JP6167358B2 - Laser annealing apparatus and laser annealing method - Google Patents
Laser annealing apparatus and laser annealing method Download PDFInfo
- Publication number
- JP6167358B2 JP6167358B2 JP2012080706A JP2012080706A JP6167358B2 JP 6167358 B2 JP6167358 B2 JP 6167358B2 JP 2012080706 A JP2012080706 A JP 2012080706A JP 2012080706 A JP2012080706 A JP 2012080706A JP 6167358 B2 JP6167358 B2 JP 6167358B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- laser beam
- pulse
- amorphous silicon
- silicon film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005224 laser annealing Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 20
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 46
- 230000003287 optical effect Effects 0.000 claims description 28
- 238000000137 annealing Methods 0.000 claims description 24
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000000758 substrate Substances 0.000 description 13
- 238000005286 illumination Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/354—Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02686—Pulsed laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/115—Q-switching using intracavity electro-optic devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2383—Parallel arrangements
- H01S3/2391—Parallel arrangements emitting at different wavelengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/56—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0057—Temporal shaping, e.g. pulse compression, frequency chirping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1611—Solid materials characterised by an active (lasing) ion rare earth neodymium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/163—Solid materials characterised by a crystal matrix
- H01S3/164—Solid materials characterised by a crystal matrix garnet
- H01S3/1643—YAG
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
- H01S3/2316—Cascaded amplifiers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- High Energy & Nuclear Physics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Recrystallisation Techniques (AREA)
- Lasers (AREA)
Description
本発明は、アモルファスシリコン膜にレーザ光を照射してアニール処理するレーザアニール装置に関し、特にレーザエネルギーの利用効率を向上してアニール処理を効率よく行い得るようにしたレーザアニール装置及びレーザアニール方法に係るものである。 The present invention relates to a laser annealing apparatus for performing an annealing process by irradiating an amorphous silicon film with a laser beam, and more particularly to a laser annealing apparatus and a laser annealing method capable of performing an annealing process efficiently by improving the utilization efficiency of laser energy. It is concerned.
従来のレーザアニール装置は、基板の主面に島状に形成された複数の被アニール膜のそれぞれに間欠的に移動するレーザ光を照射して、当該複数の被アニール膜を所望の特性を有する膜となるようにアニールするもので、スポット状のレーザ光を被アニール膜に複数回重ね照射することにより被アニール膜をアニールするようになっていた(例えば、特許文献1参照)。 A conventional laser annealing apparatus irradiates each of a plurality of films to be annealed formed in an island shape on a main surface of a substrate with laser light that moves intermittently, and the plurality of films to be annealed have desired characteristics. The film to be annealed is formed into a film, and the film to be annealed is annealed by irradiating the film to be annealed with a spot-like laser beam a plurality of times (see, for example, Patent Document 1).
しかし、このような従来のアニール装置においては、照射するレーザ光は単一波長の紫外線のレーザ光であったので、レーザ光の照射により例えばアモルファスシリコン膜が溶融すると紫外線のレーザ光の吸収率が低下するという問題があった。したがって、アモルファスシリコン膜の深部まで溶融が十分に行われず、ポリシリコン化が不十分となることがあった。 However, in such a conventional annealing apparatus, the laser beam to be irradiated is a single wavelength ultraviolet laser beam. Therefore, when the amorphous silicon film is melted by the laser beam irradiation, the absorption rate of the ultraviolet laser beam is increased. There was a problem of lowering. Therefore, the amorphous silicon film is not sufficiently melted to the deep part, and polysiliconization may be insufficient.
また、1台の光源装置で発生した1つのレーザ光からスポット状の複数のレーザ光を生成して被アニール膜の複数個所を同時にアニール処理できるようにしようとした場合には、レーザ光の照射エネルギーが低下するため、レーザエネルギーのより大きな大型の光源装置が必要となり、アニール装置の製造コストが高くなるという問題がある。 In addition, when a plurality of spot-like laser beams are generated from one laser beam generated by one light source device so that annealing can be performed at a plurality of locations of the film to be annealed simultaneously, laser beam irradiation is performed. Since energy is reduced, a large light source device with larger laser energy is required, and there is a problem that the manufacturing cost of the annealing device increases.
これらの問題に対しては、被アニール膜をレーザ光の複数ショットによりアニールすることも考えられるが、アニール処理効率が低下し、アニール処理工程のタクトが長くなるという問題がある。 To deal with these problems, it is conceivable to anneal the film to be annealed with a plurality of shots of laser light, but there is a problem that the annealing process efficiency is lowered and the tact time of the annealing process is increased.
そこで、本発明は、このような問題点に対処し、レーザエネルギーの利用効率を向上してアニール処理を効率よく行い得るようにしたレーザアニール装置及びレーザアニール方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a laser annealing apparatus and a laser annealing method that can cope with such problems and improve the efficiency of laser energy utilization so that annealing can be performed efficiently.
上記目的を達成するために、本発明によるレーザアニール装置は、アモルファスシリコン膜にレーザ光を照射してアニール処理するレーザアニール装置であって、一定のパルス幅を有する一定波長の第1のレーザ光を発生する第1のパルスレーザと、前記第1のレーザ光よりもパルス幅及び波長の長い第2のレーザ光を発生する第2のパルスレーザと、前記第1のレーザ光と前記第2のレーザ光とを同一の光軸に合成する合成手段と、前記第1及び第2のパルスレーザに作用して前記第1及び第2のレーザ光の発生タイミングを制御する制御手段と、を備え、前記制御手段は、前記第1のレーザ光の発生タイミングを前記第2のレーザ光のパルス幅内で調整し、アニール処理に適用されるレーザ光の照射エネルギーを調整することによって、前記第1のレーザ光により前記アモルファスシリコン膜の表面を溶融させた後、前記第2のレーザ光により前記アモルファスシリコン膜を深部まで溶融可能としたものである。 In order to achieve the above object, a laser annealing apparatus according to the present invention is a laser annealing apparatus that performs annealing by irradiating an amorphous silicon film with a laser beam, the first laser beam having a constant pulse width and a constant wavelength. A first pulse laser that generates a second laser beam that generates a second laser beam having a longer pulse width and wavelength than the first laser beam, the first laser beam, and the second laser beam. Combining means for combining laser light with the same optical axis, and control means for controlling the generation timing of the first and second laser lights by acting on the first and second pulse lasers, wherein, by the generation timing of the first laser beam is adjusted in the pulse width of the second laser light and adjusting the irradiation energy of the laser beam applied to anneal, After melting serial surface of first the amorphous silicon film by laser light, the second the amorphous silicon film by laser light is obtained by a melt-deep.
