[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6167610B2 - Thin film evaluation method - Google Patents

Thin film evaluation method Download PDF

Info

Publication number
JP6167610B2
JP6167610B2 JP2013070042A JP2013070042A JP6167610B2 JP 6167610 B2 JP6167610 B2 JP 6167610B2 JP 2013070042 A JP2013070042 A JP 2013070042A JP 2013070042 A JP2013070042 A JP 2013070042A JP 6167610 B2 JP6167610 B2 JP 6167610B2
Authority
JP
Japan
Prior art keywords
thin film
evaluation
film
evaluation method
depth direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013070042A
Other languages
Japanese (ja)
Other versions
JP2014194355A (en
Inventor
恭子 黒木
恭子 黒木
満 加納
満 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013070042A priority Critical patent/JP6167610B2/en
Publication of JP2014194355A publication Critical patent/JP2014194355A/en
Application granted granted Critical
Publication of JP6167610B2 publication Critical patent/JP6167610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、薄膜などにおける組成や膜密度の分析を行う薄膜評価方法に関する。 The present invention relates to a thin film evaluation method for analyzing composition and film density in a thin film and the like.

近年、光学部品や電子部品などの機能性材料の製造において、基板材料に1μm以下の薄膜を形成する技術(コーティング技術)が多用されている。例えば光学部品においては光の屈折率や反射率を制御するため、二酸化ケイ素(SiO2)や二酸化チタン(TiO2)などの無機系酸化物や、フッ化マグネシウム(MgF2)などの無機系フッ化物が部材表面に形成される。また、タッチパネルや有機EL表示装置の透明電極として、各種基板上に酸化インジウムスズ(ITO)が形成される。   In recent years, in the manufacture of functional materials such as optical components and electronic components, a technique (coating technique) for forming a thin film of 1 μm or less on a substrate material is frequently used. For example, in an optical component, an inorganic oxide such as silicon dioxide (SiO 2) or titanium dioxide (TiO 2) or an inorganic fluoride such as magnesium fluoride (MgF 2) is used to control the refractive index and reflectance of light. Formed on the surface. In addition, indium tin oxide (ITO) is formed on various substrates as a transparent electrode of a touch panel or an organic EL display device.

これらの薄膜は、真空蒸着やスパッタリング法などの物理蒸着法により形成されることが多い。特にスパッタリング法は蒸着膜の組成が均一で平坦、かつ膜厚が制御しやすいため100nm以下の薄膜を形成する場合に多用される。
スパッタリング法には異なる方式がいくつかあるが、概ね高真空中で、薄膜を成膜する被コーティング材とターゲットと呼ばれる薄膜原料とを対向させ両者に電圧をかけることにより、アルゴン(Ar)などのイオン化されたガスがマイナス側にバイアスされたターゲットに衝突することによって、原料粒子を弾き飛ばす現象を利用している。
These thin films are often formed by physical vapor deposition such as vacuum vapor deposition or sputtering. In particular, the sputtering method is frequently used when a thin film having a thickness of 100 nm or less is formed because the composition of the deposited film is uniform and flat and the film thickness is easy to control.
There are a number of different sputtering methods. In general, a coating material for forming a thin film and a thin film raw material called a target are opposed to each other in a high vacuum, and a voltage is applied to both. A phenomenon is utilized in which raw material particles are blown off by collision of ionized gas with a target biased to the negative side.

弾き飛ばされた原料粒子は高エネルギー状態で対向する被コーティング材に衝突し堆積する。
ところで、このように成膜された薄膜は、十分に機能が発揮されるか否か光学特性や電気特性にて判断される。さらには、これら物理的特性の由来を評価するため、膜分析が行われる。例えば、透明電極の電気特性は、ITOの膜厚や膜組成や膜密度に影響されるため、膜の観察や化学組成分析が行われる。
The repelled raw material particles collide and deposit on the opposite coating material in a high energy state.
By the way, the thin film formed in this way is determined by optical characteristics and electrical characteristics to determine whether or not the functions are sufficiently exhibited. Furthermore, membrane analysis is performed to evaluate the origin of these physical properties. For example, since the electrical characteristics of the transparent electrode are influenced by the film thickness, film composition, and film density of ITO, film observation and chemical composition analysis are performed.

薄膜の観察には、多くの場合、電子顕微鏡が用いられる。膜を被コーティング材の平面方向に観察する場合は走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いる。また、膜を被コーティング材の深さ方向に観察する場合は、ダイヤモンドナイフなどにより薄膜を深さ方向に切り出す、あるいは収束イオンビーム(Forcused Ion Beam:FIB)などにより薄膜を切削するなどして出現する断面をSEMや透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて観察する。   In many cases, an electron microscope is used for observation of the thin film. When the film is observed in the plane direction of the material to be coated, a scanning electron microscope (SEM) is used. When the film is observed in the depth direction of the material to be coated, it appears by cutting the thin film in the depth direction with a diamond knife or by cutting the thin film with a focused ion beam (FIB). The cross section to be observed is observed using a SEM or a transmission electron microscope (TEM).

また、薄膜の組成分析には、従来より、電子線を試料に当てることにより発生する各元素の特性X線を検出するエネルギー分散型X線分析(Energy Dispersive X−ray Spectrometory:EDX)やオージェ電子を検出するオージェ電子分光分析(Auger Electron Spectroscopy:AES)、または試料にX線を照射したときに発生する光電子を検出するX線光電子分光分析(X−ray Photoelectron Spectoscopy:XPS)や発生する蛍光X線のエネルギーを検出する蛍光X線分析(X−ray Fluorescence:XRF)、または試料にビスマス(Bi)イオンなどの一次イオンを照射したときに試料表面に存在する物質がイオン化された二次イオン質量を検出する二次イオン質量分析(Secondary Ion Mass Spectorometory:SIMS)、など多種多様の分析手法がある。   For composition analysis of thin films, energy dispersive X-ray spectroscopy (EDX) for detecting characteristic X-rays of each element generated by applying an electron beam to a sample, Auger electron, and the like. Electron Spectroscopy (AES) for detecting UV, X-ray Photoelectron Spectroscopy (XPS) for detecting photoelectrons generated when a sample is irradiated with X-rays, and fluorescence X generated X-ray Fluorescence (XRF) to detect the energy of the line, or when the sample was irradiated with primary ions such as bismuth (Bi) ions, the substance present on the sample surface was ionized Secondary Ion Mass detecting the following ion mass spectrometry (Secondary Ion Mass Spectorometory: SIMS), there are a wide variety of analytical techniques, such as.

これらの組成分析法は多くの場合、表層から数nmから数十nmの組成情報が得られる。しかし、薄膜の深さ方向の組成分布を分析する場合、試料表面をArイオンなどでスパッタエッチングしながら測定する必要があり、エッチングイオンのエネルギーにより深さ方向に原子のミキシングが起こり、正確な組成分布がみられない。
そのため、スパッタエッチングせずに、非破壊で深さ方向組成分布が分析できる様々な手法が開示されている。
In many cases, these composition analysis methods can obtain composition information of several nm to several tens of nm from the surface layer. However, when analyzing the composition distribution in the depth direction of a thin film, it is necessary to measure the surface of the sample while performing sputter etching with Ar ions. There is no distribution.
For this reason, various methods have been disclosed that can analyze the composition distribution in the depth direction in a non-destructive manner without performing sputter etching.

代表的な手法は、ヘリウム(He)などの軽元素イオンを高いエネルギーで試料に照射した際、後方に散乱されるイオンのエネルギー値を検出することで試料中に含まれる元素の種類や存在量を測定するラザフォード後方散乱分析(Rutherford Buckscattering Spectrometry:RBS)や高エネルギー軽元素イオンにより弾き飛ばされる原子やイオンを検出する反跳原子検出分析(Elastic Recoiled Detection Analysis:ERDA)である。
RBS分析やERDA分析は、前述のように軽元素イオンを照射することで測定が出来る。そのため、標準試料の準備が要らない、前処理が要らない、非破壊であるなどの特徴があり、また、同時に面密度を測定できるため、薄膜分析では重要な位置づけとなっている。
A typical method is to detect the energy value of ions scattered backward when a sample is irradiated with light element ions such as helium (He) at high energy, and the types and abundances of elements contained in the sample. Are Rutherford Backscattering Spectrometry (RBS), and Recoil Detection Detection Analysis (ERDA) to detect atoms and ions repelled by high energy light element ions.
RBS analysis and ERDA analysis can be measured by irradiating light element ions as described above. Therefore, it has features such as no preparation of a standard sample, no pretreatment, and non-destructive characteristics, and at the same time, the surface density can be measured, so it is an important position in thin film analysis.

RBS測定装置においては、近年深さ方向の分解能が1nm程度の測定装置も開示されている(特許文献1参照)。この装置は、高エネルギーイオンビームを用いて深い位置の情報を高エネルギー分解能で分析することが可能である。入射ビーム軸に入射方向上流側から散乱イオン検出器、アパーチャ、試料が配設され、入射ビーム軸に平行な磁場が印加される。散乱イオン検出器及びアパーチャは、その中心部に開口部を有しており、入射ビームは開口部を通過して試料を照射することができる。イオンビームで照射された試料から後方散乱した散乱イオンは磁場により収束され、アパーチャの開口部を抜けた散乱イオンが検出器で検出される。磁場強度、又は試料位置、又はアパーチャと検出器との位置を変化させると、あるエネルギーを有する散乱イオンのみを検出器で検出できるので、散乱イオンのエネルギースペクトルを測定することができる。   As an RBS measuring apparatus, a measuring apparatus having a resolution in the depth direction of about 1 nm has been recently disclosed (see Patent Document 1). This apparatus can analyze deep position information with high energy resolution using a high energy ion beam. A scattered ion detector, an aperture, and a sample are disposed on the incident beam axis from the upstream side in the incident direction, and a magnetic field parallel to the incident beam axis is applied. The scattered ion detector and the aperture have an opening at the center thereof, and the incident beam can pass through the opening to irradiate the sample. The scattered ions back-scattered from the sample irradiated with the ion beam are converged by the magnetic field, and the scattered ions passing through the aperture opening are detected by the detector. When the magnetic field strength, the sample position, or the position between the aperture and the detector is changed, only the scattered ions having a certain energy can be detected by the detector, so that the energy spectrum of the scattered ions can be measured.

特許第3273844号Japanese Patent No. 3273844

しかしながら、RBS装置は薄膜中の原子数を、高分解能で測定できるものの、薄膜の組成に深さ方向に濃度勾配が有る場合、深さ方向のどの位置に対象原子が有るのか判定できない問題があった。
本発明は、このような事情を鑑みてなされたものであり、深さ方向の組成や密度分布を測定できる薄膜評価方法を提供することを目的とする。
However, although the RBS apparatus can measure the number of atoms in the thin film with high resolution, when the composition of the thin film has a concentration gradient in the depth direction, there is a problem that it cannot be determined at which position in the depth direction the target atom is present. It was.
The present invention has been made in view of such circumstances, and an object thereof is to provide a thin-film evaluating how can measure the composition and density distribution in the depth direction.

本発明の態様は、評価対象の薄膜(例えば図1に示す、薄膜3)の層間に、当該評価対象の薄膜とは異なる特性を有し前記評価対象の薄膜の深さ方向の指標となる指標用薄膜が配置された積層体を生成するステップと、前記積層体を前記評価対象の薄膜の深さ方向に切断して薄片を切り出すステップと、切り出した前記薄片の断面を透過電子顕微鏡で観察測長することにより、前記評価対象の薄膜および前記指標用薄膜の膜厚を得るステップと、前記積層体の表面に高エネルギーの原子イオンを照射した際に前方あるいは後方散乱する原子イオンのエネルギー値を測定し、前記薄片から得た前記評価対象の薄膜および前記指標用薄膜の膜厚と前記エネルギー値とから、前記評価対象の薄膜の前記深さ方向の評価を行うステップと、を備えることを特徴とする薄膜評価方法、である。
前記積層体の、透過電子像および反射電子像によるコントラスト差、または電子線照射により発生する特性X線を検出することによる元素分析、あるいは、透過電子線エネルギー損失を検出することによる元素分析、を用いて前記評価対象の薄膜と前記指標用薄膜とを判別するようにしてもよい。
前記積層体の薄片の評価項目として、前記薄膜の深さ方向の組成および密度を求めるものであってよい。
前記評価対象の薄膜は、金属あるいは半金属を有する無機化合物であってよい。
One aspect of the present invention (shown in example 1, a thin film 3) evaluation of thin film layers of a depth direction of the index of a thin film of the evaluated possess properties different from the thin film of the evaluation A step of generating a laminated body in which a thin film for an indicator is arranged, a step of cutting the laminated body in a depth direction of the thin film to be evaluated and cutting out a thin piece, and a cross section of the cut out thin piece observed with a transmission electron microscope The step of obtaining the thickness of the thin film to be evaluated and the thin film for index by measuring the length, and the energy value of the atomic ions that are scattered forward or backward when the surface of the laminate is irradiated with high-energy atomic ions It was measured, and a film thickness of the thin film and the index thin film of the evaluation obtained from the flakes and the energy value, and a step of evaluating the depth direction of the thin film of the evaluation Thin film evaluation method characterized the door is.
Elemental analysis by detecting the contrast difference between the transmission electron image and reflection electron image of the laminate, or characteristic X-rays generated by electron beam irradiation, or elemental analysis by detecting transmission electron beam energy loss, It is also possible to distinguish between the thin film to be evaluated and the thin film for index.
As an evaluation item of the thin piece of the laminate, the composition and density in the depth direction of the thin film may be obtained.
The thin film to be evaluated may be an inorganic compound having a metal or a metalloid.

前記評価対象の薄膜を構成する前記無機化合物は、金属あるいは半金族の単体、もしくは合金、もしくは酸化物、もしくは窒化物、もしくは炭化物、もしくは硫化物であってよい。
前記指標用薄膜は、前記評価対象の薄膜に含まれる元素とは異なる金属あるいは半金属からなる無機化合物であってよい。
前記指標用薄膜を構成する前記無機化合物は、金属あるいは半金属の単体、もしくは合金、もしくは酸化物、もしくは窒化物、もしくは炭化物、もしくは硫化物であってよい。
The inorganic compound constituting the thin film to be evaluated may be a metal, a semi-metal group, an alloy, an oxide, a nitride, a carbide, or a sulfide.
The indicator thin film may be an inorganic compound made of a metal or a metalloid different from the element contained in the thin film to be evaluated.
The inorganic compound constituting the indicator thin film may be a metal or a semimetal alone, an alloy, an oxide, a nitride, a carbide, or a sulfide.

前記評価対象の薄膜および前記指標用薄膜は、スパッタリング法にて成膜されるものであってよい。 The thin film and the index for the thin film to be evaluated, not good to be those that are deposited by sputtering.

本発明の一態様によれば、薄膜中に指標となる指標用薄膜層を形成しその指標用膜層により薄膜を断面方向に分割することで、深さ方向に濃度勾配や密度差がある薄膜について、組成や密度分布を高分解能で測定することが可能となる。   According to one embodiment of the present invention, an index thin film layer serving as an index is formed in a thin film, and the thin film is divided in the cross-sectional direction by the index film layer, thereby having a concentration gradient or density difference in the depth direction It is possible to measure the composition and density distribution with high resolution.

本発明の実施形態に適用される、薄膜評価用構造体の構成を示す断面図である。It is sectional drawing which shows the structure of the structure for thin film evaluation applied to embodiment of this invention. 薄膜評価用構造体のうち薄膜3および超薄膜4の積層構成を説明する図である。It is a figure explaining the laminated structure of the thin film 3 and the ultra-thin film 4 among the structures for thin film evaluation.

以下、本発明の実施形態について図面を参照して説明する。
<評価用構造体の構造>
図1は、本発明にかかる薄膜評価用構造体1の一例を示す構成図であって、側面図である。
図1に示すように、薄膜評価用構造体1は、基板2上に、評価対象の薄膜3が成膜され、薄膜3の中間に指標となる超薄膜4が成膜された構成となっている。つまり、図1に示すように、評価対象となる薄膜3とこの薄膜3よりも膜厚の薄い、指標となる超薄膜4とが交互に積層されてなる。
ここで、基板2の材質は、ガラス、もしくは金属、もしくは樹脂などがあげられる。
Embodiments of the present invention will be described below with reference to the drawings.
<Structure of evaluation structure>
FIG. 1 is a configuration diagram showing an example of a thin film evaluation structure 1 according to the present invention, and is a side view.
As shown in FIG. 1, the thin film evaluation structure 1 has a structure in which a thin film 3 to be evaluated is formed on a substrate 2 and an ultrathin film 4 serving as an index is formed in the middle of the thin film 3. Yes. That is, as shown in FIG. 1, the thin films 3 to be evaluated and the ultrathin films 4 that are thinner than the thin films 3 and are the indicators are alternately stacked.
Here, examples of the material of the substrate 2 include glass, metal, or resin.

図2は、薄膜3と超薄膜4との積層構成を説明する図である。
第一の薄膜層31はスパッタリング法で形成される。第一の薄膜層31がSiO2などの絶縁膜である場合は、ターゲット表面の帯電を避けるため高周波(RF)スパッタリング法やイオンビームスパッタリング法にて成膜されることが望ましい。第一の薄膜層31が金属単体あるいは合金などの導電膜である場合は、直流(DC)スパッタリング法でも成膜可能である。
FIG. 2 is a diagram for explaining a laminated structure of the thin film 3 and the ultrathin film 4.
The first thin film layer 31 is formed by a sputtering method. In the case where the first thin film layer 31 is an insulating film such as SiO2, it is desirable to form the film by a radio frequency (RF) sputtering method or an ion beam sputtering method in order to avoid charging of the target surface. In the case where the first thin film layer 31 is a conductive film such as a single metal or an alloy, it can also be formed by direct current (DC) sputtering.

第一の薄膜層31が成膜されたならば、第一の薄膜層31のスパッタリングは停止され、続いて、第一の薄膜層31の上に、第一の超薄膜層41がスパッタリングされる。第一の超薄膜層41が絶縁膜である場合は第一の薄膜層31と同様にRFスパッタリング法やイオンビームスパッタリング法で成膜されるが、第一の超薄膜層41が導電膜である場合は第一の薄膜層31と同様にDCスパッタリング法でも成膜可能である。   When the first thin film layer 31 is formed, the sputtering of the first thin film layer 31 is stopped, and then the first ultra thin film layer 41 is sputtered on the first thin film layer 31. . When the first ultrathin film layer 41 is an insulating film, it is formed by RF sputtering or ion beam sputtering as with the first thin film layer 31, but the first ultrathin film layer 41 is a conductive film. In this case, as with the first thin film layer 31, the film can be formed by DC sputtering.

第一の超薄膜層41の組成は、第一の薄膜層31を構成する元素とは異なる元素からなり、その後に成膜される第二の薄膜層32の組成や密度に影響を与えないよう、膜厚は第一の薄膜層31よりも薄く、好ましくは5nm以下であることが望ましい。
次に、形成された第一の超薄膜層41の上に第二の薄膜層32を成膜する。第二の薄膜層32の成膜手法は第一の薄膜層31と同様に行われる。
The composition of the first ultrathin film layer 41 is made of an element different from the elements constituting the first thin film layer 31 so as not to affect the composition and density of the second thin film layer 32 formed thereafter. The film thickness is thinner than the first thin film layer 31, and preferably 5 nm or less.
Next, the second thin film layer 32 is formed on the formed first ultra thin film layer 41. The second thin film layer 32 is formed in the same manner as the first thin film layer 31.

続いて第二の薄膜層32の上に第二の超薄膜層42を成膜する。成膜手法は第一の超薄膜層41と同様に行われる。このようにして、薄膜層と超薄膜層とが交互に成膜されることにより、薄膜3と超薄膜4とが交互に積層された薄膜評価用構造体1が作製される。
なお、評価対象の薄膜3としては、金属、あるいは半金属を有する無機化合物などを適用することができる。無機化合物としては、金属あるいは半金属の、単体、もしくは合金、もしくは酸化物、もしくは窒化物、もしくは炭化物、もしくは硫化物などを適用することができる。
Subsequently, a second ultrathin film layer 42 is formed on the second thin film layer 32. The film forming method is performed in the same manner as the first ultrathin film layer 41. In this way, by forming the thin film layer and the ultra thin film layer alternately, the thin film evaluation structure 1 in which the thin film 3 and the ultra thin film 4 are alternately stacked is manufactured.
In addition, as the thin film 3 to be evaluated, a metal, an inorganic compound having a metalloid, or the like can be applied. As the inorganic compound, a metal, a semimetal, a simple substance, an alloy, an oxide, a nitride, a carbide, a sulfide, or the like can be used.

また、指標となる超薄膜4としては、薄膜3に含まれる元素とは異なる金属あるいは半金属からなる無機化合物などを適用することができる。無機化合物としては、金属あるいは半金属の単体、もしくは合金、もしくは酸化物、もしくは窒化物、もしくは炭化物、もしくは硫化物などを適用することができる。なお、超薄膜4は、各層で異なる膜厚にすると、各層の判別が容易になるため、好ましい。   Moreover, as the ultrathin film 4 serving as an index, an inorganic compound made of a metal or a semimetal different from the element contained in the thin film 3 can be applied. As the inorganic compound, a simple substance of metal or metalloid, an alloy, an oxide, a nitride, a carbide, or a sulfide can be used. Note that it is preferable that the ultrathin film 4 has a different film thickness in each layer because it is easy to distinguish each layer.

<評価方法>
本発明にかかる薄膜の深さ方向における組成および密度を求める評価方法は、薄膜評価用構造体1を用い、薄膜評価用構造体1の断面薄片を透過型電子顕微鏡にて観察することにより薄膜3および超薄膜4の膜厚情報を得た上で、薄膜評価用構造体1に高いエネルギーの原子イオンを照射した際に後方散乱する原子イオンのエネルギー値を測定し、両者の情報を重ね合わせることで実現される。
<Evaluation method>
The evaluation method for determining the composition and density in the depth direction of the thin film according to the present invention uses the thin film evaluation structure 1 and the thin film 3 by observing a cross-sectional slice of the thin film evaluation structure 1 with a transmission electron microscope. In addition, after obtaining the film thickness information of the ultrathin film 4, the energy value of the backscattered atomic ions when the thin film evaluation structure 1 is irradiated with the high energy atomic ions is measured, and the information of both is superimposed. It is realized with.

具体的に、薄膜評価用構造体1は、FIBなどにより断面薄片を切り出し透過型電子顕微鏡にて観察される。透過電子顕微鏡画像は構成元素が異なると明暗コントラストが発生するため、薄膜3および超薄膜4が分離認識され、それぞれの膜厚が測長出来る。コントラストが発生しづらい場合は、透過電子顕微鏡に設置されるEDX(エネルギー分散型X線分光法)により薄膜3と超薄膜4を層分離しても良い。また、透過電子線エネルギー損失を検出することによる元素分析を用いて薄膜3と超薄膜4とを判別するようにしてもよい。   Specifically, the thin-film evaluation structure 1 is observed by a transmission electron microscope by cutting out a cross-sectional slice with FIB or the like. In the transmission electron microscope image, since the contrast is generated when the constituent elements are different, the thin film 3 and the ultrathin film 4 are recognized separately, and the respective film thicknesses can be measured. If it is difficult to generate contrast, the thin film 3 and the ultrathin film 4 may be separated into layers by EDX (energy dispersive X-ray spectroscopy) installed in a transmission electron microscope. Further, the thin film 3 and the ultrathin film 4 may be discriminated using elemental analysis by detecting transmission electron beam energy loss.

また、薄膜評価用構造体1は表面に高いエネルギーの原子イオンが照射されることにより、後方散乱する原子イオンのエネルギー値を求めることができる。入射イオンには、H+イオン、He+イオン、などの軽元素イオンを用いる。軽元素イオンの入射エネルギーは測定のエネルギー分解能を考慮し、1MeV以下であることが望ましい。また、軽元素イオンの入射角および散乱角は、入射エネルギーや薄膜3と超薄膜4の組成および膜厚により制限されるため、適宜調整する。   Moreover, the structure 1 for thin film evaluation can obtain | require the energy value of the backscattered atomic ion by irradiating the surface with the high energy atomic ion. Light element ions such as H + ions and He + ions are used as incident ions. The incident energy of light element ions is preferably 1 MeV or less in consideration of the energy resolution of measurement. In addition, the incident angle and scattering angle of light element ions are limited by the incident energy and the composition and film thickness of the thin film 3 and ultrathin film 4, and are adjusted accordingly.

原子イオンの後方散乱により得られたエネルギースペクトルは、薄膜3に含まれる元素により散乱されるか超薄膜4に含まれる元素により散乱されるかにより、異なるエネルギー値となるため、存在する元素により異なる位置にピークが出現する。
このとき、各元素による散乱エネルギーは膜の深さ方向に伴いそれぞれ減衰するため、エネルギースペクトルはある程度の幅を持つ。さらに、薄膜3および超薄膜4の深さ方向において、それぞれの元素が存在する位置に応じて各元素のピーク強度が変化するため、元素が存在しない領域ではエネルギー強度が極端に落ちる。
The energy spectrum obtained by the backscattering of atomic ions has different energy values depending on whether the energy spectrum is scattered by the element contained in the thin film 3 or the element contained in the ultrathin film 4, and therefore differs depending on the existing element. A peak appears at the position.
At this time, since the scattered energy by each element attenuates with the depth direction of the film, the energy spectrum has a certain width. Furthermore, in the depth direction of the thin film 3 and the ultrathin film 4, the peak intensity of each element changes depending on the position where each element exists, so that the energy intensity extremely decreases in a region where no element exists.

つまり、薄膜3に含まれる元素により散乱された軽元素イオンエネルギースペクトルには山と谷が生じ、スペクトルの山の部分に相当する部分が薄膜3に含まれる元素分布を示すことになる。
またこの分布から求めた薄膜3の面密度を、透過電子顕微鏡による観察で得た膜厚で割ることにより、密度が算出される。
このようにして、薄膜3中に指標となる超薄膜4を形成しその超薄膜4により薄膜3を断面方向に分割することで深さ方向の組成や密度分布を高分解能で評価することが可能となる。
That is, the light element ion energy spectrum scattered by the elements contained in the thin film 3 has peaks and valleys, and the portion corresponding to the peak portion of the spectrum shows the element distribution contained in the thin film 3.
Further, the density is calculated by dividing the surface density of the thin film 3 obtained from this distribution by the film thickness obtained by observation with a transmission electron microscope.
In this way, by forming the ultrathin film 4 as an index in the thin film 3 and dividing the thin film 3 in the cross-sectional direction by the ultrathin film 4, it is possible to evaluate the composition and density distribution in the depth direction with high resolution. It becomes.

次に、上記の実施形態に基づいて実現した薄膜の組成および密度評価の具体的な実施例について説明する。
まず、薄膜評価用構造体1を作成した。
薄膜評価用構造体1の基板にはトリアセチルセルロース(TAC)シートを用い、薄膜3として酸化アルミニウム(AlOx)をスパッタリング法にて成膜した。ターゲットにはAlターゲットを使用し、スパッタ装置はマクネトロンスパッタ装置を用いて成膜を行った。
Next, specific examples of thin film composition and density evaluation realized based on the above embodiment will be described.
First, a thin film evaluation structure 1 was prepared.
A triacetyl cellulose (TAC) sheet was used for the substrate of the thin film evaluation structure 1, and aluminum oxide (AlOx) was formed as the thin film 3 by a sputtering method. An Al target was used as a target, and a film was formed by using a magnetron sputtering apparatus as a sputtering apparatus.

TACシートを該スパッタ装置の成膜室の基板ホルダーに載置し、100℃に保持し、装置を密閉した後、真空ポンプで排気を行った。放電用のガスとしてAr、酸素(O2)をそれぞれマスフローコントローラで流量を調整してスパッタ成膜室に導入した。直流電源の放電パワーを2.5kW、アルゴンガスを50sccm、酸素ガスを50sccmの流量とし、成膜室の圧力を0.5Paに保持し、1分間成膜を行った。成膜された酸化アルミニウムAlOxの膜厚は、水晶振動子を利用した膜厚計の表示で約6nmであった。   The TAC sheet was placed on the substrate holder in the film forming chamber of the sputtering apparatus, held at 100 ° C., and the apparatus was sealed, and then evacuated with a vacuum pump. Ar and oxygen (O 2) as discharge gases were introduced into the sputter deposition chamber with their flow rates adjusted by a mass flow controller. The film was formed for 1 minute while the discharge power of the DC power supply was 2.5 kW, the argon gas was 50 sccm, the oxygen gas was 50 sccm, and the pressure in the film formation chamber was maintained at 0.5 Pa. The film thickness of the formed aluminum oxide AlOx was about 6 nm as indicated by a film thickness meter using a crystal resonator.

続いて、超薄膜4としてチタン金属(Ti)を酸化アルミニウムAlOx成膜と同じマクネトロンスパッタ装置に取り付けられたTiターゲットを使用して成膜した。放電用のガスとしてアルゴンArを用いスパッタ成膜を行った。このスパッタ成膜は直流電源の放電パワーを2.5kW、アルゴンガスの流量を100sccmとし、成膜室の圧力を0.5Paに保持し、30秒間成膜を行った。成膜されたTiの膜厚は水晶振動子を利用した膜厚計の表示で2nmであった。
続いて、Tiを成膜したTACシートに、前記と同様に、6nmの酸化アルミニウムAlOxを成膜し、更に2nmのTiを成膜し、最後に6nmの酸化アルミニウムAlOxを成膜した。これにより、本発明の薄膜評価用構造体1が作成された。
Subsequently, titanium metal (Ti) was deposited as an ultrathin film 4 using a Ti target attached to the same macetron sputtering apparatus as the aluminum oxide AlOx film. Sputter film formation was performed using argon Ar as a discharge gas. The sputtering film formation was performed for 30 seconds while the discharge power of the DC power source was 2.5 kW, the flow rate of argon gas was 100 sccm, the pressure in the film formation chamber was maintained at 0.5 Pa. The film thickness of the formed Ti was 2 nm as indicated by a film thickness meter using a crystal resonator.
Subsequently, in the same manner as described above, 6 nm of aluminum oxide AlOx was formed on the TAC sheet on which Ti was formed, and further 2 nm of Ti was formed, and finally 6 nm of aluminum oxide AlOx was formed. Thereby, the structure 1 for thin film evaluation of this invention was created.

次に、酸化アルミニウムAlOxの膜厚を得るために、作成された薄膜評価用構造体1を透過電子顕微鏡により断面観察した。薄膜評価用構造体1はFIBにより薄膜評価用構造体1の深さ方向へガリウム(Ga)イオンビームにより切削し、約0.1μmの薄片を切り出した。この薄片を透過電子顕微鏡により観察撮影したところ、明視野像において像のコントラストにより3層分の酸化アルミニウムAlOxと2層分のTiが明確に分離できた。この像から、酸化アルミニウムAlOxの膜厚を測長したところ、それぞれ、基板側より数えて第一の酸化アルミニウムAlOxは6.1nm、第二の酸化アルミニウムAlOxは6.0nm、第三の酸化アルミニウムAlOxは6.0nmであった。   Next, in order to obtain the film thickness of the aluminum oxide AlOx, the prepared thin film evaluation structure 1 was observed by a transmission electron microscope. The thin film evaluation structure 1 was cut by FIB in the depth direction of the thin film evaluation structure 1 with a gallium (Ga) ion beam, and a thin piece of about 0.1 μm was cut out. When this thin piece was observed and photographed with a transmission electron microscope, three layers of aluminum oxide AlOx and two layers of Ti could be clearly separated by the contrast of the image in a bright field image. From this image, when the film thickness of the aluminum oxide AlOx was measured, the first aluminum oxide AlOx counted from the substrate side was 6.1 nm, the second aluminum oxide AlOx was 6.0 nm, and the third aluminum oxide was measured. AlOx was 6.0 nm.

次に、酸化アルミニウムAlOxの組成を得るために、作成された薄膜評価用構造体1をRBS分析した。入射イオンとしてHe+イオンビームを用い、入射エネルギー500keV、ビーム電流15nA、入射量240μC、入射角45度、散乱角90度の条件で評価した。このとき、酸化アルミニウムAlOxの組成は、それぞれ、基板より数えて第一のAlOxはx=1.8であり、第二および第三のAlOxはx=1.4であった。
また、このとき、透過電子顕微鏡の観察測長から得られた膜厚情報を元に酸化アルミニウムAlOxの密度を計算すると、基板側より数えて第一の酸化アルミニウムAlOxは2.4g/cm2であり、第二および第三の酸化アルミニウムAlOxは2.9g/cm3であった。
Next, in order to obtain the composition of aluminum oxide AlOx, the produced thin film evaluation structure 1 was subjected to RBS analysis. A He + ion beam was used as incident ions, and evaluation was performed under conditions of an incident energy of 500 keV, a beam current of 15 nA, an incident amount of 240 μC, an incident angle of 45 degrees, and a scattering angle of 90 degrees. At this time, the composition of aluminum oxide AlOx was counted from the substrate, the first AlOx was x = 1.8, and the second and third AlOx were x = 1.4.
Further, at this time, when the density of the aluminum oxide AlOx is calculated based on the film thickness information obtained from the observation length measurement of the transmission electron microscope, the first aluminum oxide AlOx is 2.4 g / cm 2 counted from the substrate side. The second and third aluminum oxides AlOx were 2.9 g / cm3.

このように、本発明の評価方法により、スパッタ成膜初期の酸化アルミニウムAlOxの組成や密度と、膜がある程度成長した酸化アルミニウムAlOxのそれとは異なる結果を得た。
本発明に係る積層体からなる薄膜評価用構造体1の実施形態について図面を参照して詳述してきたが、本発明の具体的な構成は上述した実施形態の内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲の設計の変更等があっても、それらは本発明に含まれる。
Thus, by the evaluation method of the present invention, the result was different from the composition and density of aluminum oxide AlOx at the initial stage of sputtering film formation and that of aluminum oxide AlOx with a film grown to some extent.
The embodiment of the thin film evaluation structure 1 made of a laminate according to the present invention has been described in detail with reference to the drawings, but the specific configuration of the present invention is not limited to the contents of the above-described embodiment. Even if there is a design change or the like without departing from the gist of the present invention, these are included in the present invention.

1 薄膜評価用構造体
2 基板
3 薄膜
31 第一の薄膜層
32 第二の薄膜層
4 超薄膜
41 第一の超薄膜層
42 第二の超薄膜層
DESCRIPTION OF SYMBOLS 1 Structure for thin film evaluation 2 Substrate 3 Thin film 31 First thin film layer 32 Second thin film layer 4 Ultra thin film 41 First ultra thin film layer 42 Second ultra thin film layer

Claims (8)

評価対象の薄膜の層間に、当該評価対象の薄膜とは異なる特性を有し前記評価対象の薄膜の深さ方向の指標となる指標用薄膜が配置された積層体を生成するステップと、Generating a laminate in which an index thin film having a property different from that of the evaluation target thin film and serving as an index in the depth direction of the evaluation target thin film is disposed between layers of the evaluation target thin film;
前記積層体を前記評価対象の薄膜の深さ方向に切断して薄片を切り出すステップと、  Cutting the laminate in the depth direction of the thin film to be evaluated to cut out a slice; and
切り出した前記薄片の断面を透過電子顕微鏡で観察測長することにより、前記評価対象の薄膜および前記指標用薄膜の膜厚を得るステップと、  Obtaining a film thickness of the thin film for evaluation and the thin film for indicator by observing and measuring the cross section of the sliced piece with a transmission electron microscope; and
前記積層体の表面に高エネルギーの原子イオンを照射した際に前方あるいは後方散乱する原子イオンのエネルギー値を測定し、前記薄片から得た前記評価対象の薄膜および前記指標用薄膜の膜厚と前記エネルギー値とから、前記評価対象の薄膜の前記深さ方向の評価を行うステップと、を備えることを特徴とする薄膜評価方法。  When the surface of the laminate is irradiated with high-energy atomic ions, the energy value of atomic ions that are scattered forward or backward is measured, and the film thickness of the evaluation target thin film and the indicator thin film obtained from the flakes And evaluating the depth direction of the thin film to be evaluated from an energy value.
前記積層体の、透過電子像および反射電子像によるコントラスト差、または電子線照射により発生する特性X線を検出することによる元素分析、あるいは、透過電子線エネルギー損失を検出することによる元素分析、を用いて前記評価対象の薄膜と前記指標用薄膜とを判別することを特徴とする請求項に記載の薄膜評価方法。 Elemental analysis by detecting the contrast difference between the transmission electron image and reflection electron image of the laminate, or characteristic X-rays generated by electron beam irradiation, or elemental analysis by detecting transmission electron beam energy loss, The thin film evaluation method according to claim 1 , wherein the thin film to be evaluated is discriminated from the thin film for index. 前記評価対象の薄膜の評価項目として、前記薄膜の深さ方向の組成および密度を求めることを特徴とする請求項1又は2に記載の薄膜評価方法。 As evaluation items of a thin film of the evaluation object, a thin film evaluation method according to claim 1 or 2, characterized in that to determine the composition and density in the depth direction of the thin film. 前記評価対象の薄膜は、金属あるいは半金属を有する無機化合物であることを特徴とする請求項1から請求項3のいずれか一項に記載の薄膜評価方法。 The thin film evaluation method according to any one of claims 1 to 3, wherein the thin film to be evaluated is an inorganic compound having a metal or a metalloid. 前記評価対象の薄膜を構成する前記無機化合物は、金属あるいは半金族の単体、もしくは合金、もしくは酸化物、もしくは窒化物、もしくは炭化物、もしくは硫化物であることを特徴とする請求項4に記載の薄膜評価方法。 The inorganic compound constituting the film of the evaluation object, according to claim 4, characterized in that a metal or semi-metal single or alloy, or oxide, or nitrides or carbides or sulfides Thin film evaluation method. 前記指標用薄膜は、前記評価対象の薄膜に含まれる元素とは異なる金属あるいは半金属からなる無機化合物であることを特徴とする請求項または請求項5に記載の薄膜評価方法。 The index thin film is a thin film evaluation method according to claim 4 or claim 5, characterized in that the elements contained in the thin film of the evaluation is an inorganic compound made of different metal or metalloid. 前記指標用薄膜を構成する前記無機化合物は、金属あるいは半金属の単体、もしくは合金、もしくは酸化物、もしくは窒化物、もしくは炭化物、もしくは硫化物であることを特徴とする請求項6に記載の薄膜評価方法。 The inorganic compound constituting the thin film for the indicator, thin film according to claim 6, characterized in that the metal or elemental metalloid, or alloys or oxides, or nitrides or carbides or sulfides Evaluation method. 前記評価対象の薄膜および前記指標用薄膜は、スパッタリング法にて成膜されることを特徴とする請求項から請求項のいずれか1項に記載の薄膜評価方法。 The evaluation thin film and the indicator for thin film target, a thin film evaluation method as claimed in any one of claims 7, characterized in that it is formed by a sputtering method.
JP2013070042A 2013-03-28 2013-03-28 Thin film evaluation method Expired - Fee Related JP6167610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070042A JP6167610B2 (en) 2013-03-28 2013-03-28 Thin film evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070042A JP6167610B2 (en) 2013-03-28 2013-03-28 Thin film evaluation method

Publications (2)

Publication Number Publication Date
JP2014194355A JP2014194355A (en) 2014-10-09
JP6167610B2 true JP6167610B2 (en) 2017-07-26

Family

ID=51839700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070042A Expired - Fee Related JP6167610B2 (en) 2013-03-28 2013-03-28 Thin film evaluation method

Country Status (1)

Country Link
JP (1) JP6167610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250387B1 (en) * 2018-06-21 2021-05-10 주식회사 엘지화학 Method for quantifying amine compound forming active layer of separation membrane before preparing it, method for quantifying polyamide or residue amine compound in active layer of separation membrane, and methode for determining creteria for determing conditions or conditions for preparing active layer of separation membrane
CN110146362B (en) * 2019-06-18 2021-10-29 安徽理工大学 Device and method for preparing true triaxial rock-soil test piece with different fracture geometric parameters
CN115170572B (en) * 2022-09-08 2022-11-08 山东瑞峰新材料科技有限公司 BOPP composite film surface gluing quality monitoring method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053012A (en) * 1991-06-24 1993-01-08 Matsushita Electric Ind Co Ltd Observation method for use in scan-type electronic microscope
JPH05256797A (en) * 1992-03-16 1993-10-05 Sumitomo Metal Mining Co Ltd Inspecting method for photomagnetic recording medium
JP3273844B2 (en) * 1993-12-27 2002-04-15 株式会社神戸製鋼所 Analyzer using scattered ions
JPH08226903A (en) * 1995-02-21 1996-09-03 Sumitomo Electric Ind Ltd Sample for rbs measurement and analysis of its composition
JPH1125898A (en) * 1997-05-08 1999-01-29 Hitachi Ltd Evaluation method for resolving power of electron microscope and sample for it
JP2001264220A (en) * 2000-03-15 2001-09-26 Jeol Ltd Reference sample for focused ion beam device
US7166838B1 (en) * 2005-05-23 2007-01-23 Kla-Tencor Technologies Corporation X-ray imaging for patterned film measurement
US7331714B2 (en) * 2005-09-29 2008-02-19 Uchicago Argonne, Llc Optomechanical structure for a multifunctional hard x-ray nanoprobe instrument
JP2007256055A (en) * 2006-03-23 2007-10-04 Seiko Epson Corp Observation sample and manufacturing method of the observation sample
JP5004072B2 (en) * 2006-05-17 2012-08-22 学校法人慶應義塾 Ion irradiation effect evaluation method, process simulator and device simulator
US7560692B2 (en) * 2006-12-28 2009-07-14 International Business Machines Corporation Method of TEM sample preparation for electron holography for semiconductor devices
JP2008256560A (en) * 2007-04-05 2008-10-23 Hitachi High-Technologies Corp Thin film sample and method of manufacturing the same
JP4966719B2 (en) * 2007-04-11 2012-07-04 株式会社日立ハイテクノロジーズ Standard member for calibration, manufacturing method thereof, and electron beam apparatus using the same
JP6586720B2 (en) * 2013-11-14 2019-10-09 凸版印刷株式会社 Thin film evaluation structure and thin film evaluation method

Also Published As

Publication number Publication date
JP2014194355A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
Greczynski et al. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers
Lim et al. Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect
Nakao et al. Effects of Ar gas pressure on microstructure of DLC films deposited by high-power pulsed magnetron sputtering
Wang et al. Deuterium retention in tungsten films deposited by magnetron sputtering
JP6167610B2 (en) Thin film evaluation method
Bussell et al. The effect of RF plasma power on remote plasma sputtered AZO thin films
Khatir et al. Coating diamond-like carbon films on polymer substrates by inductively coupled plasma assisted sputtering
Haye et al. Wide range investigation of duty cycle and frequency effects on bipolar magnetron sputtering of chromium nitride
Wang et al. Secondary electron emission characteristics of nanostructured silver surfaces
Bundesmann et al. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes
Priebe et al. Potential of gas-assisted time-of-flight secondary ion mass spectrometry for improving the elemental characterization of complex metal-based systems
Jamil et al. Atmospheric pressure glow discharge (APGD) plasma generation and surface modification of aluminum and silicon si (100)
West et al. Influence of inert gas species on the growth of silver and molybdenum films via a magnetron discharge
JP6586720B2 (en) Thin film evaluation structure and thin film evaluation method
Crespi et al. Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on copper
Guenther Nonoptical characterization of optical coatings
Rassinfosse et al. Using ammonia for reactive magnetron sputtering, a possible alternative to HiPIMS?
Greczynski et al. Native target chemistry during reactive dc magnetron sputtering studied by ex-situ x-ray photoelectron spectroscopy
Valerini et al. Optical function evolution of ion-assisted ZrN films deposited by sputtering
JP2018083971A (en) Magnetron sputtering device, and method for forming a transparent electrically conductive oxide film
Imashuku In situ determination of sputtered Ni–Cu film composition from emission intensities
Borges et al. Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film's properties
Fazio et al. Depth-resolved study of hydrogen-free amorphous carbon films on stainless steel
Imashuku In situ compositional analysis of ZnO films deposited using sputtering
Went et al. Electron Rutherford back‐scattering case study: oxidation and ion implantation of aluminium foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees