[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6171355B2 - 磁場計測装置 - Google Patents

磁場計測装置 Download PDF

Info

Publication number
JP6171355B2
JP6171355B2 JP2013008648A JP2013008648A JP6171355B2 JP 6171355 B2 JP6171355 B2 JP 6171355B2 JP 2013008648 A JP2013008648 A JP 2013008648A JP 2013008648 A JP2013008648 A JP 2013008648A JP 6171355 B2 JP6171355 B2 JP 6171355B2
Authority
JP
Japan
Prior art keywords
axis
light
medium
probe light
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013008648A
Other languages
English (en)
Other versions
JP2014139546A (ja
Inventor
長坂 公夫
公夫 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013008648A priority Critical patent/JP6171355B2/ja
Priority to CN201410024912.2A priority patent/CN103941199A/zh
Priority to US14/159,925 priority patent/US9351651B2/en
Publication of JP2014139546A publication Critical patent/JP2014139546A/ja
Application granted granted Critical
Publication of JP6171355B2 publication Critical patent/JP6171355B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/245Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetoencephalographic [MEG] signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、光を利用した磁場計測装置に関する。
光を利用した磁場計測装置には、例えば、心臓からの磁場(心磁)や脳からの磁場(脳磁)など微小な磁場を計測するものがあり、医療画像診断装置などへの応用が期待されている。磁場の計測には、磁気モーメントに偏極を生じさせる媒体が用いられる。この媒体としては、窒素による格子欠陥を設けたダイヤモンドといった固体素子や、アルカリ金属原子などのガスを封入したガスセルを用いる。この素子にポンプ光を照射することで素子内の原子のエネルギーが磁場に応じて励起され、この素子を透過したプローブ光の偏光面は磁気光学効果により回転する。磁場計測装置は、この偏光面の回転角度を磁場情報として計測する。特許文献1には、横方向光ポンピング方式を組み合わせた磁場勾配磁力計が記載されている。
特開2009−162554号公報
しかし、特許文献1に開示された方式の磁場勾配磁力計は、同文献の図中に示されたy方向の磁場勾配を計測するものであり、x方向の磁場勾配を計測するものではない。すなわち、特許文献1に開示された方式の磁場勾配磁力計は、プローブ光に沿った方向の磁場勾配を計測することができない。
また、特許文献1に開示された方式の磁場勾配磁力計は、半波長板や円偏光のポンプ光を生成する光学系が必要となり、複雑かつ高価である。
本発明は、従来技術に比べて簡素な構成によって、プローブ光に沿った方向の磁場勾配を計測する技術を提供する。
上述した課題を解決するため、本発明に係る磁場計測装置は、プローブ光を照射するプローブ光照射部と、第1ポンプ光を照射する第1照射部と、前記第1ポンプ光と平行ではない方向に第2ポンプ光を照射する第2照射部と、前記プローブ光の光軸上に配置され、前記第1ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記プローブ光に対して生じる第1アライメントに沿った方向に伸びる第1軸および当該第1アライメントに垂直な方向に伸びる第2軸について線形二色性を示す第1媒体と、前記プローブ光の光軸上において前記第1媒体に対して前記プローブ光照射部の反対側に配置され、前記第2ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記第1媒体を透過した後の前記プローブ光に対して生じる第2アライメントに沿った方向に伸びる、前記第1軸および前記第2軸と異なる第3軸および当該第2アライメントに垂直な方向に伸びる、前記第1軸および前記第2軸と異なる第4軸について線形二色性を示す第2媒体と、前記第1媒体および前記第2媒体を透過した前記プローブ光の偏光面の変化量に基づいて、前記第1媒体における磁場と前記第2媒体における磁場との差を計測する計測部とを有する。
この構成によれば、従来技術に比べて簡素な構成によって、プローブ光に沿った方向の磁場勾配を計測することができる。
また、好ましくは、上述の態様において、プローブ光を照射するプローブ光照射部と、前記プローブ光の光軸上に配置され、第1ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記プローブ光に対して生じる第1アライメントに沿った方向に伸びる第1軸および当該第1アライメントに垂直な方向に伸びる第2軸について線形二色性を示す第1媒体と、前記プローブ光の光軸上において前記第1媒体に対して前記プローブ光照射部の反対側に配置され、第2ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記第1媒体を透過した後の前記プローブ光に対して生じる第2アライメントに沿った方向に伸びる、前記第1軸および前記第2軸と異なる第3軸および当該第2アライメントに垂直な方向に伸びる、前記第1軸および前記第2軸と異なる第4軸について線形二色性を示す第2媒体と、前記第1媒体と、前記第2媒体とに挟まれた位置に配置され、照射された光を分離して、当該第1媒体に向けて伝播する前記第1ポンプ光を生成するとともに、当該第2媒体に向けて伝播する前記第2ポンプ光を生成するビームスプリッターと、前記ビームスプリッターに向けて前記光を照射する第3照射部と、前記第1媒体および前記第2媒体を透過した前記プローブ光の偏光面の変化量に基づいて、前記第1媒体における磁場と前記第2媒体における磁場との差を計測する計測部と、を有するとよい。
この構成によれば、照射する光を1つにすることができる。
また、好ましくは、上述の態様において、前記ビームスプリッターと、前記第3照射部と、を複数有するとともに、前記各第3照射部が照射する各光の強度を変調させる変調部とを有し、前記各ビームスプリッターが生成する前記第1ポンプ光は、前記プローブ光に対して予め定められた位相差を有し、前記各ビームスプリッターが生成する前記第2ポンプ光は、前記位相差を有し、前記変調部は、前記位相差に応じた周波数で前記各光の強度を変調させるとよい。
この構成によれば、磁場の測定範囲を拡大することができる。
本発明の第1実施形態に係る磁場計測装置の全体構成を示す図である。 ガスセル1の内部のアライメントとプローブ光の状態を示した図である。 ガスセル2の内部のアライメントとプローブ光の状態を示した図である。 アライメント方位角と計測部の出力との関係を示す図である。 本発明の第2実施形態に係る磁場計測装置の全体構成を示す図である。 本発明の第3実施形態に係る磁場計測装置の全体構成を示す図である。
1.第1実施形態
1−1.構成
図1は、本発明の第1実施形態に係る磁場計測装置9の全体構成を示す図である。以下、図において、磁場計測装置9の各構成の配置を説明するため、各構成が配置される空間をXYZ左手系座標空間として表す。また、内側が白い円の中に交差する2本の線分を描いた記号は、紙面手前側から奥側に向かう矢印を表している。空間においてX軸に沿う方向をX軸方向という。また、X軸方向のうち、X成分が増加する方向を+X方向といい、X成分が減少する方向を−X方向という。同様に、Y、Z成分についても、Y軸方向、+Y方向、−Y方向、Z軸方向、+Z方向、−Z方向を定義する。
磁場計測装置9は、ガスセル1と、このガスセル1の+Z方向に配置されたガスセル2とを有し、且つ、ガスセル1にポンプ光(以下、第1ポンプ光という)を照射する第1照射部5と、ガスセル2にポンプ光(以下、第2ポンプ光という)を照射する第2照射部6とを有する。そして、磁場計測装置9は、ガスセル1およびガスセル2(以下、これらを区別しない場合、単に「ガスセル」という)の配列方向に沿って、すなわち+Z方向にプローブ光を照射するプローブ光照射部3と、これらガスセルを透過したプローブ光を受けてその偏光面の変化を検知し、ガスセル1における磁場(以下、第1磁場という)と、ガスセル2における磁場(以下、第2磁場という)との強さの差分を計測する計測部4とを有する。
2つのガスセルは、ポンプ光により励起される複数の気体原子からなる原子群が封入されたガラス製のセル(素子)である。ここで気体原子とは、例えばカリウム(K)や、ルビジウム(Rb)、セシウム(Cs)などのアルカリ金属原子である。これら気体原子は、透過する光の偏光面を磁場の強さに応じて回転させる媒体としての性質を有する。ガスセルは、プローブ光照射部3から照射されたプローブ光を透過させる。ガスセルを透過したプローブ光は、計測部4に受光される。なお、ガスセルの材質はガラスに限られず、光を透過する材質であれば、樹脂などであってもよい。
プローブ光照射部3は、ガスセル1およびガスセル2に封入された原子の超微細構造準位の遷移に対応した周波数のレーザー光をプローブ光として出力するレーザー光出力装置である。例えば、このレーザー光の波長は、ガスセル内に封入されたセシウムのD1線の超微細構造量子数F=4からF´=3の状態の遷移に対応する波長で約894nmである。
プローブ光照射部3は、ガスセル1から見て−Z方向に配置されており、+Z方向に伝播するプローブ光をガスセル1に向けて照射する。ガスセル2は、ガスセル1から見て+Z方向に配置されており、ガスセル1を透過したプローブ光が照射され、これを透過させる。したがって、ガスセル1は、プローブ光の光軸上に配置されている媒体の一例であり、ガスセル2は、プローブ光の光軸上においてガスセル1より下流、すなわちガスセル1に対してプローブ光照射部3の反対側に配置されている媒体の一例である。また、プローブ光照射部3は、ガスセル1およびガスセル2を連続して透過するプローブ光を照射する照射部の一例である。
第1照射部5は、ガスセル1から見て−X方向に配置されており、+X方向に伝播し、Y軸方向に沿って振動する直線偏光である第1ポンプ光をガスセル1に向けて照射する。
第2照射部6は、ガスセル2から見て−Y方向に配置されており、+Y方向に伝播しX軸方向に沿って振動する直線偏光である第2ポンプ光をガスセル2に向けて照射する。
1−2.動作
ガスセルに封入された気体原子に直線偏光が照射されると、気体原子が光ポンピングされ、エネルギーが変化した際に生じる磁気モーメントの確率分布は、球形の原点対称な分布から変化する。例えば、超微細構造量子数F→F´=F−1のエネルギー遷移のときにおいて、気体原子の磁気モーメントの確率分布はその直線偏光の振動の向きに沿って伸びる領域に応じた形状となる。この偏った確率分布をアライメントという。アライメントは磁場の方向を回転軸としてその磁場の強さに応じた角度の回転をする。そして、アライメントを通過するプローブ光は、そのアライメントの方向に沿った成分よりも、そのアライメントに垂直な方向の成分がより多く吸収されるため、結果としてその偏光面は回転する。
図2は、ガスセル1の内部のアライメントとプローブ光の状態を示した図である。第1照射部5から第1ポンプ光が照射されるとガスセル1内の気体原子にはアライメントが生じる。ガスセル1において仮にZ軸方向の磁場の強さが0だとすると、生じたアライメントはZ軸を回転軸として回転しないため、第1ポンプ光の振動方向であるY方向に沿ったものとなる。実際には、ガスセル1にはZ軸方向の第1磁場がかかっているため、アライメントはZ軸を回転軸として歳差運動をする。そして、第1ポンプ光による光ポンピング作用と原子のセル内壁への衝突などによる緩和作用とが加わることによりアライメントはY軸に対して、この第1磁場の強さに応じた角度(θ1)だけ回転した配置で定常状態となる。このときのアライメントが向いた方向をΘpとする。なお、アライメントは、+Z方向の第1磁場の強さに応じて、+Z方向に沿って見たときにZ軸を回転軸として時計回りに回転する。
Θsは、XY平面上において、アライメントの向きであるΘpに垂直な方向である。+Z方向に伝播するプローブ光の偏光面は、アライメントの影響を受ける。ガスセル1は、アライメントにより線形二色性を示す。線形二色性とは、アライメントに沿った方向と、アライメントに垂直な方向とで直線偏光の透過率が異なる性質をいう。具体的には、アライメントに沿った方向(第1軸:Θpの方向)よりも、アライメントに垂直な方向(第2軸:Θsの方向)の成分が多く吸収されるため、プローブ光の偏光面は、アライメントに沿った方向に近づくように回転する。すなわち、ガスセル1は、プローブ光に対して、上述した第1軸および第2軸について線形二色性を示す。
例えば、図2に示すように、ガスセル1に入射するプローブ光の振動がベクトルE0に沿ったものである場合、アライメントは、このプローブ光のうちΘpに沿った成分をtpの透過率で透過し、Θsに沿った成分をtsの透過率で透過する。線形二色性によりts<tpであるため、ガスセル1を透過したプローブ光の偏光面は、アライメントに沿った方向に近づくように回転し、ベクトルE1に沿ったものとなる。
ここで、ガスセル1に入射する前のプローブ光の振動を示すベクトルE0の絶対値を「E0」とし、このベクトルE0のY軸に対する角度をγとし、アライメントの+Z方向の第1磁場の強さに応じた回転角をθ1とすると、ガスセル1を透過した後のプローブ光の振動を示すベクトルE1の(Θs,Θp)の座標系における各成分は、以下の式(1)によって算出される。
Figure 0006171355
図3は、ガスセル2の内部のアライメントとプローブ光の状態を示した図である。第2照射部6から第2ポンプ光が照射されるとガスセル2内の気体原子にはアライメントが生じる。ガスセル2は、アライメントにより線形二色性を示す。ガスセル2において仮にZ軸方向の磁場の強さが0だとすると、生じたアライメントはZ軸を回転軸として回転しないため、第2ポンプ光の振動方向であるX方向に沿ったものとなる。実際には、ガスセル1にはZ軸方向の第2磁場がかかっているため、アライメントはZ軸を回転軸として歳差運動をする。そして、第2ポンプ光による光ポンピング作用と原子のセル内壁への衝突などによる緩和作用とが加わることによりアライメントはX軸に対して、この第2磁場の強さに応じた角度(θ2)だけ回転した配置で定常状態となる。このときのアライメントが向いた方向をΘpとし、XY平面上においてΘpに垂直な方向をΘsとする。
図3に示すように、ガスセル2にはガスセル1を透過したプローブ光が入射しており、その振動はベクトルE1に沿ったものである。上述した通り、アライメントは、プローブ光のうちΘp(第3軸)に沿った成分をtpの透過率で透過し、Θs(第4軸)に沿った成分をtsの透過率で透過する。線形二色性によりts<tpであるため、ガスセル2を透過したプローブ光の偏光面は、アライメントに沿った方向に近づくように回転し、ベクトルE2に沿ったものとなる。すなわち、ガスセル2は、プローブ光に対して、上述した第1軸および前記第2軸と異なる第3軸および第4軸について線形二色性を示す。
ここで、ガスセル1を透過することによってプローブ光の振動方向は、図2に示した通り、ベクトルE0からベクトルE1へ変化しており、+Z方向に沿って見たときに反時計回りに回転する。一方、ガスセル2を透過することによってプローブ光の振動方向は、図3に示した通り、ベクトルE1からベクトルE2へ変化しており、+Z方向に沿って見たときにガスセル1を透過するときとは反対の時計回りに回転する。これは、ガスセル1のアライメントと、ガスセル2のアライメントとが、プローブ光の振動方向を挟むようにしてそれぞれ発生し、プローブ光の偏光面を互いに反対の方向に回転させているからである。すなわち、ガスセル1は、第1磁場の中にあって、透過する光の偏光面を第1磁場の強さに応じて第1の方向に回転させる媒体であり、ガスセル2は、第2磁場の中にあって、透過する光の偏光面を第2磁場の強さに応じて第1の方向と反対の第2の方向に回転させる媒体である。
ガスセル2内のアライメントの+Z方向の第2磁場の強さに応じた回転角をθ2とすると、ガスセル2の(Θs,Θp)座標系は、ガスセル1の(Θs,Θp)座標系に対して(π/2−θ1+θ2)だけ時計回りに回転している。したがって、ガスセル2を透過した後のプローブ光の振動を示すベクトルE2の(Θs,Θp)の座標系における各成分は、以下の式(2)によって算出される。
Figure 0006171355
図3に示すα軸は、プローブ光照射部3から照射されたガスセル1に入射する前のプローブ光の振動方向を、+Z方向に沿って見たときにπ/4(すなわち、45度)だけ時計回りに回転させた軸である。また、β軸は、ガスセル1に入射する前のプローブ光の振動方向を、+Z方向に沿って見たときにπ/4(すなわち、45度)だけ反時計回りに回転させた軸である。したがって、α軸とβ軸とは互いに直交する。
計測部4は、偏光ビームスプリッターやウォラストンプリズムとフォトディテクタとの組み合わせなどにより、ガスセル2を透過したプローブ光をα軸に沿った成分とβ軸に沿った成分とに分離してそれぞれの光強度を計測し、これらの和と差に応じた信号を出力する。上述した式(2)で算出されるベクトルE2は、ガスセル2の(Θs,Θp)座標系で表されたものであり、(α,β)座標系は、ガスセル2の(Θs,Θp)座標系に(−3π/4−γ−θ2)だけ時計回りに回転している。したがって、α軸に沿った成分の光強度がEα、α軸に沿った成分の光強度がEβとすると、これらは、以下の式(3)によって算出される。
Figure 0006171355
そして、EαおよびEβは、式(1)(2)(3)を合わせると、上述したE0、γ、θ1、θ2、ts、tpでそれぞれ表され、EαおよびEβの実測値と、ベクトルE0との関係から計測部4は、ベクトルE0からベクトルE2への変化量を求める。そして、この変化量に基づいて、計測部4は、ガスセル1における磁場と、ガスセル2における磁場との強さの差分を計測する。
ここで、アライメントに沿った方向と、プローブ光の振動方向とが成す角を「アライメント方位角」という。
Z軸方向の磁場が0であると仮定すると、ガスセル1においてアライメントはY軸方向に沿った配置になる。上述したように、ガスセル1に入射するプローブ光の振動をベクトルE0で表し、このベクトルE0のY軸に対する角度をγとすると、アライメント方位角はγである。
また、計測部4は、上述したα軸とβ軸とによって表される(α,β)座標系によって、ガスセル2を透過した後のプローブ光の振動を示すベクトルE2を計測し、次式(4)に示すように、α軸およびβ軸に沿った各成分の二乗和W+と二乗差W-とをそれぞれ演算して出力する。
Figure 0006171355
図4は、アライメント方位角γと計測部4の出力との関係を示す図である。この図4では、Z軸方向の磁場が0であるという仮定の下、アライメント方位角に対する二乗和W+および二乗差W-の変化を表している。図4の結果から、二乗差W-の信号は、アライメント方位角γに対してπ(180度)を周期として振動することが分かる。
そして、アライメント方位角γが例えば図4に示した、−112.5度から−67.5度まで、−22.5度から22.5度まで、または67.5度から112.5度までのいずれかの範囲内にある場合に、アライメント方位角γ(入力)に対して二乗差W-の信号(出力)はほぼ線形になっていて、その二次微分(傾き)の絶対値は他の範囲におけるそれと比べると大きい。すなわち、これらの範囲では、他の範囲に比べてアライメント方位角γの変化に対する二乗差W-の変化の割合が高い。
したがって、アライメント方位角γがこれらの範囲に収まるように、プローブ光照射部3から照射されるプローブ光の偏光面を調整することで、二乗差W-の変化は、Z軸方向の磁場の強さによるアライメントの回転角度を高い感度で観測することが可能となる。
以上説明した通り、第1実施形態に示した磁場計測装置9は、ポンプ光およびプローブ光が直線偏光で構成されており、且つ、波長板が不要であるから、構造が簡素である。そして、この磁場計測装置9は、透過するプローブ光の回転方向がガスセル1とガスセル2とで相殺されるため、ガスセル1を透過する前のプローブ光と、ガスセル2を透過した後のプローブ光との比較によって、プローブ光に沿った方向の磁場勾配を計測することができる。
なお、上述したベクトルE0のY軸に対する角度γは、計測部4が、ベクトルE0からベクトルE2への変化量を求めることができる角度であれば、特に限定するものではないが、22.5度または67.5度が好ましい。γをこれらの角度とすることにより、他の角度とする場合に比べて、上述した変化量の検出感度が向上するからである。
2.第2実施形態
図5は、本発明の第2実施形態に係る磁場計測装置9aの全体構成を示す図である。磁場計測装置9aは、ガスセル1、ガスセル2、プローブ光照射部3、および計測部4を有する点において、上述した磁場計測装置9と共通する。しかし、磁場計測装置9aは、第1照射部5および第2照射部6を有しておらず、第3照射部7と、ビームスプリッター8とを有している。
図5(a)に示すように、ビームスプリッター8は、ガスセル1と、ガスセル2とに挟まれた位置に配置されており、照射された光を分離して、+Z方向と−Z方向とにそれぞれ伝播する2つの光を生成する。第3照射部7は、ビームスプリッター8から見て−X方向に配置され、+X方向に伝播する光をビームスプリッター8に向けて照射する。第3照射部7が照射する光は、Y軸方向に対してπ/4(45度)だけ傾いて振動する光である。
Y軸に沿って見ると、ビームスプリッター8は、図5(b)に示すように面F1と面F2とを有している。面F1は、偏光ビームスプリッターと同様の機能を果たす。すなわち、第3照射部7が照射する光のうち、S偏光をガスセル1の方向(−Z方向)に反射し、P偏光を透過する。面F2は、面F1を透過したP偏光をガスセル2の方向(+Z方向)に全反射する。これにより、ガスセル1にはY軸方向に沿って振動する第1ポンプ光が照射され、ガスセル2にはX軸方向に沿って振動する第2ポンプ光が照射されるので、上述した第1実施形態と同様の光ポンピング効果が生じる。
3.第3実施形態
図6は、本発明の第3実施形態に係る磁場計測装置9bの全体構成を示す図である。磁場計測装置9bは、ガスセル1、ガスセル2、プローブ光照射部3、および計測部4を有する点において、上述した磁場計測装置9および磁場計測装置9aと共通する。しかし、磁場計測装置9bは、第1照射部5および第2照射部6を有していない。
磁場計測装置9bは、磁場計測装置9aにおいて1つだけ備えられていた第3照射部7に代えて、複数の照射部、すなわち第4照射部71と第5照射部72とを有し、さらに第4照射部71および第5照射部72のそれぞれを制御して、照射する光の強度を変化させる変調部70を有する。
また、磁場計測装置9bは、磁場計測装置9aにおいて1つだけ備えられていたビームスプリッター8に代えて、複数のビームスプリッター、すなわち第1ビームスプリッター81と第2ビームスプリッター82とを有する。
図6(a)に示すように、第1ビームスプリッター81および第2ビームスプリッター82は、いずれもガスセル1と、ガスセル2とに挟まれた位置に配置されている。これらのビームスプリッターは、照射された光を分離して、+Z方向と−Z方向とにそれぞれ伝播する2つの光を生成する。
第1ビームスプリッター81および第2ビームスプリッター82は、いずれも磁場計測装置9aに示したビームスプリッター8と同様の構成であるが、上下方向(Z軸方向)に逆に配置されている。したがって、例えば、第1ビームスプリッター81は、S偏光をガスセル2の方向(+Z方向)に伝播させ、P偏光をガスセル1の方向(−Z方向)に伝播させるとすると、第2ビームスプリッター82は、これとは反対に、S偏光をガスセル1の方向(−Z方向)に伝播させ、P偏光をガスセル2の方向(+Z方向)に伝播させる。
第4照射部71は、第1ビームスプリッター81から見て−X方向に配置され、+X方向に伝播する光を第1ビームスプリッター81に向けて照射する。第4照射部71が照射する光は、Y軸方向に対してπ/4(45度)だけ傾いて振動する光である。
第5照射部72は、第2ビームスプリッター82から見て−X方向に配置され、+X方向に伝播する光を第2ビームスプリッター82に向けて照射する。第5照射部72が照射する光は、Y軸方向に対してπ/4(45度)だけ傾いて振動する光である。
変調部70は、第4照射部71が照射する光の強度と、第5照射部72が照射する光の強度とを交互に増減させる。計測部4は、ガスセル1とガスセル2の各磁場の平均値を算出しており、算出した平均値を変調部70に伝えている。変調部70は、磁場の平均値を計測部4から受け取る。そして変調部70は、第4照射部71および第5照射部72がそれぞれ照射する光の強度を増減させる周波数(変調周波数)を、受け取ったこの磁場の平均値に対応する周波数(歳差運動周波数)になるように制御する。これにより、ガスセル1とガスセル2とにそれぞれ封入された気体原子のアライメントは、π/2(90度)の位相差を持って歳差運動をする。
また、変調部70は、プローブ光照射部3が照射するプローブ光を、第4照射部71が照射する光に対してγの位相差を保ちつつ光強度変調させる。そして、歳差運動周波数の基準信号を参照信号としてロックインアンプ検出をすることにより、磁場計測装置9bの計測部4は、ガスセル1における磁場と、ガスセル2における磁場との強さの差分を計測する。
以上、説明した通り、変調部70によって、ポンプ光とプローブ光とを気体原子の歳差運動周波数に変調するため、磁場測定範囲を拡大することができる。
4.変形例
以上が実施形態の説明であるが、この実施形態の内容は以下のように変形し得る。また、以下の変形例を組み合わせてもよい。
4−1.変形例1
上述した実施形態において、磁場計測装置9は、気体原子が封入されたガラス製のセル(素子)であるガスセルを備えていたが、透過する光の偏光面を磁場の強さに応じて回転させる媒体として、気体原子以外の媒体を用いてもよい。例えば、磁場計測装置9は、窒素による格子欠陥を設けたダイヤモンドといった固体素子を、上記の媒体として用いてもよい。
4−2.変形例2
上述した実施形態において、磁場計測装置9は、プローブ光が各ガスセルを一回しか透過しない構成(すなわち、シングルパスの構成)であったが、ミラーを用いてプローブ光を反射させることにより、複数回にわたってガスセルを透過させる構成(マルチパスの構成)であってもよい。例えば、磁場計測装置9は、ガスセル2を透過した後のプローブ光をミラーにより反射させ、その反射光を再びガスセル2に透過させ、透過したその反射光をさらにガスセル1に透過させる構成(ダブルパスの構成)にしてもよい。また、プローブ光の反射回数は1回に限られず、反射鏡(ミラー)などの光学系を複数箇所に設置することなどにより2回以上としてもよい。これにより、ガスセル1,2の入射光量に依存する感度の差違が少なくなり、磁場勾配の計測感度は向上する。
4−3.変形例3
上述した第1実施形態において、第1ポンプ光はX方向に伝播させられ、第2ポンプ光はY方向に伝播させられていたが、これらの方向は互いに直交していなくてもよい。要するに、第1照射部5は、第2照射部6が第2ポンプ光を照射する方向と平行ではない方向に、第1ポンプ光を照射すればよく、その結果、ガスセル1のアライメントと、ガスセル2のアライメントとが、プローブ光の振動方向を挟むようにしてそれぞれ発生し、プローブ光の偏光面を互いに反対の方向に回転させるように作用すればよい。
4−4.変形例4
上述した第3実施形態において、磁場計測装置9bは、照射部およびビームスプリッターをそれぞれ2つずつ有していたが、これらをそれぞれ3つ以上、有していてもよい。この場合であっても、各ビームスプリッターからガスセル1に照射される第1ポンプ光が位相差を有し、且つ、各ビームスプリッターからガスセル2に照射される第2ポンプ光が位相差を有していればよい。そして、変調部70は、各照射部が照射する各光の強度を、その位相差に応じた周波数で変調させればよい。
1…ガスセル、2…ガスセル、3…プローブ光照射部、4…計測部、5…第1照射部、6…第2照射部、7…第3照射部、70…変調部、71…第4照射部、72…第5照射部、8…ビームスプリッター、81…第1ビームスプリッター、82…第2ビームスプリッター、9(9a,9b)…磁場計測装置

Claims (3)

  1. プローブ光を照射するプローブ光照射部と、
    第1ポンプ光を照射する第1照射部と、
    前記第1ポンプ光と平行ではない方向に第2ポンプ光を照射する第2照射部と、
    前記プローブ光の光軸上に配置され、前記第1ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記プローブ光に対して生じる第1アライメントに沿った方向に伸びる第1軸および当該第1アライメントに垂直な方向に伸びる第2軸について線形二色性を示す第1媒体と、
    前記プローブ光の光軸上において前記第1媒体に対して前記プローブ光照射部の反対側に配置され、前記第2ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記第1媒体を透過した後の前記プローブ光に対して生じる第2アライメントに沿った方向に伸びる、前記第1軸および前記第2軸と異なる第3軸および当該第2アライメントに垂直な方向に伸びる、前記第1軸および前記第2軸と異なる第4軸について線形二色性を示す第2媒体と、
    前記第1媒体および前記第2媒体を透過した前記プローブ光の偏光面の変化量に基づいて、前記第1媒体における磁場と前記第2媒体における磁場との差を計測する計測部と
    を有する磁場計測装置。
  2. プローブ光を照射するプローブ光照射部と、
    前記プローブ光の光軸上に配置され、第1ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記プローブ光に対して生じる第1アライメントに沿った方向に伸びる第1軸および当該第1アライメントに垂直な方向に伸びる第2軸について線形二色性を示す第1媒体と、
    前記プローブ光の光軸上において前記第1媒体に対して前記プローブ光照射部の反対側に配置され、第2ポンプ光により励起される複数の原子からなる原子群を内部に含み、前記第1媒体を透過した後の前記プローブ光に対して生じる第2アライメントに沿った方向に伸びる、前記第1軸および前記第2軸と異なる第3軸および当該第2アライメントに垂直な方向に伸びる、前記第1軸および前記第2軸と異なる第4軸について線形二色性を示す第2媒体と、
    前記第1媒体と、前記第2媒体とに挟まれた位置に配置され、照射された光を分離して、当該第1媒体に向けて伝播する前記第1ポンプ光を生成するとともに、当該第2媒体に向けて伝播する前記第2ポンプ光を生成するビームスプリッターと、
    前記ビームスプリッターに向けて前記光を照射する第3照射部と
    前記第1媒体および前記第2媒体を透過した前記プローブ光の偏光面の変化量に基づいて、前記第1媒体における磁場と前記第2媒体における磁場との差を計測する計測部と、
    を有することを特徴とする磁場計測装置。
  3. 前記ビームスプリッターと、前記第3照射部と、を複数有するとともに、
    前記各第3照射部が照射する各光の強度を変調させる変調部とを有し、
    前記各ビームスプリッターが生成する前記第1ポンプ光は、前記プローブ光に対して予め定められた位相差を有し、
    前記各ビームスプリッターが生成する前記第2ポンプ光は、前記位相差を有し、
    前記変調部は、前記位相差に応じた周波数で前記各光の強度を変調させる
    ことを特徴とする請求項に記載の磁場計測装置。
JP2013008648A 2013-01-21 2013-01-21 磁場計測装置 Expired - Fee Related JP6171355B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013008648A JP6171355B2 (ja) 2013-01-21 2013-01-21 磁場計測装置
CN201410024912.2A CN103941199A (zh) 2013-01-21 2014-01-20 磁场测量装置
US14/159,925 US9351651B2 (en) 2013-01-21 2014-04-02 Magnetic field measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008648A JP6171355B2 (ja) 2013-01-21 2013-01-21 磁場計測装置

Publications (2)

Publication Number Publication Date
JP2014139546A JP2014139546A (ja) 2014-07-31
JP6171355B2 true JP6171355B2 (ja) 2017-08-02

Family

ID=51188947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008648A Expired - Fee Related JP6171355B2 (ja) 2013-01-21 2013-01-21 磁場計測装置

Country Status (3)

Country Link
US (1) US9351651B2 (ja)
JP (1) JP6171355B2 (ja)
CN (1) CN103941199A (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015015628A1 (ja) * 2013-08-02 2017-03-02 株式会社日立製作所 磁場計測装置
JP6391370B2 (ja) 2014-08-29 2018-09-19 キヤノン株式会社 光ポンピング磁力計及び磁気センシング方法
JP2016080613A (ja) * 2014-10-21 2016-05-16 セイコーエプソン株式会社 磁気計測装置、ガスセル、磁気計測装置の製造方法、およびガスセルの製造方法
JP6597034B2 (ja) * 2014-12-02 2019-10-30 セイコーエプソン株式会社 磁場計測方法及び磁場計測装置
JP6521248B2 (ja) * 2014-12-02 2019-05-29 セイコーエプソン株式会社 磁場計測方法及び磁場計測装置
US11193990B2 (en) 2017-04-19 2021-12-07 Texas Instruments Incorporated Integrated microfabricated alkali vapor cell sensor with reduced heading error
US10782368B2 (en) 2017-05-31 2020-09-22 Northrop Grumman Systems Corporation Pulsed-beam atomic magnetometer system
US10823790B2 (en) * 2017-05-31 2020-11-03 Northrop Grumman Systems Corporation Pulsed-beam atomic magnetometer system
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC NEURO-ACTIVATION PROCESS AND APPARATUS
US10809342B2 (en) 2017-10-02 2020-10-20 Northrop Grumman Systems Corporation Calibration of a magnetometer system
WO2019095102A1 (zh) * 2017-11-14 2019-05-23 中国科学技术大学 基于稀土离子掺杂光学晶体的量子传感器及其用途
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
CN108717168B (zh) * 2018-05-04 2020-12-18 北京航天控制仪器研究所 一种基于光场幅度调制的标量磁场梯度测量装置及方法
CN109186578B (zh) * 2018-09-04 2021-11-05 北京航空航天大学 一种三轴一体的serf原子自旋陀螺仪
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
CN111289924A (zh) * 2018-12-10 2020-06-16 中科知影(北京)科技有限公司 多通道原子磁探测器
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
WO2021026143A1 (en) * 2019-08-06 2021-02-11 Hi Llc Systems and methods having an optical magnetometer array with beam splitters
CN111273205B (zh) * 2020-03-25 2020-12-22 中国人民解放军军事科学院国防科技创新研究院 一种基于原子磁力仪的三维空间磁场测绘装置
US11294005B2 (en) 2020-07-14 2022-04-05 Northrop Grumman Systems Corporation Synchronous light-pulse atomic magnetometer system
CN112946541B (zh) * 2021-02-02 2021-12-28 中国人民解放军军事科学院国防科技创新研究院 一种碱金属原子自旋全光学控制系统及探测方法
CN113791370A (zh) * 2021-08-12 2021-12-14 北京量子信息科学研究院 磁强计和磁场强度确定方法
CN114601465A (zh) * 2022-03-09 2022-06-10 北京航空航天大学 一种小型双光束双通道的原子磁强计系统
CN116027234A (zh) * 2023-01-11 2023-04-28 重庆理工大学 量子测量方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079054A2 (en) * 2007-09-21 2009-06-25 The Regents Of The University Of California Radio frequency atomic magnetometer
JP5178187B2 (ja) * 2007-12-28 2013-04-10 キヤノン株式会社 原子磁気センサ、及び磁気センシング方法
JP5640335B2 (ja) * 2009-06-26 2014-12-17 セイコーエプソン株式会社 磁気センサー
JP5446731B2 (ja) * 2009-10-29 2014-03-19 セイコーエプソン株式会社 磁場測定装置
JP2011106950A (ja) * 2009-11-17 2011-06-02 Seiko Epson Corp 原子励起層形成方法、原子励起層形成装置および磁場計測システム
JP5682344B2 (ja) * 2011-02-01 2015-03-11 セイコーエプソン株式会社 磁気測定装置および生体状態測定装置
CN102183735A (zh) * 2011-03-04 2011-09-14 北京交通大学 空间磁场探测器

Also Published As

Publication number Publication date
US9351651B2 (en) 2016-05-31
US20140206981A1 (en) 2014-07-24
JP2014139546A (ja) 2014-07-31
CN103941199A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
JP6171355B2 (ja) 磁場計測装置
US9964604B2 (en) Magnetic field measurement method and magnetic field measurement device for measuring and offsetting original magnetic field
JP6391370B2 (ja) 光ポンピング磁力計及び磁気センシング方法
US10215816B2 (en) Magnetic field measuring apparatus
US20150022200A1 (en) Optically pumped magnetometer and optical pumping magnetic force measuring method
JP6134092B2 (ja) 磁場計測装置
JP2009236598A (ja) 原子磁力計及び磁力計測方法
JP2017026402A (ja) 光ポンピング磁力計及び磁気センシング方法
JP2013242295A (ja) 光ポンピング磁力計及び磁気センシング方法
JP2012510609A (ja) 小型核磁気共鳴ジャイロスコープのための小型光学セル
JP5849640B2 (ja) 磁場測定装置
CN110231088B (zh) 基于量子弱测量的oam光束重心位移测量装置及方法
JP2017215225A (ja) 磁場計測装置
JP2015143669A (ja) 磁場計測装置
Doering et al. Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
JP5682344B2 (ja) 磁気測定装置および生体状態測定装置
KR101809402B1 (ko) 단일 광선을 이용한 원자 스핀 자이로스코프
Zhu Symmetry consideration in zero loop-area Sagnac interferometry at oblique incidence for detecting magneto-optic Kerr effects
JP2015099152A (ja) 磁場測定装置
JP6024114B2 (ja) 磁場測定装置
WO2011016378A1 (ja) 3次元光共振装置、偏光レーザー発振方法、偏光レーザー発振システム
JP5907234B2 (ja) 磁気測定装置および生体状態測定装置
JP2011034006A (ja) 3次元光共振器
JP2007221061A (ja) 不感域のない安定化半導体レーザジャイロ
JP2016102777A (ja) 磁場計測方法及び磁場計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees