic deformation portion BC in which the tensile elastic stress decreases in proportion to the decrease in tensile strain, and the strain becomes zero at point D.
更に、圧縮変形が進むと圧縮塑性ひずみが発生する。圧縮ひずみが−1%のE点に達すると変形は再び圧縮から引張へと転じ、弾性変形EF、塑性変形FGと続いて第1サイクルが終了する。第2サイクル目は点線で表したGB’の曲線に沿って始まり、以降第1サイクルと同様の変形を繰り返す。 Furthermore, compressive plastic strain is generated as compression deformation proceeds. When the compressive strain reaches the E point of -1%, the deformation again turns from compression to tension, and then the elastic deformation EF and plastic deformation FG are followed, and the first cycle is completed. The second cycle starts along the curve GB ′ represented by a dotted line, and thereafter the same deformation as the first cycle is repeated.
1サイクルの変形で応力−ひずみ曲線が描く面積に等しい仕事エネルギーが熱エネルギーに変換されて吸収され、振動を減衰する。 Work energy equal to the area drawn by the stress-strain curve in one cycle of deformation is converted into thermal energy and absorbed, and the vibration is attenuated.
引張変形時、塑性変形が開始する点を0.2%耐力によって評価した。また、引張圧縮変形における応力振幅を図1に示すように引張側の最大応力から求めた。同様の評価を全ての実施例1〜4及び比較例1〜8の合金に対して行った。また図2は、実施例1(2S)、実施例2(4S)、実施例3(6S)及び比較例1(0S)、比較例3(5M)、比較例4(25M)、比較例5(2N)、比較例7((PRE)、比較例8(30M1A)の合金についての繰り返し引張圧縮変形による応力振幅の変化を示したものである。 The point at which plastic deformation starts during tensile deformation was evaluated by 0.2% proof stress. Further, the stress amplitude in the tensile compression deformation was obtained from the maximum stress on the tension side as shown in FIG. The same evaluation was performed on all the alloys of Examples 1 to 4 and Comparative Examples 1 to 8. 2 shows Example 1 (2S), Example 2 (4S), Example 3 (6S), Comparative Example 1 (0S), Comparative Example 3 (5M), Comparative Example 4 (25M), and Comparative Example 5. (2N) shows changes in stress amplitude due to repeated tensile compression deformation of the alloys of Comparative Example 7 ((PRE), Comparative Example 8 (30M1A)).
多くの合金は、初期10サイクルで繰り返し硬化を示した後概ね安定した応力振幅を示す。しかし、5Mは10サイクル後も繰り返し硬化を示した。また、PREは初期硬化が小さく、10サイクルから200サイクルにかけて著しい硬化を示した後、安定な応力振幅となった。繰り返し引張圧縮変形による応力振幅の変化を評価するため、第100サイクル目の応力振幅(σa)を求め、以下式(4)により硬化率を計算した。 Many alloys exhibit a generally stable stress amplitude after repeated hardening in the first 10 cycles. However, 5M repeatedly cured after 10 cycles. Moreover, the initial curing of the PRE was small, and after showing remarkable curing from 10 to 200 cycles, the stress amplitude became stable. In order to evaluate the change of the stress amplitude due to repeated tensile and compressive deformation, the stress amplitude (σa) at the 100th cycle was obtained, and the curing rate was calculated by the following formula (4).
硬化率(H)=(σa100−σa1)/σa1 (4)
これらの結果から求められた、耐力、第1サイクル応力振幅、第100サイクル応力振幅、硬化率、最終繰り返し数を表2に示す。
Curing rate (H) = (σa100−σa1) / σa1 (4)
Table 2 shows the yield strength, the first cycle stress amplitude, the 100th cycle stress amplitude, the curing rate, and the final number of repetitions obtained from these results.
実施例1〜4(2S、4S、6S、2A)はいずれも耐力が280MPa以下、第100サイクルの応力振幅が400MPa以下で、最終繰り返し数が2000サイクル以上である。Siを添加しない比較例1(0S)は破断繰り返し数が2000をわずかに下回った。 In all of Examples 1 to 4 (2S, 4S, 6S, 2A ) , the proof stress is 280 MPa or less, the stress amplitude of the 100th cycle is 400 MPa or less, and the final number of repetitions is 2000 cycles or more. In Comparative Example 1 (0S) without addition of Si, the number of repetitions of fracture was slightly less than 2000.
Siを本発明の成分範囲より多量に添加した比較例2(8S)は、圧延割れのため試料作製ができなかった。割れ発生は低融点の金属間化合物形成に起因すると考えられる。 In Comparative Example 2 (8S) in which Si was added in a larger amount than the component range of the present invention, a sample could not be prepared due to rolling cracks. The occurrence of cracking is thought to be due to the formation of a low melting intermetallic compound.
Mn当量を31まで低下させた比較例3(5M)は、繰り返し硬化が著しく、破断繰り返し数も1000以下であった。繰り返し硬化は変形誘起されたα’マルテンサイト相に起因すると考えられる。 In Comparative Example 3 (5M) in which the Mn equivalent was reduced to 31, repeated curing was remarkable, and the number of repeated fractures was 1000 or less. It is considered that the repeated curing is caused by the deformation-induced α 'martensite phase.
Mn当量を51まで増加させた比較例4(25M)は、変形によってεが形成しなくなるため破断繰り返し数が1000以下であった。 In Comparative Example 4 (25M) in which the Mn equivalent was increased to 51, ε was not formed by deformation, and the number of repetitions of fracture was 1000 or less.
発明材よりもNiの添加量を低下させて2質量%とし、その結果Mn当量が29まで低下した比較例5(2N)は、繰り返し硬化が著しく高く、破断繰り返し数も1000以下であった。これは、50体積%以上のεマルテンサイト相とα’マルテンサイト相の形成のためと考えられる。 In Comparative Example 5 (2N), in which the amount of Ni added was reduced to 2% by mass as compared with the inventive material, and as a result, the Mn equivalent was reduced to 29, repetitive curing was remarkably high, and the number of repeated fractures was 1000 or less. This is considered to be due to the formation of 50 volume% or more of the ε martensite phase and the α ′ martensite phase.
Niを15質量%と実施例よりも高濃度に含む比較例6(15N)は、熱間圧延時に割れが発生し、試験片の作製ができなかった。これはNiがSiとの低融点金属間化合物を形成したためであると考えられる。 In Comparative Example 6 (15N) containing 15% by mass of Ni and higher in concentration than the Examples, cracks occurred during hot rolling, and a test piece could not be produced. This is considered to be because Ni formed a low melting point intermetallic compound with Si.
比較例7(PRE)は特許文献5で開示されているNbC析出物添加型の制振合金である。破断繰り返し数が3000サイクル以上と優れているが、応力振幅が620MPaと極めて高い。 Comparative Example 7 (PRE) is an NbC precipitate-added vibration damping alloy disclosed in Patent Document 5. The number of repetitions of fracture is excellent at 3000 cycles or more, but the stress amplitude is extremely high at 620 MPa.
比較例8(30M1A)は特許文献6で開示されているAl添加制振合金である。破断繰り返し数が2000以上で応力振幅も低めであるが、Mnが30質量%も含まれるため量産化に適さない。 Comparative Example 8 (30M1A) is an Al-added vibration damping alloy disclosed in Patent Document 6. Although the number of repeated fractures is 2000 or more and the stress amplitude is low, Mn is contained in an amount of 30% by mass, so that it is not suitable for mass production.
これらの結果から、本発明で規定した条件の実施例1〜4の制振合金は、条件から外れた比較例1〜8の合金に比べて、耐力と繰り返し引張圧縮変形後の応力振幅を低下させ、かつ破断繰り返し数を増加させて、長周期地震動後もメンテナンスフリーで使用可能で、かつ量産可能な制振合金であることが確認された。 From these results, the damping alloys of Examples 1 to 4 under the conditions defined in the present invention have lower proof stress and stress amplitude after repeated tensile and compressive deformation than the alloys of Comparative Examples 1 to 8 that are out of the conditions. It was confirmed that the damping alloy can be used without maintenance even after long-period ground motion and can be mass-produced.
本発明の制振合金を使用することにより、地震、風揺れ等による建築構造物の振動を抑制する弾塑性ダンパーとして、低応力で作動し、繰り返し大地震にさらされてもメンテナンスフリーで使用可能な低コスト制振装置を製造することが可能になる。 By using the damping alloy of the present invention, it is an elasto-plastic damper that suppresses the vibration of building structures due to earthquakes, wind fluctuations, etc., operates at low stress, and can be used maintenance-free even when repeatedly exposed to large earthquakes It becomes possible to manufacture a simple low-cost vibration damping device.
長周期地震動のように振幅が大きい揺れが長時間続いても制振性能を損なうことがない高性能ダンパーとして、特に高層ビルの制振に利用可能である。また、建築構造物としては、化学プラント、発電所、ホール、タワー、燃料タンク、高架鉄道・道路、橋梁、パイプライン、トンネル、風力発電設備などのあらゆる形態において、大ひずみで繰り返し変形される箇所の振動抑制に効果を発揮することが期待される。
As a high-performance damper that does not impair the damping performance even if a large-amplitude vibration such as long-period ground motion continues for a long time, it can be used especially for damping high-rise buildings. In addition, building structures are places that are repeatedly deformed with large strains in all forms such as chemical plants, power plants, halls, towers, fuel tanks, elevated railways / roads, bridges, pipelines, tunnels, wind power generation facilities, etc. It is expected to be effective in suppressing vibrations.
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012287955A JP6182725B2 (en) | 2012-12-28 | 2012-12-28 | Damping alloy |
PCT/JP2013/084119 WO2014103884A1 (en) | 2012-12-28 | 2013-12-19 | Damping alloy |
EP13869412.0A EP2940175B1 (en) | 2012-12-28 | 2013-12-19 | Damping alloy |
KR1020157015190A KR102144708B1 (en) | 2012-12-28 | 2013-12-19 | Damping alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012287955A JP6182725B2 (en) | 2012-12-28 | 2012-12-28 | Damping alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014129567A JP2014129567A (en) | 2014-07-10 |
JP6182725B2 true JP6182725B2 (en) | 2017-08-23 |
Family
ID=51020971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012287955A Active JP6182725B2 (en) | 2012-12-28 | 2012-12-28 | Damping alloy |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2940175B1 (en) |
JP (1) | JP6182725B2 (en) |
KR (1) | KR102144708B1 (en) |
WO (1) | WO2014103884A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6696754B2 (en) * | 2015-11-05 | 2020-05-20 | 株式会社ビー・ビー・エム | Composite vibration damper for structures |
JP2017193825A (en) * | 2016-04-18 | 2017-10-26 | 株式会社ビービーエム | Buckling-restrained vibration control device |
JP6887642B2 (en) | 2017-04-04 | 2021-06-16 | 国立研究開発法人物質・材料研究機構 | Fe-Mn-Si alloy casting material with excellent low cycle fatigue characteristics |
JP7555733B2 (en) | 2020-06-05 | 2024-09-25 | 株式会社竹中工務店 | Welded assembly steel |
KR20230029598A (en) | 2020-06-24 | 2023-03-03 | 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 | Welded structures and Fe-Mn-Cr-Ni-Si-based alloys used therein |
CN112029988B (en) * | 2020-09-03 | 2022-02-18 | 成都科宁达材料有限公司 | Method for improving damping performance of Fe-Cr-Mo-based damping alloy |
KR20230073482A (en) * | 2021-11-19 | 2023-05-26 | 한국재료연구원 | Excellent stength and excellent toughness medium entropy alloy and method for manufacturing the same |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112751A (en) * | 1985-11-09 | 1987-05-23 | Nippon Steel Corp | Manufacturer of ferrous shape memory alloy sheet metal or wire |
JPS6455361A (en) * | 1987-08-25 | 1989-03-02 | Takeshi Masumoto | Fe-base shape memory alloy |
JPH0526274A (en) | 1991-07-18 | 1993-02-02 | Kajima Corp | Resilient plastic damper |
JPH05106367A (en) | 1991-10-15 | 1993-04-27 | Kajima Corp | Lead damper |
US5219051A (en) | 1991-10-25 | 1993-06-15 | Honeywell Inc. | Folded viscous damper |
JPH05186852A (en) * | 1992-01-11 | 1993-07-27 | Sumitomo Metal Ind Ltd | Damping steel, damping weld steel tube and their manufacture |
EP0846189A1 (en) * | 1995-07-11 | 1998-06-10 | Kari Martti Ullakko | Iron-based shape memory and vibration damping alloys containing nitrogen |
JPH1036943A (en) * | 1996-07-24 | 1998-02-10 | Taiheiyo Kinzoku Kk | Manufacture of iron-manganese-silicon shape memory alloy |
JP2001146855A (en) | 1999-11-19 | 2001-05-29 | Shimizu Corp | Viscoelastic damper |
JP2003105438A (en) * | 2001-09-27 | 2003-04-09 | National Institute For Materials Science | WORKING AND HEAT-TREATING METHOD FOR Fe-Mn-Si BASED SHAPE MEMORY ALLOY ADDED WITH NbC |
CN1158399C (en) * | 2002-09-03 | 2004-07-21 | 四川大学 | Deformation induced aging-type iron-base shape memory alloy and its prepn process |
JP4709555B2 (en) | 2005-01-11 | 2011-06-22 | 独立行政法人物質・材料研究機構 | Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material |
JP5035825B2 (en) | 2006-08-31 | 2012-09-26 | 独立行政法人物質・材料研究機構 | Damping alloy |
JP2009155719A (en) * | 2007-12-25 | 2009-07-16 | Tk Techno Consulting:Kk | Vibration-damping steel pipe and manufacturing method therefor |
JP2010043304A (en) * | 2008-08-11 | 2010-02-25 | Daido Steel Co Ltd | Fe-BASED DAMPING ALLOY |
JP2010156041A (en) * | 2008-12-04 | 2010-07-15 | Daido Steel Co Ltd | Two-way shape-recovery alloy |
JP2011214127A (en) | 2010-03-31 | 2011-10-27 | Tk Techno Consulting:Kk | Vibration-suppression/base-isolation damper device |
JP2012102391A (en) * | 2010-11-08 | 2012-05-31 | Tk Techno Consulting:Kk | Building exterior material |
CN102435624B (en) * | 2011-11-23 | 2013-10-30 | 天津大学 | Method for representing recovery characteristics of Fe-Mn-Si-based memory alloy by in-situ X-ray diffraction |
-
2012
- 2012-12-28 JP JP2012287955A patent/JP6182725B2/en active Active
-
2013
- 2013-12-19 KR KR1020157015190A patent/KR102144708B1/en active IP Right Grant
- 2013-12-19 WO PCT/JP2013/084119 patent/WO2014103884A1/en active Application Filing
- 2013-12-19 EP EP13869412.0A patent/EP2940175B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2014103884A1 (en) | 2014-07-03 |
EP2940175B1 (en) | 2021-02-03 |
KR102144708B1 (en) | 2020-08-14 |
EP2940175A1 (en) | 2015-11-04 |
JP2014129567A (en) | 2014-07-10 |
KR20150117637A (en) | 2015-10-20 |
EP2940175A4 (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6182725B2 (en) | Damping alloy | |
JP5837487B2 (en) | Copper-based alloy and structural material using the same | |
RU2169786C2 (en) | Nitrogen-containing iron based-alloys having properties of damping and effect of memory of shape | |
JP5544633B2 (en) | Austenitic stainless steel sheet for structural members with excellent shock absorption characteristics | |
JP5597006B2 (en) | High strength and high ductility austenitic stainless steel sheet for structural members and method for producing the same | |
JP5385760B2 (en) | Cold-formed square steel pipe with excellent earthquake resistance | |
JP5447278B2 (en) | Spiral steel pipe with internal protrusion and its manufacturing method | |
JP2008163358A (en) | Stainless steel sheet for structural member having excellent impact absorbing property | |
JP2013087908A (en) | Damping member | |
JP2005320619A (en) | Steel plate excellent in fatigue crack propagation characteristic and method for production thereof | |
JP2010132945A (en) | High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same | |
JP4984272B2 (en) | Steel with excellent vibration damping performance, method for producing the same, and damping body including the steel | |
JP2010121191A (en) | High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same | |
JP2011214127A (en) | Vibration-suppression/base-isolation damper device | |
WO2021261067A1 (en) | WELDED STRUCTURE AND Fe-Mn-Cr-Ni-Si-BASED ALLOY | |
JP4709555B2 (en) | Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material | |
KR20140119216A (en) | High manganese alloy and the manufacturing method for high manganese alloy | |
JP5609404B2 (en) | Manufacturing method of spiral steel pipe with internal protrusion | |
JP6358027B2 (en) | Thick steel plate | |
JP2009221554A (en) | Stainless steel for low nickel vehicle body member excellent in workability and impulse absorption performance | |
KR102460872B1 (en) | Fe-Mn-Si alloy cast material with excellent low cycle fatigue properties | |
JP2008156752A (en) | Method for producing impact absorbing member | |
JP5906868B2 (en) | Thick steel plate with excellent fatigue resistance in the thickness direction and method for producing the same | |
JP5375241B2 (en) | High strength thin steel sheet and method for producing the same | |
JP2011047008A (en) | Austenitic stainless steel for spring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170126 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6182725 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |