[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6156122B2 - Rotor structure of embedded magnet motor - Google Patents

Rotor structure of embedded magnet motor Download PDF

Info

Publication number
JP6156122B2
JP6156122B2 JP2013261672A JP2013261672A JP6156122B2 JP 6156122 B2 JP6156122 B2 JP 6156122B2 JP 2013261672 A JP2013261672 A JP 2013261672A JP 2013261672 A JP2013261672 A JP 2013261672A JP 6156122 B2 JP6156122 B2 JP 6156122B2
Authority
JP
Japan
Prior art keywords
magnet
magnet insertion
insertion hole
rolling
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013261672A
Other languages
Japanese (ja)
Other versions
JP2015119564A (en
Inventor
平野 正樹
正樹 平野
清隆 西嶋
清隆 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013261672A priority Critical patent/JP6156122B2/en
Publication of JP2015119564A publication Critical patent/JP2015119564A/en
Application granted granted Critical
Publication of JP6156122B2 publication Critical patent/JP6156122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、磁石埋込型モータのロータ構造に関する。   The present invention relates to a rotor structure for an embedded magnet motor.

従来、磁石埋込型モータのロータ構造では、複数の電磁鋼板を積層してロータコアを構成すると共に、各電磁鋼板の内周囲に複数の磁石挿入孔を形成している。また、高速型の磁石埋込型モータには、その高速回転時の遠心力に耐え得るように、その各電磁鋼板の磁石挿入孔にリブ等の補強柱を形成して、磁石挿入孔周りの強度を補強している。   Conventionally, in a rotor structure of a magnet-embedded motor, a plurality of electromagnetic steel plates are laminated to form a rotor core, and a plurality of magnet insertion holes are formed in the inner periphery of each electromagnetic steel plate. In addition, the high-speed magnet-embedded motor is provided with a reinforcing column such as a rib in the magnet insertion hole of each electromagnetic steel plate so that it can withstand the centrifugal force during high-speed rotation. Strength is strengthened.

また、従来、例えば特許文献1、特許文献2、特許文献3には、電磁鋼板の磁気特性の異方性に起因してモータ性能がアンバランスとなるため、これを抑制する構成が開示されている。   Conventionally, for example, Patent Document 1, Patent Document 2, and Patent Document 3 disclose a configuration that suppresses this because the motor performance is unbalanced due to the anisotropy of the magnetic properties of the electromagnetic steel sheet. Yes.

特開2003−284274号公報JP 2003-284274 A 特開平7−99744号公報JP-A-7-99744 特開平7−236237号公報JP-A-7-236237

一般に、高速型の磁石埋込型モータでは、その最高回転数が高くなって遠心力が強く作用するほど、磁石挿入孔に設ける補強柱の厚さを厚くして、磁石挿入孔周りの強度をより補強する必要がある。   Generally, in a high-speed magnet-embedded motor, the strength of the magnet insertion hole is increased by increasing the thickness of the reinforcing column provided in the magnet insertion hole as the maximum rotational speed increases and centrifugal force acts more strongly. It needs to be reinforced more.

しかしながら、磁石挿入孔に厚い補強柱を設けると、その磁石挿入孔に挿入された磁石からステータに向かう磁束の一部がこの補強柱を通じて漏れる量が多くなるため、磁束短絡量が増大し、所期の性能を発揮できない一因となる。   However, if a thick reinforcing column is provided in the magnet insertion hole, a part of the magnetic flux from the magnet inserted into the magnet insertion hole to the stator increases through the reinforcing column, so that the magnetic flux short circuit amount increases. It becomes a cause that cannot show the performance of the period.

従って、電磁鋼板の磁石挿入孔周りの強度を補強しつつ、磁束短絡量を減少させるように、補強柱の厚さを従来よりも細くすることが望まれる。   Therefore, it is desirable to make the thickness of the reinforcing column thinner than before so as to reduce the magnetic flux short circuit amount while reinforcing the strength around the magnet insertion hole of the electromagnetic steel sheet.

そこで、本発明者等は、電磁鋼板の異方性を磁気特性の観点からではなく、強度の観点から捉えたところ、電磁鋼板は、圧延方向に対して圧延直角方向の部位が強度が高く、圧延直角方向の部位の強度が圧延方向の部位の強度よりも10%程度高いものも存在することが判った。   Therefore, the present inventors, from the viewpoint of strength, not the magnetic steel anisotropy from the viewpoint of magnetic properties, the magnetic steel sheet has a high strength in the direction perpendicular to the rolling direction, It has been found that there is a material whose strength in the direction perpendicular to the rolling is about 10% higher than the strength in the direction of rolling.

本発明は、かかる点に鑑み、その目的は、電磁鋼板の磁石挿入孔に設ける補強柱の厚さを、電磁鋼板の強度が高い圧延直角方向に配置する補強柱では、細く設定する構成を採用して、圧延直角方向に配置する磁石挿入孔周りの強度を十分補強しつつ、その磁石挿入孔に設けた補強柱を通じた磁束短絡量を減少させることにある。   In view of this point, the present invention adopts a configuration in which the thickness of the reinforcing column provided in the magnet insertion hole of the electromagnetic steel sheet is set thin in the reinforcing column arranged in the direction perpendicular to the rolling direction where the strength of the electromagnetic steel sheet is high. Thus, while sufficiently reinforcing the strength around the magnet insertion hole arranged in the direction perpendicular to the rolling, the amount of magnetic flux short circuit through the reinforcing column provided in the magnet insertion hole is reduced.

上記目的を達成するため、請求項1記載の発明の磁石埋込型モータのロータ構造では、所定の圧延方向から圧延された複数の電磁鋼板(30a)を積層してロータコア(30)が構成される磁石埋込型モータのロータ構造であって、上記複数の電磁鋼板(30a)には、各々、少なくとも上記圧延方向の部位とこの圧延方向に直交する圧延直角方向の部位とに磁石挿入孔(33R)、(33A)が形成され、上記複数の磁石挿入孔(33R)、(33A)には、各々、該磁石挿入孔(33R)、(33A)に配置される磁石(31l)、(31r)の少なくとも磁極中心位置に、上記磁石(31l)、(31r)の磁軸方向に延びて該磁石挿入孔(33R)、(33A)周りを補強する補強柱(34R)、(34A)が形成され、上記複数の磁石挿入孔の補強柱(34R)、(34A)のうち、磁石の磁軸方向が上記圧延直角方向である磁石挿入孔(33A)の補強柱(34A)は、上記圧延方向に延びる厚さ(tA)が、磁石の磁軸方向が上記圧延方向である磁石挿入孔(33R)の補強柱(34R)の厚さ(tR)よりも、細く設定されていることを特徴とする。   In order to achieve the above object, in the rotor structure of a magnet-embedded motor according to the first aspect of the present invention, a rotor core (30) is formed by laminating a plurality of electromagnetic steel plates (30a) rolled from a predetermined rolling direction. In the rotor structure of the magnet embedded type motor, the plurality of electromagnetic steel plates (30a) are each provided with a magnet insertion hole (at least in a portion in the rolling direction and a portion in a direction perpendicular to the rolling direction perpendicular to the rolling direction). 33R) and (33A) are formed, and the plurality of magnet insertion holes (33R) and (33A) are respectively provided with magnets (31l) and (31r) disposed in the magnet insertion holes (33R) and (33A), respectively. Reinforcing columns (34R) and (34A) that reinforce around the magnet insertion holes (33R) and (33A) by extending in the magnetic axis direction of the magnets (31l) and (31r) are formed at least at the magnetic pole center position. Among the plurality of magnet insertion hole reinforcement columns (34R), (34A), the magnet insertion hole (33A) reinforcement column (34A) in which the magnetic axis direction of the magnet is the rolling perpendicular direction is the rolling method The thickness (tA) extending in the magnet is set to be thinner than the thickness (tR) of the reinforcing column (34R) of the magnet insertion hole (33R) in which the magnetic axis direction of the magnet is the rolling direction. To do.