このような構成により、制御手段で第1のパルスレーザを制御して一定のパルス幅を有する一定波長の第1のレーザ光を発生し、第2のパルスレーザを制御して第1のレーザ光よりもパルス幅及び波長の長い第2のレーザ光を発生し、合成手段で第1のレーザ光と第2のレーザ光とを同一の光軸に合成してアモルファスシリコン膜に第1及び第2のレーザ光を照射してアニール処理する。このとき、制御手段で第1のレーザ光の発生タイミングを第2のレーザ光のパルス幅内で調整し、アニール処理に適用されるレーザ光の照射エネルギーを調整することによって、第1のレーザ光によりアモルファスシリコン膜の表面を溶融させた後、第2のレーザ光によりアモルファスシリコン膜を深部まで溶融する。
With such a configuration, the control means controls the first pulse laser to generate a first laser beam having a fixed wavelength and a fixed wavelength, and controls the second pulse laser to control the first laser beam. The second laser light having a longer pulse width and wavelength than the first laser light is generated, and the first laser light and the second laser light are synthesized on the same optical axis by the synthesizing means to form the first and second on the amorphous silicon film. Annealing treatment is performed by irradiating the laser beam. At this time, the generation timing of the first laser beam is adjusted in the pulse width of the second laser beam by the control means, by adjusting the irradiation energy of the laser beam applied to anneal the first laser beam After the surface of the amorphous silicon film is melted by the above, the amorphous silicon film is melted to a deep portion by the second laser beam .
好ましくは、前記第1のパルスレーザは、波長が355nm又は532nmの前記第1のレーザ光を発生し、前記第2のパルスレーザは、波長が1064nmの前記第2のレーザ光を発生するのが望ましい。 Good Mashiku, the first pulse laser wavelength generates a first laser beam of 355nm or 532 nm, the second pulse laser has a wavelength to generate the second laser beam of 1064nm Is desirable.
また、本発明によるレーザアニール方法は、一定のパルス幅を有する一定波長の第1のレーザ光と、前記第1のレーザ光よりもパルス幅及び波長の長い第2のレーザ光とを同一の光軸に合成してアモルファスシリコン膜に照射し、アニール処理するレーザアニール方法であって、前記第2のレーザ光を発生して前記アモルファスシリコン膜に照射する段階と、前記第1のレーザ光の発生タイミングを前記第2のレーザ光のパルス幅内で調整し、アニール処理に適用されるレーザ光の照射エネルギーを調整して前記アモルファスシリコン膜に照射することにより、前記第1のレーザ光により前記アモルファスシリコン膜の表面を溶融させた後、前記第2のレーザ光により前記アモルファスシリコン膜を深部まで溶融させる段階と、を行うものである。 In addition, the laser annealing method according to the present invention uses the same light for the first laser light having a constant pulse width and having a constant wavelength, and the second laser light having a pulse width and wavelength longer than those of the first laser light. A laser annealing method in which an amorphous silicon film is synthesized by irradiating and irradiating an amorphous silicon film, and a step of generating the second laser light and irradiating the amorphous silicon film; and generation of the first laser light By adjusting the timing within the pulse width of the second laser beam, adjusting the irradiation energy of the laser beam applied to the annealing process and irradiating the amorphous silicon film, the amorphous laser film is irradiated by the first laser beam. after melting the surface of the silicon film, the second the amorphous silicon film by laser beam performs the steps of melting deeply, the That.
好ましくは、前記第1のレーザ光は、波長が355nm又は532nmであり、前記第2のレーザ光は、波長が1064nmであるのが望ましい。 Preferably, the first laser beam has a wavelength of 355 nm or 532 nm, and the second laser beam has a wavelength of 1064 nm.
本発明によれば、第1のレーザ光の照射によりアモルファスシリコン膜が溶融して該第1のレーザ光の吸収率が低下しても、該第1のレーザ光よりも波長の長い第2のレーザ光を吸収してアモルファスシリコン膜の溶融が進行し、アモルファスシリコン膜を深部までアニール処理することができる。したがって、従来技術における紫外線のレーザ光のみを使用する場合よりも、レーザエネルギーの利用効率を向上することができ、アニール処理を効率よく行うことができる。 According to the present invention, even if the amorphous silicon film is melted by the irradiation of the first laser beam and the absorption rate of the first laser beam is decreased, the second laser beam having a wavelength longer than that of the first laser beam. As the amorphous silicon film is melted by absorbing the laser light, the amorphous silicon film can be annealed to a deep portion. Therefore, the laser energy utilization efficiency can be improved and the annealing process can be performed more efficiently than when only the ultraviolet laser beam is used in the prior art.
以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザアニール装置の実施形態を示す正面図である。このレーザアニール装置は、アモルファスシリコン膜にレーザ光を照射してアニール処理するもので、光源装置1と、照明光学系2と、制御手段3とを備えている。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a front view showing an embodiment of a laser annealing apparatus according to the present invention. This laser annealing apparatus performs annealing treatment by irradiating an amorphous silicon film with laser light, and includes a light source device 1, an illumination optical system 2, and a control means 3.
上記光源装置1は、基板4上に成膜されたアモルファスシリコン膜5をアニール処理するためのレーザ光を生成するものであり、第1のパルスレーザ6と、第2のパルスレーザ7と、合成手段8とを含んで構成されている。 The light source device 1 generates laser light for annealing the amorphous silicon film 5 formed on the substrate 4, and combines the first pulse laser 6 and the second pulse laser 7. And means 8.
ここで、上記第1のパルスレーザ6は、例えばパルス幅W1が20nsecで波長λ1が355nm又は532nmの第1のレーザ光L1を発生するもので、例えば非線形光学結晶を用いて波長が1064nmの基本波から波長変換して生成する公知のYAGレーザである。なお、以下の説明においては、第1のレーザ光L1がλ1=355nmのレーザ光である場合について述べる。また、第1のパルスレーザ6は、YAGレーザに限られず、短波長のレーザ光を発生するものであれば、例えばエキシマレーザー等であってもよいが、ここでは、YAGレーザの場合について説明する。 Here, the first pulse laser 6 generates the first laser light L 1 having, for example, a pulse width W 1 of 20 nsec and a wavelength λ 1 of 355 nm or 532 nm. This is a known YAG laser generated by wavelength conversion from a fundamental wave of 1064 nm. In the following description, the case where the first laser beam L 1 is a laser beam with λ 1 = 355 nm will be described. The first pulse laser 6 is not limited to a YAG laser, and may be an excimer laser or the like as long as it generates laser light with a short wavelength. Here, the case of a YAG laser will be described. .
