[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6176209B2 - Method for refining carbon-containing steel - Google Patents

Method for refining carbon-containing steel Download PDF

Info

Publication number
JP6176209B2
JP6176209B2 JP2014173876A JP2014173876A JP6176209B2 JP 6176209 B2 JP6176209 B2 JP 6176209B2 JP 2014173876 A JP2014173876 A JP 2014173876A JP 2014173876 A JP2014173876 A JP 2014173876A JP 6176209 B2 JP6176209 B2 JP 6176209B2
Authority
JP
Japan
Prior art keywords
analysis
sample
carbon
molten steel
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014173876A
Other languages
Japanese (ja)
Other versions
JP2016047955A (en
Inventor
匡生 猪瀬
匡生 猪瀬
哲史 城代
哲史 城代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014173876A priority Critical patent/JP6176209B2/en
Publication of JP2016047955A publication Critical patent/JP2016047955A/en
Application granted granted Critical
Publication of JP6176209B2 publication Critical patent/JP6176209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

本発明は、炭素含有鋼の精錬方法に係り、とくに鋼の精錬工程において行う、溶鋼炭素含有量の分析精度の向上に関する。   The present invention relates to a method for refining carbon-containing steel, and more particularly to improvement in analysis accuracy of molten steel carbon content performed in a steel refining process.

鋼材の製造においては、従来から、所望の特性を有する鋼材を製造すべく、とくに転炉、脱ガス炉等の精錬工程では、精錬途中の各段階で適宜、溶鋼からサンプルを採取し、各種分析装置により溶鋼中の元素分析を行い、得られた分析値をもとに、成分調整等の各処置が行われている。   In the production of steel materials, in order to produce steel materials with desired characteristics, in the refining process of converters, degassing furnaces, etc., samples are taken from the molten steel as appropriate at each stage during refining, and various analyzes are performed. Elemental analysis in molten steel is carried out with an apparatus, and various measures such as component adjustment are performed based on the obtained analysis values.

なお、精練工程では、精錬を迅速に行う必要があることから、溶鋼から採取した試料の分析は、極力速やかに行うことが要求される。そのため、精練中の分析は、迅速で簡便な固体発光分光分析法で行うことが通例となっている。得られた分析結果は、直ちに、精錬工程を行う現場にフィードバックされ、精練における各種処置に反映される。   In the refining process, since it is necessary to perform refining quickly, it is required to analyze the sample collected from the molten steel as quickly as possible. For this reason, analysis during scouring is usually performed by a rapid and simple solid-state emission spectroscopy. The analysis results obtained are immediately fed back to the site where the refining process is performed, and are reflected in various treatments during refining.

固体発光分光分析法は、JIS G 1253にも規定され、鋼材中の様々な元素の重要な分析法として利用されている。固体発光分光分析法では、例えばC、Si、Mn、P、S、Cu、Ni、Cr、Mo、V、Ti、B、Nb、Al、Co、Ca、N等、多くの元素を同時に分析することが可能である。   Solid-state emission spectroscopy is also defined in JIS G 1253, and is used as an important analysis method for various elements in steel materials. In solid-state emission spectrometry, many elements such as C, Si, Mn, P, S, Cu, Ni, Cr, Mo, V, Ti, B, Nb, Al, Co, Ca, and N are analyzed simultaneously. It is possible.

しかし、このような分析方法を用いても、用いた分析試料により、例えば、試料の持つ熱履歴等に影響されて、得られた分析結果(分析値)に大きなバラツキが生じるという問題があった。このような問題に対し、例えば、特許文献1には、金属成分についてではあるが、定量分析用試料の改質方法が記載されている。特許文献1に記載された技術は、精錬工程における分析に限定されてはいないが、分析用試料を加熱により、半溶融状態あるいは溶融状態にしたのち、これを急冷し再凝固させる分析試料の改質方法である。これにより、蛍光X線分析法または固体発光分析法等による分析結果の信頼性が向上するようになったとしている。   However, even when such an analysis method is used, there is a problem that the analysis result (analysis value) obtained varies greatly depending on the analysis sample used, for example, the thermal history of the sample. . For such a problem, for example, Patent Document 1 describes a method for modifying a sample for quantitative analysis, although it relates to a metal component. The technique described in Patent Document 1 is not limited to analysis in the refining process, but the analytical sample is heated to a semi-molten or molten state, and then the sample is rapidly cooled and re-solidified. Quality method. As a result, the reliability of the analysis result by the fluorescent X-ray analysis method or the solid-state emission analysis method is improved.

また、特許文献2には、分析用赤熱試料の冷却制御方法が記載されている。特許文献2に記載された技術では、鉄鋼製造プロセスから採取した分析用赤熱試料を試料調製温度まで冷却するに際し、鉄鋼製造プロセスでの精錬制御過程で測定あるいは推定されている赤熱試料採取時の概略成分濃度値に基づいて冷却速度を制御する、分析用赤熱試料の冷却制御方法である。特許文献2に記載された技術では、試料分析部の金属組織を標準試料と同様にでき、試料冷却割れもなく、最短時間での試料調整を可能とし分析精度も向上するとしている。しかしながら、特許文献2に記載された技術では、分析用試料の調整のため複雑な冷却パターンを施す必要があり、そのために設備の設置を必要とする問題がある。しかも、それほど分析精度の向上が期待できないという問題もある。   Patent Document 2 describes a cooling control method for a red sample for analysis. In the technique described in Patent Document 2, when the red hot sample for analysis collected from the steel manufacturing process is cooled to the sample preparation temperature, the outline of the red hot sample sampling measured or estimated in the refining control process in the steel manufacturing process. This is a cooling control method for a red sample for analysis, in which the cooling rate is controlled based on the component concentration value. In the technique described in Patent Document 2, the metal structure of the sample analysis section can be made the same as that of the standard sample, and there is no sample cooling cracking, sample adjustment in the shortest time is possible, and analysis accuracy is improved. However, in the technique described in Patent Document 2, it is necessary to apply a complicated cooling pattern for adjustment of the sample for analysis, and there is a problem that it is necessary to install equipment. Moreover, there is a problem that improvement in analysis accuracy cannot be expected.

さらに、固体発光分光分析法は、C、N、S、Oなどの鋼中ガス成分元素の分析においては、感度・精度がともに不十分で、分析範囲や精度に制約が有り、鋼種によってはガス成分元素だけは、別の分析手法によって求める場合が少なくない。より高精度な炭素分析法として、JIS G 1211にも規定される燃焼赤外吸収法があり、高精度の炭素分析値が要求される場合には、固体発光分光分析法に代えて、燃焼赤外吸収法が適用される場合がある。   In addition, solid-state emission spectroscopy has insufficient sensitivity and accuracy in the analysis of gas component elements in steel such as C, N, S, and O, and there are limitations on the analysis range and accuracy. In many cases, only the component elements are obtained by another analysis method. As a more accurate carbon analysis method, there is a combustion infrared absorption method stipulated in JIS G 1211. When high accuracy carbon analysis values are required, instead of solid emission spectroscopy, The external absorption method may apply.

精錬技術の格段の進歩により、最近では、機能性鋼材を、添加元素量の厳密な制御により製造することが可能となっている。このような場合にはとくに、添加元素量を高精度に分析することが要求されるようになっている。   Due to the remarkable progress in refining technology, it has recently become possible to produce functional steel materials by strictly controlling the amount of added elements. In such a case, in particular, it is required to analyze the amount of added elements with high accuracy.

例えば、自動車用高強度鋼材においては、例えば、析出強化や変態強化に大きく寄与する炭素Cを、所望の高強度を確保できる含有量範囲に厳格に制御し、C含有範囲を狭く調整した、C狭幅材(C狭幅鋼材)とすることが要求されることがある。このようなC狭幅材の製造においては、精練工程におけるC量をより狭い範囲内に、例えば、質量%で、0.1%C系では±0.005%の範囲内に、調整することが要求されている。このため、C分析の高精度化、例えば標準偏差σ:0.001%以下、となるようなC分析の高精度化が必要不可欠となっている。   For example, in high-strength steel materials for automobiles, for example, carbon C, which greatly contributes to precipitation strengthening and transformation strengthening, is strictly controlled to a content range in which a desired high strength can be secured, and the C content range is narrowly adjusted. It may be required to use a narrow material (C narrow steel material). In the production of such narrow C materials, it is required to adjust the C amount in the scouring process within a narrower range, for example, by mass%, and within the range of ± 0.005% in the 0.1% C system. Yes. For this reason, it is indispensable to improve the accuracy of C analysis, for example, so that the standard deviation σ is 0.001% or less.

特開平07−43276号公報JP 07-43276 A 特開平07−43274号公報JP 07-43274 A

上記したような要求に対し、高精度のC分析を行うために、より高精度なC分析法である燃焼赤外吸収法を適用すると、C以外の他の合金元素を分析するための固体発光分光分析用試料とは別に、燃焼赤外吸収法用の分析用試料を準備する必要がある。さらにまた、燃焼赤外吸収法では、分析用試料の採取に手間が掛かるうえ、分析時間も長く、迅速性に乏しいという問題がある。   In order to perform high-precision C analysis in response to the above-mentioned requirements, applying the combustion infrared absorption method, which is a higher-precision C analysis method, enables solid-state light emission to analyze other alloy elements other than C. In addition to the spectroscopic analysis sample, it is necessary to prepare an analysis sample for the combustion infrared absorption method. Furthermore, in the combustion infrared absorption method, there is a problem that it takes time to collect a sample for analysis, and the analysis time is long and the rapidity is poor.

このようなことから、例えば、C狭幅材のような高精度なC分析が求められる鋼種についても、燃焼赤外吸収法を適用せずに、迅速かつ簡便な固体発光分光分析法を適用することが強く求められている。   For this reason, for example, even for steel types that require high-precision C analysis, such as C-narrow material, rapid and simple solid-state emission spectroscopy is applied without applying the combustion infrared absorption method. There is a strong demand for that.

このような要求に鑑み、本発明は、迅速な固体発光分光分析法を用いた溶鋼中の炭素含有量を所望の狭い範囲内に精度良く調整できる、炭素含有鋼の精錬方法を提供することを目的とする。   In view of such demands, the present invention provides a method for refining carbon-containing steel that can accurately adjust the carbon content in molten steel using a rapid solid-state emission spectroscopy, within a desired narrow range. Objective.

本発明者らは、上記した目的を達成するため、溶鋼の精錬工程でのC分析において、固体発光分光分析法によるCの分析精度に影響する各種要因について鋭意検討した。その結果、精練中の溶鋼から採取した分析試料の水冷開始温度が、固体発光分光分析法を用いたC分析の分析精度に大きな影響を及ぼすことを見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors that affect the analysis accuracy of C by solid-state emission spectrometry in the C analysis in the refining process of molten steel. As a result, it was found that the water cooling start temperature of the analytical sample collected from the molten steel during refining greatly affects the analysis accuracy of C analysis using solid-state emission spectroscopy.

通常、精錬中の溶鋼から採取し、赤熱状態となっている試料(ボンブ試料)は、その場(試料採取箇所)で水冷されたのち分析室まで搬送されるか、あるいは赤熱状態のまま分析室まで搬送され分析室で水冷されたのち、せん断、研磨等の試料調製を行い、C分析に供される。   Normally, a sample (bomb sample) collected from molten steel that is being refined and in a red-hot state is either cooled to water on the spot (sample sampling point) and then transported to the analysis room, or remains red-hot in the analysis room. Samples such as shearing and polishing are prepared and used for C analysis.

なお、溶鋼からの分析試料採取は、各チャージ毎、溶鋼鍋の一定の箇所から溶鋼をサンプリングするために、通常、例えばサンプラーの自動昇降機で行っている。しかし、自動昇降機からのサンプラーの取り外し、サンプラーからの試料の取り出しは、手動で行うことが多い。そのため、サンプラーの取り外しから試料を水冷するまでの時間は、一定でなく、作業者によって変化しているのが実情である。このため、複数の分析試料の間で、分析試料の水冷開始温度にバラツキが生じることになる。   In addition, in order to sample molten steel from the fixed location of a molten steel pan for every charge, the analytical sample collection from molten steel is normally performed, for example with the automatic elevator of a sampler. However, removal of the sampler from the automatic elevator and removal of the sample from the sampler are often performed manually. For this reason, the time from removal of the sampler to water cooling of the sample is not constant, and is actually changing depending on the operator. For this reason, the water cooling start temperature of the analysis sample varies among the plurality of analysis samples.

そこで、本発明者らは、固体発光分析法によるC分析精度に及ぼす、溶鋼から採取した赤熱状態の分析試料の水冷開始温度の影響について検討した。   Therefore, the present inventors examined the influence of the water cooling start temperature of an analysis sample in a red hot state collected from molten steel on the C analysis accuracy by solid-state emission spectrometry.

質量%で、C:0.05〜0.20%、Mn:0.5〜3.0%の範囲で含有する組成を有する5種の溶鋼(炭素含有鋼)を、100キロラボ溶解炉を用いて溶製した。そして、溶製された各溶鋼からサンプルを汲み出し、赤熱状態のボンブ試料(分析試料)とした。ついで、放射温度計を用いて、得られた赤熱状態のボンブ試料の温度を測定し、600〜1200℃の範囲の、予め定めた所定温度に到達した時点で水冷した。なお、同一水準で2個の分析試料を採取した。   Five types of molten steel (carbon-containing steel) having a composition containing C: 0.05 to 0.20% and Mn: 0.5 to 3.0% in mass% were melted using a 100-kilo lab melting furnace. And the sample was drawn out from each molten steel produced, and it was set as the bomb sample (analysis sample) of a red hot state. Subsequently, the temperature of the obtained bomb sample in a red hot state was measured using a radiation thermometer, and water-cooled when reaching a predetermined temperature in a range of 600 to 1200 ° C. Two analysis samples were collected at the same level.

ついで、水冷された試料から分析用試片を切り出し、各試料について同一面内6点で固体発光分光分析法でC含有量を測定した。得られたC含有量(測定値)に基づき、測定値のバラツキ(標準偏差)(%)を求めた。その結果を図1に示す。   Next, a specimen for analysis was cut out from the water-cooled sample, and the C content was measured by solid-state emission spectroscopy at 6 points in the same plane for each sample. Based on the obtained C content (measured value), the variation (standard deviation) (%) of the measured value was determined. The result is shown in FIG.

そして、図1から、つぎのような知見を得た。   And the following knowledge was acquired from FIG.

水冷開始温度が600℃の場合には、分析値のバラツキが大きく、分析精度がとくに低下している。水冷開始温度が600℃と低い場合には、組織が(フェライト+パーライト)組織となり、C量の少ないフェライトと、セメンタイト(Fe3C)を含むパーライトとで、各相におけるC濃度の差が大きくなるうえ、炭化物への選択放電等の影響を受けやすくなったことが分析精度低下の要因と考えられる。 When the water cooling start temperature is 600 ° C., the analytical value varies greatly and the analytical accuracy is particularly lowered. When the water cooling start temperature is as low as 600 ° C, the structure becomes a (ferrite + pearlite) structure, and there is a large difference in the C concentration in each phase between ferrite with a small amount of C and pearlite containing cementite (Fe 3 C). In addition, it is considered that the analysis accuracy is likely to be affected by selective discharge to the carbide.

一方、水冷開始温度が700〜900℃の場合に、分析値のバラツキが小さく、優れた分析精度が得られている。これらの温度域で、C分析における優れた分析精度が得られるのは、Cが均一に分布したマルテンサイト相が得られるためと、本発明者らは考えている。また、水冷開始温度が1000℃以上の場合においても、分析値のバラツキは比較的大きく、分析精度が低下している。   On the other hand, when the water cooling start temperature is 700 to 900 ° C., the variation of the analysis value is small, and excellent analysis accuracy is obtained. The present inventors believe that excellent analysis accuracy in C analysis can be obtained in these temperature ranges because a martensite phase in which C is uniformly distributed is obtained. Even when the water cooling start temperature is 1000 ° C. or higher, the variation of the analysis value is relatively large, and the analysis accuracy is lowered.

水冷開始温度が1000℃以上の場合には、γ域からの急冷のため、700〜900℃での水冷試料と同様、組織はマルテンサイト組織が得られ、分析精度は良いことが予想されたが、実際には分析精度が若干低下している。その理由として、一般的に、焼入れ温度が高いほど残留オーステナイトが生じやすくなることから、1000℃以上から水冷された試料では、マルテンサイト組織に加え、一部、残留オーステナイトが生成したためと考えられる。このような組織の場合には、(フェライト+パーライト)組織のように、組織間のC濃度の差は大きくないが、残留オーステナイトは、マルテンサイトとは異なる結晶構造であり、しかも外力によって常に安定な状態に変化しようとする極めて不安定な組織であるため、固体発光分光分析の放電時に、マルテンサイト単相組織とは、異なる蒸発・気化過程が起こるなどの理由により、分析精度が若干低下したものと考えている。   When the water cooling start temperature is 1000 ° C or higher, the martensitic structure is expected to be obtained and the analysis accuracy is expected to be good as with the water-cooled sample at 700 to 900 ° C because of rapid cooling from the γ region. Actually, the analysis accuracy is slightly lowered. The reason for this is that, as the quenching temperature is generally higher, retained austenite is more likely to occur. Therefore, it is considered that a part of the retained austenite was generated in addition to the martensite structure in the sample cooled with water from 1000 ° C. or higher. In the case of such a structure, unlike the (ferrite + pearlite) structure, the difference in C concentration between the structures is not large, but the retained austenite has a different crystal structure from martensite and is always stable by external force. Because it is an extremely unstable structure that tends to change into a new state, the analysis accuracy slightly decreased due to the evaporation and vaporization process that differs from the martensite single-phase structure during discharge in solid-state emission spectrometry. I believe that.

このようなことから、C分析の分析精度を高め、分析値のバラツキを少なくするために、赤熱状態のボンブ試料(分析試料)は、水冷の前に、水冷開始温度を適正な温度に調整する必要があることを知見した。   For this reason, in order to improve the analysis accuracy of C analysis and reduce the variation in the analysis value, the water-cooling bomb sample (analytical sample) is adjusted to an appropriate water cooling start temperature before water cooling. I found out that it was necessary.

さらに、これらの結果から、最も優れた分析精度が得られる水冷開始温度は、炭素含有鋼の主たる成分であるC、Mn含有量に関係していることに思い至り、更なる検討を行った。その結果、次(1)式
T(℃) = 900−250×C−40×Mn ‥‥(1)
(ここで、C、Mn:各元素の含有量(質量%))
で定義される温度T(℃)を基準として、赤熱状態の分析試料の水冷開始温度を決定すれば、優れた分析精度でC分析を行うことができることを見出した。
Furthermore, from these results, the water cooling start temperature at which the best analysis accuracy was obtained was thought to be related to the C and Mn contents, which are the main components of carbon-containing steel, and further studies were conducted. As a result, the following equation (1)
T (℃) = 900−250 × C−40 × Mn (1)
(Where C, Mn: content of each element (mass%))
It was found that C analysis can be performed with excellent analysis accuracy by determining the water cooling start temperature of an analysis sample in a red hot state based on the temperature T (° C.) defined in.

図1に示す各溶鋼についての、最も優れた分析精度が得られる水冷開始温度Ta(℃)と、上記した(1)式で定義されるT(℃)との関係を図2に示す。図2から、T(℃)とTa(℃)とがほぼ1対1に対応しており、(1)式で定義されるT(℃)を基準として水冷開始温度Taを決定すれば、優れた分析精度でC分析を行うことができることがわかる。なお、この(1)式は、C、Mn含有量が、質量%で、C:0.05〜0.20%、Mn:0.5〜3.0%の範囲内である炭素含有鋼であれば、信頼性高く適用できることの知見も得ている。   FIG. 2 shows the relationship between the water cooling start temperature Ta (° C.) at which the most excellent analysis accuracy can be obtained and T (° C.) defined by the above equation (1) for each molten steel shown in FIG. From FIG. 2, T (° C.) and Ta (° C.) correspond approximately one-to-one, and it is excellent if the water cooling start temperature Ta is determined based on T (° C.) defined by the equation (1). It can be seen that C analysis can be performed with high analysis accuracy. In addition, this (1) formula can be applied with high reliability as long as the carbon-containing steel has C and Mn contents in the ranges of C: 0.05 to 0.20% and Mn: 0.5 to 3.0% in mass%. The knowledge of is also obtained.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。   The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.

(1)溶鋼に精錬工程を施して、所望の炭素量を含有する炭素含有溶鋼とするに当たり、前記精錬工程が、溶鋼から分析用試料を採取し、該採取した赤熱状態の分析用試料を水冷したのち、固体発光分光分析法で炭素含有量を分析し、得られた炭素分析値に基づき、前記溶鋼中の炭素含有量を調整および/または前記精錬工程の終了判定を行う工程であり、前記水冷の前に、前記分析用試料の水冷開始温度を、次(1)式
T(℃) = 900−250×C−40×Mn ‥‥(1)
(ここで、C、Mn:各元素の含有量(質量%))
で定義される温度T(℃)を基準として±100℃の範囲内の温度に、調整することを特徴とする炭素含有鋼の精錬方法。
(1) When a molten steel is subjected to a refining process to obtain a carbon-containing molten steel containing a desired amount of carbon, the refining process collects an analytical sample from the molten steel, and the collected red-hot analytical sample is water-cooled. And analyzing the carbon content by solid-state emission spectroscopy, adjusting the carbon content in the molten steel based on the obtained carbon analysis value and / or determining the end of the refining step, Before water cooling, the water cooling start temperature of the sample for analysis is expressed by the following equation (1).
T (℃) = 900−250 × C−40 × Mn (1)
(Where C, Mn: content of each element (mass%))
A method for refining carbon-containing steel, characterized in that the temperature is adjusted to a temperature within a range of ± 100 ° C. with reference to a temperature T (° C.) defined in 1 .

)(1)において、前記溶鋼が、質量%で、C:0.05〜0.20%、Mn:0.05〜3.0%を含有する組成の炭素含有溶鋼であることを特徴とする炭素含有鋼の精錬方法。 (2) Oite to (1), wherein the molten steel contains, by mass%, C: 0.05~0.20%, Mn : a composition containing 0.05 to 3.0% of the carbon-containing steel, which is a carbon-containing molten steel Refining method.

本発明によれば、精錬途中の溶鋼について、固体発光分光分析法を用いて、高分析精度のC分析を行うことが可能となり、溶鋼の精錬工程において、迅速にかつ精度高く精錬を行うことができ、生産性の向上、歩留の向上、合金元素量の削減など、産業上格段の効果を奏する。また、本発明によれば、鋼材中の炭素含有量を所望の狭い範囲内に精度良く調整でき、炭素含有量範囲の狭い高強度鋼(C狭幅材等)についても、迅速な分析が可能な固体発光分析法を適用できるなど、の効果もある。   According to the present invention, it becomes possible to perform C analysis with high analytical accuracy using a solid state emission spectroscopic analysis method for molten steel in the middle of refining, and refining can be performed quickly and with high accuracy in the refining process of molten steel. It can produce remarkable effects in the industry, such as productivity improvement, yield improvement, and reduction of the amount of alloying elements. In addition, according to the present invention, the carbon content in the steel material can be accurately adjusted within a desired narrow range, and rapid analysis is possible even for high-strength steel (C narrow material, etc.) with a narrow carbon content range. It is possible to apply a solid state emission analysis method.

炭素分析の分析精度に及ぼす水冷開始温度の影響を示すグラフである。It is a graph which shows the influence of the water cooling start temperature which gives to the analytical accuracy of carbon analysis. 最も優れた分析精度が得られる水冷開始温度Taと、(1)式で定義される温度Tとの関係を示すグラフである。It is a graph which shows the relationship between the water-cooling start temperature Ta in which the most outstanding analysis precision is obtained, and the temperature T defined by (1) Formula. 実施例で得られた目標C量と実績C量との差を示すグラフである。It is a graph which shows the difference of the target C amount and the actual C amount which were obtained in the Example.

本発明は、溶鋼に精錬工程を施して、所望の炭素量を含有する溶鋼とする炭素含有鋼の精錬方法である。なお、ここでいう「炭素含有鋼」とは、主として質量%で、0.05〜0.20%までのCと、さらに0.5〜3.0%までのMnを含み、C、Mn以外は、必要に応じて、Si、Ti等を合計で3%まで含むことができ、残部Feおよび不可避的不純物からなる組成を有する鋼(炭素鋼)をいうものとする。   The present invention is a method for refining carbon-containing steel by subjecting molten steel to a refining step to obtain a molten steel containing a desired amount of carbon. The “carbon-containing steel” here is mainly mass%, containing 0.05 to 0.20% C, and further 0.5 to 3.0% Mn, except for C and Mn, if necessary, Si , Ti and the like can be included up to 3% in total, and steel (carbon steel) having a composition composed of the remaining Fe and inevitable impurities shall be said.

精錬工程には、通常、転炉、電気炉、真空溶解炉等による一次精錬と、さらに一次精錬を終了した溶鋼に施す、脱ガス炉等による二次精錬と、が含まれるが、本発明では、とくに限定する必要はなく、一次精錬、二次精錬のいずれにおいても適用できる。なお、精度よく炭素含有量の調整を必要とする二次精錬でとくに有効となる。   The refining process usually includes primary refining using a converter, electric furnace, vacuum melting furnace, etc., and secondary refining using a degassing furnace, etc., applied to the molten steel after the primary refining. However, there is no particular limitation, and it can be applied to both primary refining and secondary refining. This is particularly effective in secondary refining that requires precise adjustment of the carbon content.

精錬工程では、所望の特性を有する鋼材を製造すべく、精錬途中の各段階で必要に応じ、溶鋼からボンブ試料(分析用試料)を採取し、分析装置により炭素等の元素分析を行い、得られた分析値に基づき、溶鋼の成分調整や精錬終了の判定を行う。なお、ボンブ試料(分析用試料)は逆円錐台型で大きさは、例えば直径25〜40mm、高さ50〜80mmである。   In the refining process, a bomb sample (analytical sample) is collected from the molten steel as needed at each stage during refining to produce steel with the desired characteristics, and elemental analysis such as carbon is performed using an analyzer. Based on the analysis value obtained, the component adjustment of the molten steel and the end of the refining are determined. The bomb sample (analytical sample) has an inverted truncated cone shape and has a size of, for example, a diameter of 25 to 40 mm and a height of 50 to 80 mm.

本発明では、分析装置は、固体発光分光分析法を利用した装置を用いるものとする。固体発光分光分析法により、溶鋼から採取した分析用試料の炭素含有量を分析し、得られた分析値に基づき、溶鋼中の炭素含有量を調整および/または精錬工程の終了判定を行う。なお、溶鋼から採取したボンブ試料(分析用試料)は、赤熱状態であり、水冷したのち、分析に供する。   In the present invention, the analyzer uses an apparatus using solid-state emission spectroscopy. The carbon content of the analytical sample collected from the molten steel is analyzed by solid-state emission spectroscopy, and based on the obtained analytical value, the carbon content in the molten steel is adjusted and / or the end of the refining process is determined. The bomb sample (analytical sample) collected from the molten steel is in a red hot state, and is cooled with water and then subjected to analysis.

通常、溶鋼から採取した赤熱状態のボンブ試料(分析用試料)は、試料採取箇所で水冷した後、分析室まで搬送し、あるいは赤熱まま状態で分析室まで搬送した後に水冷し、せん断、研磨等の試料調製を行った後、固体発光分光分析法で分析する。この分析は、さらなる迅速化や省力化のため、連続的あるいは部分的に自動化されていることが多い。そして得られた分析結果は、直ちに現場(精錬工場)に伝送される。これにより、精練工程を短時間で完了できることになる。   Usually, red hot bomb samples (analytical samples) collected from molten steel are cooled in water at the sampling point and then transported to the analysis room, or transported to the analysis room in red heat and then cooled in water, shearing, polishing, etc. After the sample preparation is performed, analysis is performed by solid-state emission spectroscopy. This analysis is often automated continuously or partially to further speed up and save labor. The obtained analysis results are immediately transmitted to the site (smelting factory). Thereby, a scouring process can be completed in a short time.

本発明では、水冷の前に、分析用試料の水冷開始温度を調整する。そのために、放射温度計等で分析用試料の温度(表面温度)を測定する。そして、分析用試料の温度(表面温度)Ta(℃)が、所定の温度(水冷開始温度)Tc(℃)に到達したのを確認して水冷する。水冷の前に、分析用試料の温度(水冷開始温度)Ta(℃)が変動すると、炭素分析の分析精度が低下する。   In the present invention, the water cooling start temperature of the analysis sample is adjusted before water cooling. For that purpose, the temperature (surface temperature) of the sample for analysis is measured with a radiation thermometer or the like. Then, it is confirmed that the temperature (surface temperature) Ta (° C.) of the sample for analysis has reached a predetermined temperature (water cooling start temperature) Tc (° C.), and water cooling is performed. If the temperature of the analysis sample (water cooling start temperature) Ta (° C.) fluctuates before water cooling, the analysis accuracy of the carbon analysis decreases.

固体発光分光分析法では、分析用試料の組織が異なると、分析値の誤差を生じやすい。とくに、分析用試料の組織が(フェライト+パーライト)組織となると、フェライトとパーライトとで炭素量の違いが大きいうえ、炭化物への選択放電等に起因して分析値の誤差を生じやすく、分析精度の低下を招く。このため、本発明では、分析用試料の水冷開始温度Taを、水冷後の組織が、炭素の濃度分布が均一な、例えば、マルテンサイト相が得られるような、所定の水冷開始温度Tc(℃)とすることが好ましい。水冷後の組織が、炭素の濃度分布が均一な、例えば、マルテンサイト相が得られるような、所定の水冷開始温度Tc(℃)は、溶鋼の組成に関連する温度T(℃)を基準として、±100℃の範囲内の温度とすることが好ましい。   In the solid-state emission spectroscopic analysis method, an analysis value error is likely to occur if the analysis sample has a different tissue. In particular, when the structure of the sample for analysis is a (ferrite + pearlite) structure, the difference in carbon content between ferrite and pearlite is large, and errors in analytical values are likely to occur due to selective discharge to carbide, etc. Cause a decline. Therefore, in the present invention, the water cooling start temperature Ta of the analysis sample is set to a predetermined water cooling start temperature Tc (° C. so that the structure after water cooling has a uniform carbon concentration distribution, for example, a martensite phase can be obtained. ) Is preferable. The predetermined water-cooling start temperature Tc (° C) is such that the structure after water cooling has a uniform carbon concentration distribution, for example, a martensite phase is obtained, based on the temperature T (° C) related to the composition of the molten steel The temperature is preferably within a range of ± 100 ° C.

ここで、溶鋼の組成に関連する温度T(℃)は、次(1)式
T(℃) = 900−250×C−40×Mn ‥‥(1)
(ここで、C、Mn:各元素の含有量(質量%))
で定義される温度とする。
Here, the temperature T (° C) related to the composition of the molten steel is expressed by the following equation (1)
T (℃) = 900−250 × C−40 × Mn (1)
(Where C, Mn: content of each element (mass%))
The temperature defined by.

なお、赤熱状態のボンブ試料の水冷開始温度は、放射温度計等で測定するため、赤熱状態のボンブ試料最表層の温度を計測していることになる。したがって、得られた温度は、赤熱状態のボンブ試料の内部温度とは、差があることになる。別に行った実験結果から、その温度差は、100℃程度の幅があると考えられる。このことは、(1)式から計算された温度T(℃)より低い温度から水冷した場合でも、比較的分析精度に優れる場合が認められた実験事実からも推察できる。この場合、表面でT(℃)より低い温度であっても、内部ではT(℃)より高いγ域の温度であったものと推測している。   Since the water cooling start temperature of the bomb sample in the red hot state is measured with a radiation thermometer or the like, the temperature of the outermost layer of the bomb sample in the red hot state is measured. Therefore, the obtained temperature is different from the internal temperature of the red-hot bomb sample. From the results of experiments conducted separately, the temperature difference is considered to have a range of about 100 ° C. This can also be inferred from experimental facts that have been found to have relatively high analytical accuracy even when water-cooled from a temperature lower than the temperature T (° C.) calculated from the equation (1). In this case, even if the temperature is lower than T (° C.) on the surface, it is assumed that the temperature is higher in the γ region than T (° C.) inside.

このようなことから、本発明では、赤熱状態のボンブ試料の水冷開始温度Taは、上記した(1)式で定義されるT(℃)を基準として、T±100℃の範囲内の温度に調整することが好ましい。これにより分析用試料の組織が、安定して、C分布が均一な、マルテンサイト相とすることができ、固体発光分光分析法におけるCの分析精度が向上する。   Therefore, in the present invention, the water cooling start temperature Ta of the red-hot bomb sample is set to a temperature within a range of T ± 100 ° C. with reference to T (° C.) defined by the above-described equation (1). It is preferable to adjust. As a result, the structure of the analysis sample can be made stable and a martensitic phase with a uniform C distribution, and the analysis accuracy of C in solid-state emission spectroscopy can be improved.

なお、実操業において、上記した(1)式で定義される温度Tは、予め製造する鋼種の成分の狙い値を用いて算出してもよい。また、実際に溶鋼を採取して求めた値を用いて、算出することもできる。(1)式は、質量%で、C:0.05〜0.20%、Mn:0.5〜3.0%の範囲内の組織であれば、適用可能である。なお、C:0.20%を超える高炭素鋼の場合には、分析試料の温度によっては、水冷時に試料に亀裂が生じることがある、またC:0.05%未満の低炭素鋼の場合には、水冷後の組織がほぼα鉄であり、水冷開始温度が分析精度に影響を与えない。   In actual operation, the temperature T defined by the above equation (1) may be calculated using the target value of the steel type component to be manufactured in advance. Moreover, it can also calculate using the value actually obtained by collecting molten steel. The formula (1) is applicable insofar as the structure is in mass% and C: 0.05 to 0.20% and Mn: 0.5 to 3.0%. In the case of high carbon steel exceeding C: 0.20%, depending on the temperature of the analysis sample, the sample may crack during water cooling. In the case of C: low carbon steel less than 0.05%, water cooling may occur. The later structure is almost α iron, and the water cooling start temperature does not affect the analysis accuracy.

また、水冷の方法は、水冷後の試料全面がマルテンサイト相となる臨界冷却速度が確保できればよく、とくに限定されない。たとえば、必要十分な容量で、常温以下程度の水を供給できるような冷却槽で、排水口を閉じて冷却槽をオーバーフローさせながら給水、もしくは排水口を開け、排水しながら給水するなどの方法とすることが好ましい。   The water cooling method is not particularly limited as long as the critical cooling rate can be secured so that the entire surface of the sample after water cooling becomes a martensite phase. For example, in a cooling tank that can supply water with a necessary and sufficient capacity and below normal temperature, supply water while closing the drainage port and overflowing the cooling tank, or opening the drainage port and supplying water while draining It is preferable to do.

以下、実施例に基づき、さらに本発明について具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples.

転炉による一次精錬と、それに続く真空脱ガス炉を用いた二次精錬とからなる精錬工程を施し、目標C量(狙い値)が、質量%で、C:0.12%(鋼種A)およびC:0.15%(鋼種B)の2種の中低炭素含有溶鋼を、溶製した。なお、C:0.12%の場合には、C以外の合金元素は、Mn(目標):1.0%、Si(目標):0.2%であった。また、C:0.15%の場合には、C以外の合金元素は、Mn(目標):0.5%、Si(目標):0.1%であった。   A refining process consisting of primary refining by a converter and subsequent secondary refining using a vacuum degassing furnace was performed, and the target C amount (target value) was mass%, C: 0.12% (steel grade A) and C : 0.15% (steel type B) of two types of medium and low carbon-containing molten steel were melted. In the case of C: 0.12%, the alloy elements other than C were Mn (target): 1.0% and Si (target): 0.2%. In the case of C: 0.15%, alloy elements other than C were Mn (target): 0.5% and Si (target): 0.1%.

転炉でC:0.08±0.008%まで脱炭精錬を行った鋼種Aの溶鋼19チャージ、鋼種Bの溶鋼15チャージ、計34チャージについてさらに、真空脱ガス炉で二次精錬を行った。二次精錬の精錬途中の溶鋼から、ボンブ試料(分析用試料)を採取し、赤熱状態のボンブ試料(分析用試料)に水冷を施し、切断し、研磨して分析試料とした。   Regarding the total charge of 34 molten steel charges of 19 steels of steel type A and 15 steel charges of steel grade B, which were decarburized and refined to C: 0.08 ± 0.008% in the converter, secondary refining was performed in a vacuum degassing furnace. A bomb sample (analytical sample) was collected from the molten steel in the course of secondary refining, and the red-hot bomb sample (analytical sample) was water-cooled, cut and polished to obtain an analytical sample.

なお、一部では、赤熱状態のボンブ試料の水冷に際して、放射温度計で表面温度を測定し、水冷開始温度Ta(℃)を調整し、本発明例とした。一方、残りは、水冷開始温度Ta(℃)を調整することなく、水冷し、比較例とした。   In some cases, when the bomb sample in a red hot state was water-cooled, the surface temperature was measured with a radiation thermometer, and the water-cooling start temperature Ta (° C.) was adjusted to be an example of the present invention. On the other hand, the rest was water-cooled without adjusting the water-cooling start temperature Ta (° C.), and used as a comparative example.

本発明例における水冷開始温度Ta(℃)の調整は、各鋼種の目標C量、目標Mn量を用いて次(1)式
T(℃) = 900−250×C−40×Mn ‥‥(1)
(ここで、C、Mn:各元素の含有量(質量%))
で定義される所定の温度T(℃)を算出し、この所定の温度Tを基準として±100℃の範囲内の温度となるように行った。
The adjustment of the water cooling start temperature Ta (° C.) in the example of the present invention is expressed by the following equation (1) using the target C amount and the target Mn amount of each steel type.
T (℃) = 900−250 × C−40 × Mn (1)
(Where C, Mn: content of each element (mass%))
The predetermined temperature T (° C.) defined in (1) was calculated, and the temperature was within a range of ± 100 ° C. with the predetermined temperature T as a reference.

得られた分析試料を用いて、固体発光分光分析装置によりC等、各成分含有量を分析した。得られた分析値と、真空脱ガス炉の操業実績に基づき、二次精錬終了後に目標通りのC量を有する溶鋼が得られるように、加炭材添加量や処理時間などの処理条件を決定し、真空脱ガス炉による二次精練を行った。   Using the obtained analysis sample, the content of each component such as C was analyzed by a solid-state emission spectrometer. Based on the analysis value obtained and the operation results of the vacuum degassing furnace, the processing conditions such as the amount of carbonized material added and the processing time are determined so that molten steel with the target C amount can be obtained after the completion of secondary refining. Then, secondary scouring was performed in a vacuum degassing furnace.

二次精錬終了後に、鋳造前のタンディッシュから、ボンブ試料(分析試料)を採取し、精錬工程と同じように、赤熱状態のボンブ試料の表面温度を測定し、(1)式で定義される所定の温度T(℃)を基準として±100℃の範囲内の温度を水冷開始温度として水冷した。水冷後、固体発光分光分析装置によりC量を分析し、精錬工程終了後の溶鋼のC量(実績値)とした。   After completion of secondary refining, a bomb sample (analytical sample) is taken from the tundish before casting, and the surface temperature of the bomb sample in a red hot state is measured in the same manner as in the refining process. Water cooling was performed with a temperature within a range of ± 100 ° C. as a water cooling start temperature with a predetermined temperature T (° C.) as a reference. After water cooling, the amount of C was analyzed by a solid state emission spectroscopic analyzer, and the amount of C (result value) of the molten steel after the refining process was completed.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 0006176209
Figure 0006176209

また、表1から、各溶鋼について、Cの実績値と目標値の差の絶対値、|C目標−C実績 |(ppm)、を算出し、鋼種ごとに、水冷開始温度を調整した場合(本発明例:●、▲)と、水冷開始温度を調整しなかった場合(比較例:○、△)に分けて、図3に示す。   In addition, for each molten steel, the absolute value of the difference between the actual C value and the target value, | C target -C actual | (ppm), is calculated for each molten steel, and the water cooling start temperature is adjusted for each steel type ( FIG. 3 shows an example of the present invention: ●, ▲) and a case where the water cooling start temperature was not adjusted (comparative examples: ◯, Δ).

本発明例では、いずれの鋼種においても、Cの実績値と目標値の差は50ppm以内に抑制されているのに対し、比較例におけるCの実績値と目標値の差は、100ppm程度までバラツいており、実績値は、目標値に対して乖離が大きくなっている。これは、本発明によれば、分析面内のC量の偏りが少ない状態のボンブ試料を確保でき、固体発光分光分析法を用いても精度の高いC分析が行える状態となり、C分析の精度が向上し、容易に処理条件の最適化が図れ、適正な精錬を行えるようになったためと考えられる。   In the examples of the present invention, the difference between the actual value of C and the target value is suppressed to 50 ppm or less in any steel type, whereas the difference between the actual value of C and the target value in the comparative example varies up to about 100 ppm. The actual value is greatly different from the target value. This is because, according to the present invention, it is possible to secure a bomb sample in which the amount of C in the analysis surface is less biased, and it is possible to perform highly accurate C analysis even using solid-state emission spectroscopy, and the accuracy of C analysis This is thought to be due to the fact that process conditions can be easily optimized and appropriate refining can be performed.

Claims (2)

溶鋼に精錬工程を施して、所望の炭素量を含有する炭素含有溶鋼とするに当たり、
前記精錬工程が、溶鋼から分析用試料を採取し、該採取した赤熱状態の分析用試料を水冷したのち、固体発光分光分析法で炭素含有量を分析し、得られた炭素分析値に基づき、前記溶鋼中の炭素含有量を調整および/または前記精錬工程の終了判定を行う工程であり、
前記水冷の前に、前記分析用試料の水冷開始温度を、下記(1)式で定義される温度T(℃)を基準として±100℃の範囲内の温度に、調整すること
を特徴とする炭素含有鋼の精錬方法。

T(℃) = 900−250×C−40×Mn ‥‥(1)
ここで、C、Mn:各元素の含有量(質量%)
In refining the molten steel to make a carbon-containing molten steel containing the desired amount of carbon,
The refining step collects a sample for analysis from molten steel, water-cools the collected sample for analysis in a red hot state, analyzes the carbon content by solid-state emission spectrometry, and based on the obtained carbon analysis value, The step of adjusting the carbon content in the molten steel and / or determining the end of the refining step,
Before the water cooling, the water cooling start temperature of the analytical sample is adjusted to a temperature within a range of ± 100 ° C. based on a temperature T (° C.) defined by the following equation (1). A method for refining carbon-containing steel.
Record
T (℃) = 900−250 × C−40 × Mn (1)
Where C, Mn: content of each element (mass%)
前記溶鋼が、質量%で、C:0.05〜0.20%、Mn:0.05〜3.0%を含有する組成の炭素含有溶鋼であることを特徴とする請求項1に記載の炭素含有鋼の精錬方法。 2. The method for refining carbon-containing steel according to claim 1, wherein the molten steel is carbon-containing molten steel having a composition containing C: 0.05 to 0.20% and Mn: 0.05 to 3.0% by mass%.
JP2014173876A 2014-08-28 2014-08-28 Method for refining carbon-containing steel Active JP6176209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173876A JP6176209B2 (en) 2014-08-28 2014-08-28 Method for refining carbon-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173876A JP6176209B2 (en) 2014-08-28 2014-08-28 Method for refining carbon-containing steel

Publications (2)

Publication Number Publication Date
JP2016047955A JP2016047955A (en) 2016-04-07
JP6176209B2 true JP6176209B2 (en) 2017-08-09

Family

ID=55649009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173876A Active JP6176209B2 (en) 2014-08-28 2014-08-28 Method for refining carbon-containing steel

Country Status (1)

Country Link
JP (1) JP6176209B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986311B2 (en) * 1993-07-29 1999-12-06 新日本製鐵株式会社 Cooling control method of red hot sample for steel analysis
JP3195564B2 (en) * 1997-05-12 2001-08-06 エステック株式会社 Method and apparatus for preparing analysis sample
JPH1183840A (en) * 1997-09-05 1999-03-26 Nkk Corp Rapid preparation of fused steel analyzing sample
WO2013024766A1 (en) * 2011-08-12 2013-02-21 Jfeスチール株式会社 Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP5704019B2 (en) * 2011-08-12 2015-04-22 Jfeスチール株式会社 Secondary refining method and manufacturing method of molten steel

Also Published As

Publication number Publication date
JP2016047955A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
US10472690B2 (en) High-strength seamless steel pipe for oil country tubular goods and method of producing the same
JP5974962B2 (en) Method for producing aluminum-killed steel with Ca added with excellent HIC resistance and Ca addition treatment method for molten steel
Park et al. Effect of slag composition on the concentration of Al 2 O 3 in the inclusions in Si-Mn-killed steel
JP5397154B2 (en) Melting method of steel material for oil pipes with high strength and high corrosion resistance
EP3133181B1 (en) H-section steel and method of producing
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
CN102791900A (en) High-carbon steel wire with excellent suitability for wiredrawing and fatigue property after wiredrawing
JP5853661B2 (en) Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
JP6176209B2 (en) Method for refining carbon-containing steel
JP5978967B2 (en) Component adjustment method for molten steel
KR101443785B1 (en) Probe and analyze method of molten metal using the same
JPWO2016136401A1 (en) Hot tool and manufacturing method thereof
RU2581318C1 (en) High-temperature alloy
Kargul Investigations of temperatures of phase transformations of low-alloyed reinforcing steel within the heat treatment temperature range
JP5884187B2 (en) Carbon steel refining method
JP6515291B2 (en) Continuous steel casting method
CN115637382B (en) Steel material with high corrosion resistance for stone gang saw blade matrix and preparation method thereof
JP2986311B2 (en) Cooling control method of red hot sample for steel analysis
Palagas et al. Investigation of the Parameters Influencing the Accuracy of Rapid Steelmaking Slag Analysis with Laser‐Induced Breakdown Spectroscopy
Jiang et al. Evaluation model of susceptibility to Cu hot shortness of Cu-containing LC steel
Min et al. Resource-Saving Technology for Preparing Nickel Superalloy VZh175 Using Substandard Waste
Loder et al. Characterization of acicular ferrite microstructures using etching methods, optical microscopy and HT-LSCM
JP6248801B2 (en) Elemental analysis sample preparation method and apparatus
JP5599209B2 (en) Ferrite single-phase stainless steel slab
Malikov et al. Investigation of the steel parts’ hardsurfacing overlays properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6176209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250