上記第1の発明では、磁石の磁軸方向が電磁鋼板の圧延直角方向である磁石挿入孔の部位では、圧延方向である磁石挿入孔の部位に比べて、強度が高いので、この部位での補強柱の厚さを細くしても、強度は圧延方向である磁石挿入孔の部位と同等程度に十分確保することが可能である。しかも、補強柱の厚さを細くする分、この補強柱を通じた漏れ磁束が少なくなって、磁束短絡量を減少させることができる。   In the first aspect of the invention, the portion of the magnet insertion hole in which the magnetic axis direction of the magnet is the direction perpendicular to the rolling direction of the magnetic steel sheet is higher in strength than the portion of the magnet insertion hole in the rolling direction. Even if the thickness of the reinforcing column is reduced, the strength can be sufficiently secured to the same extent as the portion of the magnet insertion hole in the rolling direction. In addition, as the thickness of the reinforcing column is reduced, the leakage magnetic flux through the reinforcing column is reduced, and the amount of magnetic flux short circuit can be reduced.

第2の発明は、上記磁石埋込型モータのロータ構造において、隣り合う2つの磁石挿入孔(33R)、(33A)間のブリッジ部(36)では、上記厚さが厚い補強柱(34R)を持つ磁石挿入孔(33R)側の部位(36R)は、上記厚さが厚い補強柱(34R)と同一方向に延び且つ厚さが厚く形成され、上記厚さが細い補強柱(34A)を持つ磁石挿入孔(33A)側の部位(36A)は、上記厚さが細い補強柱(34A)と同一方向に延び且つ厚さが上記厚い補強柱(34R)よりも細く形成されることを特徴とする。   According to a second aspect of the present invention, in the rotor structure of the magnet-embedded motor, the bridge portion (36) between two adjacent magnet insertion holes (33R), (33A) has a thick reinforcing column (34R). A portion (36R) on the magnet insertion hole (33R) side having a portion extending in the same direction as the thick reinforcing column (34R) and having a large thickness, the thin reinforcing column (34A) is formed. The magnet insertion hole (33A) side portion (36A) has a feature that it extends in the same direction as the thin reinforcing column (34A) and is thinner than the thick reinforcing column (34R). And

上記第2の発明では、隣り合う2つの磁極間のブリッジ部に曲げ応力が掛からず、引っ張り応力のみが掛かるので、強度が十分に確保される。しかも、ブリッジ部では、圧延直角方向に延びる強度の強い部位が圧延方向に延びる部位よりも細く形成されていても、ブリッジ部の上記2つの部位での強度を同等に確保できる。   In the second aspect of the present invention, since the bending stress is not applied to the bridge portion between two adjacent magnetic poles, but only the tensile stress is applied, sufficient strength is ensured. Moreover, in the bridge portion, even if the strong portion extending in the direction perpendicular to the rolling is formed thinner than the portion extending in the rolling direction, the strength at the two portions of the bridge portion can be ensured equally.

第3の発明は、上記磁石埋込型モータのロータ構造において、上記厚さが細い補強柱(34A)を持つ磁石挿入孔(33A)に配置される磁石(31l),(31r)は、上記厚さが厚い補強柱(34R)を持つ磁石挿入孔(33R)に配置される磁石(31l),(31r)よりも、磁石の幅が小さい若しくは着磁量が少ない、又は残留磁束密度が低い磁石で構成されることを特徴とする。   According to a third aspect of the present invention, in the rotor structure of the magnet-embedded motor, the magnets (31l) and (31r) disposed in the magnet insertion hole (33A) having the thin reinforcing column (34A) are Compared to magnets (31l) and (31r) placed in magnet insertion holes (33R) with thick reinforcing columns (34R), the magnet width is smaller, the amount of magnetization is smaller, or the residual magnetic flux density is lower. It is composed of a magnet.

上記第3の発明では、圧延直角方向に位置する磁石挿入孔の部位では、厚さの細い補強柱によって磁束短絡量が減少している一方、その磁石挿入孔に配置される磁石の着磁量若しくはその磁石の幅が小さく設定されている、又は残留磁束密度が低い磁石で構成されている分、ステータに向かう磁束量を少なく調整できるので、圧延方向に位置する磁石挿入孔の部位と圧延直角方向に位置する磁石挿入孔の部位との間で、ステータに向かう磁石の磁束量を相互にほぼ等量にすることができる。更に、磁束短絡量が減少している圧延直角方向の磁石では、ステータからの逆磁界による減磁の影響が強いものの、その磁石が残留磁束密度の低い磁石で構成されている場合には、この残留磁束密度の低い磁石は保持力が高く、減磁に強いので、圧延方向の磁石との間で減磁性能のバランスを良好にとることが可能である。   In the third aspect of the invention, in the portion of the magnet insertion hole located in the direction perpendicular to the rolling direction, the magnetic flux short circuit amount is reduced by the thin reinforcing column, while the magnetization amount of the magnet arranged in the magnet insertion hole Alternatively, since the magnet width is set to be small or the amount of magnetic flux directed to the stator can be adjusted to be small because the magnet is configured with a low residual magnetic flux density, the portion of the magnet insertion hole located in the rolling direction is perpendicular to the rolling direction. It is possible to make the magnetic flux amounts of the magnets facing the stator substantially equal to each other between the magnet insertion hole portions positioned in the direction. Furthermore, in the case of a magnet perpendicular to the rolling direction in which the magnetic flux short circuit amount is reduced, the demagnetization due to the reverse magnetic field from the stator is strong, but if the magnet is composed of a magnet with a low residual magnetic flux density, this A magnet having a low residual magnetic flux density has a high coercive force and is strong against demagnetization, and therefore, it is possible to satisfactorily balance the demagnetization performance with the magnet in the rolling direction.

第4の発明は、上記磁石埋込型モータのロータ構造において、上記複数の電磁鋼板(30a)は、圧延方向を所定角度ずつずらして積層する回し積みで積層されることを特徴とする。   According to a fourth aspect of the present invention, in the rotor structure of the magnet-embedded motor, the plurality of electromagnetic steel plates (30a) are stacked in a rotating stack in which the rolling direction is shifted by a predetermined angle.

上記第4の発明では、電磁鋼板の圧延方向と圧延直角方向とで磁石挿入孔に配置する補強柱の厚さは異なるものの、ロータを構成する複数の電磁鋼板が所定角度ずつずらして積層されているので、補強柱の厚さの相違に起因する磁束量のアンバランスを抑制することが可能である。   In the fourth invention, the thickness of the reinforcing pillars arranged in the magnet insertion hole is different between the rolling direction of the electromagnetic steel sheet and the direction perpendicular to the rolling direction, but the plurality of electromagnetic steel sheets constituting the rotor are shifted by a predetermined angle and stacked. Therefore, it is possible to suppress the imbalance of the magnetic flux amount due to the difference in the thickness of the reinforcing pillar.

第5の発明は、上記磁石埋込型モータのロータ構造において、上記複数の磁石挿入孔(33R)、(33A)に配置される磁石は、射出成形により各磁石挿入孔(33R)、(33A)に配置されることを特徴とする。   According to a fifth aspect of the present invention, in the rotor structure of the magnet-embedded motor, the magnets disposed in the plurality of magnet insertion holes (33R) and (33A) are injected into the magnet insertion holes (33R) and (33A) by injection molding. ).

以上説明したように、第1の発明では、電磁鋼板の圧延直角方向に位置して強度が高い磁石挿入孔の部位での補強柱の厚さを細くしたので、この部位での強度を確保しつつ、その補強柱を通じた磁束短絡量を減少させることが可能である。   As described above, in the first invention, since the thickness of the reinforcing column is reduced at the portion of the magnet insertion hole located in the direction perpendicular to the rolling direction of the magnetic steel sheet and having high strength, the strength at this portion is ensured. However, it is possible to reduce the magnetic flux short-circuit amount through the reinforcing column.

また、第2の発明では、電磁鋼板の両磁極間のブリッジ部での強度を十分に確保することができる。   Moreover, in 2nd invention, the intensity | strength in the bridge part between both the magnetic poles of an electromagnetic steel plate can fully be ensured.

更に、第3〜第5の発明では、電磁鋼板の圧延方向と圧延直角方向とで磁石挿入孔に配置する補強柱の厚さが異なることに起因する磁束量のアンバランスを抑制することが可能である。   Furthermore, in the third to fifth inventions, it is possible to suppress an imbalance in the amount of magnetic flux caused by the thickness of the reinforcing pillars arranged in the magnet insertion holes being different between the rolling direction of the magnetic steel sheet and the direction perpendicular to the rolling direction. It is.

図1は本発明の第1の実施形態の磁石埋込型ロータを持つ磁石埋込型モータの構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of an embedded magnet motor having an embedded magnet rotor according to a first embodiment of the present invention. 図2は同磁石埋込型ロータの分解斜視図である。FIG. 2 is an exploded perspective view of the magnet-embedded rotor. 図3は同磁石埋込型ロータのロータコアを構成する電磁鋼板1枚の平面図である。FIG. 3 is a plan view of one electromagnetic steel plate constituting the rotor core of the magnet embedded rotor. 図4(a)は同電磁鋼板の圧延方向の磁石挿入孔周りの拡大断面図、同図(b)は同電磁鋼板の圧延直角方向の磁石挿入孔周りの拡大断面図である。4A is an enlarged sectional view around the magnet insertion hole in the rolling direction of the electromagnetic steel sheet, and FIG. 4B is an enlarged sectional view around the magnet insertion hole in the direction perpendicular to the rolling of the electromagnetic steel sheet. 図5は同実施形態の第1の変形例を示す電磁鋼板1枚の平面図である。FIG. 5 is a plan view of one electromagnetic steel sheet showing a first modification of the embodiment. 図6は本発明の第2の実施形態の磁石埋込型ロータを構成する電磁鋼板1枚の要部を示す平面図である。FIG. 6 is a plan view showing a main part of one electromagnetic steel sheet constituting the magnet-embedded rotor according to the second embodiment of the present invention. 図7は本発明の第3の実施形態の磁石埋込型ロータを構成する電磁鋼板1枚を示す平面図である。FIG. 7 is a plan view showing one electromagnetic steel sheet constituting the magnet-embedded rotor according to the third embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、又はその用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る磁石埋込型ロータを持つ磁石埋込型モータの断面構成を示す。
(First embodiment)
FIG. 1 shows a cross-sectional configuration of an embedded magnet motor having an embedded magnet rotor according to the first embodiment of the present invention.

同図において、磁石埋込型モータ(1)は、ステータ(2)と磁石埋込型ロータ(3)と回転軸(4)とを備える。   In the figure, an embedded magnet motor (1) includes a stator (2), an embedded magnet rotor (3), and a rotating shaft (4).

上記ステータ(2)は、円筒状のステータコア(10)とコイル(11)とを備える。上記ステータコア(10)は、電磁鋼板をプレス加工によって打ち抜いて積層板を作成し、複数の積層板を上記回転軸(4)の軸方向(回転軸(4)の軸心(O)の方向、以下、軸方向という)に積層した積層コアであって、円環状のバックヨーク部(12)に回転軸中心(O)に向かって延びる直方体状の複数(同図では6つ)のティース部(13)と、該各ティース部(13)の内周側に形成されたツバ部(14)とを有する。そして、上記各ティース部(13)の外周には集中巻方式で上記コイル(11)が巻回されている。上記ツバ部(14)は、内周側の面が円筒面に形成され、この円筒面は磁石埋込型ロータ(3)の外周面と所定のエアギャップ(G)をもって対向している。   The stator (2) includes a cylindrical stator core (10) and a coil (11). The stator core (10) is formed by punching an electromagnetic steel plate by press working to create a laminated plate, and a plurality of laminated plates are arranged in the axial direction of the rotating shaft (4) (the direction of the axis (O) of the rotating shaft (4), Hereinafter, a laminated core laminated in the axial direction), and a plurality of (in the figure, six) teeth portions (six in the figure) in a rectangular parallelepiped shape extending toward the center (O) of the rotation axis on the annular back yoke portion (12). 13) and a flange portion (14) formed on the inner peripheral side of each tooth portion (13). And the said coil (11) is wound by the concentrated winding system on the outer periphery of each said teeth part (13). The flange portion (14) has an inner peripheral surface formed in a cylindrical surface, and this cylindrical surface is opposed to the outer peripheral surface of the magnet-embedded rotor (3) with a predetermined air gap (G).

そして、上記磁石埋込型ロータ(3)は、中心に上記回転軸(4)が配置される円筒状のロータコア(30)と、このロータコア(30)内に埋め込まれた矩形状の磁石(31l)、(31r)とを備えた4極構造である。この磁石埋込型ロータ(3)の具体的な構成を図2に示す。   The magnet-embedded rotor (3) includes a cylindrical rotor core (30) in which the rotation shaft (4) is disposed at the center, and a rectangular magnet (31l embedded in the rotor core (30)). ), (31r). A specific configuration of the magnet embedded rotor (3) is shown in FIG.

図2は磁石埋込型ロータ(3)の分解斜視図を示す。同図の磁石埋込型ロータ(3)において、ロータコア(30)は、円盤状の薄板鋼板よりなる電磁鋼板(30a)を多数枚重ね合わせて構成される。上記各電磁鋼板(30a)には、中央部に回転軸(4)の軸孔(32)が形成されると共に、縁部に4つの矩形状の磁石挿入孔(33)が該電磁鋼板(30a)の上下を貫通して形成される。この4つの磁石挿入孔(33)には、二等分割された矩形状の磁石(31l)、(31r)が挿入されている。これらの磁石挿入孔(33)の詳細な構成は後述する。   FIG. 2 shows an exploded perspective view of the magnet-embedded rotor (3). In the magnet-embedded rotor (3) in the figure, the rotor core (30) is configured by superposing a plurality of electromagnetic steel plates (30a) made of disk-shaped thin steel plates. Each of the electromagnetic steel plates (30a) is formed with a shaft hole (32) of the rotating shaft (4) at the center and four rectangular magnet insertion holes (33) at the edge. ) Are formed so as to penetrate through the top and bottom of the substrate. Rectangular magnets (31l) and (31r) divided into two equal parts are inserted into the four magnet insertion holes (33). The detailed configuration of these magnet insertion holes (33) will be described later.

また、図2において、ロータコア(30)の下方には、該ロータコア(30)の下端面を覆う下端板(40)が位置する。上記下端板(40)には、上記ロータコア(30)の各電磁鋼板(30a)と同様に、中央部に回転軸(4)の軸孔(42)が形成される。一方、上記ロータコア(30)の軸方向上方には、該ロータコア(30)の上端面を覆う上端板(50)が位置する。この上端板(50)も、上記下端板(40)と同様に、中央部に回転軸(4)の軸孔(52)が形成される。これらの下端板(40)及び上端板(50)は、各々、ロータコア(30)の各電磁鋼板(30a)の厚みよりも厚く形成されると共に、望ましくはSUS、アルミニウム、真鍮などの非磁性体により作られる。そして、上記下端板(40)及び上端板(50)には、磁石埋込型ロータ(3)のバランス調整用に複数のネジ挿入穴(40a)、(50a)が形成され、これらのネジ挿入穴(40a)、(50a)の幾つかにネジ(40b)、(50b)がネジ込まれている。   In FIG. 2, a lower end plate (40) that covers the lower end surface of the rotor core (30) is located below the rotor core (30). In the lower end plate (40), a shaft hole (42) of the rotation shaft (4) is formed in the central portion, like each electromagnetic steel plate (30a) of the rotor core (30). On the other hand, an upper end plate (50) covering the upper end surface of the rotor core (30) is positioned above the rotor core (30) in the axial direction. Similarly to the lower end plate (40), the upper end plate (50) is also formed with a shaft hole (52) of the rotation shaft (4) at the center. These lower end plate (40) and upper end plate (50) are each formed to be thicker than the thickness of each electromagnetic steel plate (30a) of the rotor core (30), and preferably nonmagnetic materials such as SUS, aluminum, brass, etc. Made by. The lower end plate (40) and the upper end plate (50) are formed with a plurality of screw insertion holes (40a), (50a) for balance adjustment of the magnet embedded rotor (3). Screws (40b) and (50b) are screwed into some of the holes (40a) and (50a).

(電磁鋼板の具体的構成)
次に、上記磁石埋込型モータ(1)のロータ(3)のロータコア(30)を構成する複数の電磁鋼板(30a)の詳細な構成を図3に基づいて説明する。
(Specific configuration of electrical steel sheet)
Next, a detailed configuration of the plurality of electromagnetic steel plates (30a) constituting the rotor core (30) of the rotor (3) of the magnet-embedded motor (1) will be described with reference to FIG.

図3は1枚の電磁鋼板(30a)の具体的構成を示す。同図において、この電磁鋼板(30a)の圧延方向(R)は、同図に矢印で示すように紙面下側から上方向であるとして説明する。   FIG. 3 shows a specific configuration of one electromagnetic steel sheet (30a). In the figure, the rolling direction (R) of the electrical steel sheet (30a) is described as being upward from the lower side of the paper as indicated by the arrow in the figure.

この電磁鋼板(30a)には、圧延方向の部位に2極分の磁石挿入孔(33R), (33R)が形成され、上記圧延方向と直角の圧延直角方向の部位に2極分の磁石挿入孔(33A),(33A)が形成されている。圧延方向の各磁石挿入孔(33R)には、その磁石挿入孔(33R)周りの強度を補強するために、1極分の磁石の磁極中心の位置に1つのリブ(補強柱)(34R)が1極分の磁石の磁軸方向、すなわち、このリブ(34R)に作用する遠心力の方向に延びて形成されている。また、圧延直角方向の各磁石挿入孔(33A)にも、その磁石挿入孔(33A)周りの強度を補強するために、1極分の磁石の磁極中心の位置に1つのリブ(補強柱)(34A)が1極分の磁石の磁軸方向に延びて形成されている。そして、4極分の磁石挿入孔(33R),(33R),(33A),(33A)は、上記リブ(34R),(34A)によって左右に2つの磁石挿入孔(33l),(33r)に等分割されており、これ等の磁石挿入孔(33l),(33r)に上記図1に示した磁石(31l),(31r)が射出成形により挿入配置される。   This magnetic steel sheet (30a) has magnet insertion holes (33R) and (33R) for two poles in the part in the rolling direction, and magnets for two poles are inserted in the part perpendicular to the rolling direction perpendicular to the rolling direction. Holes (33A) and (33A) are formed. Each magnet insertion hole (33R) in the rolling direction has one rib (reinforcement pillar) (34R) at the position of the magnetic pole center of one magnet in order to reinforce the strength around the magnet insertion hole (33R). Is formed extending in the magnetic axis direction of the magnet for one pole, that is, in the direction of the centrifugal force acting on the rib (34R). In addition, in order to reinforce the strength around the magnet insertion hole (33A) in each magnet insertion hole (33A) in the direction perpendicular to the rolling direction, one rib (reinforcement column) is provided at the position of the magnetic pole center of one magnet. (34A) is formed extending in the magnetic axis direction of the magnet for one pole. The magnet insertion holes (33R), (33R), (33A), (33A) for four poles are divided into two magnet insertion holes (33l), (33r) on the left and right by the ribs (34R), (34A). The magnets (31l) and (31r) shown in FIG. 1 are inserted and arranged in these magnet insertion holes (33l) and (33r) by injection molding.

そして、上記圧延方向の2つの磁石挿入孔(33R)に形成したリブ(34R)は、図4(a)に図3上側の磁石挿入孔(33R)周りを拡大して示したように、その厚さは厚さ(tR)に設定される。一方、圧延直角方向の2つの磁石挿入孔(33A)に形成したリブ(34A)は、図4(b)に図3右側の磁石挿入孔(33A)周りを拡大して示したように、その厚さは上記リブ(34R)の厚さ(tR)よりも細い厚さ(tA)(tA<tR)に設定されている。   The rib (34R) formed in the two magnet insertion holes (33R) in the rolling direction is enlarged as shown in FIG. 4 (a) around the upper magnet insertion hole (33R) in FIG. The thickness is set to the thickness (tR). On the other hand, the rib (34A) formed in the two magnet insertion holes (33A) in the direction perpendicular to the rolling is shown in FIG. 4 (b) in an enlarged manner around the magnet insertion hole (33A) on the right side of FIG. The thickness is set to a thickness (tA) (tA <tR) that is thinner than the thickness (tR) of the rib (34R).

尚、図4(a)及び(b)において、符号(35R)、(35A)は、磁石挿入孔(33R)、(33A)に設けたリブ(34R)、(34A)の内方側(回転軸(4)の軸孔(32)側)に形成した磁石ストッパであって、モータ(1)の運転時に磁石(31l)、(31r)が磁石挿入孔(33R)、(33A)内をその長さ方向に移動した際にこれ等磁石(31l)、(31r)を当てて止める機能を奏する。   4 (a) and 4 (b), reference numerals (35R) and (35A) denote the inner sides (rotations of the ribs (34R) and (34A) provided in the magnet insertion holes (33R) and (33A)). A magnet stopper formed on the shaft hole (32 side) of the shaft (4), and the magnets (31l) and (31r) move inside the magnet insertion holes (33R) and (33A) when the motor (1) is operated. When moving in the length direction, the magnet (31l) and (31r) are applied and stopped.

従って、本実施形態では、電磁鋼板(30a)は圧延方向に対して圧延直角方向の方が強度が高いため、この圧延直角方向の部位に設けた磁石挿入孔(33A)のリブ(34A)の厚さを、圧延方向の部位に設けた磁石挿入孔(33R)のリブ(34R)の厚さ(tR)よりも細い厚さ(tA)(tA<tR)に設定しても、この圧延直角方向の磁石挿入孔(33A)周りの強度は十分確保される。しかも、リブ(34A)の厚さが細い分、これらの磁石挿入孔(33A)に配置された磁石(31l),(31r)の磁束がこのリブ(34A)を通じて回転軸(4)側に漏れる量が減り、磁束短絡量は減少するので、その分、磁石(31l),(31r)からステータ(2)のティース部(13)に向かう磁束量が増大し、磁石埋込型モータ(1)の性能が向上する。   Therefore, in the present embodiment, the magnetic steel sheet (30a) has higher strength in the direction perpendicular to the rolling direction than the rolling direction, so the rib (34A) of the magnet insertion hole (33A) provided in the portion in the direction perpendicular to the rolling direction. Even if the thickness is set to a thickness (tA) (tA <tR) that is thinner than the thickness (tR) of the rib (34R) of the magnet insertion hole (33R) provided at the site in the rolling direction, The strength around the magnet insertion hole (33A) in the direction is sufficiently secured. Moreover, the magnetic flux of the magnets (31l) and (31r) arranged in the magnet insertion holes (33A) leaks to the rotating shaft (4) side through the ribs (34A) because the thickness of the ribs (34A) is thin. The amount of magnetic flux is reduced and the magnetic flux short-circuit amount is reduced.Therefore, the amount of magnetic flux from the magnets (31l), (31r) toward the teeth (13) of the stator (2) is increased, and the magnet-embedded motor (1) Improved performance.

また、電磁鋼板(30a)の圧延方向の部位に設けた磁石挿入孔(33R)の厚さの厚いリブ(34R)に対して、電磁鋼板(30a)の180度反対側の磁石挿入孔(33R)にも厚さの厚いリブ(34R)が形成される共に、電磁鋼板(30a)の圧延直角方向の部位に設けた磁石挿入孔(33A)の厚さの細いリブ(34A)に対して、電磁鋼板(30a)の180度反対側の磁石挿入孔(33A)にも厚さの細いリブ(34A)が形成されるので、電磁鋼板(30a)全体として、回転に対するバランスは良好に確保される。   In addition, the magnet insertion hole (33R) on the opposite side of the electromagnetic steel sheet (30a) to the thick rib (34R) of the magnet insertion hole (33R) provided in the rolling direction portion of the electromagnetic steel sheet (30a) ) Is also formed with a thick rib (34R), and with respect to the thin rib (34A) of the magnet insertion hole (33A) provided in the portion perpendicular to the rolling direction of the electromagnetic steel sheet (30a), Since the thin rib (34A) is also formed in the magnet insertion hole (33A) on the opposite side of the magnetic steel sheet (30a) by 180 degrees, the electromagnetic steel sheet (30a) as a whole is well balanced against rotation. .

尚、上記圧延直角方向の磁石挿入孔(33A)のリブ(34A)の厚さ(tA)を圧延方向の磁石挿入孔(33R)のリブ(34R)の厚さ(tR)よりも細くする量は、電磁鋼板(30a)の圧延直角方向の強度や、リブ(34A)の厚さ(tA)の減少に対する圧延直角方向の磁石挿入孔(33A)部位での強度の低下割合などを考慮して決定される。   The thickness (tA) of the rib (34A) of the magnet insertion hole (33A) in the direction perpendicular to the rolling is smaller than the thickness (tR) of the rib (34R) of the magnet insertion hole (33R) in the rolling direction. In consideration of the strength of the electromagnetic steel sheet (30a) in the direction perpendicular to the rolling and the rate of decrease in strength at the magnet insertion hole (33A) in the direction perpendicular to the rolling with respect to the decrease in the thickness (tA) of the rib (34A). It is determined.

(変形例)
図5は上記第1の実施形態の変形例を示す。
(Modification)
FIG. 5 shows a modification of the first embodiment.

上記実施形態では、磁石挿入孔(33R),(33A)に設けるリブ(33R),(33A)を、磁石の磁極中心位置に1つ配置したのに代え、本変形例では、図5から判るように、1つの磁石挿入孔(33R),(33A)当り3つのリブを形成したものである。   In the above embodiment, instead of arranging one rib (33R), (33A) provided in the magnet insertion holes (33R), (33A) at the magnetic pole center position of the magnet, this modification can be seen from FIG. As described above, three ribs are formed per one magnet insertion hole (33R) and (33A).

この場合においても、圧延方向の2つの磁石挿入孔(33R)に形成するリブ(34R)は、その厚さは厚さ(tR)に設定され、圧延直角方向の2つの磁石挿入孔(33A)に形成するリブ(34A)の厚さは、上記リブ(34R)の厚さ(tR)よりも細い厚さ(tA)(tA<tR)に設定される。   Even in this case, the thickness of the rib (34R) formed in the two magnet insertion holes (33R) in the rolling direction is set to the thickness (tR), and the two magnet insertion holes (33A) in the direction perpendicular to the rolling direction. The thickness of the rib (34A) to be formed is set to a thickness (tA) (tA <tR) that is thinner than the thickness (tR) of the rib (34R).

従って、本変形例においても、圧延直角方向の磁石挿入孔(33A)周りの強度を十分確保しつつ、厚さの細いリブ(34A)を通じた磁束短絡量を減少させて、それらの磁石挿入孔(33A)に配置される磁石からステータ(2)のティース部(13)に向かう磁束量を増大させることができるので、磁石埋込型モータ(1)の性能を向上させることが可能である。   Therefore, also in this modification, while sufficiently securing the strength around the magnet insertion holes (33A) in the direction perpendicular to the rolling, the magnetic flux short-circuit amount through the thin ribs (34A) is reduced, and these magnet insertion holes Since the amount of magnetic flux from the magnet arranged at (33A) toward the teeth portion (13) of the stator (2) can be increased, the performance of the magnet-embedded motor (1) can be improved.

(第2の実施形態)
続いて、本発明の第2の実施形態を図6に基づいて説明する。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described with reference to FIG.

図6は、電磁鋼板(30a)の圧延方向の磁石挿入孔(33R)周りの平面図を示す。本実施形態では、圧延方向の磁石挿入孔(33R)と圧延直角方向の磁石挿入孔(33A)とが隣り合うブリッジ部(36)において、圧延方向の磁石挿入孔(33R)側の部位(36R)は、その圧延方向の磁石挿入孔(33R)のリブ(34R)の延びる方向(遠心力が作用する方向であって、同図に符号(G)で示す矢印方向)と同一方向、すなわち平行)に延びる形状に形成される。この部位(36R)の厚さは、上記圧延方向の磁石挿入孔(33R)の厚いリブ(34R)と同一厚さに設定されている。一方、圧延直角方向の磁石挿入孔(33A)側の部位(36A)は、その圧延直角方向の磁石挿入孔(33A)のリブ(34A)の延びる方向と同一方向、すなわち平行)に延びる形状に形成されると共に、この部位(36A)の厚さは、上記圧延直角方向の磁石挿入孔(33A)の細いリブ(34A)と同一厚さに設定されている。   FIG. 6 shows a plan view around the magnet insertion hole (33R) in the rolling direction of the electromagnetic steel sheet (30a). In the present embodiment, in the bridge portion (36) where the magnet insertion hole (33R) in the rolling direction and the magnet insertion hole (33A) in the direction perpendicular to the rolling are adjacent to each other, the portion (36R) on the magnet insertion hole (33R) side in the rolling direction ) Is the same direction as the extending direction of the rib (34R) of the magnet insertion hole (33R) in the rolling direction (the direction in which centrifugal force acts, and the direction indicated by the arrow (G) in the figure), that is, in parallel. ). The thickness of this part (36R) is set to the same thickness as the thick rib (34R) of the magnet insertion hole (33R) in the rolling direction. On the other hand, the portion (36A) on the side of the magnet insertion hole (33A) in the direction perpendicular to rolling extends in the same direction as the direction in which the rib (34A) of the magnet insertion hole (33A) in the direction perpendicular to rolling extends (that is, parallel). At the same time, the thickness of the portion (36A) is set to the same thickness as the thin rib (34A) of the magnet insertion hole (33A) in the direction perpendicular to the rolling.

従って、本実施形態では、ブリッジ部(36)において、圧延方向の磁石挿入孔(33R)側の部位(36R)の延びる方向が、その圧延方向の磁石挿入孔(33R)のリブ(34R)の延びる方向(即ち、圧延方向)と平行に設定される一方、圧延直角方向の磁石挿入孔(33A)側の部位(36A)の延びる方向が、その圧延直角方向の磁石挿入孔(33A)のリブ(34A)の延びる方向(即ち、圧延直角方向)と平行に設定されるので、このブリッジ部(36)の上記2つの部位(36R)、(36A)には曲げ応力が掛からず、引っ張り応力のみが掛かるので、強度が十分に確保される。   Therefore, in the present embodiment, in the bridge portion (36), the extending direction of the portion (36R) on the magnet insertion hole (33R) side in the rolling direction is the rib (34R) of the magnet insertion hole (33R) in the rolling direction. The direction in which the portion (36A) on the side of the magnet insertion hole (33A) in the direction perpendicular to the rolling extends is the rib of the magnet insertion hole (33A) in the direction perpendicular to the rolling. Since it is set in parallel with the direction (34A) extending (34A), the two parts (36R) and (36A) of this bridge part (36) are not subjected to bending stress, only tensile stress. Therefore, sufficient strength is ensured.

しかも、ブリッジ部(36)において、圧延直角方向の磁石挿入孔(33A)側の部位(36A)は、圧延直角方向に延びて、その強度が圧延方向の強度よりも高いので、圧延直角方向の磁石挿入孔(33A)側の部位(36A)を圧延方向の磁石挿入孔(33R)側の部位(36R)よりも細く形成しても、強度は十分確保される。   Moreover, in the bridge portion (36), the portion (36A) on the magnet insertion hole (33A) side in the direction perpendicular to the rolling extends in the direction perpendicular to the rolling, and its strength is higher than the strength in the rolling direction. Even if the portion (36A) on the magnet insertion hole (33A) side is formed narrower than the portion (36R) on the magnet insertion hole (33R) side in the rolling direction, sufficient strength is ensured.

(第3の実施形態)
次に、本発明の第3の実施形態を図7に基づいて説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG.

図7は、本実施形態の4極の磁石埋込型モータのロータコアを構成する複数の電磁鋼板(30a)の1枚を例示したものである。同図では、圧延直角方向の磁石挿入孔(33A)に挿入される2つの磁石(33l)、(33r)の幅(WMA)を、圧延方向の磁石挿入孔(33R)に挿入される2つの磁石(33l)、(33r)の幅(WMR)よりも小さく(WMA<WMR)設定している。その他の構成は上記第1の実施形態と同様である。   FIG. 7 exemplifies one of a plurality of electromagnetic steel sheets (30a) constituting the rotor core of the four-pole embedded magnet motor of the present embodiment. In the figure, the width (WMA) of two magnets (33l) and (33r) inserted into the magnet insertion hole (33A) in the direction perpendicular to the rolling is set to the two magnets inserted into the magnet insertion hole (33R) in the rolling direction. The width is set smaller than the width (WMR) of the magnets (33l) and (33r) (WMA <WMR). Other configurations are the same as those in the first embodiment.

従って、本実施形態では、圧延方向の磁石挿入孔(33R)の厚さの厚いリブ(34R)を通じた磁束短絡量に対し、圧延直角方向の磁石挿入孔(33A)の厚さの細いリブ(34A)を通じた磁束短絡量は減少する一方、圧延直角方向の磁石挿入孔(33A)に配置される小さい幅(WMA)の磁石(31l),(31r)の磁束量が、圧延方向の磁石挿入孔(33R)に配置される大きい幅(WMR)の磁石(31l),(31r)の磁束量に対して、減少するので、上記第2の実施形態と同様に、電磁鋼板(30a)の圧延方向と圧延直角方向との間で、各磁石挿入孔(33R)、(33A)に配置される磁石(31l),(31r)からステータ(2)のティース部(13)に向かう磁束量を相互にほぼ等しくすることが可能であり、電磁鋼板(30a)の圧延方向と圧延直角方向との間の磁束量のアンバランスを有効に抑制することができる。   Accordingly, in the present embodiment, a thin rib (thickness of the magnet insertion hole (33A) in the direction perpendicular to the rolling is reduced with respect to the magnetic flux short circuit amount through the thick rib (34R) of the magnet insertion hole (33R) in the rolling direction ( While the magnetic flux short-circuit amount through 34A) is reduced, the magnetic flux amount of the small width (WMA) magnets (31l) and (31r) arranged in the magnet insertion hole (33A) in the direction perpendicular to the rolling direction is inserted in the magnet in the rolling direction. Since the magnetic flux amount of the magnets (31l) and (31r) having a large width (WMR) arranged in the hole (33R) is reduced, the rolling of the electrical steel sheet (30a) is performed as in the second embodiment. Between the direction of rotation and the direction perpendicular to the rolling direction, the amount of magnetic flux from the magnets (31l), (31r) arranged in the magnet insertion holes (33R), (33A) toward the teeth part (13) of the stator (2) The magnetic flux unbalance between the rolling direction and the perpendicular direction of rolling of the electromagnetic steel sheet (30a) can be effectively suppressed.

尚、本実施形態では、圧延直角方向の磁石挿入孔(33A) の磁石(33l)、(33r)の幅(WMA)を狭く設定して、電磁鋼板(30a)の圧延方向と圧延直角方向との間の磁束量のアンバランスを抑制したが、その他、例えば圧延直角方向の磁石挿入孔(33A)に配置する磁石(31l),(31r)の着磁量を少なくしたり、圧延直角方向の磁石挿入孔(33A)の磁石(33l)、(33r)を残留磁束密度Brの低い磁石で構成して、電磁鋼板(30a)の圧延方向と圧延直角方向との間の磁束量のアンバランスを抑制しても良い。   In this embodiment, the width (WMA) of the magnets (33l) and (33r) of the magnet insertion holes (33A) in the direction perpendicular to the rolling is set to be narrow, and the rolling direction and the direction perpendicular to the rolling direction of the electrical steel sheet (30a) are set. In other cases, for example, the magnets (31l) and (31r) placed in the magnet insertion holes (33A) in the direction perpendicular to the rolling direction are reduced in the magnetizing amount, or in the direction perpendicular to the rolling direction. The magnets (33l) and (33r) of the magnet insertion hole (33A) are composed of magnets having a low residual magnetic flux density Br, and the magnetic flux amount unbalance between the rolling direction and the perpendicular direction of rolling of the electrical steel sheet (30a) It may be suppressed.

圧延直角方向の磁石挿入孔(33A)の磁石(31l),(31r)では、厚さの細いリブ(34A)によって磁束短絡量が減少しているため、ステータ(2)からの逆磁界による減磁の影響が強い。しかし、この圧延直角方向の磁石挿入孔(33A)に挿入された残留磁束密度Brの低い磁石(31l),(31r)は保持力が高く、減磁に強いので、圧延方向の磁石挿入孔(33R)の磁石(31l),(31r)との間で減磁性能のバランスを良好にとることができる。   In the magnets (31l) and (31r) in the magnet insertion hole (33A) in the direction perpendicular to the rolling direction, the magnetic flux short circuit amount is reduced by the thin rib (34A). Strong influence of magnetism. However, the magnets (31l) and (31r) having a low residual magnetic flux density Br inserted in the magnet insertion hole (33A) in the direction perpendicular to the rolling have a high holding force and are resistant to demagnetization. The demagnetization performance can be well balanced between the magnets (31l) and (31r) of 33R).

(その他の実施形態)
上記第2及び第3の実施形態では、ブリッジ部(36)の形状や、圧延直角方向の磁石挿入孔(33A)の幅や磁石(31l),(31r)の着磁量を変更して、電磁鋼板(30a)の圧延方向と圧延直角方向との間の磁束量のアンバランスを抑制したが、その他、複数の電磁鋼板(30a)を積層してロータコア(30)を構成するに際し、各電磁鋼板(30a)相互間で、例えば4極モータでは圧延方向を90度づつずらして積層するなど、圧延方向を所定角度づつずらして積層する回し積みで積層することにより、電磁鋼板(30a)の圧延方向と圧延直角方向との間の磁束量のアンバランスを抑制しても良い。
(Other embodiments)
In the second and third embodiments, the shape of the bridge portion (36), the width of the magnet insertion hole (33A) in the direction perpendicular to the rolling, and the amount of magnetization of the magnets (31l), (31r) are changed. Although the unbalance of the magnetic flux amount between the rolling direction of the electromagnetic steel sheet (30a) and the direction perpendicular to the rolling direction was suppressed, in addition, when forming the rotor core (30) by laminating a plurality of electromagnetic steel sheets (30a), each electromagnetic Rolling of electrical steel sheets (30a) by laminating them by rotating the steel sheets (30a) with different rolling directions by a predetermined angle, for example, by laminating the rolling directions by 90 degrees with a 4-pole motor. You may suppress the imbalance of the magnetic flux amount between a direction and a rolling orthogonal direction.

また、以上の説明では、4極の磁石埋込型モータに適用したが、本発明は8極、12極又は16極などの多極の磁石埋込型モータに適用できるのは勿論である。   In the above description, the present invention is applied to a four-pole embedded magnet motor, but the present invention is naturally applicable to a multi-pole embedded magnet motor such as 8-pole, 12-pole, or 16-pole.

以上説明したように、本発明は、電磁鋼板の圧延直角方向に設けた磁石挿入孔の補強柱の厚さを細く設定したので、この圧延直角方向の磁石挿入孔周りの強度を確保しつつ、その磁石挿入孔の補強柱から漏れる磁束短絡量を減少させたので、モータ性能を高めることができ、磁石埋込型モータに適用して有用である。   As described above, since the present invention has set the thickness of the reinforcing column of the magnet insertion hole provided in the direction perpendicular to the rolling direction of the magnetic steel sheet thin, while ensuring the strength around the magnet insertion hole in the direction perpendicular to the rolling direction, Since the magnetic flux short-circuit amount leaking from the reinforcing column of the magnet insertion hole is reduced, the motor performance can be improved and it is useful when applied to a magnet-embedded motor.

1 磁石埋込型モータ
2 ステータ
3 磁石埋込型ロータ
4 回転軸
30 ロータコア
30a 積層鋼板
31l、31r 磁石
32 軸孔
33R、33A 磁石挿入孔
34R、34A リブ(補強柱)
36 ブリッジ部
DESCRIPTION OF SYMBOLS 1 Magnet embedded motor 2 Stator 3 Magnet embedded rotor 4 Rotating shaft 30 Rotor core 30a Laminated steel plate 31l, 31r Magnet 32 Shaft hole 33R, 33A Magnet insertion hole 34R, 34A Rib (reinforcing pillar)
36 Bridge part

Claims (5)

所定の圧延方向から圧延された複数の電磁鋼板(30a)を積層してロータコア(30)が構成される磁石埋込型モータのロータ構造であって、
上記複数の電磁鋼板(30a)には、各々、少なくとも上記圧延方向の部位とこの圧延方向に直交する圧延直角方向の部位とに磁石挿入孔(33R)、(33A)が形成され、
上記複数の磁石挿入孔(33R)、(33A)には、各々、該磁石挿入孔(33R)、(33A)に配置される磁石(31l)、(31r)の少なくとも磁極中心位置に、上記磁石(31l)、(31r)の磁軸方向に延びて該磁石挿入孔(33R)、(33A)周りを補強する補強柱(34R)、(34A)が形成され、
上記複数の磁石挿入孔の補強柱(34R)、(34A)のうち、磁石の磁軸方向が上記圧延直角方向である磁石挿入孔(33A)の補強柱(34A)は、上記圧延方向に延びる厚さ(tA)が、磁石の磁軸方向が上記圧延方向である磁石挿入孔(33R)の補強柱(34R)の厚さ(tR)よりも、細く設定されている
ことを特徴とする磁石埋込型モータのロータ構造。
A rotor structure of a magnet embedded motor in which a rotor core (30) is configured by laminating a plurality of electromagnetic steel plates (30a) rolled from a predetermined rolling direction,
In each of the plurality of electromagnetic steel sheets (30a), magnet insertion holes (33R) and (33A) are formed at least in a portion in the rolling direction and a portion in the direction perpendicular to the rolling direction perpendicular to the rolling direction,
In the plurality of magnet insertion holes (33R) and (33A), the magnets are arranged at least at the magnetic pole center positions of the magnets (31l) and (31r) disposed in the magnet insertion holes (33R) and (33A), respectively. Reinforcing columns (34R) and (34A) that extend in the direction of the magnetic axis of (31l) and (31r) and reinforce around the magnet insertion holes (33R) and (33A) are formed,
Among the reinforcing columns (34R) and (34A) of the plurality of magnet insertion holes, the reinforcing column (34A) of the magnet insertion hole (33A) in which the magnetic axis direction of the magnet is the direction perpendicular to the rolling extends in the rolling direction. The magnet is characterized in that the thickness (tA) is set to be thinner than the thickness (tR) of the reinforcing column (34R) of the magnet insertion hole (33R) in which the magnetic axis direction of the magnet is the rolling direction. Embedded motor rotor structure.
上記請求項1記載の磁石埋込型モータのロータ構造において、
隣り合う2つの磁石挿入孔(33R)、(33A)間のブリッジ部(36)では、
上記厚さが厚い補強柱(34R)を持つ磁石挿入孔(33R)側の部位(36R)は、上記厚さが厚い補強柱(34R)と同一方向に延び且つ厚さが厚く形成され、
上記厚さが細い補強柱(34A)を持つ磁石挿入孔(33A)側の部位(36A)は、上記厚さが細い補強柱(34A)と同一方向に延び且つ厚さが上記厚い補強柱(34R)よりも細く形成される
ことを特徴とする磁石埋込型モータのロータ構造。
In the rotor structure of the magnet-embedded motor according to claim 1,
In the bridge part (36) between two adjacent magnet insertion holes (33R) and (33A),
The magnet insertion hole (33R) side portion (36R) having the thick reinforcing column (34R) extends in the same direction as the thick reinforcing column (34R) and is thick.
The magnet insertion hole (33A) side portion (36A) having the thin reinforcing column (34A) extends in the same direction as the thin reinforcing column (34A) and has the thick reinforcing column (34A). The rotor structure of a magnet-embedded motor, characterized in that it is thinner than 34R).
上記請求項1及び2の何れか1項に記載の磁石埋込型モータのロータ構造において、
上記厚さが細い補強柱(34A)を持つ磁石挿入孔(33A)に配置される磁石(31l),(31r)は、上記厚さが厚い補強柱(34R)を持つ磁石挿入孔(33R)に配置される磁石(31l),(31r)よりも、磁石の幅が小さい若しくは着磁量が少ない、又は残留磁束密度が低い磁石で構成される
ことを特徴とする磁石埋込型モータのロータ構造。
In the rotor structure of an embedded magnet motor according to any one of claims 1 and 2,
The magnets (31l) and (31r) disposed in the magnet insertion hole (33A) having the thin reinforcing column (34A) are magnet insertion holes (33R) having the thick reinforcing column (34R). The rotor of an embedded magnet motor characterized by comprising a magnet having a smaller magnet width, a smaller amount of magnetization, or a lower residual magnetic flux density than the magnets (31l) and (31r) disposed in Construction.
上記請求項1及び2の何れか1項に記載の磁石埋込型モータのロータ構造において、
上記複数の電磁鋼板(30a)は、圧延方向を所定角度ずつずらして積層する回し積みで積層される
ことを特徴とする磁石埋込型モータのロータ構造。
In the rotor structure of an embedded magnet motor according to any one of claims 1 and 2,
The rotor structure of a magnet-embedded motor, wherein the plurality of electromagnetic steel sheets (30a) are stacked by rotating stacking in which the rolling direction is shifted by a predetermined angle.
上記請求項1〜4の何れか1項に記載の磁石埋込型モータのロータ構造において、
上記複数の磁石挿入孔(33R)、(33A)に配置される磁石は、射出成形により各磁石挿入孔(33R)、(33A)に配置される
ことを特徴とする磁石埋込型モータのロータ構造。
In the rotor structure of a magnet-embedded motor according to any one of claims 1 to 4,
The magnet disposed in the plurality of magnet insertion holes (33R) and (33A) is disposed in each of the magnet insertion holes (33R) and (33A) by injection molding. Construction.
JP2013261672A 2013-12-18 2013-12-18 Rotor structure of embedded magnet motor Active JP6156122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261672A JP6156122B2 (en) 2013-12-18 2013-12-18 Rotor structure of embedded magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261672A JP6156122B2 (en) 2013-12-18 2013-12-18 Rotor structure of embedded magnet motor

Publications (2)

Publication Number Publication Date
JP2015119564A JP2015119564A (en) 2015-06-25
JP6156122B2 true JP6156122B2 (en) 2017-07-05

Family

ID=53531843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261672A Active JP6156122B2 (en) 2013-12-18 2013-12-18 Rotor structure of embedded magnet motor

Country Status (1)

Country Link
JP (1) JP6156122B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018131402A1 (en) * 2017-01-11 2019-11-07 パナソニックIpマネジメント株式会社 Permanent magnet embedded rotor and electric motor equipped with the same
US11165293B2 (en) 2017-03-30 2021-11-02 Nidec Corporation Rotor and motor
JPWO2018180637A1 (en) * 2017-03-31 2020-02-06 日本電産株式会社 Rotor, motor, electric power steering device
CN107231048B (en) * 2017-08-03 2023-05-23 珠海格力节能环保制冷技术研究中心有限公司 Motor, embedded rotor, rotor core and rotor punching sheet thereof
JP6856011B2 (en) * 2017-12-12 2021-04-07 トヨタ自動車株式会社 Rotating machine rotor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214476A (en) * 1994-10-05 1996-08-20 Sankyo Seiki Mfg Co Ltd Core for small-sized motor
JP2001157396A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Manufacturing method of rotor of rotary electric machine and rotor core
JP3602392B2 (en) * 1999-12-21 2004-12-15 アイチエレック株式会社 Permanent magnet embedded motor
JP4498154B2 (en) * 2005-01-27 2010-07-07 ファナック株式会社 Motor manufacturing method and motor manufacturing apparatus
JP2010121150A (en) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotating machine, the rotating machine, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2015119564A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5663936B2 (en) Permanent magnet rotating electric machine
JP5542423B2 (en) Rotating electric machine rotor and rotating electric machine
JP6781536B2 (en) Permanent magnet rotor and permanent magnet rotor
JP5813254B2 (en) Permanent magnet rotating electric machine
EP2722969B1 (en) Rotating electrical machine
JP6156122B2 (en) Rotor structure of embedded magnet motor
JP5565170B2 (en) Permanent magnet rotating machine
JP2008206308A (en) Permanent-magnet rotating electric machine
WO2012157056A1 (en) Permanent-magnet type rotating electrical machine
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP6661939B2 (en) Rotor
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
JP6237412B2 (en) Rotor structure of embedded magnet type rotating electrical machine
JP2006238667A (en) Electric motor
JP6210711B2 (en) Permanent magnet motor
JP6112970B2 (en) Permanent magnet rotating electric machine
JP2007228771A (en) Permanent magnet type motor
KR20200114258A (en) Motor
JP2013074694A (en) Permanent magnet buried electric motor
JP2014113033A (en) Embedded magnet dynamo-electric machine
JP2011193627A (en) Rotor core and rotary electric machine
JP2010279156A (en) Permanent magnet type rotating machine
JP6355859B1 (en) Rotor and rotating electric machine
JP2014161206A (en) Interior magnet type rotating electrical machine
JP2015126644A (en) Rotator of rotary electric machine and rotary electric machine including the rotator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151