[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6155602B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP6155602B2
JP6155602B2 JP2012249576A JP2012249576A JP6155602B2 JP 6155602 B2 JP6155602 B2 JP 6155602B2 JP 2012249576 A JP2012249576 A JP 2012249576A JP 2012249576 A JP2012249576 A JP 2012249576A JP 6155602 B2 JP6155602 B2 JP 6155602B2
Authority
JP
Japan
Prior art keywords
layer
average particle
raw material
particle diameter
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012249576A
Other languages
Japanese (ja)
Other versions
JP2014098176A (en
Inventor
純一 田島
純一 田島
鈴木 淳
淳 鈴木
土岐 正弘
正弘 土岐
淳治 長田
淳治 長田
八ケ代 健一
健一 八ケ代
崇 吉松
崇 吉松
貴司 篠原
貴司 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012249576A priority Critical patent/JP6155602B2/en
Publication of JP2014098176A publication Critical patent/JP2014098176A/en
Application granted granted Critical
Publication of JP6155602B2 publication Critical patent/JP6155602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鉄鋼製造プロセスで使用する主要な鉄鉱石原料である焼結鉱の製造方法、特に、生産性の高い焼結鉱の製造方法に関するものである。   The present invention relates to a method for producing a sintered ore which is a main iron ore raw material used in a steel production process, and more particularly to a method for producing a highly productive sintered ore.

焼結鉱の一般的な生産方法である、ドワイトロイド式焼結機による焼結鉱の製造方法において、生産性を高めるためには、焼成速度や歩留を向上させることが必要である。焼成速度を向上させるためには、焼成反応を進めるための燃焼による発熱速度を増加させることが必要である。   In a method for producing sintered ore by a dweroid type sintering machine, which is a general production method of sintered ore, it is necessary to improve the firing rate and yield in order to increase productivity. In order to improve the firing rate, it is necessary to increase the heat generation rate due to combustion to advance the firing reaction.

そのためには、焼結ベッドに供給する酸素の量を増加することが重要で、焼結ベッドの通気性を良くして、焼結速度を上げる方法が提案されている。例えば、8〜15mmの小塊鉱石,スラグ等を適当量配合する方法(特許文献1、参照)、原料鉱石類に糖蜜を添加して造粒を十分に進める方法(特許文献2、参照)等が提案されている。   For this purpose, it is important to increase the amount of oxygen supplied to the sintering bed, and a method for improving the air permeability of the sintering bed and increasing the sintering speed has been proposed. For example, a method of blending an appropriate amount of small ore of 8 to 15 mm, slag, etc. (see Patent Document 1), a method of adding molasses to raw ores and sufficiently agglomerating (see Patent Document 2), etc. Has been proposed.

歩留を向上させるためには、焼結鉱の品質の均一性を向上させることが必要である。通常、ドワイトロイド式焼結機においては、焼結ベッドの深さ方向で、焼結鉱の品質がばらつくので、その“ばらつき”を低減して、焼結強度を高め、歩留の向上を図る方法が提案されている。   In order to improve the yield, it is necessary to improve the uniformity of the quality of the sintered ore. Normally, in a dwytroid type sintering machine, the quality of the sintered ore varies in the depth direction of the sintering bed, so the “variation” is reduced, the sintering strength is increased, and the yield is improved. A method has been proposed.

例えば、パレット表層に溶融性の高い鉱石を装入し、下層に溶融性の低い鉱石を装入する方法(特許文献3、参照)、焼結層の通過風量を風速計で測定し、幅方向の風量を均一にする方法(特許文献4、参照)等が提案されている。   For example, a method in which ore having a high melting property is charged in the surface layer of the pallet and a low melting property ore is charged in the lower layer (refer to Patent Document 3), the passing air volume of the sintered layer is measured with an anemometer, and the width direction A method for making the air volume uniform (see Patent Document 4, for example) has been proposed.

また、焼結ベッドの表層は熱量不足になり、歩留が悪いので、それを改善するために、焼結原料層の最表層深さ部分に存在するコークスや無煙炭等の固体可燃物の粒径を小さくし、かつ、平均配合量を調整して、表層の加熱量を増加する方法が提案されている。   In addition, since the surface layer of the sintering bed has a shortage of heat and the yield is poor, the particle size of solid combustibles such as coke and anthracite that exist in the outermost layer depth part of the sintering raw material layer to improve it. A method of increasing the heating amount of the surface layer by adjusting the average blending amount by reducing the thickness is proposed.

例えば、焼結原料層の最表層から30〜50mmまでの深さ部分に存在する固体可燃物の50%以上を、粒径1〜3mmの固体可燃物が占めるように粒度分布を調整するとともに、上記深さ部分に存在する固体可燃物の配合量を、それより深い部分に存在する固体可燃物の平均配合量の1.08〜1.42倍(=表層の固体可燃物濃度÷残りの層の固体可燃物濃度、「偏析指数」と定義する)とするように調整する方法(特許文献5、参照)が提案されている。   For example, while adjusting the particle size distribution so that the solid combustible having a particle size of 1 to 3 mm occupies 50% or more of the solid combustible existing in the depth portion from the outermost layer of the sintering raw material layer to 30 to 50 mm, The blending amount of the solid combustible material existing in the depth portion is 1.08 to 1.42 times the average blending amount of the solid combustible material existing in the deeper portion (= the solid combustible material concentration in the surface layer ÷ the remaining layer) A solid combustible material concentration (defined as “segregation index”) has been proposed (see Patent Document 5).

特開平01−205038号公報Japanese Patent Laid-Open No. 01-205038 特開昭58−107428号公報JP 58-107428 A 特開昭62−130229号公報JP-A-62-130229 特開昭61−250120号公報JP 61-250120 A 特開平05−098358号公報JP 05-098358 A

焼結製造の生産性は、歩留と焼成速度の掛け合わせで決定される。従来から、歩留を向上させる試みがなされてきたが、一般に、焼結層の最表層から50〜100mmにおいては歩留が低い。これは、焼結機において、原料層が点火炉を出た後、上方から常温の空気が吸引されて冷却されるので、表層は、鉱石類が溶融して焼結反応するのに必要な最高到達温度が低いことに加え、高温に保持される時間が短いことが理由である。
Productivity of sintered ore produced is determined by crossed with yield and baking speed. Conventionally, attempts have been made to improve the yield, but generally the yield is low at 50 to 100 mm from the outermost layer of the sintered layer. This is because in the sintering machine, after the raw material layer exits the ignition furnace, normal temperature air is sucked from above and cooled, so the surface layer is the highest necessary for the ore to melt and undergo a sintering reaction. This is because, in addition to the low reached temperature, the time for maintaining the high temperature is short.

この課題に対して、特許文献5には、表層のコークスを微細にし、固体可燃物濃度を増加して発熱量を増大して歩留を向上させる方法が提案されている。特許文献5提案の方法は、焼結原料層の最表層から30〜50mmまでの深さ部分に存在する固体可燃物の50%以上を、粒径1〜3mmの固体可燃物が占めるように粒度分布を調整し、固体可燃物濃度の偏析指数を1.08〜1.42とするものである。   In order to solve this problem, Patent Document 5 proposes a method for improving the yield by increasing the coke of the surface layer and increasing the solid combustible substance concentration to increase the heat generation amount. In the method proposed in Patent Document 5, the particle size is set such that the solid combustible having a particle diameter of 1 to 3 mm occupies 50% or more of the solid combustible existing in the depth portion of 30 to 50 mm from the outermost surface layer of the sintering raw material layer. The distribution is adjusted so that the segregation index of the solid combustible substance concentration is 1.08 to 1.42.

偏析指数が1.08以上で歩留が向上し生産性が向上するが、1.42を超えると、焼結速度が低下して、生産性向上効果が低下するので、特許文献5提案の方法では、偏析指数を1.08〜1.42と規定している。固体可燃物濃度は、表層のコークス量を4.05〜5.11質量%の範囲で変化させ、それよりも下層では、コークス量を3.60〜4.05質量%の範囲で変化させている。   When the segregation index is 1.08 or more, the yield is improved and the productivity is improved. However, if it exceeds 1.42, the sintering speed is lowered and the productivity improvement effect is lowered. Stipulates that the segregation index is 1.08 to 1.42. The solid combustible substance concentration was changed by changing the coke amount of the surface layer in the range of 4.05 to 5.11% by mass, and in the lower layer, changing the coke amount in the range of 3.60 to 4.05% by mass. Yes.

固体可燃物濃度を偏析させて歩留を向上させ、生産性を高めようとする従来技術では、表層のコークス量を増加しても、偏析指数が1.42を超えると、通気性が悪化して焼成速度が低下し、生産性は向上しないと考えられていた。そこで、本発明は、焼結原料の粒度を偏析させて生産性の向上を図る方法において、従来技術よりも生産性を向上させることを課題とし、該課題を解決する焼結鉱の製造方法を提供することを目的とする。   In the conventional technology that segregates the solid combustible concentration to improve yield and increase productivity, even if the amount of coke in the surface layer is increased, if the segregation index exceeds 1.42, the air permeability deteriorates. Therefore, it was thought that the firing rate was lowered and the productivity was not improved. Therefore, the present invention aims to improve productivity over the prior art in a method for improving productivity by segregating the grain size of the sintered raw material, and a method for producing sintered ore that solves the problem. The purpose is to provide.

一般に、焼結における焼成速度は、焼結層内の通気量に大き影響されるので、焼成速度を上げるためには、通気量を増加することが重要である。ここで、通気量は、焼結層の通気抵抗によって決まる。
In general, the firing rate in sintering, since it is the size rather affect the aeration rate of the sintered layer, in order to increase the firing rate, it is important to increase the airflow rate. Here, the air flow rate is determined by the air flow resistance of the sintered layer.

図1に、焼結層の焼結機の進行方向における断面を模式的に示す。点火炉6で、焼結層の上層に点火して焼結反応が始まるが、焼結層の下方の排気ブロア8で、上方から空気7を吸引することで、パレットが進行方向9に進むにつれて焼結反応が進行する。   In FIG. 1, the cross section in the advancing direction of the sintering machine of a sintered layer is typically shown. In the ignition furnace 6, the upper layer of the sintered layer is ignited to start the sintering reaction, but as the pallet advances in the traveling direction 9 by sucking the air 7 from above by the exhaust blower 8 below the sintered layer. The sintering reaction proceeds.

焼結層は、焼結反応の進行の視点から大別して、原料層1、赤熱帯2、及び、焼結完了帯3からなる。また、焼結層は、位置及びコークスの配合割合の視点からは大別して、表層4及び下層5からなる。   The sintered layer is roughly composed of a raw material layer 1, a reddish tropical zone 2, and a sintering completion zone 3 from the viewpoint of the progress of the sintering reaction. The sintered layer is roughly composed of a surface layer 4 and a lower layer 5 from the viewpoint of the position and the mixing ratio of coke.

焼結層の通気抵抗は、焼結反応の進行の視点から大別される上記3層の通気抵抗の総和である。それぞれの層の厚みは、原料層が点火炉6を出た後の焼結反応の進行とともに変化する。   The airflow resistance of the sintered layer is the sum of the airflow resistance of the three layers, which is roughly classified from the viewpoint of the progress of the sintering reaction. The thickness of each layer changes with the progress of the sintering reaction after the raw material layer exits the ignition furnace 6.

赤熱帯の厚みは、焼結反応の進行とともに増大する。その理由は、焼結反応に寄与する熱が、通気で、表層から下層に伝わるのに加え、下層に存在するコークスの燃焼熱が加わり、下層は、表層に比べ熱がより蓄積されるからである。そして、赤熱帯は、高温で、融液が多いので、通気抵抗が圧倒的に大きい。   The thickness of the red tropics increases with the progress of the sintering reaction. The reason for this is that the heat contributing to the sintering reaction is transmitted from the surface layer to the lower layer by ventilation, and the combustion heat of coke existing in the lower layer is added, and the lower layer accumulates more heat than the surface layer. is there. And since the red tropics are high temperature and there are many melts, ventilation resistance is overwhelmingly large.

そこで、本発明者らは、赤熱帯厚みが、焼結層内の通気量に強く影響すると考え、焼結層内の通気抵抗が高い領域において、赤熱帯が必要以上に厚くならないようにすることが重要であるとの着想に至った。即ち、本発明者らは、表層及び下層のうち、通気抵抗が高い下層の原料粒子の平均粒子径を大きくすれば、比表面積を小さくし、下層の温度を必要以上に上げずに、下層の赤熱帯の厚みを削減し、通気量の増加を図ることができると発想した。   Therefore, the present inventors consider that the thickness of the red tropics has a strong influence on the air flow rate in the sintered layer, so that the red tropics do not become thicker than necessary in the region where the air flow resistance in the sintered layer is high. Led to the idea that is important. That is, the present inventors, among the surface layer and the lower layer, if the average particle diameter of the lower layer raw material particles having a high airflow resistance is increased, the specific surface area is decreased and the lower layer temperature is not increased more than necessary. The idea was that the thickness of the red tropics could be reduced and the ventilation increased.

本発明における原料の粒子径とは、鉱石、コークス、石灰等の副原料を造粒した原料粒子径を指し、平均粒子径は上層と下層の各層に挿入される粒子の平均である。また、平均粒子径は、篩による平均粒子径測定装置等で評価できる。   The particle diameter of the raw material in the present invention refers to the raw material particle diameter obtained by granulating auxiliary raw materials such as ore, coke, and lime, and the average particle diameter is the average of the particles inserted into the upper and lower layers. The average particle size can be evaluated with an average particle size measuring device using a sieve.

また、併せて、通気抵抗の高い粒子を上層に置いて、焼成初期の段階で、通気抵抗の高い粒子を焼結させれば、通気抵抗が低い焼結鉱を得ることができると発想した。   In addition, the inventors have conceived that a sintered ore with low airflow resistance can be obtained by placing particles with high airflow resistance in the upper layer and sintering particles with high airflow resistance at the initial stage of firing.

そこで、本発明者らは、上記発想に基づいて、下層の平均粒子径を徐々に減少させて焼結する試験を行った。その結果、平均粒子径が、これまで実施していた3.0mmより大きくなると、下層における通気量が大きく増加し、焼成速度が大幅に増加することが判明した。   Therefore, the present inventors conducted a test for sintering by gradually decreasing the average particle size of the lower layer based on the above idea. As a result, it has been found that when the average particle diameter is larger than 3.0 mm, which has been performed so far, the air flow rate in the lower layer is greatly increased and the firing rate is significantly increased.

このとき、下層の平均粒子径の増加に伴う温度の低下により、歩留は低下するが、焼成速度の増加が歩留の低下分を補って、生産性が従来技術より向上することが判明した。   At this time, it was found that the yield decreases due to the decrease in temperature accompanying the increase in the average particle size of the lower layer, but the increase in the firing rate compensates for the decrease in yield and the productivity is improved over the prior art. .

さらに、併せて、表層50〜100mmに添加する原料粒子の平均粒子径を1.0mm以下にすると、表層の温度を高くすることができ、歩留が向上することも判明した。   Furthermore, it has also been found that when the average particle diameter of the raw material particles added to the surface layer of 50 to 100 mm is 1.0 mm or less, the temperature of the surface layer can be increased and the yield is improved.

このように、本発明者らは、下層の平均粒子径を従来の平均粒子径以上に大きくし、併せて、表層の平均粒子径を小さくすれば、歩留を高めつつ焼成速度を増加させ、生産性がより向上することを見いだした。   As described above, the present inventors have increased the average particle size of the lower layer to be larger than the conventional average particle size, and in addition, if the average particle size of the surface layer is reduced, the firing rate is increased while increasing the yield, I found that productivity was improved.

本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)ドワイトロイド式焼結きのパレット上に、原料層を下層と表層に分けて形成し、焼結鉱を製造する焼結鉱の製造方法において、
(i)上記下層の原料の平均粒子径を、上記表層の原料の平均粒子径よりも大きくし、
(ii)上記表層が、少なくとも、原料層の表面から表面下50mmまでの層含み、
(iii)上記表層の原料の平均粒子径が2.4mm以下であり、かつ、
iv)上記下層の原料の平均粒子径が3.0mm以上であり、
)上記下層の原料の固体可燃物濃度が3.0〜4.0質量%である
ことを特徴とする焼結鉱の製造方法。
(1) In a method for producing a sintered ore, a raw material layer is divided into a lower layer and a surface layer on a pallet of a Dwytroid-type sintered, and a sintered ore is produced.
(I) making the average particle diameter of the raw material of the lower layer larger than the average particle diameter of the raw material of the surface layer,
(Ii) the surface layer contains at least a layer to the surface below 50mm from the surface of the material layer,
(Iii) The average particle diameter of the surface layer material is 2.4 mm or less , and
( Iv ) The lower layer raw material has an average particle size of 3.0 mm or more,
( V ) The method for producing a sintered ore, wherein the solid combustible concentration of the raw material of the lower layer is 3.0 to 4.0% by mass.

)前記下層が、少なくとも原料層の表面下150mmを起点とし下方に存在する層を含み、前記表層と前記下層の間に中間層を有し、該中間層の原料の平均粒子径を、上記表層の平均粒子径よりも大きく、かつ、上記下層の平均粒子径よりも小さくすることを特徴とする前記(1)記載の焼結鉱の製造方法。
( 2 ) The lower layer includes at least a layer existing below 150 mm below the surface of the raw material layer, and has an intermediate layer between the surface layer and the lower layer, and the average particle diameter of the raw material of the intermediate layer is greater than the average particle diameter of the surface layer, and method for producing sintered ore according to (1), characterized in that the smaller than the average particle diameter of the lower layer.

本発明によれば、焼結原料中の平均粒子径を上層と下層で偏析させて生産性の向上を図る製造方法において、下層の平均粒子径を、上層における平均粒子径より大きくすることで、従来技術より、生産性をより高めることができる。
According to the present invention, in the production method for improving productivity by segregating the average particle size in the sintering raw material in the upper layer and the lower layer, by making the average particle size of the lower layer larger than the average particle size in the upper layer , Productivity can be increased more than in the prior art.

焼結層の焼結機の進行方向における断面を模式的に示す図である。It is a figure which shows typically the cross section in the advancing direction of the sintering machine of a sintered layer. ドワイトロイド式焼結機の概略を示す図である。It is a figure which shows the outline of a Dwightroid type sintering machine. 表層及び下層の平均粒子径と生産性の関係を示す図である。It is a figure which shows the relationship between the average particle diameter of surface layer and a lower layer, and productivity. 表層及び下層の平均粒子径と歩留の関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a surface layer and a lower layer, and a yield. 表層及び下層の平均粒子径と焼成速度の関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a surface layer and a lower layer, and a baking rate. 表層の厚みを25mm、50mm、100mmと変化させた場合の、下層の平均粒子径と生産性の関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a lower layer, and productivity at the time of changing the thickness of a surface layer with 25 mm, 50 mm, and 100 mm. コークス濃度を3.0%、3.5%、4.0%と変化させた場合の、下層の粒子径と生産性の関係を示す図である。It is a figure which shows the relationship between the particle diameter of a lower layer, and productivity at the time of changing coke density | concentration with 3.0%, 3.5%, and 4.0%. 表層と下層の間に中間層を設けて段階的に平均粒子径を小さくした場合における平均粒子径と層深さの関係を示す図である。It is a figure which shows the relationship between an average particle diameter and layer depth at the time of providing an intermediate | middle layer between a surface layer and a lower layer, and making an average particle diameter small in steps.

本発明の焼結鉱の製造方法(以下「本発明方法」ということがある。)は、図2に示すようなドワイトロイド式焼結機を用いて、以下のようにして焼結鉱を製造する。   The method for producing a sintered ore of the present invention (hereinafter sometimes referred to as “the method of the present invention”) uses a dweroid type sintering machine as shown in FIG. 2 to produce a sintered ore as follows. To do.

原料である鉄鉱石原料に、コークスや石灰石等に、さらに水分を添加して混合し、造粒して焼結鉱原料(焼結原料とも言う)を製造する。製造した焼結原料を、装入装置12から、循環するパレット10に装入し、300〜1000mm の厚さに敷き詰める。敷き詰めた原料の中で、パレットの下方に敷きつめた原料領域を下層19とする。   The iron ore raw material, which is a raw material, is further mixed with coke and limestone by adding moisture, and granulated to produce a sintered ore raw material (also called a sintered raw material). The manufactured sintered raw material is charged into the circulating pallet 10 from the charging device 12 and spread to a thickness of 300 to 1000 mm. A raw material region spread below the pallet among the spread raw materials is defined as a lower layer 19.

一方、下層の原料の上に敷き詰めた原料領域を表層18とする。パレットが進行方向15に進むにつれて、焼結反応が進行する。表層添加装置13の直後に設置した点火炉11で、原料層の上部に存在する固体可燃物(コークスや無煙炭等)に着火する。排気ブロア8による空気の吸引で、原料層の上面から下方へ空気が流れ、これによって、燃焼位置は上部から下方の可燃物へ移っていく。
On the other hand, a raw material region spread on the lower raw material is defined as a surface layer 18. As the pallet proceeds in the direction of travel 15, the sintering reaction proceeds. A solid combustible (such as coke or anthracite) existing in the upper part of the raw material layer is ignited in an ignition furnace 11 installed immediately after the surface layer addition device 13. The suction of air by the exhaust blower 8 causes the air to flow downward from the upper surface of the raw material layer, whereby the combustion position moves from the upper part to the lower combustible material.

可燃物の燃焼熱で、原料の一部が溶融し、その後、冷却で、原料粒子が相互に焼結して焼結鉱が生成し、排鉱部14で排出される。排出された焼結鉱は、その後、クラッシャーで約50mm以下の大きさに破砕され、篩分けされ、次工程で使用し易い粒度に調整される。   A part of the raw material is melted by the combustion heat of the combustible material, and then, by cooling, the raw material particles are sintered with each other to form a sintered ore, which is discharged from the ore discharge part 14. The discharged sinter is then crushed to a size of about 50 mm or less with a crusher, sieved, and adjusted to a particle size that is easy to use in the next step.

本発明方法は、生産性へ影響を及ぼす歩留と焼成速度のうち、特に、焼成速度を従来の焼成速度よりも速くして、生産性を、従来の生産性より高くすることができる焼結鉱の製造方法である。   In the method of the present invention, among the yield and the firing rate affecting the productivity, in particular, the sintering speed can be made faster than the conventional firing rate, and the productivity can be made higher than the conventional productivity. It is a manufacturing method of ore.

本発明方法で使用する焼結原料は、表層に供給する焼結原料を調製する原料系統と、下層に供給する焼結原料を調製する原料系統の二つの原料系統で製造されて、パレットに装入される。   The sintering raw material used in the method of the present invention is manufactured by two raw material systems, a raw material system for preparing a sintering raw material to be supplied to the surface layer and a raw material system for preparing a sintering raw material to be supplied to the lower layer, and is mounted on a pallet. Entered.

本発明方法においては、焼結原料層を、表層と下層の2つの領域に分けて定義する。原料層の上部領域を表層とし、それより下部の領域を下層とする(但し、後述する中間層を設ける場合を除く)。   In the method of the present invention, the sintering raw material layer is defined by being divided into two regions, a surface layer and a lower layer. The upper region of the raw material layer is the surface layer, and the lower region is the lower layer (except for the case where an intermediate layer described later is provided).

表層及び下層に供給する焼結原料粒子は、別々の原料系統で造粒され、別々の装入装置から装入されるので、表層及び下層における焼結原料の平均粒子径を変化させることができる。上記装入装置としては、例えば、図2に示すように、下層に原料を装入する装置(装入装置12)の後に、表層に原料を供給する装置(表層添加装置13)を配置した2段構えの装入装置を用いる。   Since the sintering raw material particles supplied to the surface layer and the lower layer are granulated in different raw material systems and charged from different charging devices, the average particle diameter of the sintering raw material in the surface layer and the lower layer can be changed. . As the above charging device, for example, as shown in FIG. 2, a device (surface layer adding device 13) for supplying the raw material to the surface layer is arranged after the device (charging device 12) for charging the raw material to the lower layer. Use a multi-level charging device.

本発明方法において、平均粒子径は、燃料の炭材として使用する固体可燃物、石灰石、生石灰、鉱石等(返鉱を含む)を混練して造粒した装入原料粒子の平均径である。
In the method of the present invention, the average particle size, solid combustibles to be used as the carbonaceous material of the fuel, limestone, lime, by kneading ore (including return ores) in the average diameter of the granulated instrumentation Nyuhara fee grains terminal is there.

なお、焼結機への装入原料は、通常、歩留落ちの返鉱を10〜20%程度含んでいるが、返鉱の量が上記量より多くても、上記条件は対応可能である。ただし、本発明方法を実施すれば、歩留が向上するので、返鉱の量は少なくなる。   In addition, although the raw material charged into the sintering machine usually contains about 10 to 20% of return ore return, the above conditions can be met even if the amount of return ore is larger than the above amount. . However, if the method of the present invention is carried out, the yield is improved, so the amount of return ore is reduced.

図2に示すドワイトロイド式焼結機を用い、表層と下層の平均粒子径を変化させ、歩留と焼成速度を測定し、生産性を算出した。その結果を以下に示す。なお、原料層全体の厚みは600mm、表層厚みは50mmとしている。   Using the dweroid-type sintering machine shown in FIG. 2, the average particle diameter of the surface layer and the lower layer was changed, the yield and the firing rate were measured, and the productivity was calculated. The results are shown below. In addition, the thickness of the whole raw material layer is 600 mm, and the surface layer thickness is 50 mm.

図3、図4、及び、図5は、表層の平均粒子径を1.0〜3.5mmの範囲で6条件を設定し、それぞれの条件において、下層の平均粒子径を1.0〜5.0mmの範囲で変えて試験した結果を示す。   3, 4, and 5, six conditions are set in the range of the average particle diameter of the surface layer in the range of 1.0 to 3.5 mm, and the average particle diameter of the lower layer is set to 1.0 to 5 in each condition. The result of having tested in the range of 0.0 mm is shown.

図3に、表層及び下層の平均粒子径と生産性」(1日当り、かつ、パレット1m2当たりの生産量[t])の関係を示す。図4に、表層及び下層の平均粒子径と歩留」(1日当りの焼結鉱全体の歩留[質量%])の関係を示す。図5に、表層及び下層の平均粒子径と焼成速度」(1日当りの石炭の平均焼成速度[mm/min])の関係を示す。なお、図3〜5において、同じ符号は同じ表層粒子径を意味する。 FIG. 3 shows the relationship between the average particle diameter of the surface layer and the lower layer and productivity ”(production amount [t] per day and per m 2 of pallet). FIG. 4 shows the relationship between the average particle diameter of the surface layer and the lower layer and the yield ”(yield [mass%] of the entire sintered ore per day). FIG. 5 shows the relationship between the average particle diameter of the surface layer and the lower layer and the firing rate (the average firing rate of coal per day [mm / min]). In addition, in FIGS. 3-5, the same code | symbol means the same surface particle diameter.

ここで、焼結鉱の生産性とは、単位時間(1日)当りの焼結鉱の生産量[t]を焼結機の有効面積(=焼結機幅×機長)[m2]で除したものをいう。歩留とは、焼結機で生産された焼結鉱をクラッシャーで破砕したものに対して篩掛けを行って回収した焼結鉱の割合、即ち、全焼結鉱質量に対し、回収した5mm以上の焼結鉱の質量の割合をいう。 Here, the productivity of sintered ore means the production amount [t] of sintered ore per unit time (1 day) is the effective area of the sintering machine (= sintering machine width × machine length) [m 2 ]. It means what was divided. Yield is the ratio of sinter collected by sieving the sinter produced by a sintering machine with a crusher, that is, 5 mm or more recovered with respect to the total sinter mass The ratio of the mass of sintered ore.

焼成速度とは、焼結層内の燃焼反応面が、下方に進行していく速度であり、層厚を、BPT到達までの時間で除したものをいう。BTPとは、Burn Through Point の略であり、焼結機の排ガスが最高温度になる位置のことである。
The firing rate is a rate at which the combustion reaction surface in the sintered layer proceeds downward, and is obtained by dividing the layer thickness by the time to reach the BPT. The BTP, stands for Burn T h rough Point, is that the position where the flue gas of the sintering machine becomes maximum temperature.

図4に示すように、下層の平均粒子径が大きくなるのに伴い、歩留が低下する。この理由は、下層における粒子の比表面積が小さくなることで温度が低くなったためである。   As shown in FIG. 4, the yield decreases as the average particle size of the lower layer increases. The reason for this is that the temperature is lowered by reducing the specific surface area of the particles in the lower layer.

一方、図5に示すように、下層の平均粒子径を1.5〜3.0mmまで大きくしても、焼成速度は僅かしか増加しない。   On the other hand, as shown in FIG. 5, even if the average particle diameter of the lower layer is increased to 1.5 to 3.0 mm, the firing rate is only slightly increased.

これに対し、本発明方法では、下層の平均粒子径を3.0mm以上とすることで、図5に示すように、焼成速度を上昇させることができ、図3に示すように、歩留の低下分を補って、従来技術より生産性を向上させることができる。   On the other hand, in the method of the present invention, by setting the average particle diameter of the lower layer to 3.0 mm or more, the firing rate can be increased as shown in FIG. 5, and as shown in FIG. Compensating for the decrease, productivity can be improved over the prior art.

焼成速度が大幅に速くなる理由は、下層の原料の平均粒子径が3.0mmより大きいと、下層の赤熱帯が必要以上に厚くならず、下層の通気抵抗が低下して通気量が増加するためであると考えられる。なお、下層の原料の平均粒子径を5.0mm超にすると、下層の原料が溶融せず、通気量が圧倒的に大きくなり、焼成速度が圧倒的に増加する。   The reason why the firing rate is significantly increased is that if the average particle size of the raw material of the lower layer is larger than 3.0 mm, the red tropics of the lower layer will not be thicker than necessary, and the lower layer ventilation resistance will decrease and the ventilation rate will increase. This is probably because of this. When the average particle diameter of the lower layer raw material is more than 5.0 mm, the lower layer raw material is not melted, the air flow is overwhelmingly large, and the firing rate is overwhelmingly increased.

また、図4に示すように、下層の平均粒子径が3.0mm以上であると、表層の平均粒子径を1.5mmから3.0mmに増大しても、歩留は殆ど変わらない。一方、下層の平均粒子径が3.0mm未満であると、歩留の低下の程度が緩和され、また、表層の平均粒子径が1.0mm未満であると、さらに、歩留の低下の程度が緩和されるとともに、歩留も向上する。   Further, as shown in FIG. 4, when the average particle diameter of the lower layer is 3.0 mm or more, the yield is hardly changed even when the average particle diameter of the surface layer is increased from 1.5 mm to 3.0 mm. On the other hand, if the average particle diameter of the lower layer is less than 3.0 mm, the degree of decrease in yield is alleviated, and if the average particle diameter of the surface layer is less than 1.0 mm, the degree of decrease in yield is further reduced. Is alleviated and yield is improved.

この理由は、表層の平均粒子径を小さくすると、表層の歩留が向上し(図示なし)、その結果、全体の歩留も増加したためであると考えられる。図示しないが、表層の平均粒子径を1.0mm以下にしても、焼結鉱の生産性は向上しない。   The reason for this is considered to be that when the average particle size of the surface layer is reduced, the yield of the surface layer is improved (not shown), and as a result, the overall yield is also increased. Although not shown, even if the average particle diameter of the surface layer is 1.0 mm or less, the productivity of the sintered ore is not improved.

図5に示すように、下層の平均粒子径を大きくすると、焼成速度が速くなる。特に、下層の平均粒子径が3.0mm以上になると、焼成速度が急に速くなる。図4に示す歩留と、図5に示す焼成速度の結果として、図3に、生産性を示す。生産性は、歩留と焼成速度の掛け合せで決まる。   As shown in FIG. 5, when the average particle diameter of the lower layer is increased, the firing rate is increased. In particular, when the average particle size of the lower layer is 3.0 mm or more, the firing rate is rapidly increased. FIG. 3 shows productivity as a result of the yield shown in FIG. 4 and the firing rate shown in FIG. Productivity is determined by multiplying yield and firing rate.

図から解るように、本発明方法においては、従来よりも生産性を向上させるために、好ましくは、表層の平均粒子径を2.4mm以下として、かつ、下層の平均粒子径を3.0mm以上とする。   As can be seen from the figure, in the method of the present invention, in order to improve productivity as compared with the prior art, the average particle diameter of the surface layer is preferably 2.4 mm or less, and the average particle diameter of the lower layer is 3.0 mm or more. And

この理由は、上述したように、表層の熱量増加による表層歩留の向上効果と、表層の熱量増加による下層への伝達熱量の増加効果の相乗効果が高まるためであると考えられる。生産性をより向上させるには、表層の平均粒子径を1〜2.4mmとし、かつ、下層の平均粒子径を3.2〜4.8mmとすることがより好ましい。   The reason for this is considered to be that, as described above, the synergistic effect of the effect of improving the surface yield due to the increase in the amount of heat of the surface layer and the effect of increasing the amount of heat transferred to the lower layer due to the increase in the amount of heat of the surface layer is increased. In order to further improve the productivity, it is more preferable that the average particle diameter of the surface layer is 1 to 2.4 mm and the average particle diameter of the lower layer is 3.2 to 4.8 mm.

このように、本発明方法においては、下層の平均粒子径を、従来技術における平均粒子径よりも大きくすることで、焼成速度を速くし、生産性を、従来技術における生産性に比べ、高めることができる。さらに、本発明方法においては、表層の平均粒子径を小さくすることで、歩留を大幅に高め、生産性を、従来技術における生産性に比べ、圧倒的に高めることができる。   Thus, in the method of the present invention, the average particle size of the lower layer is made larger than the average particle size in the prior art, thereby increasing the firing rate and increasing the productivity compared to the productivity in the prior art. Can do. Furthermore, in the method of the present invention, by reducing the average particle diameter of the surface layer, the yield can be significantly increased, and the productivity can be significantly increased compared to the productivity in the prior art.

次に、表層の厚みの影響について説明する。図6に、全体の層厚みを600mm、表層の平均粒子径を1.2mmとし、表層の厚みを25mm、50mm、及び、100mmと変化させた場合における、下層の平均粒子径と生産性の関係を示す。   Next, the influence of the thickness of the surface layer will be described. FIG. 6 shows the relationship between the average particle diameter of the lower layer and productivity when the total layer thickness is 600 mm, the average particle diameter of the surface layer is 1.2 mm, and the thickness of the surface layer is changed to 25 mm, 50 mm, and 100 mm. Indicates.

表層厚みが25mmと薄い場合でも、下層の平均粒子径が1.5〜3.0mmの範囲であれば、従来技術よりも生産性を高めることができるが、その向上効果は小さい。それ故、表層厚みは50mm以が好ましい。表層厚みが厚くなると、生産性は向上するが、50mmで飽和し、100mm以上にしても生産性は向上しない。この理由は、表層厚みを厚くするのに伴い、表層の歩留は向上するが、焼成速度が低下するためである。それ故、表層の厚みは、少なくとも、原料層の表面から表面下50mmまでの層を含むことが好ましい。
Even when the surface layer thickness is as thin as 25 mm, if the average particle diameter of the lower layer is in the range of 1.5 to 3.0 mm, the productivity can be improved as compared with the prior art, but the improvement effect is small. Therefore, the surface layer thickness is preferably on 50mm or more. When the surface layer thickness is increased, the productivity is improved, but it is saturated at 50 mm, and even if it is 100 mm or more, the productivity is not improved. This is because, as the surface layer thickness is increased, the surface layer yield is improved, but the firing rate is decreased. Therefore, it is preferable that the thickness of the surface layer includes at least a layer from the surface of the raw material layer to 50 mm below the surface.

さらに、本発明方法においては、コークス濃度を4.0質量%より低くした。ここで、コークス濃度は、造粒粒子中に含まれるコークスの質量を、造粒粒子の量で除した値である。図7に、コークス濃度を3.0%、3.5%、4.0%と変化させた場合の、下層の粒子径と生産性の関係を示す。図7から解るように、コークス濃度を3.5質量%まで下げると、生産性がさらに向上する。これは、コークス濃度を下げると、粒子の最高到達温度が下がり、通気抵抗が下がり、通気量が増加するためである。
Furthermore, in the method of the present invention, the coke concentration was made lower than 4.0% by mass. Here, coke concentration, the mass of coke contained in the granulated particles is a value obtained by dividing the mass of the granulated particles. FIG. 7 shows the relationship between the particle size of the lower layer and the productivity when the coke concentration is changed to 3.0%, 3.5%, and 4.0%. As can be seen from FIG. 7 , productivity is further improved when the coke concentration is lowered to 3.5 mass%. This is because when the coke concentration is lowered, the maximum temperature reached by the particles is lowered, the ventilation resistance is lowered, and the ventilation amount is increased.

また、平均粒子径を大きくすると、コークス濃度を下げたときの、生産性の向上効果が大きくなる。これは、平均粒子径が大きいほど、比表面積が小さいので、粒子同士の表面を、一旦溶かして固めて焼結させるために、層全体として、溶かさなければならない面積の割合を少なくすることができ、必要なコークス濃度を少なくすることができるからである。   Further, when the average particle size is increased, the productivity improvement effect when the coke concentration is lowered is increased. This is because the larger the average particle diameter, the smaller the specific surface area. Therefore, in order to melt and solidify the surfaces of the particles, the ratio of the area that must be dissolved as a whole layer can be reduced. This is because the required coke concentration can be reduced.

さらに、コークス濃度を3.0質量%まで下げると、最高到達温度の低下が大きく、融液が少なくなる影響が強くなり、歩留が悪くなって生産性が低下するが、基本的には、粒径を小さくすることで、通気性を高め、生産性を高めることが可能である。   Furthermore, when the coke concentration is lowered to 3.0% by mass, the maximum reached temperature is greatly reduced, the effect of decreasing the melt becomes stronger, the yield is deteriorated and the productivity is lowered. By reducing the particle size, it is possible to improve air permeability and increase productivity.

一般に、造粒した粒子の粒径が異なると、コークス濃度は変化するが、造粒条件が異なると、粒子径が同じでもコークス濃度は増減する。それ故、粒子径を制御してコークス濃度を制御するのではなく、粒子径を制御して焼結温度を制御する。   Generally, when the granulated particles have different particle sizes, the coke concentration changes. However, when the granulation conditions are different, the coke concentration increases or decreases even if the particle sizes are the same. Therefore, instead of controlling the coke concentration by controlling the particle size, the sintering temperature is controlled by controlling the particle size.

本発明方法においては、平均粒子径の偏析は、表層と下層の2段(2段偏析)に限定されない。表層と下層の間に中間層を設けて多段偏析としてもよい。   In the method of the present invention, the segregation of the average particle diameter is not limited to two steps (two-step segregation) of the surface layer and the lower layer. An intermediate layer may be provided between the surface layer and the lower layer for multistage segregation.

図8に、表層と下層の間に中間層を設け、段階的に平均粒子径を小さくした場合における平均粒子径と層深さの関係を示す。上述したように、表層の厚さは50mm以上が好ましいので、図8では、表層を50mmとしている。2段偏析(図中の太破線)では、深さ50mm超を下層とする。中間層を設ける場合(図中の太実線)は、下層は、少なくとも、原料層の表面下150mmを起点として、それよりも下方は平均粒子径3.0〜5.0mmの焼結原料とすることが好ましい。図8では、150mmを起点としている。また、中間層を設ける場合でも、表層は平均粒子径1.0〜2.4mm(図中の点線が上層の好ましい上下限を示す線)とすると好ましいことは同様である。   FIG. 8 shows the relationship between the average particle diameter and the layer depth when an intermediate layer is provided between the surface layer and the lower layer and the average particle diameter is gradually reduced. As described above, since the thickness of the surface layer is preferably 50 mm or more, the surface layer is 50 mm in FIG. In the two-stage segregation (thick broken line in the figure), the depth is more than 50 mm. When an intermediate layer is provided (thick solid line in the figure), the lower layer is a sintered raw material having an average particle diameter of 3.0 to 5.0 mm starting from at least 150 mm below the surface of the raw material layer. It is preferable. In FIG. 8, the starting point is 150 mm. Even when an intermediate layer is provided, the surface layer preferably has an average particle diameter of 1.0 to 2.4 mm (a dotted line in the figure indicates a preferable upper and lower limit of the upper layer).

これは、中間層が厚くなると、下層の平均粒子径の減少による焼成速度の向上効果が薄れて、生産性へ悪影響を及ぼすからである。そのため、中間層は、原料層の表面下25〜150mmまでの間に設けることが好ましく、50〜120mmまでの間に設けることがより好ましい。また、このような段階偏析は、例えば、表層、中層、及び、下層に供給する原料系統を設けて、パレットに装入することで達成できる。   This is because as the intermediate layer becomes thicker, the effect of improving the firing rate due to the decrease in the average particle size of the lower layer is diminished, which adversely affects productivity. Therefore, the intermediate layer is preferably provided between 25 and 150 mm below the surface of the raw material layer, and more preferably provided between 50 and 120 mm. Such stage segregation can be achieved, for example, by providing a raw material system to be supplied to the surface layer, the middle layer, and the lower layer, and charging the pallet.

表層と下層の間に中間層を設け、中間層の平均粒子径を、表層の平均粒子径より大きくし、かつ、下層の平均粒子径よりも小さくすると、2段偏析において、表層よりすぐ下の層(下層)で平均粒子径が大きくなることで温度差が大きくなり歩留が低下するという影響を少なくすることができる。   If an intermediate layer is provided between the surface layer and the lower layer, and the average particle size of the intermediate layer is larger than the average particle size of the surface layer and smaller than the average particle size of the lower layer, in the two-stage segregation, immediately below the surface layer By increasing the average particle diameter in the layer (lower layer), it is possible to reduce the influence that the temperature difference increases and the yield decreases.

それ故、段階偏析が好ましい。段階偏析は、図2に示すドワイトロイド焼結機において、装入装置12と表層添加装置13の間に、表層添加装置13と同構造の中間層装入装置を配置し、それぞれの装置から、それぞれの層で必要な平均粒子径に調整した焼結原料を装入することで実現できる。   Therefore, step segregation is preferred. In the stage segregation, in the droidoid sintering machine shown in FIG. 2, an intermediate layer charging device having the same structure as the surface layer adding device 13 is arranged between the charging device 12 and the surface layer adding device 13. This can be realized by charging a sintering raw material adjusted to an average particle size necessary for each layer.

また、表層及び/又は下層において、表層の平均粒子径の適正範囲、及び、下層の平均粒子径の適正範囲内で、平均粒子径を変動させてもよい。例えば、図8に示す細実線xのように、連続的に平均粒径を変動させてもよい。   Further, in the surface layer and / or the lower layer, the average particle size may be varied within an appropriate range of the average particle size of the surface layer and an appropriate range of the average particle size of the lower layer. For example, the average particle diameter may be continuously varied as indicated by a thin solid line x shown in FIG.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
次の手順にて、焼結試験を行った。
(Example)
A sintering test was performed in the following procedure.

(1)原料ホッパーから切り出した原料に水分を7%添加し、固体可燃物濃度を3.8%にして造粒し、図2に示すドワイトロイド式焼結機に、装入装置12からドラムフィーダーを介してパレット10に装入し、下層の充填層を600mmの厚さで形成した。そのとき、造粒機において、原料に添加する粒子径を変化させ、下層に装入する焼結原料の平均粒子径を3.0〜5.0mmの範囲で変化させた。   (1) Add 7% of moisture to the raw material cut out from the raw material hopper, granulate with a solid combustible substance concentration of 3.8%, and add the drum from the charging device 12 to the Dwytroid type sintering machine shown in FIG. The pallet 10 was charged through a feeder, and a lower packed layer was formed with a thickness of 600 mm. At that time, in the granulator, the particle diameter added to the raw material was changed, and the average particle diameter of the sintered raw material charged in the lower layer was changed in the range of 3.0 to 5.0 mm.

別の造粒系統において、原料に添加する平均粒子径を、1.0〜1.5mmの範囲で変化させた。ここで造粒した原料を表層添加装置13で、表層の50mmに添加した。表層に添加する原料の平均粒子径と下層に装入する原料の平均粒子径を表1に示す。
In another granulation system, the average particle diameter added to the raw material was changed in the range of 1.0 to 1.5 mm. The raw material granulated here was added to 50 mm of the surface layer by the surface layer addition device 13. Table 1 shows the average particle diameter of the raw material added to the surface layer and the average particle diameter of the raw material charged in the lower layer.

Figure 0006155602
Figure 0006155602

上記原料を、図に示すドワイトロイド式焼結機に、2段装入装置で2段に装入して、原料層を形成した。図2に示すように、焼結機の下部から排気ブロア8で空気を吸引するとともに、点火炉6で、原料層の表層18に着火した。このとき、排気ブロア8の吸引圧は1000mmAqになるように、吸引空気量を調整し、焼結が終了するまで、この圧力を維持した。
The raw material was charged into the Dwightroid type sintering machine shown in FIG. 2 in two stages with a two-stage charging apparatus to form a raw material layer. As shown in FIG. 2, air was sucked by the exhaust blower 8 from the lower part of the sintering machine, and the surface layer 18 of the raw material layer was ignited by the ignition furnace 6. At this time, the amount of suction air was adjusted so that the suction pressure of the exhaust blower 8 was 1000 mmAq, and this pressure was maintained until the sintering was completed.

その後、排鉱部14で焼結鉱を排出した。焼結終了後、焼結鉱を抜き出し、強度試験を行った。強度試験は、焼結鉱を2mの高さから4回落下させて破砕し、5.0mm以上のものの質量割合を測定した。また、焼結試験で得られた歩留と焼成速度から生産性を算出した。その結果を、表1に併せて示す。試験番号1〜4は、表層濃化厚みを50mmで一定とした。   Then, the sintered ore was discharged | emitted in the discharge part 14. After the completion of sintering, the sintered ore was extracted and a strength test was performed. In the strength test, the sintered ore was dropped 4 times from a height of 2 m and crushed, and the mass ratio of 5.0 mm or more was measured. Further, productivity was calculated from the yield and firing rate obtained in the sintering test. The results are also shown in Table 1. In Test Nos. 1 to 4, the thickness of the surface layer was constant at 50 mm.

試験番号1が基本条件となる比較例である。それに対し、試験番号2〜4で、表層の平均粒子径を2.0〜2.4mmとし、下層の平均粒子径を3.1mmにすると、生産性が圧倒的に増加することを実証した。   Test number 1 is a comparative example which is a basic condition. On the other hand, in Test Nos. 2 to 4, when the average particle size of the surface layer was set to 2.0 to 2.4 mm and the average particle size of the lower layer was set to 3.1 mm, it was proved that the productivity was overwhelmingly increased.

(2)次に、表層に平均粒子径を変化させる厚みを25〜100mmの範囲で変化させた。そのとき、表層の平均粒子径を2.0mmとし、下層の平均粒子径を3.1mmとして比較したものが、試験番号5と6である。表層の平均粒子径を変化させる厚みを50mm以上にすると、生産性が向上するが、表層濃化厚みを100mmにしても、生産性は大きく向上しないことを確認した。   (2) Next, the thickness for changing the average particle diameter on the surface layer was changed in the range of 25 to 100 mm. At that time, test numbers 5 and 6 were compared by setting the average particle diameter of the surface layer to 2.0 mm and the average particle diameter of the lower layer to 3.1 mm. It was confirmed that when the thickness for changing the average particle diameter of the surface layer is 50 mm or more, the productivity is improved, but the productivity is not greatly improved even when the surface layer thickened thickness is 100 mm.

表層の平均粒子径を1.0mm又は1.7mmにし、下層の平均粒子径を2.5〜3.6mmの範囲で選択した場合の結果を試験番号7〜11で示す。表層の平均粒子径を小さくすることで、下層の平均粒子径をさらに大きくすることができ、生産性が、試験番号4に比べ、さらに向上していることが解る。   Test numbers 7 to 11 show the results when the average particle size of the surface layer is 1.0 mm or 1.7 mm and the average particle size of the lower layer is selected in the range of 2.5 to 3.6 mm. It can be seen that by reducing the average particle size of the surface layer, the average particle size of the lower layer can be further increased, and the productivity is further improved as compared with Test No. 4.

図8に、平均粒子径を2段に分けて偏析させた場合と、表と下層の間に中間層を設けて平均粒子径を段階的に小さく(偏析)した場合における平均粒子径と層深さの関係を比較して示す。
8, a case where is segregated separately average particle diameter in two stages, the average particle diameter and the layer in the case where the average particle diameter stepwise reduced (segregation) of the intermediate layer is provided between the front layer and the lower layer A comparison of depth relationships is shown.

表層の平均粒子径を1.7mmとし、下層の平均粒子径を3.0mmとした。全体の平均粒子径の平均値は同じである。段階的な偏析は、図2に示すドワイトロイド式焼結機において、装入装置13と表層添加装置12の中間に、中間層装入装置を設け、それぞれの層で必要な平均粒子径に調整した原料を装入して形成した。   The average particle diameter of the surface layer was 1.7 mm, and the average particle diameter of the lower layer was 3.0 mm. The average value of the overall average particle diameter is the same. In the stepwise segregation shown in FIG. 2, the stepwise segregation is performed by providing an intermediate layer charging device between the charging device 13 and the surface layer adding device 12 and adjusting the average particle size required for each layer. The raw material was charged and formed.

試験番号12と13に、歩留、焼成速度、及び、生産性を示す。段階的に偏析をつけると、歩留が増加し、生産性向上することが解る。
Test numbers 12 and 13 show the yield, firing rate, and productivity. When stepwise put segregation, it can be seen that the yield is increased, the productivity is improved.

前述したように、本発明によれば、焼結原料中の平均粒子径を上層と下層で偏析させて生産性の向上を図る製造方法において、下層の平均粒子径を、上層における平均粒子径より大きくすることで、従来技術より、生産性をより高めることができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, in the manufacturing method for improving productivity by segregating the average particle size in the sintering raw material in the upper layer and the lower layer, the average particle size of the lower layer is made larger than the average particle size in the upper layer. By increasing the size, productivity can be further improved as compared with the conventional technique. Therefore, the present invention has high applicability in the steel industry.

1 原料層
2 赤熱帯
3 焼結完了帯
4 表層
5 下層
6 点火炉
7 空気
8 排気ブロア
9 パレットの進行方向
10 パレット
11 点火炉
12 装入装置
13 表層添加装置
14 排鉱部
15 進行方向
18 表層
19 下層
DESCRIPTION OF SYMBOLS 1 Raw material layer 2 Red tropics 3 Sintering completion zone 4 Surface layer 5 Lower layer 6 Ignition furnace 7 Air 8 Exhaust blower 9 Pallet advancing direction 10 Pallet 11 Ignition furnace 12 Charger 13 Surface layer addition apparatus 14 Excavation part 15 Advancing direction 18 Surface layer 19 Lower layer

Claims (2)

ドワイトロイド式焼結きのパレット上に、原料層を下層と表層に分けて形成し、焼結鉱を製造する焼結鉱の製造方法において、
(i)上記下層の原料の平均粒子径を、上記表層の原料の平均粒子径よりも大きくし、
(ii)上記表層が、少なくとも、原料層の表面から表面下50mmまでの層含み、
(iii)上記表層の原料の平均粒子径が2.4mm以下であり、かつ、
iv)上記下層の原料の平均粒子径が3.0mm以上であり、
)上記下層の原料の固体可燃物濃度が3.0〜4.0質量%である
ことを特徴とする焼結鉱の製造方法。
On the pallet of Dwightroid-type sintered, the raw material layer is divided into a lower layer and a surface layer, and a sintered ore manufacturing method for manufacturing a sintered ore,
(I) making the average particle diameter of the raw material of the lower layer larger than the average particle diameter of the raw material of the surface layer,
(Ii) the outer layer comprises at least a layer to the surface below 50mm from the surface of the material layer,
(Iii) The average particle diameter of the surface layer material is 2.4 mm or less , and
( Iv ) The lower layer raw material has an average particle size of 3.0 mm or more,
( V ) The method for producing a sintered ore, wherein the solid combustible concentration of the raw material of the lower layer is 3.0 to 4.0% by mass.
前記下層が、少なくとも原料層の表面下150mmを起点とし下方に存在する層を含み、前記表層と前記下層の間に中間層を有し、該中間層の原料の平均粒子径を、上記表層の平均粒子径よりも大きく、かつ、上記下層の平均粒子径よりも小さくすることを特徴とする請求項1記載の焼結鉱の製造方法。 The lower layer includes a layer existing at least 150 mm below the surface of the raw material layer, and has an intermediate layer between the surface layer and the lower layer, and the average particle diameter of the raw material of the intermediate layer is determined by The method for producing a sintered ore according to claim 1 , wherein the average particle size is larger than the average particle size and smaller than the average particle size of the lower layer.
JP2012249576A 2012-11-13 2012-11-13 Method for producing sintered ore Active JP6155602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249576A JP6155602B2 (en) 2012-11-13 2012-11-13 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249576A JP6155602B2 (en) 2012-11-13 2012-11-13 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2014098176A JP2014098176A (en) 2014-05-29
JP6155602B2 true JP6155602B2 (en) 2017-07-05

Family

ID=50940417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249576A Active JP6155602B2 (en) 2012-11-13 2012-11-13 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP6155602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303096B2 (en) 2019-12-02 2023-07-04 東芝ホームテクノ株式会社 heating cooker

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217643A (en) * 1982-06-09 1983-12-17 Kawasaki Steel Corp Method for controlling segregation of particle size of stock material charged into sintering machine
JPS6263624A (en) * 1985-09-14 1987-03-20 Nippon Steel Corp Method and apparatus for charging material for sintered ore in two steps
JPH0598358A (en) * 1991-08-21 1993-04-20 Kobe Steel Ltd Manufacture of sintered ore
JP3201726B2 (en) * 1995-12-22 2001-08-27 川崎製鉄株式会社 Loading method of sintering raw material using magnetic force
JPH09229567A (en) * 1996-02-20 1997-09-05 Nkk Corp Loading apparatus for sintered stock material and loading method
JP2012001758A (en) * 2010-06-16 2012-01-05 Kobe Steel Ltd Method of charging sintering raw material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303096B2 (en) 2019-12-02 2023-07-04 東芝ホームテクノ株式会社 heating cooker

Also Published As

Publication number Publication date
JP2014098176A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5194378B2 (en) Method for producing sintered ore
JP5315659B2 (en) Method for producing sintered ore
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP6686974B2 (en) Sintered ore manufacturing method
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP6155602B2 (en) Method for producing sintered ore
JP6870439B2 (en) Sintered ore manufacturing method
JP4830728B2 (en) Method for producing sintered ore
JP5811936B2 (en) Method for producing sintered ore
JP2007169603A (en) Method for producing ferrocoke and sintered ore
JP6179726B2 (en) Method for producing sintered ore
JP5561443B2 (en) Method for producing sintered ore
JP5124969B2 (en) Sinter ore manufacturing method
JP6102535B2 (en) Method for producing sintered ore
JP5338310B2 (en) Raw material charging method to blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP6885164B2 (en) Sintered ore manufacturing method
JP2018080358A (en) Method for charging raw materials to blast furnace
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5831694B2 (en) Sintering machine
JP7196462B2 (en) Manufacturing method of sintered ore using Dwight Lloyd type sintering machine
JP2009209408A (en) Method for producing sintered ore
JP5338311B2 (en) Raw material charging method to blast furnace
JP4815841B2 (en) Sintering method
JP5292845B2 (en) Raw material charging method to sintering machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6155602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350