上記第2のパルスレーザ7は、第1のレーザ光L1よりもパルス幅及び波長の長い第2のレーザ光L2を発生するもので、例えばパルス幅W2が350nsec、波長λ2が1064nmのレーザ光を生成するYAGレーザである。なお、第2のパルスレーザ7は、YAGレーザに限られず、長波長のレーザ光を発生するものであれば、例えばCO2レーザ等であってもよいが、ここでは、YAGレーザの場合について説明する。 The second pulse laser 7 generates the second laser light L 2 having a longer pulse width and wavelength than the first laser light L 1. For example, the pulse width W 2 is 350 nsec and the wavelength λ 2 is 1064 nm. This is a YAG laser that generates a laser beam. The second pulse laser 7 is not limited to the YAG laser, and may be, for example, a CO 2 laser as long as it generates laser light having a long wavelength. Here, the case of the YAG laser will be described. To do.
より詳細には、第2のパルスレーザ7は、図2に示すように、共振器9と、光増幅器10と、レーザ用アッテネータ11と、を第2のレーザ光L2の進行方向上流から下流に向かってこの順に配置して備えている。 More specifically, the second pulse laser 7, as shown in FIG. 2, downstream the resonator 9, the optical amplifier 10, a laser for attenuator 11, the second traveling direction upstream of the laser beam L 2 It arranges in this order toward.
上記共振器9は、レーザ光を往復させて定在波を発生させるものであり、共振器ミラーとしてのフロントミラー12及びリアミラー13の間に、図示省略のフラッシュランプによって励起されてレーザ光を発生するレーザ媒質としての例えばND:YAGロッド14と、該ND:YAGロッド14の後方に配置され、偏光素子としての偏光ビームスプリッタ15、λ/4波長板16及びポッケルスセル17から成るQスイッチ18と、を備えて構成されている。 The resonator 9 generates a standing wave by reciprocating a laser beam, and is excited between a front mirror 12 and a rear mirror 13 as a resonator mirror by a flash lamp (not shown) to generate a laser beam. For example, an ND: YAG rod 14 as a laser medium, and a Q switch 18 disposed behind the ND: YAG rod 14 and including a polarizing beam splitter 15, a λ / 4 wave plate 16 and a Pockels cell 17 as polarizing elements, , And is configured.
この場合、上記ポッケルスセル17に対する印加電圧は、別に設けた図示省略の制御部によって漸減するように制御され、第2のレーザ光L2のパルス幅を拡大することができるようになっている。 In this case, the voltage applied to the Pockels cell 17, thereby making it possible to expand the separately be controlled to gradually decrease the control unit is provided with not shown, the second pulse width of the laser beam L 2.
これについて説明すると、図3(a)に示すように、ポッケルスセル17に対する印加電圧を急激に引き下げる通常の制御に対して、同図(b)に示すようにポッケルスセル17に対する印加電圧を漸減するよう制御した場合には、パルス幅が例えば10nsから70nsへと拡大される。これは、共振器9内での発振において、Qスイッチ18からの戻り出力エネルギーが時間軸で徐々に増加すると共に通常のエネルギーよりも低いため、ND:YAGロッド14内のエネルギーの取り出しもゆっくりとなり、Qスイッチ18内でのパルス発振時間が伸びて、出力されるパルス幅が長くなったのである。 This will be described below. As shown in FIG. 3A, the applied voltage to the Pockels cell 17 is gradually reduced as shown in FIG. 3B in contrast to the normal control in which the applied voltage to the Pockels cell 17 is suddenly reduced. In the case of such control, the pulse width is expanded from 10 ns to 70 ns, for example. This is because, in the oscillation in the resonator 9, the return output energy from the Q switch 18 gradually increases in the time axis and is lower than the normal energy, so that the extraction of energy in the ND: YAG rod 14 is also slow. The pulse oscillation time in the Q switch 18 is extended, and the output pulse width is increased.
さらに、ポッケルスセルに対する印加電圧の漸減勾配に、図4に示すような、少なくとも1回の変曲点が生じるように印加電圧を制御すれば、パルス幅をさらに拡大することができる。このように、ポッケルセル17に対する印加電圧を制御することにより、パルス幅W2が350nsecの第2のレーザ光L2を生成することができる。 Furthermore, if the applied voltage is controlled so that at least one inflection point as shown in FIG. 4 occurs in the gradually decreasing gradient of the applied voltage to the Pockels cell, the pulse width can be further expanded. Thus, by controlling the voltage applied to the Pockels cell 17, it can be the pulse width W 2 to generate a second laser beam L 2 of 350Nsec.
また、上記共振器9の下流には、光増幅器10が設けられている。この光増幅器10は、レーザ光のパルスエネルギーを増幅して出力するもので、例えばND:YAGロッドが使用される。 An optical amplifier 10 is provided downstream of the resonator 9. This optical amplifier 10 amplifies and outputs the pulse energy of laser light, and for example, an ND: YAG rod is used.
さらに、上記光増幅器10の下流には、レーザ用アッテネータ11が設けられている。このレーザ用アッテネータ11は、第2のレーザ光L2のエネルギーを低減するもので、図5に示すように、第2のレーザ光L2の光路上にクロスニコルに配置された偏光素子としての第1及び第2の偏光ビームスプリッタ19A,19Bと、該第1及び第2の偏光ビームスプリッタ19A,19Bの間に、入射する直線偏光(例えばP偏光)に対して光学軸が45°を成すように配置され、電圧の印加により内部を通過するレーザ光の偏光面を回転させる電気光学素子としてのポッケルスセル20と、該ポッケルスセル20に対する印加電圧値及び印加タイミングを制御する制御部21と、を備えて構成されている。 Further, a laser attenuator 11 is provided downstream of the optical amplifier 10. This laser attenuator 11 reduces the energy of the second laser light L 2 , and as shown in FIG. 5, as a polarizing element disposed in a crossed Nicol configuration on the optical path of the second laser light L 2 . Between the first and second polarizing beam splitters 19A and 19B and the first and second polarizing beam splitters 19A and 19B, the optical axis forms 45 ° with respect to the incident linearly polarized light (for example, P-polarized light). A Pockels cell 20 as an electro-optical element that rotates the polarization plane of the laser beam that passes through the inside by application of a voltage, and a control unit 21 that controls an applied voltage value and application timing for the Pockels cell 20; It is configured with.
本実施形態において使用するポッケルスセル20は、一例として最大−3.6kVの電圧印加によりλ/4波長板の効果が得られるものであり、第1及び第2のポッケルスセル20A,20Bを直列に並べて配置すると共に印加電圧を最大−3.6kVで並列制御することによって、第1及び第2のポッケルスセル20A,20Bの組合せでλ/2波長板の効果が得られるようになっている。この場合、第1及び第2のポッケルスセル20A,20Bの印加電圧を、例えば0kV〜−3.6kVまで変化させたとき、レーザ用アッテネータ11の光透過率は0%〜100%まで変化することになる。 As an example, the Pockels cell 20 used in the present embodiment can obtain the effect of a λ / 4 wavelength plate by applying a voltage of up to −3.6 kV, and the first and second Pockels cells 20A and 20B are connected in series. By arranging them side by side and controlling the applied voltage in parallel at a maximum of -3.6 kV, the effect of the λ / 2 wavelength plate can be obtained by combining the first and second Pockels cells 20A and 20B. In this case, when the applied voltage of the first and second Pockels cells 20A, 20B is changed from 0 kV to -3.6 kV, for example, the light transmittance of the laser attenuator 11 changes from 0% to 100%. become.
また、上記レーザ用アッテネータ11は、ポッケルスセル20の印加電圧を時間により制御することにより、1パルスのレーザ光の包絡線をならし、レーザエネルギーを時間軸に沿って均一にすることができる。例えば、レーザ用アッテネータ11に、図6(a)に示すような時間tn内に過大なパルスエネルギーを放出するロングパルスの第2のレーザ光L2が入力する場合、例えばこのパルスエネルギーを50%低減しようとするときには、時間tn内の第1及び第2のポッケルスセル20A,20Bへの印加電圧を−1.8kVとし、時間tn経過後は、−3.6kVに制御する。 Further, the laser attenuator 11 can control the voltage applied to the Pockels cell 20 with time, thereby leveling the envelope of one pulse of laser light and making the laser energy uniform along the time axis. For example, when the second laser beam L 2 of a long pulse that releases excessive pulse energy within the time t n as shown in FIG. 6A is input to the laser attenuator 11, for example, this pulse energy is 50 %, The applied voltage to the first and second Pockels cells 20A and 20B within the time t n is set to −1.8 kV, and after the time t n elapses, the voltage is controlled to −3.6 kV.
これにより、最初の時間tn内にレーザ用アッテネータ11を透過する第2のレーザ光L2の透過率が50%に低減され、時間tn経過後は、透過率が100%となる。したがって、図6(a)に示すロングパルスの第2のレーザ光L2は、最初の時間tn内のレーザ強度が50%低減され、時間tn経過後のレーザ強度は、元の強度がそのまま維持されることになる。その結果、図6(b)に示すように1パルス内のレーザ強度が全幅に亘って略一定になる。 Thus, the second laser light L 2 of transmittance that transmits a laser for attenuator 11 within the first time t n is reduced to 50%, the time t n after the transmittance is 100%. Therefore, in the long-pulse second laser light L 2 shown in FIG. 6A , the laser intensity within the first time t n is reduced by 50%, and the laser intensity after the elapse of time t n is the original intensity. It will be maintained as it is. As a result, as shown in FIG. 6B, the laser intensity within one pulse becomes substantially constant over the entire width.
なお、図2において、符号22は、偏光ビームスプリッタであり、符号23は、レーザビームの径を拡張するビームエキスパンダであり、符号24は、反射ミラーである。 In FIG. 2, reference numeral 22 denotes a polarization beam splitter, reference numeral 23 denotes a beam expander that expands the diameter of the laser beam, and reference numeral 24 denotes a reflection mirror.
上記第1のパルスレーザ6の光路と上記第2のパルスレーザ7の光路との合流点には、合成手段8が設けられている。この合成手段8は、第1のレーザ光L1と第2のレーザ光L2とを同一の光軸に合成するものであり、例えばλ1=355nmの第1のレーザ光L1を透過し、λ2=1064nmの第2のレーザ光L2を反射させるダイクロイックミラーである。 A synthesizing means 8 is provided at the junction of the optical path of the first pulse laser 6 and the optical path of the second pulse laser 7. The synthesizing means 8 synthesizes the first laser beam L 1 and the second laser beam L 2 with the same optical axis, and transmits the first laser beam L 1 with λ 1 = 355 nm, for example. , Λ 2 = 1064 nm, a dichroic mirror that reflects the second laser light L 2 .
上記光源装置1の下流側には、照明光学系2が設けられている。この照明光学系2は、基板4上のアモルファスシリコン膜5の予め定められた被アニール領域にレーザ光を照射させるものであり、レーザ光の進行方向上流から下流に向かって、第1のフライアイレンズ25と、第1のコンデンサレンズ26と、第2のフライアイレンズ27と、ビームスキャナ28と、第2のコンデンサレンズ29とを備えて構成されている。 An illumination optical system 2 is provided on the downstream side of the light source device 1. The illumination optical system 2 irradiates a predetermined region to be annealed of the amorphous silicon film 5 on the substrate 4 with laser light, and the first fly-eye from upstream to downstream in the laser light traveling direction. The lens 25 includes a first condenser lens 26, a second fly-eye lens 27, a beam scanner 28, and a second condenser lens 29.
上記第1のフライアイレンズ25は、レーザ光の横断面内の強度分布を均一にすると共に、レーザ光の光束を拡大するビームエキスパンダの機能を果たすものであり、同一平面内に複数の凸レンズを並べて備えたものである。 The first fly-eye lens 25 functions as a beam expander that makes the intensity distribution in the cross section of the laser light uniform and expands the light beam of the laser light, and has a plurality of convex lenses in the same plane. Are arranged side by side.
光軸上にて上記第1のフライアイレンズ25の後焦点に前焦点を合致させて第1のコンデンサレンズ26が設けられている。この第1のコンデンサレンズ26は、第1のフライアイレンズ25を射出した後、発散するレーザ光の光束を後述の第2のフライアイレンズ27に入射するように絞るためのものである。 A first condenser lens 26 is provided so that the front focal point is matched with the rear focal point of the first fly-eye lens 25 on the optical axis. The first condenser lens 26 is for narrowing the divergent laser beam so as to be incident on a second fly-eye lens 27 described later after exiting the first fly-eye lens 25.
上記第2のフライアイレンズ27は、レーザ光の横断面内の強度分布を均一にするためのものであり、同一面内に複数の凸レンズを並べて備えた1対のレンズアレイを対応する凸レンズの中心軸が合致するように対向配置した構成となっている。 The second fly-eye lens 27 is for uniformizing the intensity distribution in the cross section of the laser light, and a pair of lens arrays each having a plurality of convex lenses arranged in the same plane is a corresponding convex lens. The arrangement is such that the central axes are opposed to each other.
上記ビームスキャナ28は、互いに垂直な方向に偏向動作を行う角柱状の第1及び第2の電気光学結晶素子30,31、及び該第1及び第2の電気光学結晶素子30,31間にレーザ光の偏光面を90°回転して第2の電気光学結晶素子31の結晶軸に合わせるλ/2波長板32を備えて構成されており、第1及び第2の電気光学結晶素子30,31の光軸に平行な対向面に夫々1対の電極33A,33Bが設けられている。この場合、第1の電気光学結晶素子30の1対の電極33Aと第2の電気光学結晶素子31の1対の電極33Bとは、取付け位置が光軸を中心に互いに90度ずれた関係をなしている。 The beam scanner 28 includes a prismatic first and second electro-optic crystal elements 30 and 31 that perform deflection operations in directions perpendicular to each other, and a laser between the first and second electro-optic crystal elements 30 and 31. The first and second electro-optic crystal elements 30 and 31 are provided with a λ / 2 wavelength plate 32 that rotates the polarization plane of light by 90 ° and matches the crystal axis of the second electro-optic crystal element 31. A pair of electrodes 33A and 33B are provided on opposite surfaces parallel to the optical axis. In this case, the pair of electrodes 33A of the first electro-optic crystal element 30 and the pair of electrodes 33B of the second electro-optic crystal element 31 have a relationship that their mounting positions are shifted from each other by 90 degrees about the optical axis. There is no.
上記第2のコンデンサレンズ29は、上記第2のフライアイレンズ27の光軸上の後焦点位置に前焦点を合致させて設けられており、基板4上に照射するレーザ光を平行光にする機能を果たす。 The second condenser lens 29 is provided such that the front focal point coincides with the rear focal point position on the optical axis of the second fly-eye lens 27, and the laser light irradiated onto the substrate 4 is made parallel light. Fulfills the function.
上記光源装置1の第1のパルスレーザ6と、第2のパルスレーザ7とに電気的に接続して制御手段3が設けられている。この制御手段3は、第1及び第2のパルスレーザ6,7に作用して第1及び第2のレーザ光L1,L2の発生タイミングを制御するもので、詳細には、第1のレーザ光L1が第2のレーザ光L2のパルス幅W2内の予め定められたタイミングで発生するように第1のパルスレーザ6を制御するようになっている。 A control means 3 is provided in electrical connection with the first pulse laser 6 and the second pulse laser 7 of the light source device 1. The control means 3 acts on the first and second pulse lasers 6 and 7 to control the generation timing of the first and second laser beams L 1 and L 2 . the laser beam L 1 is adapted to control the first pulse laser 6 to occur at a second predetermined timing of the laser light L 2 of the pulse width W 2.
より詳細には、制御手段3は、第1のパルスレーザ6を制御して第1のレーザ光L1の発生タイミングを第2のレーザ光L2のパルス幅W2内で調整できるようにしている。これにより、アモルファスシリコン膜5に照射するレーザ光の照射エネルギーを適宜調整することができる。 More specifically, the control means 3, so as a first generation timing of the laser beam L 1 by controlling the first pulse laser 6 can be adjusted in the second inner pulse width W 2 of the laser beam L 2 Yes. Thereby, the irradiation energy of the laser beam irradiated to the amorphous silicon film 5 can be appropriately adjusted.
次に、このように構成されたレーザアニール装置の動作について説明する。
先ず、表面にアモルファスシリコン膜5を成膜した基板4を上面に載置した図示省略のステージが、その上面に平行な面内を二次元方向に移動されて基板4上の被アニール領域の中心が照明光学系2の光軸に合致される。
Next, the operation of the laser annealing apparatus configured as described above will be described.
First, a stage (not shown) on which a substrate 4 having an amorphous silicon film 5 formed thereon is placed on the upper surface is moved in a two-dimensional direction in a plane parallel to the upper surface to center the region to be annealed on the substrate 4. Is aligned with the optical axis of the illumination optical system 2.
次に、第2のパルスレーザ7のポッケルスセル17の印加電圧の漸減勾配が図示省略の制御部によって予め定められた漸減勾配となるように制御され、例えばパルス幅W2=350nsec、波長λ2=1064nmのロングパルスの第2のレーザ光L2が生成される。 Next, the gradual decrease gradient of the voltage applied to the Pockels cell 17 of the second pulse laser 7 is controlled to be a predetermined gradual decrease gradient by a control unit (not shown), for example, pulse width W 2 = 350 nsec, wavelength λ 2. = 1064 nm long pulse second laser light L 2 is generated.
この第2のレーザ光L2は、後続の光増幅器10によって一定レベルまで増幅された後、レーザ用アッテネータ11の第1及び第2のポッケルスセル20A,20Bの印加電圧を並列制御することによって、予め実験により確認されたアニール処理に必要十分なエネルギー強度まで低減される。また、同時に、図7(b)に示すように1パルス内のレーザ強度が全幅に亘って略一定にされる。そして、第2のレーザ光L2は、合成手段8のダイクロイックミラーで反射して後段の照明光学系2に入射する。 The laser beam L 2 of the second, after being amplified to a predetermined level by a subsequent optical amplifier 10 by parallel control first and second Pockels cell 20A of the laser for the attenuator 11, the applied voltage 20B, The energy intensity is reduced to an energy intensity necessary and sufficient for the annealing process confirmed in advance by experiments. At the same time, as shown in FIG. 7B, the laser intensity within one pulse is made substantially constant over the entire width. Then, the second laser light L 2 is reflected by the dichroic mirror of the synthesizing unit 8 and enters the subsequent illumination optical system 2.
一方、制御手段3により制御されて第1のパルスレーザ6が第2のパルスレーザ7の駆動から一定時間遅れて駆動され、例えばパルス幅W1=20nsec、波長λ1=355nmの、例えば図7(a)に示すようなショートパルスの第1のレーザ光L1が生成される。そして、この第1のレーザ光L1は、合成手段8のダイクロイックミラーを透過して、第2のレーザ光L2と同一の光軸に合成されて照明光学系2に入射する。 On the other hand, the first pulse laser 6 is driven by a certain time delay from the drive of the second pulse laser 7 under the control of the control means 3, and has a pulse width W 1 = 20 nsec and a wavelength λ 1 = 355 nm, for example, FIG. first laser light L 1 of the short pulse as shown in (a) is generated. The first laser light L 1 passes through the dichroic mirror of the combining unit 8, is combined with the same optical axis as the second laser light L 2, and enters the illumination optical system 2.
上記合成された第1及び第2のレーザ光L1,L2は、照明光学系2によりビーム径が拡大され、強度分布が均一にされた後、ビームスキャナ28によって基板4表面上を二次元方向に偏向されて照射位置が調整される。これにより、第1及び第2のレーザ光L1,L2の干渉縞なく基板4上にレーザ光を照射することができる。その結果、該被アニール領域のアモルファスシリコン膜5は、溶融再結晶化してポリシリコンに相変化する。 The combined first and second laser beams L 1 and L 2 are enlarged in beam diameter by the illumination optical system 2 and made uniform in intensity distribution, and then two-dimensionally on the surface of the substrate 4 by the beam scanner 28. The irradiation position is adjusted by being deflected in the direction. Thereby, the laser beam can be irradiated onto the substrate 4 without interference fringes of the first and second laser beams L 1 and L 2 . As a result, the amorphous silicon film 5 in the region to be annealed is melted and recrystallized to change into polysilicon.
ここで、第1及び第2のレーザ光L1,L2によるアニール処理について、より詳細に説明する。
図8に示すように、一般に、シリコン(Si)は、レーザ光の波長が長くなるほど光吸収率が低下することが知られている。したがって、一般に、アモルファスシリコン膜5をアニール処理する場合には、光吸収率の高い、例えば波長が355nm等の紫外線のレーザ光が使用されている。
Here, the annealing process using the first and second laser beams L 1 and L 2 will be described in more detail.
As shown in FIG. 8, it is generally known that the light absorption rate of silicon (Si) decreases as the wavelength of laser light becomes longer. Therefore, generally, when the amorphous silicon film 5 is annealed, an ultraviolet laser beam having a high light absorption rate, for example, a wavelength of 355 nm or the like is used.
一方、溶融したシリコンは、紫外線の吸収率が低いことも知られている。したがって、紫外線レーザ光の照射エネルギーが十分に高くない場合には、紫外線レーザ光の照射によりアモルファスシリコン膜5の表面が溶融すると、その後の紫外線レーザ光の吸収率が低下してアモルファスシリコン膜5の深部まで十分に溶融させることができない場合が起こり得る。それ故、アモルファスシリコン膜5を深部まで十分にポリシリコン化することができない場合もあり得る。 On the other hand, melted silicon is also known to have a low ultraviolet absorption rate. Therefore, when the irradiation energy of the ultraviolet laser beam is not sufficiently high, if the surface of the amorphous silicon film 5 is melted by the irradiation of the ultraviolet laser beam, the absorption rate of the subsequent ultraviolet laser beam is reduced and the amorphous silicon film 5 The case where it cannot fully melt to the deep part may occur. Therefore, there may be a case where the amorphous silicon film 5 cannot be fully polysiliconized to the deep part.
これに対して、図8に示すように、長波長の例えば1064nmのレーザ光は、シリコンに吸収され難いため、一般には、レーザアニール処理に使用されることがない。しかし、長波長のレーザ光は、溶融したシリコンには吸収され易くなることも知られている。 On the other hand, as shown in FIG. 8, a long-wavelength laser beam having a wavelength of 1064 nm, for example, is difficult to be absorbed by silicon, so that it is generally not used for laser annealing. However, it is also known that long wavelength laser light is easily absorbed by molten silicon.
そこで、本発明においては、先ず、短波長の第1のレーザ光L1によりアモルファスシリコン膜5を溶融させた後、長波長の第2のレーザ光L2によりアモルファスシリコン膜5を深部まで溶融させるようにしたものである。 Therefore, in the present invention, first, the amorphous silicon film 5 is melted by the first laser beam L 1 having the short wavelength, and then the amorphous silicon film 5 is melted to the deep portion by the second laser beam L 2 having the long wavelength. It is what I did.
詳細には、図9(a)に示すように、第2のレーザ光L2を発生してアモルファスシリコン膜5に照射した後、該第2のレーザ光L2のパルス幅W2内にて一定のタイミング、例えば第2のレーザ光L2の発生時刻(パルスの立ち上がり時刻)からt=100nsec後のタイミングで第1のレーザ光L1を発生させる。この場合、第1のレーザ光L1が照射されるまでは、アモルファスシリコン膜5は第2のレーザ光L2を吸収しないため、アモルファスシリコン膜5は溶融しない。しかし、第1のレーザ光L1の照射により、アモルファスシリコン膜5が一旦溶融すると、その後は、アモルファスシリコン膜5は第2のレーザ光L2を吸収してより深く溶融する。この場合、第1及び第2のレーザ光L1,L2において、アモルファスシリコン膜5のアニール処理に適用されるエネルギーは、同図(a)の斜線を付した領域のエネルギーである。 Specifically, as shown in FIG. 9A, after the second laser beam L 2 is generated and irradiated to the amorphous silicon film 5, within the pulse width W 2 of the second laser beam L 2 . constant timing, the first generating laser light L 1 at timing after t = 100 nsec, for example, from the second laser light L 2 of the generation time (rising time of the pulse). In this case, until the first laser beam L 1 is irradiated, since the amorphous silicon film 5 does not absorb the second laser beam L 2, the amorphous silicon film 5 is not melted. However, by the irradiation of the first laser light L 1, the amorphous silicon film 5 is once melted, then, the amorphous silicon film 5 is melted deeper absorbs the second laser beam L 2. In this case, in the first and second laser beams L 1 and L 2 , the energy applied to the annealing process of the amorphous silicon film 5 is the energy in the shaded area in FIG.
本発明においては、第1のレーザ光L1の発生タイミングを第2のレーザ光L2のパルス幅W2内で適宜調整することによって、レーザ光の照射エネルギーを調整することができるようになっている。例えば、図9(b)に示すように、第2のレーザ光L2の発生と同時に第1のレーザ光L1を発生させた場合には、アモルファスシリコン膜5のアニール処理に適用されるエネルギーは、同図(b)の斜線を付した領域のエネルギーとなり、同図(a)に比べて照射エネルギーを増やすことができる。当然ながら、その逆も可能である。 In the present invention, it is a first generation timing of the laser beam L 1 by appropriately adjusting the second inner laser light L 2 of the pulse width W 2, to be able to adjust the irradiation energy of the laser beam ing. For example, as shown in FIG. 9 (b), when that caused the first laser light L 1 at the same time as the second generation of the laser beam L 2, the energy applied to the annealing of the amorphous silicon film 5 Is the energy of the hatched area in FIG. 5B, and the irradiation energy can be increased as compared with FIG. Of course, the reverse is also possible.
なお、上記実施形態においては、アモルファスシリコン膜5上の1箇所の被アニール領域をアニール処理する場合について説明したが、本発明はこれに限られず、例えば照明光学系2の第2のコンデンサレンズ29の光射出側に、複数の被アニール領域に対応して複数のマイクロレンズを並べて備えたマイクロレンズアレイを配置し、1つの合成レーザ光から複数の合成レーザ光を生成して複数の被アニール領域を同時にアニール処理できるようにしてもよい。この場合、レーザエネルギーの利用効率が従来技術に比して高いため、使用するパルスレーザは従来技術よりもパワーの小さいものを適用することができる。 In the above-described embodiment, the case where one annealing region on the amorphous silicon film 5 is annealed has been described. However, the present invention is not limited to this. For example, the second condenser lens 29 of the illumination optical system 2 is used. A microlens array having a plurality of microlenses arranged side by side corresponding to a plurality of regions to be annealed is arranged on the light emitting side, and a plurality of synthetic laser beams are generated from one synthetic laser beam, thereby generating a plurality of regions to be annealed May be annealed simultaneously. In this case, since the utilization efficiency of the laser energy is higher than that of the prior art, a pulse laser having a smaller power than that of the prior art can be used.
また、基板4を上記マイクロレンズの並び方向と交差する方向に一定速度で搬送しながら、事前に撮像手段により撮影して複数の被アニール領域を検出し、該被アニール領域が検出されてから基板4が一定距離移動して上記複数の被アニール領域がマイクロレンズアレイの複数のマイクロレンズの真下に達したときに、第1及び第2のレーザ光L1,L2を発生させるように第1及び第2のパルスレーザ6,7を制御してもよい。これにより、基板4の搬送方向と交差する方向の列状の複数の被アニール領域を一括アニール処理すると共に、基板搬送方向に順繰りにアニール処理して基板4の全面に亘ってアニール処理することができる。 In addition, while the substrate 4 is transported at a constant speed in a direction crossing the alignment direction of the microlenses, a plurality of regions to be annealed are detected by imaging means in advance and the substrate is detected after the regions to be annealed are detected. The first and second laser beams L 1 and L 2 are generated so that the first and second laser beams L 1 and L 2 are generated when the plurality of regions to be annealed reach just below the plurality of microlenses of the microlens array. The second pulse lasers 6 and 7 may be controlled. As a result, a plurality of annealing regions in a row in a direction intersecting with the transport direction of the substrate 4 can be annealed together and annealed in order in the substrate transport direction to anneal the entire surface of the substrate 4. it can.
3…制御手段
5…アモルファスシリコン膜
6…第1のパルスレーザ
7…第2のパルスレーザ
8…合成手段
L1…第1のレーザ光
L2…第2のレーザ光
3 ... control unit 5 ... an amorphous silicon film 6 ... first pulse laser 7 ... second pulse laser 8 ... synthesis unit L 1 ... first laser beam L 2 ... second laser beam
Claims (4)
一定のパルス幅を有する一定波長の第1のレーザ光を発生する第1のパルスレーザと、
前記第1のレーザ光よりもパルス幅及び波長の長い第2のレーザ光を発生する第2のパルスレーザと、
前記第1のレーザ光と前記第2のレーザ光とを同一の光軸に合成する合成手段と、
前記第1及び第2のパルスレーザに作用して前記第1及び第2のレーザ光の発生タイミングを制御する制御手段と、
を備え、
前記制御手段は、前記第1のレーザ光の発生タイミングを前記第2のレーザ光のパルス幅内で調整し、アニール処理に適用されるレーザ光の照射エネルギーを調整することによって、前記第1のレーザ光により前記アモルファスシリコン膜の表面を溶融させた後、前記第2のレーザ光により前記アモルファスシリコン膜を深部まで溶融可能としたことを特徴とするレーザアニール装置。 A laser annealing apparatus that performs annealing by irradiating an amorphous silicon film with laser light,
A first pulse laser that generates a first laser beam having a constant wavelength and a constant wavelength;
A second pulse laser that generates a second laser beam having a longer pulse width and wavelength than the first laser beam;
Combining means for combining the first laser beam and the second laser beam on the same optical axis;
Control means for controlling the generation timing of the first and second laser beams by acting on the first and second pulse lasers;
With
The control means adjusts the generation timing of the first laser beam within the pulse width of the second laser beam, and adjusts the irradiation energy of the laser beam applied to the annealing process, thereby adjusting the first laser beam . A laser annealing apparatus characterized in that after the surface of the amorphous silicon film is melted by a laser beam, the amorphous silicon film can be melted to a deep part by the second laser beam .
前記第2のパルスレーザは、波長が1064nmの前記第2のレーザ光を発生する、
ことを特徴とする請求項1記載のレーザアニール装置。 The first pulse laser generates the first laser beam having a wavelength of 355 nm or 532 nm,
The second pulse laser generates the second laser beam having a wavelength of 1064 nm.
The laser annealing apparatus according to claim 1 .
前記第2のレーザ光を発生して前記アモルファスシリコン膜に照射する段階と、
前記第1のレーザ光の発生タイミングを前記第2のレーザ光のパルス幅内で調整し、アニール処理に適用されるレーザ光の照射エネルギーを調整して前記アモルファスシリコン膜に照射することにより、前記第1のレーザ光により前記アモルファスシリコン膜の表面を溶融させた後、前記第2のレーザ光により前記アモルファスシリコン膜を深部まで溶融させる段階と、
を行うことを特徴とするレーザアニール方法。 A first laser beam having a constant pulse width and a constant wavelength and a second laser beam having a pulse width and a wavelength longer than those of the first laser beam are synthesized on the same optical axis and irradiated to the amorphous silicon film. And a laser annealing method for annealing,
Generating the second laser light and irradiating the amorphous silicon film;
By irradiating the generation timing of the first laser light to the second adjusted in pulse width of the laser beam, the amorphous silicon film by adjusting the irradiation energy of the laser beam applied to anneal the Melting the surface of the amorphous silicon film with a first laser beam and then melting the amorphous silicon film to a deep portion with the second laser beam ;
Performing a laser annealing method.
前記第2のレーザ光は、波長が1064nmである、
ことを特徴とする請求項3記載のレーザアニール方法。 The first laser beam has a wavelength of 355 nm or 532 nm,
The second laser beam has a wavelength of 1064 nm.
The laser annealing method according to claim 3, wherein:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080706A JP6167358B2 (en) | 2012-03-30 | 2012-03-30 | Laser annealing apparatus and laser annealing method |
KR1020147030252A KR102054026B1 (en) | 2012-03-30 | 2013-03-08 | Laser annealing device and laser annealing method |
CN201380017446.9A CN104272434B (en) | 2012-03-30 | 2013-03-08 | Laser anneal device and laser anneal method |
PCT/JP2013/056496 WO2013146197A1 (en) | 2012-03-30 | 2013-03-08 | Laser annealing device and laser annealing method |
TW102109159A TWI632611B (en) | 2012-03-30 | 2013-03-15 | Laser, annealing apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012080706A JP6167358B2 (en) | 2012-03-30 | 2012-03-30 | Laser annealing apparatus and laser annealing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013211415A JP2013211415A (en) | 2013-10-10 |
JP6167358B2 true JP6167358B2 (en) | 2017-07-26 |
Family
ID=49259465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012080706A Expired - Fee Related JP6167358B2 (en) | 2012-03-30 | 2012-03-30 | Laser annealing apparatus and laser annealing method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6167358B2 (en) |
KR (1) | KR102054026B1 (en) |
CN (1) | CN104272434B (en) |
TW (1) | TWI632611B (en) |
WO (1) | WO2013146197A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014103749A1 (en) * | 2013-12-18 | 2015-06-18 | Rofin-Baasel Lasertech Gmbh & Co. Kg | Method and device for machining a workpiece |
CN108886230B (en) * | 2016-03-30 | 2020-10-20 | 富士胶片株式会社 | Laser device and photoacoustic measurement device |
JP6920316B2 (en) * | 2016-09-06 | 2021-08-18 | ギガフォトン株式会社 | Laser equipment and laser annealing equipment |
CN110691671B (en) * | 2017-04-20 | 2023-10-10 | 西尔特克特拉有限责任公司 | Method for producing wafers with defined oriented modification lines |
CA3129632A1 (en) | 2018-02-09 | 2019-08-15 | Imagine Scientific, Inc. | Monochromatic x-ray imaging systems and methods |
KR102551147B1 (en) * | 2018-04-18 | 2023-07-05 | 삼성디스플레이 주식회사 | Array substrate, display panel having the same and method of manufacturing the same |
JP7154592B2 (en) * | 2019-01-29 | 2022-10-18 | 株式会社ブイ・テクノロジー | Laser annealing method and laser annealing apparatus |
JP7320975B2 (en) | 2019-04-16 | 2023-08-04 | Jswアクティナシステム株式会社 | Laser irradiation device, laser irradiation method, and semiconductor device manufacturing method |
WO2021020615A1 (en) * | 2019-07-30 | 2021-02-04 | (주)에이치아이티오토모티브 | Heat treatment apparatus |
CN114068307A (en) * | 2021-11-16 | 2022-02-18 | 信利(惠州)智能显示有限公司 | Low-temperature polycrystalline silicon film, preparation method thereof, array substrate and display device |
GB202212286D0 (en) * | 2022-08-24 | 2022-10-05 | Rolls Royce Plc | System and method for finishing a surface of a workpiece |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0945632A (en) | 1995-08-03 | 1997-02-14 | Matsushita Electric Ind Co Ltd | Laser annealing method and melting crystallizing method of semiconductor film |
JP2000012484A (en) * | 1998-06-25 | 2000-01-14 | Mitsubishi Electric Corp | Laser annealing system |
JP2001044120A (en) * | 1999-08-04 | 2001-02-16 | Mitsubishi Electric Corp | Laser heat treatment method and laser heat treatment apparatus |
JP2001319891A (en) * | 2000-05-10 | 2001-11-16 | Nec Corp | Method and apparatus for processing thin film |
JP2003347237A (en) * | 2002-05-30 | 2003-12-05 | Mitsubishi Electric Corp | Method of manufacturing semiconductor device and manufacturing device thereof |
US7304005B2 (en) * | 2003-03-17 | 2007-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device |
JP4171399B2 (en) * | 2003-10-30 | 2008-10-22 | 住友重機械工業株式会社 | Laser irradiation device |
JP2005276944A (en) * | 2004-03-23 | 2005-10-06 | Sharp Corp | Semiconductor device, and device and method for manufacturing the same |
JP2006013050A (en) * | 2004-06-24 | 2006-01-12 | Sharp Corp | Laser beam projection mask, laser processing method using the same and laser processing system |
JP2006041082A (en) * | 2004-07-26 | 2006-02-09 | Sharp Corp | Device and method for crystallizing semiconductor thin film |
JP2007207896A (en) * | 2006-01-31 | 2007-08-16 | Sharp Corp | Laser beam projection mask, laser processing method using same, laser processing apparatus |
JP2007208044A (en) * | 2006-02-02 | 2007-08-16 | Sharp Corp | Method for manufacturing semiconductor thin film, and manufacturing apparatus of semiconductor thin film |
JP5073260B2 (en) * | 2006-09-29 | 2012-11-14 | 日立コンピュータ機器株式会社 | Laser annealing apparatus and laser annealing method |
KR100740124B1 (en) * | 2006-10-13 | 2007-07-16 | 삼성에스디아이 주식회사 | Poly silicon thin film transistor and the method therefor |
JP2008288508A (en) * | 2007-05-21 | 2008-11-27 | Shimadzu Corp | Crystallization device and crystallization method |
JP2009044007A (en) * | 2007-08-09 | 2009-02-26 | Sharp Corp | Laser irradiation device |
JP5641965B2 (en) * | 2011-02-09 | 2014-12-17 | 住友重機械工業株式会社 | Laser annealing method and laser annealing apparatus |
-
2012
- 2012-03-30 JP JP2012080706A patent/JP6167358B2/en not_active Expired - Fee Related
-
2013
- 2013-03-08 WO PCT/JP2013/056496 patent/WO2013146197A1/en active Application Filing
- 2013-03-08 CN CN201380017446.9A patent/CN104272434B/en not_active Expired - Fee Related
- 2013-03-08 KR KR1020147030252A patent/KR102054026B1/en active IP Right Grant
- 2013-03-15 TW TW102109159A patent/TWI632611B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2013211415A (en) | 2013-10-10 |
KR102054026B1 (en) | 2019-12-09 |
TWI632611B (en) | 2018-08-11 |
WO2013146197A1 (en) | 2013-10-03 |
KR20140143812A (en) | 2014-12-17 |
TW201351504A (en) | 2013-12-16 |
CN104272434A (en) | 2015-01-07 |
CN104272434B (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6167358B2 (en) | Laser annealing apparatus and laser annealing method | |
TWI448025B (en) | System and method for multi-pulse laser processing | |
CN104117775B (en) | Crack generation method, cutting method using laser and crack generation device | |
JP5105984B2 (en) | Beam irradiation apparatus and laser annealing method | |
US7991037B2 (en) | Multi-beam laser apparatus | |
JP5678333B2 (en) | Laser annealing method and apparatus | |
JP6715632B2 (en) | Laser processing method and laser processing apparatus | |
JP5865303B2 (en) | Laser processing apparatus and laser processing method | |
JP6680494B2 (en) | Laser processing method and laser processing apparatus | |
JP5178046B2 (en) | Method for manufacturing semiconductor device | |
JP2008041868A (en) | Impurity activating method and laser irradiation apparatus | |
JP2004111584A (en) | Process for fabricating semiconductor device | |
JP5862088B2 (en) | Laser cleaving method and laser cleaving apparatus | |
JP2007059431A (en) | Process for fabricating semiconductor device and laser processing system | |
US20120312790A1 (en) | Pulse circulator | |
JP5853332B2 (en) | Laser attenuator and laser generator | |
US9653298B2 (en) | Thermal processing by transmission of mid infra-red laser light through semiconductor substrate | |
JP3847172B2 (en) | Crystal growth method and laser annealing apparatus | |
JP2006344909A (en) | Laser irradiation equipment and manufacture method of semiconductor device | |
US9190278B2 (en) | Device and method for improving crystallization | |
US9958709B2 (en) | Dynamic optical valve for mitigating non-uniform heating in laser processing | |
JP2003001470A (en) | Laser beam machining device and laser beam machining method | |
KR20130112112A (en) | Method of generating laser having variable pulse width and method of generating high power laser | |
JP2001257174A (en) | Laser annealing device and method | |
JP2007036080A (en) | Laser annealing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170602 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6167358 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |