[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6153904B2 - Thermal spray film thickness measuring method and film thickness measuring apparatus - Google Patents

Thermal spray film thickness measuring method and film thickness measuring apparatus Download PDF

Info

Publication number
JP6153904B2
JP6153904B2 JP2014178936A JP2014178936A JP6153904B2 JP 6153904 B2 JP6153904 B2 JP 6153904B2 JP 2014178936 A JP2014178936 A JP 2014178936A JP 2014178936 A JP2014178936 A JP 2014178936A JP 6153904 B2 JP6153904 B2 JP 6153904B2
Authority
JP
Japan
Prior art keywords
signal
film thickness
eddy current
film
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014178936A
Other languages
Japanese (ja)
Other versions
JP2015072264A (en
Inventor
征樹 草川
征樹 草川
正太 山邉
正太 山邉
吉克 合田
吉克 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Osaka Gas Co Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Non Destructive Inspection Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014178936A priority Critical patent/JP6153904B2/en
Publication of JP2015072264A publication Critical patent/JP2015072264A/en
Application granted granted Critical
Publication of JP6153904B2 publication Critical patent/JP6153904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、溶射膜の膜厚測定方法及び膜厚測定装置に関する。さらに詳しくは、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法及び膜厚測定装置に関する。   The present invention relates to a thermal spray film thickness measurement method and a film thickness measurement apparatus. More specifically, a method for measuring the thickness of a thermal sprayed film by measuring the thickness of the thermal sprayed film by an eddy current flaw detection method by contacting a sensor to an object to be inspected having an aluminum alloy thermal sprayed film formed on a tubular aluminum alloy material And a film thickness measuring apparatus.

従来、上述の如き溶射膜の膜厚測定方法として、例えば特許文献1に示す如きものが知られている。この方法は、被測定材の下地合金と被膜材合金との組み合わせにより決定される二次曲線に応じた目盛を設定した目盛板を渦電流の測定メーターに装着し、標準試料等により目盛設定を行って、測定メーターの目盛からアルミニウム合金膜厚を求めている。作業者が目盛を読み取るため、作業者によりバラツキが生じ精度が低下する場合があった。また、二次曲線に応じた目盛を設定しているため、本文献に明示されているように、300μmが測定上限であり、さらに測定範囲の拡大が望まれていた。   Conventionally, as a method for measuring the thickness of a sprayed film as described above, for example, the one shown in Patent Document 1 is known. In this method, a scale plate with a scale corresponding to a quadratic curve determined by the combination of the base alloy and the coating material alloy of the material to be measured is attached to an eddy current measurement meter, and the scale setting is made using a standard sample or the like. The thickness of the aluminum alloy is obtained from the scale of the measurement meter. Since the operator reads the scale, there are cases in which the operator varies and the accuracy decreases. Moreover, since the scale according to the quadratic curve is set, as clearly shown in this document, 300 μm is the upper limit of measurement, and further expansion of the measurement range has been desired.

特公平4−5324号公報Japanese Patent Publication No. 4-5324

かかる従来の実情に鑑みて、本発明は、広範囲の膜厚を精度よく測定することの可能な溶射膜の膜厚測定方法及び膜厚測定装置を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a thermal spray film thickness measuring method and a film thickness measuring apparatus capable of accurately measuring a wide range of film thickness.

上記目的を達成するため、本発明に係る溶射膜の膜厚測定方法の特徴は、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する方法において、前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定し、これら基準渦流信号の前記リフトオフ距離が0の時の信号成分に基づいて3次多項式による検量線を予め作成しておき、前記治具を前記被検査体の外面に当接させて渦流信号を測定し、測定した渦流信号の前記治具が前記被検査体の外面に当接した時の信号成分と前記検量線に基づいて前記溶射膜の膜厚を測定することにある。   In order to achieve the above object, the thermal spray film thickness measuring method according to the present invention is characterized in that a sensor is brought into contact with a test object in which a thermal spray film of an aluminum alloy is formed on a tubular aluminum alloy material to detect eddy current flaws. In the method of measuring the film thickness of the sprayed film by the method, the sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected, and the thermal spraying is made of the same material and shape as the object to be inspected. A reference eddy current signal is measured by changing a lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having different film thicknesses, and a signal component when the lift-off distance of the reference eddy current signal is zero is measured. Based on this, a calibration curve based on a cubic polynomial is prepared in advance, the jig is brought into contact with the outer surface of the object to be inspected, and the eddy current signal is measured. When touching the outer surface It based the signal component to the calibration curve in measuring the thickness of the sprayed film.

上記構成によれば、センサを被検査体の外面に合致する湾曲面を有する治具に設けるので、センサを被検査体の外面に安定して当接させることができ、センサと被検査体との相対的な傾きが低減され、測定精度が向上する。また、湾曲面により、測定箇所でのセンサと被検査体との相対的な傾きによるバラツキを抑制できる。加えて、被検査体と同一材料、同一形状の試験片を用いて検量線を作成するので、被検査体の曲率形状や材料の相違による影響を排除でき、さらに測定精度が向上する。しかも、3次多項式により作成した検量線に基づいて膜厚を求めるので、比較的肉厚の溶射膜の膜厚までも同一検量線で高精度に測定することが可能となる。さらに、複数の試験片毎に試験片に対するセンサのリフトオフ距離が0となる信号成分により検量線を作成し、測定時は治具を被検査体の外面に当接させた時の渦流信号の信号成分を測定する。このように、リフトオフ距離が0の場合の渦流信号の出力値を用いるので、上述の治具形状と相まって安定した渦流信号が得られ、溶射膜の膜厚を精度よく測定することができる。   According to the above configuration, since the sensor is provided in the jig having a curved surface that matches the outer surface of the object to be inspected, the sensor can be stably brought into contact with the outer surface of the object to be inspected. The relative inclination of is reduced, and the measurement accuracy is improved. In addition, the curved surface can suppress variations due to the relative inclination between the sensor and the object to be inspected at the measurement location. In addition, since a calibration curve is created using a test piece having the same material and shape as the object to be inspected, the influence of the curvature shape and material of the object to be inspected can be eliminated, and the measurement accuracy is further improved. In addition, since the film thickness is obtained based on a calibration curve created by a cubic polynomial, even the film thickness of a relatively thick sprayed film can be measured with the same calibration curve with high accuracy. Furthermore, a calibration curve is created for each of a plurality of test pieces using a signal component in which the lift-off distance of the sensor with respect to the test piece is zero, and the signal of the eddy current signal when the jig is brought into contact with the outer surface of the inspection object during measurement Measure ingredients. Thus, since the output value of the eddy current signal when the lift-off distance is 0 is used, a stable eddy current signal can be obtained in combination with the above jig shape, and the film thickness of the sprayed film can be measured with high accuracy.

前記基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、前記基準信号軌跡から前記リフトオフ距離が0の時の信号成分を抽出し、前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、前記信号軌跡における前記治具が前記被検査体の外面に当接した時の信号成分を抽出するようにしてもよい。軌跡から抽出する場合、その軌跡の終端がリフトオフ距離が0の信号成分となる。この場合においても、上記と同様に溶射膜の膜厚を精度よく測定することができる。   The reference eddy current signal is measured and a reference signal locus of the signal is generated, a signal component when the lift-off distance is 0 is extracted from the reference signal locus, and the jig is moved from the air to the outer surface of the inspection object. Measure the eddy current signal until it comes close to contact with the outer surface, generate a signal trajectory of the signal, and extract the signal component when the jig in the signal trajectory contacts the outer surface of the object to be inspected You may do it. When extracting from the trajectory, the end of the trajectory is a signal component with a lift-off distance of zero. Also in this case, the film thickness of the sprayed film can be measured with high accuracy in the same manner as described above.

前記信号成分は、前記センサのインピーダンスにおけるリアクタンス成分(Y成分)であるとよい。発明者らの実験によれば、図5に示すように、X成分(抵抗成分)よりもY成分(リアクタンス成分)が膜厚変動に対し感度がよく、渦流出力と膜厚との相関も高いことが見出された。しかも、Y成分の方がより厚い膜厚を測定できることが判明した。すなわち、インピーダンスにおけるリアクタンス成分を用いることで、さらに精度よく広範囲の膜厚測定が可能となる。   The signal component may be a reactance component (Y component) in the impedance of the sensor. According to the inventors' experiment, as shown in FIG. 5, the Y component (reactance component) is more sensitive to film thickness variation than the X component (resistance component), and the correlation between the eddy current output and the film thickness is also high. It was found. Moreover, it has been found that the Y component can measure a thicker film thickness. That is, by using the reactance component in the impedance, it is possible to measure the film thickness over a wider range with higher accuracy.

上記目的を達成するため、本発明に係る溶射膜の膜厚測定方法の他の特徴は、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する方法において、前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から第一信号成分毎に抽出した第二信号成分に基づいて複数の検量線を予め作成しておき、前記治具を前記被検査体の外面に当接させて渦流信号を測定し、測定した渦流信号の第一信号成分から対応する検量線を選択し、前記測定した渦流信号の第二信号成分と選択した検量線に基づいて前記溶射膜の膜厚を測定することにある。   In order to achieve the above object, another feature of the sprayed film thickness measuring method according to the present invention is that a sensor is brought into contact with a test object in which an aluminum alloy sprayed film is formed on a tubular aluminum alloy material. In the method of measuring the film thickness of the sprayed film by the eddy current flaw detection method, the sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected, and has the same material and shape as the object to be inspected. The reference eddy current signal is generated by changing the lift-off distance of the sensor with respect to the test piece for each of the plurality of test pieces having different thicknesses of the sprayed film, and the reference signal locus of the signal is generated. A plurality of calibration curves are prepared in advance based on the second signal component extracted for each first signal component from the above, and the eddy current signal is measured by bringing the jig into contact with the outer surface of the object to be inspected. First signal of eddy current signal Select the calibration line corresponding the component, in measuring the thickness of the sprayed film on the basis of a calibration curve and the selected second signal component of the vortex signal the measurement.

ここで、リフトオフ距離を変化させることで得られる渦流信号の信号軌跡は、例えば図7に示すように、溶射膜の膜厚により一意に定まる。そして、そのインピーダンス平面上の任意の点は、ある膜厚における信号軌跡上に存在するといえる。従って、上記構成の如く、センサのインピーダンスの各信号成分を決定することで溶射膜厚の測定が可能となる。しかも、リフトオフ距離が0でなくてもよく、溶射膜上に他の付着物が形成されていても、その上から溶射膜厚の測定が可能である。   Here, the signal trajectory of the eddy current signal obtained by changing the lift-off distance is uniquely determined by the film thickness of the sprayed film, for example, as shown in FIG. It can be said that an arbitrary point on the impedance plane exists on a signal locus at a certain film thickness. Therefore, as described above, the sprayed film thickness can be measured by determining each signal component of the sensor impedance. Moreover, the lift-off distance may not be zero, and even if other deposits are formed on the sprayed film, the sprayed film thickness can be measured from there.

また、前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、前記信号軌跡における前記治具が前記被検査体の外面に当接した時の第一信号成分から対応する検量線を選択するようにしてもよい。この場合においても、上記と同様に溶射膜の膜厚を精度よく測定することができる。   Further, an eddy current signal from when the jig is brought close to the outer surface of the object to be inspected to contact with the outer surface is measured and a signal trajectory of the signal is generated. A corresponding calibration curve may be selected from the first signal component when it contacts the outer surface of the test object. Also in this case, the film thickness of the sprayed film can be measured with high accuracy in the same manner as described above.

前記第一信号成分は、前記センサのインピーダンスにおける抵抗成分(X成分)であり、前記第二信号成分は、前記センサのインピーダンスにおけるリアクタンス成分(Y成分)であるとよい。X成分(抵抗成分)よりもY成分(リアクタンス成分)が膜厚変動に対し感度がよく、渦流出力と膜厚との相関も高いことが見出された。しかも、Y成分の方がより厚い膜厚を測定できることが判明した。すなわち、インピーダンスにおけるリアクタンス成分を用いることで、さらに精度よく広範囲の膜厚測定が可能となる。   The first signal component may be a resistance component (X component) in the impedance of the sensor, and the second signal component may be a reactance component (Y component) in the impedance of the sensor. It was found that the Y component (reactance component) is more sensitive to film thickness fluctuations than the X component (resistance component), and the correlation between the eddy current output and the film thickness is high. Moreover, it has been found that the Y component can measure a thicker film thickness. That is, by using the reactance component in the impedance, it is possible to measure the film thickness over a wider range with higher accuracy.

上記目的を達成するため、本発明に係る溶射膜の膜厚測定方法のさらに他の特徴は、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する方法において、前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から求めた軌跡の基準傾きに基づいて検量線を予め作成しておき、前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、前記信号軌跡から軌跡の傾きを求め、求めた軌跡の傾きと前記検量線に基づいて前記溶射膜の膜厚を測定することにある。   In order to achieve the above object, still another feature of the sprayed film thickness measuring method according to the present invention is that a sensor is brought into contact with a test object in which an aluminum alloy sprayed film is formed on a tubular aluminum alloy material. In the method of measuring the film thickness of the sprayed film by the eddy current flaw detection method, the sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected, and has the same material and shape as the object to be inspected. The reference eddy current signal is measured by changing the lift-off distance of the sensor with respect to the test piece for each of the plurality of test pieces having different thicknesses of the sprayed film, and a reference signal locus of the signal is generated. A calibration curve is prepared in advance based on the reference inclination of the trajectory obtained from the trajectory, and an eddy current signal from when the jig is brought close to the outer surface of the object to be inspected until it comes into contact with the outer surface is measured. It generates a signal trajectory of the signal, determine the slope of the trajectory from the signal path, in measuring the thickness of the sprayed film on the basis of the slope of the determined trajectory above calibration curve.

ここで、リフトオフ距離を変化させることで得られる渦流信号の信号軌跡は、例えば図7に示すように、溶射膜の膜厚により一意に定まる。よって、信号軌跡の傾きは膜厚に対して一意に決まる。従って、上記構成の如く、信号軌跡の傾きを用いることで溶射膜厚の測定が可能となる。しかも、リフトオフ距離が0でなくてもよく、溶射膜上に他の付着物が形成されていても、その上から溶射膜厚の測定が可能である。   Here, the signal trajectory of the eddy current signal obtained by changing the lift-off distance is uniquely determined by the film thickness of the sprayed film, for example, as shown in FIG. Therefore, the inclination of the signal locus is uniquely determined with respect to the film thickness. Therefore, as described above, the sprayed film thickness can be measured by using the slope of the signal locus. Moreover, the lift-off distance may not be zero, and even if other deposits are formed on the sprayed film, the sprayed film thickness can be measured from there.

前記被検査体は、前記溶射膜上にさらに非導電性の付着物を有していても構わない。上記いずれかに記載の方法においては、溶射膜の上に他物が存在していた場合であっても溶射膜の膜厚の測定が可能である。   The inspected object may further have a non-conductive deposit on the sprayed film. In any one of the methods described above, the film thickness of the sprayed film can be measured even when another object is present on the sprayed film.

前記治具は、前記センサを前記被検査体の外面に押圧する押圧部材を有するとよい。これにより、センサを被検査体に当接させる際に一定に押圧することができ、センサと被検査体との相対的な傾きがさらに低減でき、さらに測定精度を向上する。また、センサと被検査体との距離(リフトオフ)による影響を抑制でき、さらに精度が向上する。   The jig may include a pressing member that presses the sensor against an outer surface of the inspection object. Thereby, when making a sensor contact | abut to a to-be-inspected object, it can press uniformly, the relative inclination of a sensor and a to-be-inspected object can further be reduced, and a measurement precision is improved further. Moreover, the influence by the distance (lift-off) between a sensor and a to-be-inspected object can be suppressed, and the accuracy is further improved.

前記被検査体としては、例えば、LNG気化器の伝熱管や下部ヘッダーである。   Examples of the inspection object include a heat transfer tube and a lower header of an LNG vaporizer.

上記目的を達成するため、本発明に係る溶射膜の膜厚測定装置の特徴は、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する構成において、前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定し、これら基準渦流信号の前記リフトオフ距離が0の時の信号成分に基づいて3次多項式による検量線を予め作成しておき、前記治具を前記被検査体の外面に当接させて渦流信号を測定し、測定した渦流信号の前記治具が前記被検査体の外面に当接した時の信号成分と前記検量線に基づいて前記溶射膜の膜厚を測定することにある。   In order to achieve the above object, the thermal spray film thickness measuring apparatus according to the present invention is characterized by an eddy current flaw detection by contacting a sensor to an object to be inspected having an aluminum alloy thermal spray film formed on a tubular aluminum alloy material. In the configuration in which the film thickness of the sprayed film is measured by the method, the sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected, and the thermal spraying is made of the same material and shape as the object to be inspected. A reference eddy current signal is measured by changing a lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having different film thicknesses, and a signal component when the lift-off distance of the reference eddy current signal is zero is measured. Based on this, a calibration curve based on a cubic polynomial is prepared in advance, the jig is brought into contact with the outer surface of the object to be inspected, and the eddy current signal is measured. When touching the outer surface It based the signal component to the calibration curve in measuring the thickness of the sprayed film.

上記目的を達成するため、本発明に係る溶射膜の膜厚測定装置の他の特徴は、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する構成において、前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から第一信号成分毎に抽出した第二信号成分に基づいて複数の検量線を予め作成しておき、前記治具を前記被検査体の外面に当接させて渦流信号を測定し、測定した渦流信号の第一信号成分から対応する検量線を選択し、前記測定した渦流信号の第二信号成分と選択した検量線に基づいて前記溶射膜の膜厚を測定することにある。   In order to achieve the above object, another feature of the apparatus for measuring a film thickness of a sprayed film according to the present invention is that a sensor is brought into contact with a test object in which an aluminum alloy sprayed film is formed on a tubular aluminum alloy material. In the configuration for measuring the film thickness of the sprayed film by the eddy current flaw detection method, the sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected, and has the same material and shape as the object to be inspected. The reference eddy current signal is generated by changing the lift-off distance of the sensor with respect to the test piece for each of the plurality of test pieces having different thicknesses of the sprayed film, and the reference signal locus of the signal is generated. A plurality of calibration curves are prepared in advance based on the second signal component extracted for each first signal component from the above, and the eddy current signal is measured by bringing the jig into contact with the outer surface of the object to be inspected. First signal of eddy current signal Select the calibration line corresponding the component, in measuring the thickness of the sprayed film on the basis of a calibration curve and the selected second signal component of the vortex signal the measurement.

上記目的を達成するため、本発明に係る溶射膜の膜厚測定装置のさらに他の特徴は、管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する構成において、前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から求めた軌跡の基準傾きに基づいて検量線を予め作成しておき、前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、前記信号軌跡から軌跡の傾きを求め、求めた軌跡の傾きと前記検量線に基づいて前記溶射膜の膜厚を測定することにある。   In order to achieve the above object, still another feature of the thermal spray film thickness measuring apparatus according to the present invention is that a sensor is brought into contact with a test object in which an aluminum alloy thermal spray film is formed on a tubular aluminum alloy material. In the configuration for measuring the film thickness of the sprayed film by the eddy current flaw detection method, the sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected, and has the same material and shape as the object to be inspected. The reference eddy current signal is measured by changing the lift-off distance of the sensor with respect to the test piece for each of the plurality of test pieces having different thicknesses of the sprayed film, and a reference signal locus of the signal is generated. A calibration curve is prepared in advance based on the reference inclination of the trajectory obtained from the trajectory, and an eddy current signal from when the jig is brought close to the outer surface of the object to be inspected until it comes into contact with the outer surface is measured. It generates a signal trajectory of the signal, determine the slope of the trajectory from the signal path, in measuring the thickness of the sprayed film on the basis of the slope of the determined trajectory above calibration curve.

上記本発明に係る溶射膜の膜厚測定方法及び膜厚測定装置の特徴によれば、広範囲の膜厚を精度よく測定することが可能となった。   According to the characteristics of the thermal spray film thickness measuring method and the film thickness measuring apparatus according to the present invention, a wide range of film thicknesses can be accurately measured.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

LNG気化器の概略図であり、(a)は正面図、(b)は側面図である。It is the schematic of an LNG vaporizer, (a) is a front view, (b) is a side view. 検査対象となる伝熱管及び下部ヘッダーの概略図である。It is the schematic of the heat exchanger tube used as a test object, and a lower header. 伝熱管及び下部ヘッダーの層構造の概略断面図である。It is a schematic sectional drawing of the layer structure of a heat exchanger tube and a lower header. 本発明に係る膜厚測定装置のブロック図である。It is a block diagram of the film thickness measuring apparatus which concerns on this invention. X成分とY成分の膜厚値と渦流出力との相関を示すグラフである。It is a graph which shows the correlation with the film thickness value of X component and Y component, and an eddy current output. リフトオフ距離と信号軌跡との関係を説明する図である。It is a figure explaining the relationship between a lift-off distance and a signal locus | trajectory. 溶射膜厚と信号軌跡との関係を説明する図である。It is a figure explaining the relationship between a thermal spraying film thickness and a signal locus | trajectory. 本発明の第一実施形態における検量線の作成を説明する図である。It is a figure explaining preparation of a calibration curve in a first embodiment of the present invention. 本発明の第一実施形態における膜厚の算出を説明する図である。It is a figure explaining calculation of the film thickness in 1st embodiment of this invention. 治具の概略図である。It is the schematic of a jig | tool. 伝熱管に相当する試験片による検量線を示すグラフである。It is a graph which shows the calibration curve by the test piece equivalent to a heat exchanger tube. 下部ヘッダーに相当する試験片による検量線を示すグラフである。It is a graph which shows the calibration curve by the test piece corresponding to a lower header. 本発明の第二実施形態における図8相当図である。FIG. 9 is a view corresponding to FIG. 8 in the second embodiment of the present invention. 本発明の第二実施形態における図9相当図である。FIG. 10 is a view corresponding to FIG. 9 in the second embodiment of the present invention. 本発明の第三実施形態における図8相当図である。FIG. 9 is a view corresponding to FIG. 8 in the third embodiment of the present invention. 本発明の第三実施形態における図9相当図である。FIG. 10 is a view corresponding to FIG. 9 in the third embodiment of the present invention.

次に、図1〜12を参照しながら、本発明の第一実施形態について詳しく説明する。
[LNG気化器]
本発明に係る溶射膜の膜厚測定方法は、例えば、図1,2に示す如き、例えば、海水を熱源としてLNGを気化するオープンラック式のLNG気化器1における伝熱管2及び下部ヘッダー3を検査対象(被検査体)とする。同図に示すように、LNG気化器1は、LNGが供給される下部ヘッダー3と、下部ヘッダー3から鉛直方向に複数設けられた伝熱管2とを備える。伝熱管2の上部外周面にはフィン2aが設けられ、上端は上部ヘッダー4に接続されている。トラフ5には配管6を介して海水Wが供給されており、トラフ5から溢れた海水Wが伝熱管2外面を伝って下部ヘッダー3まで流下する。この海水Wとの熱交換によってLNGが気化されNGとなり、上部ヘッダー4を介して回収される。
Next, the first embodiment of the present invention will be described in detail with reference to FIGS.
[LNG vaporizer]
As shown in FIGS. 1 and 2, for example, the thermal spray film thickness measuring method according to the present invention includes a heat transfer tube 2 and a lower header 3 in an open rack type LNG vaporizer 1 that vaporizes LNG using seawater as a heat source. Inspected (inspected object). As shown in the figure, the LNG vaporizer 1 includes a lower header 3 to which LNG is supplied, and a plurality of heat transfer tubes 2 provided in a vertical direction from the lower header 3. A fin 2 a is provided on the upper outer peripheral surface of the heat transfer tube 2, and the upper end is connected to the upper header 4. Seawater W is supplied to the trough 5 via a pipe 6, and the seawater W overflowing from the trough 5 flows down to the lower header 3 along the outer surface of the heat transfer pipe 2. LNG is vaporized and converted into NG by heat exchange with the seawater W, and is recovered through the upper header 4.

[伝熱管]
ここで、伝熱管2は、図3に示すように、母材21としてアルミニウム合金が用いられ、その母材21の表面にアルミニウム溶射により溶射膜22が形成されている。なお、本実施形態において、母材21にはアルミニウム合金材としてA6063が用いられ、アルミニウム溶射に用いられるアルミニウム合金としては、例えばA7072が用いられる。
[Heat transfer tube]
Here, in the heat transfer tube 2, as shown in FIG. 3, an aluminum alloy is used as the base material 21, and a sprayed film 22 is formed on the surface of the base material 21 by aluminum spraying. In the present embodiment, A6063 is used as the aluminum alloy material for the base material 21 and, for example, A7072 is used as the aluminum alloy used for aluminum spraying.

[下部ヘッダー]
また、下部ヘッダー3も、伝熱管2と同様の層構造を呈し、アルミニウム合金材よりなる母材31の表面にアルミニウム溶射による溶射膜32が形成されている。なお、本実施形態において、母材31にはアルミニウム合金材としてA5083が用いられ、アルミニウム溶射に用いられるアルミニウム合金としては、例えばA7072が用いられる。
[Bottom header]
The lower header 3 also has a layer structure similar to that of the heat transfer tube 2, and a sprayed film 32 by aluminum spraying is formed on the surface of a base material 31 made of an aluminum alloy material. In this embodiment, A5083 is used as the aluminum alloy material for the base material 31, and A7072 is used as the aluminum alloy used for aluminum spraying, for example.

ところで、このアルミニウム溶射による溶射膜22,32は、母材21,31のアルミニウム合金材の犠牲陽極として機能し、母材21,31の腐食、損傷を抑制する(犠牲防食作用)。また、伝熱管2及び下部ヘッダー3の溶射膜22,32は、トラフ5から流下する大量の海水Wによって摩耗(損傷)する。一方、溶射は、LNG気化器1が設置された後に施工される。作業者によって膜厚にバラツキが大きく、溶射前のブラスト処理により外観上溶射の有無の識別が困難で施工漏れ等の恐れも生じる。また、膜厚が大きい場合、溶射膜22,32の接着強度が低下し剥離する恐れもある。従って、この溶射膜22,32の広範囲の膜厚管理が重要であり、膜厚が所定の管理値範囲内であるかを判定(測定)する必要がある。   By the way, the sprayed films 22 and 32 by the aluminum spraying function as a sacrificial anode of the aluminum alloy material of the base materials 21 and 31, and suppress corrosion and damage of the base materials 21 and 31 (sacrificial anticorrosive action). Further, the sprayed films 22 and 32 of the heat transfer tube 2 and the lower header 3 are worn (damaged) by a large amount of seawater W flowing down from the trough 5. On the other hand, thermal spraying is performed after the LNG vaporizer 1 is installed. The thickness of the film varies greatly depending on the operator, and it is difficult to identify the presence or absence of thermal spraying due to the blast treatment before thermal spraying, which may lead to construction leakage and the like. Moreover, when the film thickness is large, the adhesive strength of the sprayed films 22 and 32 may be reduced and may be peeled off. Therefore, it is important to control the film thickness of the sprayed films 22 and 32 over a wide range, and it is necessary to determine (measure) whether the film thickness is within a predetermined control value range.

[膜厚測定装置]
本発明に係る膜厚測定装置10は、図2に示すように、大略、センサ11が取り付けられた治具40と、検出した信号を処理し出力する渦流探傷装置50と、出力された信号の解析等を行う信号処理装置60と、測定結果等を表示する表示器70を備える。伝熱管2や下部ヘッダー3に治具40を介してセンサ11を近づけ、伝熱管2や下部ヘッダー3を励磁し、渦電流を発生させる。そして、渦電流により生成される磁束の変化に伴うセンサ11のインピーダンス変化を測定し、溶射膜22,32の膜厚を測定する。
[Thickness measuring device]
As shown in FIG. 2, the film thickness measuring apparatus 10 according to the present invention generally includes a jig 40 to which a sensor 11 is attached, an eddy current flaw detector 50 that processes and outputs a detected signal, and an output signal. A signal processing device 60 that performs analysis and the like and a display 70 that displays measurement results and the like are provided. The sensor 11 is brought close to the heat transfer tube 2 and the lower header 3 via the jig 40 to excite the heat transfer tube 2 and the lower header 3 to generate an eddy current. And the impedance change of the sensor 11 accompanying the change of the magnetic flux produced | generated by an eddy current is measured, and the film thickness of the sprayed films 22 and 32 is measured.

図4に示すように、渦流探傷装置50は、大略、発振器51、ブリッジ52、移相器53、自動平衡器54、増幅器55、同期検波器56を備える。本実施形態において、例えばセンサ11としては試験コイル12と比較コイル13よりなる自己誘導自己比較型のプローブが用いられる。ブリッジ52は、これらコイル12,13と図示しない可変抵抗器により構成されるブリッジ回路である。   As shown in FIG. 4, the eddy current flaw detector 50 generally includes an oscillator 51, a bridge 52, a phase shifter 53, an automatic balancer 54, an amplifier 55, and a synchronous detector 56. In the present embodiment, for example, as the sensor 11, a self-inductive self-comparison probe comprising a test coil 12 and a comparison coil 13 is used. The bridge 52 is a bridge circuit including these coils 12 and 13 and a variable resistor (not shown).

発振器51からの交流出力は、試験コイル12に加えられて伝熱管2や下部ヘッダー3を励磁し、渦電流に伴う磁束を検出する。自動平衡器54はブリッジ54出力を零とするものである。試験コイル12及び比較コイル13間の不平衡出力が増幅器55で増幅され、同期検波器56に送られて、移相器53の出力とあいまって検波される。そして、渦流信号をフィルタ57やA/D変換器58を介して信号処理装置60に取り込み、測定結果等を表示器70に表示する。信号処理装置60としては、例えば渦流探傷装置50に接続されたパーソナルコンピューター(PC)で構成される。   The AC output from the oscillator 51 is applied to the test coil 12 to excite the heat transfer tube 2 and the lower header 3 and detect magnetic flux associated with the eddy current. The automatic balancer 54 makes the bridge 54 output zero. The unbalanced output between the test coil 12 and the comparison coil 13 is amplified by the amplifier 55, sent to the synchronous detector 56, and detected together with the output of the phase shifter 53. Then, the eddy current signal is taken into the signal processing device 60 via the filter 57 and the A / D converter 58 and the measurement result and the like are displayed on the display unit 70. The signal processing device 60 is composed of, for example, a personal computer (PC) connected to the eddy current flaw detection device 50.

[信号成分]
ここで、センサ11での渦流信号として、リフトオフ(コイルと被検査体との相対的な距離)に起因するX成分(抵抗成分)と、電気的な物性(電気伝導度)に起因するY成分(リアクタンス成分)とが得られる。これらX成分及びY成分について各成分の相関係数を評価した結果の一例を図5に示す。同図に示すように、X成分では約600μmで値が飽和しており、それ以上の厚さについて評価することが困難である。一方、Y成分では約800μmでも直線的に変化している。また、相関係数R2については、X成分は0.8166であり、Y成分は0.9908であり、Y成分がよりよい相関を示すことが判明した。従って、アルミ溶射膜の膜厚測定において、X成分よりY成分の渦流出力値を用いて膜厚測定することがより広範囲を正確に測定できることが分かる。本実施形態では、信号成分として、Y成分の渦流出力値を用いる。なお、発明者らの実験によれば、試験周波数が10kHz〜400kHzにおいて、上記と同様の結果が得られた。
[Signal component]
Here, as an eddy current signal in the sensor 11, an X component (resistance component) caused by lift-off (relative distance between the coil and the object to be inspected) and a Y component caused by electrical properties (electrical conductivity). (Reactance component) is obtained. An example of the result of evaluating the correlation coefficient of each component for these X component and Y component is shown in FIG. As shown in the figure, the value of the X component is saturated at about 600 μm, and it is difficult to evaluate the thickness beyond that. On the other hand, the Y component changes linearly even at about 800 μm. As for the correlation coefficient R 2 , the X component is 0.8166, the Y component is 0.9908, and it was found that the Y component shows a better correlation. Therefore, it can be seen that, in the measurement of the film thickness of the aluminum sprayed film, the film thickness can be measured more accurately by using the eddy current output value of the Y component than the X component. In this embodiment, the Y component eddy current output value is used as the signal component. According to the experiments by the inventors, results similar to the above were obtained at a test frequency of 10 kHz to 400 kHz.

[信号処理装置]
信号処理装置60は、図4に示すように、大略、渦流信号の信号軌跡Tを生成する軌跡生成部61と、信号軌跡Tから信号成分Sを抽出する信号成分抽出部62と、抽出された信号成分Sに基づいて検量線Cを作成する検量線作成部63と、作成された検量線Cから膜厚tを算出する膜厚算出部64を有する。被検査体や試験片の情報(母材、膜厚、材質等)、生成された信号軌跡T、作成された検量線C、測定データ、解析結果等の各種データは、記憶部65に記憶される。
[Signal processing equipment]
As shown in FIG. 4, the signal processing device 60 is roughly extracted with a trajectory generator 61 that generates a signal trajectory T of the eddy current signal, and a signal component extractor 62 that extracts a signal component S from the signal trajectory T. A calibration curve creation unit 63 that creates a calibration curve C based on the signal component S and a film thickness calculation unit 64 that calculates a film thickness t from the created calibration curve C are provided. Various data such as information (base material, film thickness, material, etc.), generated signal trajectory T, created calibration curve C, measurement data, analysis result, etc. are stored in the storage unit 65. The

軌跡生成部61は、試験片での基準渦流信号の基準信号軌跡Tや被検査体2,3での渦流信号の信号軌跡T’を生成し、記録する。これら信号軌跡T,T’は、XY平面(インピーダンス平面)においてセンサ11のリフトオフ距離Dに応じて変化する。図6に示すように、センサ11を空中(リフトオフ距離大)から試験片や被検査体2,3の対象物100に近接させるに従い、リフトオフ距離Dは減少し且つ渦流信号のY成分も減少する。そして、センサ11が対象物100と当接する(リフトオフ距離D=0)と、Y成分は最小となり信号軌跡Tの終端(右端)となる。また、信号軌跡T,T’は、溶射膜102の膜厚tが小さい程Y成分が小さくなる。図7に示すように、溶射膜102a〜cの膜厚ta〜cが小さくなる(ta>tb>tc)に従い、それに応じて軌跡のY成分も小さくなる(Ta>Tb>Tc)。このように、信号軌跡T,T’は膜厚tに応じて一意に定まるものであり、リフトオフ距離D=0の信号成分を用いて膜厚の測定が可能となる。よって、予め既知の膜厚tのY成分に対する検量線を作成しておくことで、被検査体2,3のY成分を測定するだけで精度よく膜厚を測定することができる。   The trajectory generation unit 61 generates and records a reference signal trajectory T of the reference eddy current signal in the test piece and a signal trajectory T ′ of the eddy current signal in the test objects 2 and 3. These signal trajectories T and T ′ change in accordance with the lift-off distance D of the sensor 11 on the XY plane (impedance plane). As shown in FIG. 6, the lift-off distance D decreases and the Y component of the eddy current signal decreases as the sensor 11 is brought closer to the test piece or the object 100 of the inspected objects 2 and 3 from the air (large lift-off distance). . When the sensor 11 comes into contact with the object 100 (lift-off distance D = 0), the Y component is minimized and becomes the end (right end) of the signal trajectory T. Further, in the signal trajectories T and T ′, the Y component decreases as the film thickness t of the sprayed film 102 decreases. As shown in FIG. 7, as the film thicknesses ta to c of the thermal sprayed films 102a to 102c decrease (ta> tb> tc), the Y component of the trajectory also decreases correspondingly (Ta> Tb> Tc). Thus, the signal trajectories T and T ′ are uniquely determined according to the film thickness t, and the film thickness can be measured using the signal component of the lift-off distance D = 0. Therefore, by preparing a calibration curve for the Y component of the known film thickness t in advance, the film thickness can be measured with high accuracy simply by measuring the Y component of the test objects 2 and 3.

信号成分抽出部62は、軌跡生成部61で生成された信号軌跡T,T’から信号成分Sを抽出する。本実施形態では、図8に示すように、軌跡Tの終端(右端)に位置するリフトオフ距離Dが0の時のY成分(Sa,Sb,Sc)を信号軌跡Tから抽出する。そして、検量線作成部63は、信号成分抽出部62で抽出された信号成分Sから検量線Cを作成する。本実施形態では、図7,8に示すように、既知の膜厚(ta,tb,tc、図7)と抽出したY成分(Sa,Sb,Sc)とに基づき3次多項式による検量線Cを作成する。   The signal component extraction unit 62 extracts the signal component S from the signal trajectories T and T ′ generated by the trajectory generation unit 61. In the present embodiment, as shown in FIG. 8, the Y component (Sa, Sb, Sc) when the lift-off distance D located at the end (right end) of the trajectory T is 0 is extracted from the signal trajectory T. Then, the calibration curve creation unit 63 creates a calibration curve C from the signal component S extracted by the signal component extraction unit 62. In this embodiment, as shown in FIGS. 7 and 8, a calibration curve C using a cubic polynomial based on the known film thickness (ta, tb, tc, FIG. 7) and the extracted Y components (Sa, Sb, Sc). Create

膜厚算出部64は、被検査体2,3における渦流信号の信号成分の出力値を検量線Cに代入し膜厚tを算出する。本実施形態では、図9に示すように、信号成分抽出部62が信号軌跡T’の終端(右端)に位置するセンサ11が被検査体に接触(当接)した時(リフトオフ距離Dが0)のY成分(S’)が検量線Cに代入され膜厚tが算出される。   The film thickness calculation unit 64 calculates the film thickness t by substituting the output value of the signal component of the eddy current signal in the test objects 2 and 3 into the calibration curve C. In the present embodiment, as shown in FIG. 9, when the signal component extraction unit 62 is in contact (contact) with the object to be inspected (the lift-off distance D is 0) when the sensor 11 positioned at the end (right end) of the signal trajectory T ′. ) Is substituted into the calibration curve C, and the film thickness t is calculated.

[治具]
図10に示すように、治具40は、伝熱管2の外面の曲率に沿う湾曲面41を有する当接部42を有し、センサ11の端部を貫通させる貫通孔43が設けられている。当接部42は把持部45と螺合し、把持部45の内部にはセンサ11を収容する筒状体44が収納されている。把持部45の外面には例えばゴム製のカバー45aに覆われ、外気温度等によるインピーダンスの変化を抑制している。筒状体44の一端には、押圧部材としてばね46が取り付けられ、ばね46の一端は把持部45と螺合する端部47の内部で掛止されている。これにより、作業者が把持部45を把持し当接部42を被検査体に押し当てた際に、センサ11は湾曲面41によって被検査体の表面に略垂直に配置され、且つばね46により押圧される。従って、センサ11の被検査体に対する傾きを抑制し、より高精度に膜厚を測定することができる。また、下部ヘッダー3には、下部ヘッダー3の外面の曲率に沿う湾曲面41’を有する当接部42’を有する治具40’が用いられる。なお、センサ11は、治具40内部を貫通するケーブル49を介して渦流探傷装置50に接続されている。
[jig]
As shown in FIG. 10, the jig 40 has a contact portion 42 having a curved surface 41 that follows the curvature of the outer surface of the heat transfer tube 2, and a through-hole 43 that penetrates the end portion of the sensor 11 is provided. . The contact portion 42 is screwed with the grip portion 45, and a cylindrical body 44 that houses the sensor 11 is housed inside the grip portion 45. The outer surface of the grip portion 45 is covered with a rubber cover 45a, for example, to suppress a change in impedance due to the outside air temperature or the like. A spring 46 is attached to one end of the cylindrical body 44 as a pressing member, and one end of the spring 46 is hooked inside an end portion 47 that is screwed with the grip portion 45. Thus, when the operator grips the grip portion 45 and presses the abutting portion 42 against the object to be inspected, the sensor 11 is arranged substantially perpendicular to the surface of the object to be inspected by the curved surface 41, and the spring 46 Pressed. Therefore, the inclination of the sensor 11 with respect to the object to be inspected can be suppressed, and the film thickness can be measured with higher accuracy. In addition, a jig 40 ′ having a contact portion 42 ′ having a curved surface 41 ′ along the curvature of the outer surface of the lower header 3 is used for the lower header 3. The sensor 11 is connected to the eddy current flaw detector 50 via a cable 49 penetrating the inside of the jig 40.

[検量線]
伝熱管2及び下部ヘッダー3と同一材料、同一形状で溶射膜22,32の膜厚を異ならせた複数の試験片(カットモデル)を用いて、測定前に予め検量線を作成する。検量線の作成に際しても、上記治具40,40’を用いる。
[Calibration curve]
A calibration curve is created in advance before the measurement using a plurality of test pieces (cut models) having the same material and shape as the heat transfer tube 2 and the lower header 3 and different film thicknesses of the sprayed films 22 and 32. The jigs 40 and 40 'are also used when creating a calibration curve.

ここで、発明者らは、溶射膜の膜厚を異ならせた複数の試験片を用いて渦流探傷を行い、渦流出力値としてY成分の値を抽出すると共に、溶射膜厚をマイクロメーター等により実測した。その結果に基づく検量線の比較を図11,12に、実測値を表1,2にそれぞれ示す。なお、図11及び表1が伝熱管2と同等の試験片によるもの、図12及び表2が下部ヘッダー3と同等の試験片によるものである。   Here, the inventors conducted eddy current flaw detection using a plurality of test pieces having different film thicknesses of the sprayed film, and extracted the Y component value as the eddy current output value, and the sprayed film thickness was measured with a micrometer or the like. Measured. Comparisons of calibration curves based on the results are shown in FIGS. 11 and 12, and measured values are shown in Tables 1 and 2, respectively. 11 and Table 1 are based on a test piece equivalent to the heat transfer tube 2, and FIG. 12 and Table 2 are based on a test piece equivalent to the lower header 3.

Figure 0006153904
Figure 0006153904

Figure 0006153904
Figure 0006153904

図11,12及び表1,2に示すように、比較例1としての線形(直線近似)の検量線では一部で膜厚実測値に近似する値が得られるものの、多くの膜厚範囲において実測値から大きく外れ誤差が大きくなることが分かる。また、比較例2としての2次多項式(2次曲線近似)の検量線では、線形(直線近似)の検量線に比べ精度は向上するものの、実施例の3次多項式と比較すると、膜厚範囲の中間部分での誤差が大きくなる。なお、比較例の相関係数は、伝熱管2の場合で比較例1は0.934、比較例2は0.9845であり、下部ヘッダー3の場合で比較例1は0.97、比較例2は0.9783であった。また、比較例の誤差(標準偏差)は、伝熱管2の場合で比較例1は118、比較例2は57であり、下部ヘッダー3の場合で比較例1は47、比較例2は40であった。   As shown in FIGS. 11 and 12 and Tables 1 and 2, the linear (linear approximation) calibration curve as Comparative Example 1 can partially obtain a value that approximates the film thickness measurement value, but in many film thickness ranges. It can be seen that the error greatly deviates from the actually measured value. Further, although the accuracy of the calibration curve of the quadratic polynomial (quadratic curve approximation) as the comparative example 2 is improved as compared with the linear (linear approximation) calibration curve, the film thickness range is compared with the cubic polynomial of the example. The error in the middle part of becomes larger. The correlation coefficient of the comparative example is 0.934 for Comparative Example 1 and 0.9845 for Comparative Example 2 in the case of the heat transfer tube 2, and 0.97 for Comparative Example 1 in the case of the lower header 3 and the Comparative Example. 2 was 0.9783. Further, the error (standard deviation) of the comparative example is 118 for the heat transfer tube 2 and 57 for the comparative example 2, 57 for the lower header 3 and 40 for the comparative example 2 and 40 for the comparative example 2. there were.

他方、実施例の3次多項式(3次曲線近似)の検量線では、その相関係数は、伝熱管2の場合で0.9881、下部ヘッダー3の場合で0.9915となり、比較例1,2よりも高い。また、誤差(標準偏差)は、伝熱管2の場合で50、下部ヘッダー3の場合で25となり、比較例1,2よりも低い。このように、3次多項式の検量線を用いることで、より誤差を低減し且つ広範囲の膜厚を精度よく測定することができる。   On the other hand, in the calibration curve of the cubic polynomial (cubic curve approximation) of the example, the correlation coefficient is 0.9881 in the case of the heat transfer tube 2 and 0.9915 in the case of the lower header 3, Higher than 2. Further, the error (standard deviation) is 50 in the case of the heat transfer tube 2 and 25 in the case of the lower header 3, which is lower than those of the first and second comparative examples. Thus, by using a cubic polynomial calibration curve, errors can be further reduced and a wide range of film thicknesses can be accurately measured.

[測定手順]
まず、予め、検査対象となる伝熱管2と同一形状、同一材料よりなり溶射膜の異なる試験片を複数用意し、図11に示す如き3次多項式による検量線を作成する。本実施形態では、各試験片において上述の治具40によりセンサ11の試験片に対するセンサのリフトオフ距離Dを変化させながらセンサ11を各試験片に押し当てて基準渦流信号を測定すると共に、軌跡生成部61がその信号の基準信号軌跡を生成し、記録する。次に、信号成分抽出部62が、生成した各基準信号軌跡からリフトオフ距離D=0のY成分の値を抽出する。そして、検量線作成部63が、図11,12に示す如き、横軸に渦流出力値として抽出したY成分の値を、縦軸に実測等した既知の膜厚値をプロットし、3次多項式により検量線を作成する。伝熱管2及び下部ヘッダー3は管状体であるため、その出力値は湾曲形状の影響を受ける。従って、予め検量線の作成に際し被検査体と同一形状同一材料の試験片を用いることでこれらの誤差要因を排除でき、精度が向上する。
[Measurement procedure]
First, a plurality of test pieces having the same shape and the same material as the heat transfer tube 2 to be inspected and different from the sprayed film are prepared in advance, and a calibration curve using a cubic polynomial as shown in FIG. 11 is created. In the present embodiment, the reference eddy current signal is measured by pressing the sensor 11 against each test piece while changing the lift-off distance D of the sensor 11 with respect to the test piece using the jig 40 described above, and generating a locus. The unit 61 generates and records a reference signal trajectory for the signal. Next, the signal component extraction unit 62 extracts the value of the Y component of the lift-off distance D = 0 from each generated reference signal locus. Then, as shown in FIGS. 11 and 12, the calibration curve creation unit 63 plots the Y component value extracted as the eddy current output value on the horizontal axis, and the known film thickness value obtained by actual measurement on the vertical axis. To create a calibration curve. Since the heat transfer tube 2 and the lower header 3 are tubular bodies, their output values are affected by the curved shape. Therefore, these error factors can be eliminated by using a test piece of the same shape and the same material as that of the object to be inspected in advance when preparing the calibration curve, and the accuracy is improved.

次に、バランス調整用の試験片にセンサ11を近づけて、リフトオフノイズがX成分のみとなるように位相調整を行う。そして、伝熱管2の外面に治具40の湾曲面41を沿わせてセンサ11を伝熱管2に押圧し、渦流探傷を行う。上述と同様に、軌跡生成部61が渦流信号の信号軌跡を生成、記録し、信号成分抽出部62が生成した信号軌跡から治具40(センサ11)が伝熱管2の外面に当接した時のY成分の渦流出力値を測定する。そして、膜厚算出部64がその出力値に基づいて検量線から膜厚を求める。下部ヘッダー3については、治具を取り換えて同様に測定する。   Next, the sensor 11 is brought close to the test piece for balance adjustment, and the phase adjustment is performed so that the lift-off noise is only the X component. Then, the sensor 11 is pressed against the heat transfer tube 2 along the curved surface 41 of the jig 40 along the outer surface of the heat transfer tube 2, and eddy current testing is performed. Similarly to the above, when the trajectory generator 61 generates and records a signal trajectory of the eddy current signal, the jig 40 (sensor 11) comes into contact with the outer surface of the heat transfer tube 2 from the signal trajectory generated by the signal component extractor 62. The Y component eddy current output value is measured. And the film thickness calculation part 64 calculates | requires a film thickness from a calibration curve based on the output value. The lower header 3 is measured in the same manner with the jig replaced.

次に、本発明の第二実施形態について説明する。なお、以下の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
上記第一実施形態において、基準信号軌跡Tからリフトオフ距離が0の場合におけるY成分を信号成分として抽出し検量線Cを作成した。しかし、伝熱管2や下部ヘッダー3の溶射膜22,23上に、図3の一点鎖線で示す如く、例えばガラス繊維強化プラスチックのFRP被膜等の非導電性塗膜等の付着物23,33(異物)が存在すると、リフトオフ距離が0とならず、そのリフトオフ距離によりX成分に影響が生じる。そのため、上記第一実施形態の如くリフトオフ距離D=0の信号成分を用いると、測定精度が低下する恐れがある。
Next, a second embodiment of the present invention will be described. In the following embodiments, members similar to those in the above embodiment are denoted by the same reference numerals.
In the first embodiment, the calibration curve C is created by extracting the Y component when the lift-off distance is 0 from the reference signal trajectory T as the signal component. However, as shown by the one-dot chain line in FIG. 3, the deposits 23, 33 (such as non-conductive coating film such as FRP coating of glass fiber reinforced plastic) are formed on the sprayed films 22, 23 of the heat transfer tube 2 and the lower header 3. If there is a foreign object), the lift-off distance does not become zero, and the lift-off distance affects the X component. Therefore, if the signal component with the lift-off distance D = 0 is used as in the first embodiment, the measurement accuracy may be reduced.

そこで、第二実施形態では、検量線Cをセンサ11のインピーダンスにおける所定の抵抗成分(X成分)毎に複数作成する。本実施形態では、図13に示すように、例えば、信号成分抽出部62が基準信号軌跡(T1〜3)からX成分xkにおけるY成分(Sk1〜3)を抽出し、検量線作成部63が抽出したY成分から検量線Ckを作成する。これを任意の抵抗成分の範囲Rで所定のX成分(x1〜xn)毎に繰り返し行う。このように、リフトオフ距離によるX成分への影響を考慮して、予め複数の検量線を作成しておく。この例では、第一信号成分をセンサ11のインピーダンスにおける所定の抵抗成分(X成分)とし、第二信号成分をセンサ11のインピーダンスにおける所定のリアクタンス成分(Y成分)としている。なお、本実施形態における検量線の作成は、3次多項式により作成してもよく、2次や4次以上の多項式等の他の手法でもよく、特にその手法は限定されるものではない。   Therefore, in the second embodiment, a plurality of calibration curves C are created for each predetermined resistance component (X component) in the impedance of the sensor 11. In the present embodiment, as shown in FIG. 13, for example, the signal component extraction unit 62 extracts Y components (Sk1 to Sk3) in the X component xk from the reference signal trajectories (T1 to T3), and the calibration curve creation unit 63 A calibration curve Ck is created from the extracted Y component. This is repeated for each predetermined X component (x1 to xn) within an arbitrary resistance component range R. In this way, a plurality of calibration curves are created in advance in consideration of the influence of the lift-off distance on the X component. In this example, the first signal component is a predetermined resistance component (X component) in the impedance of the sensor 11, and the second signal component is a predetermined reactance component (Y component) in the impedance of the sensor 11. Note that the calibration curve in this embodiment may be created by a cubic polynomial, or may be another method such as a quadratic or fourth-order polynomial, and the method is not particularly limited.

そして、測定に際しては、治具40が被検査体2,3の外面に当接した時のX成分を生成した信号軌跡T’から抽出して、抽出したX成分に基づいて作成した複数の検量線の中から対応する検量線を選択する。そして、治具40が被検査体2,3の外面に当接した時のY成分の値と決定した検量線により膜厚を測定する。本実施形態では、図14に示すように、信号成分抽出部62が信号軌跡T’の終端(右端)からX成分(S’x)及びY成分(S’y)を抽出する。また、膜厚算出部64は、抽出したX成分S’xが該当する検量線を決定する。例えば、抽出したX成分S’xが先のX成分xkに該当すれば、複数の検量線の中から図13の検量線Ckが選択される。そして、膜厚算出部64が信号軌跡T’から抽出したY成分S’yを選択した検量線Ckに代入して膜厚tを算出する。これにより、溶射膜22,32上に例えばFRP被膜23,33が形成されていても、その上から溶射膜厚を精度よく測定することができる。また、他の理由により検査時にセンサ11と被検査体2,3との間でリフトオフ距離D=0の状態を確保することが困難な場合であっても、測定精度の低下を防止できる。しかも、複数の検量線を予め作成しておくので、測定精度も向上する。そして、測定時に記憶部65を参照して検量線を決定すればよいので、リアルタイムでの膜厚測定も可能となる。   In the measurement, a plurality of calibrations created based on the extracted X component extracted from the signal trajectory T ′ generated from the X component when the jig 40 contacts the outer surfaces of the test objects 2 and 3. Select the corresponding calibration curve from the lines. Then, the film thickness is measured by the value of the Y component when the jig 40 is in contact with the outer surfaces of the test objects 2 and 3 and the determined calibration curve. In the present embodiment, as shown in FIG. 14, the signal component extraction unit 62 extracts the X component (S′x) and the Y component (S′y) from the end (right end) of the signal trajectory T ′. Further, the film thickness calculation unit 64 determines a calibration curve to which the extracted X component S′x corresponds. For example, if the extracted X component S′x corresponds to the previous X component xk, the calibration curve Ck in FIG. 13 is selected from the plurality of calibration curves. Then, the film thickness calculator 64 calculates the film thickness t by substituting the Y component S′y extracted from the signal locus T ′ into the selected calibration curve Ck. Thereby, even if the FRP coatings 23 and 33 are formed on the sprayed films 22 and 32, for example, the sprayed film thickness can be accurately measured from above. Further, even if it is difficult to ensure a lift-off distance D = 0 between the sensor 11 and the test objects 2 and 3 during inspection for other reasons, it is possible to prevent a decrease in measurement accuracy. In addition, since a plurality of calibration curves are created in advance, the measurement accuracy is also improved. And since it is sufficient to determine the calibration curve with reference to the storage unit 65 at the time of measurement, the film thickness can be measured in real time.

次に、本発明の第三実施形態について説明する。本実施形態も上記第二実施形態と同様に付着物23,33の上から溶射膜厚を測定する手法である。
上記第一、第二実施形態において、検量線Cの作成に際して渦流信号の信号成分(Y成分)を用いたが、本実施形態では信号軌跡T,T’の軌跡の傾きG,G’を用いる。本実施形態では、図15に示すように、例えば、複数の試験片毎に基準渦流信号を測定すると共に、軌跡生成部61がその信号の基準信号軌跡(T4〜6)を生成する。そして、信号成分抽出部62が各基準信号軌跡(T4〜6)において任意のX成分(xa、xb)における各Y成分(ya4〜6、yb4〜6)を抽出し、(yb−ya)/(xb−xa)により軌跡の基準傾きG1〜3をそれぞれ求める。そして、検量線作成部63が、求めた軌跡の基準傾きG1〜3に基づいて検量線Cgを予め作成する。なお、本実施形態における検量線の作成においても、3次多項式により作成してもよく、2次や4次以上の多項式等の他の手法でもよく、特にその手法は限定されるものではない。
Next, a third embodiment of the present invention will be described. This embodiment is also a technique for measuring the sprayed film thickness from above the deposits 23 and 33 as in the second embodiment.
In the first and second embodiments, the signal component (Y component) of the eddy current signal is used in creating the calibration curve C. In this embodiment, the gradients G and G ′ of the trajectories of the signal trajectories T and T ′ are used. . In the present embodiment, as shown in FIG. 15, for example, the reference eddy current signal is measured for each of the plurality of test pieces, and the trajectory generator 61 generates the reference signal trajectory (T4 to T6) of the signal. Then, the signal component extraction unit 62 extracts each Y component (ya4 to 6, yb4 to 6) in an arbitrary X component (xa, xb) in each reference signal trajectory (T4 to 6), and (yb−ya) / The reference inclinations G1 to G3 of the trajectory are respectively obtained from (xb−xa). Then, the calibration curve creation unit 63 creates a calibration curve Cg in advance based on the obtained reference inclinations G1 to G3 of the trajectory. Note that the calibration curve in this embodiment may also be created by a cubic polynomial, or may be another method such as a quadratic or fourth-order polynomial, and the method is not particularly limited.

そして、測定に際しては、信号軌跡T’から軌跡の傾きG’を求める。本実施形態では、図16に示すように、被検査体2,3の渦流信号を測定すると共に、軌跡生成部61がその信号の信号軌跡T’を生成する。そして、信号成分抽出部62が信号軌跡T’において先のX成分(xa、xb)における各Y成分(y’a、y’b)を抽出し、(y’b−y’a)/(xb−xa)により軌跡の傾きG’を求める。そして、膜厚算出部64が、求めた軌跡の傾きG’を検量線Cgに代入して膜厚tを算出する。これにより、上記第二実施形態と同様に検査時にセンサ11と被検査体2,3との間でリフトオフ距離D=0の状態を確保することが困難な場合であっても、測定精度の低下を防止できる。   In the measurement, the trajectory gradient G ′ is obtained from the signal trajectory T ′. In the present embodiment, as shown in FIG. 16, the eddy current signal of the test objects 2 and 3 is measured, and the trajectory generator 61 generates a signal trajectory T ′ of the signal. Then, the signal component extraction unit 62 extracts each Y component (y′a, y′b) in the previous X component (xa, xb) in the signal trajectory T ′, and (y′b−y′a) / ( The inclination G ′ of the locus is obtained by xb−xa). Then, the film thickness calculation unit 64 calculates the film thickness t by substituting the obtained gradient G ′ of the locus into the calibration curve Cg. As a result, as in the second embodiment, even when it is difficult to ensure the lift-off distance D = 0 between the sensor 11 and the objects 2 and 3 during inspection, the measurement accuracy is reduced. Can be prevented.

最後に、本発明の他の実施形態の可能性について言及する。
上記実施形態において、伝熱管2の母材21にアルミニウム合金材としてA6063が用いられ、下部ヘッダー3の母材31にA5058が用いられ、アルミニウム溶射に用いられるアルミニウム合金としてA7072が用いられた。しかし、これらアルミニウム合金材は一例に過ぎず、他の合金材料であっても同様に膜厚測定が可能である。
Finally, reference is made to the possibilities of other embodiments of the invention.
In the above embodiment, A6063 was used as the aluminum alloy material for the base material 21 of the heat transfer tube 2, A5058 was used for the base material 31 of the lower header 3, and A7072 was used as the aluminum alloy used for aluminum spraying. However, these aluminum alloy materials are only examples, and the film thickness can be measured in the same manner even with other alloy materials.

上記実施形態において、センサ11には自己誘導自己比較方式のコイル12,13を用いたが、コイルの態様は自己誘導自己比較方式に限らず、種々の方式のコイルを適用しても構わない。   In the above embodiment, the coils 11 and 13 of the self-induction self-comparison system are used as the sensor 11, but the coil mode is not limited to the self-induction self-comparison system, and various types of coils may be applied.

上記第一実施形態において、信号成分としてY成分を用いたが、Y成分に代えてX成分を用いても構わない。但し、上述したように、測定精度の点で上記実施形態が優れている。また、上記第一実施形態では、軌跡生成部61により測定した試験片の基準渦流信号の基準信号軌跡T及び被検査体2,3の渦流信号の信号軌跡T’を生成、記録した。しかし、本実施形態では、センサ11が試験片や被検査体2,3に接触した状態での信号成分(すなわち、リフトオフ距離D=0)の値を用いればよく、必ずしも信号軌跡T,T’を生成する必要はなく、軌跡生成部61を省略することも可能である。また、例えば基準信号軌跡Tを生成してその軌跡Tの終端(右端)の信号成分により検量線を作成しておき、測定時に信号軌跡T’を生成することなくその時の信号成分の出力値(測定値)を検量線に代入するようにしても構わない。さらに、基準信号軌跡Tを生成することなく、試験片のリフトオフ距離D=0の時の出力値(測定値)により検量線を作成しておき、測定時に信号軌跡T’を生成してその軌跡T’の終端(右端)の信号成分の値を抽出し検量線に代入するようにしても構わない。   In the first embodiment, the Y component is used as the signal component. However, an X component may be used instead of the Y component. However, as described above, the embodiment is superior in terms of measurement accuracy. In the first embodiment, the reference signal trajectory T of the reference eddy current signal of the test piece measured by the trajectory generating unit 61 and the signal trajectory T ′ of the eddy current signal of the test objects 2 and 3 are generated and recorded. However, in this embodiment, the value of the signal component (that is, the lift-off distance D = 0) in a state where the sensor 11 is in contact with the test piece or the test objects 2 and 3 may be used, and the signal trajectories T and T ′ are not necessarily used. Need not be generated, and the locus generating unit 61 can be omitted. Further, for example, a reference signal trajectory T is generated, a calibration curve is created from the signal component at the end (right end) of the trajectory T, and an output value (the signal component at that time without generating a signal trajectory T ′ at the time of measurement ( (Measured value) may be substituted into the calibration curve. Further, a calibration curve is created based on the output value (measured value) when the lift-off distance D = 0 of the test piece without generating the reference signal trajectory T, and a signal trajectory T ′ is generated at the time of measurement. The value of the signal component at the end (right end) of T ′ may be extracted and substituted in the calibration curve.

上記第二実施形態においても、第一信号成分としてX成分、第二信号成分としてY成分を用いたが、その逆とすることも可能である。但し、上述したように、測定精度の点で上記実施形態が優れている。また、上記第二実施形態では、軌跡生成部61により測定した被検査体2,3の渦流信号の信号軌跡T’を生成、記録した。しかし、本実施形態では、センサ11が被検査体2,3に接触した状態での信号成分(すなわち、リフトオフ距離D=0)の値を用いればよく、必ずしも信号軌跡T’を生成する必要はない。例えば測定時に信号軌跡T’を生成することなくその時の信号成分の出力値(測定値)を検量線に代入するようにしても構わない。   Also in the second embodiment, the X component is used as the first signal component and the Y component is used as the second signal component, but the reverse is also possible. However, as described above, the embodiment is superior in terms of measurement accuracy. In the second embodiment, the signal trajectory T ′ of the eddy current signal of the test objects 2 and 3 measured by the trajectory generating unit 61 is generated and recorded. However, in this embodiment, the value of the signal component (that is, the lift-off distance D = 0) when the sensor 11 is in contact with the test objects 2 and 3 may be used, and it is not always necessary to generate the signal locus T ′. Absent. For example, the output value (measured value) of the signal component at that time may be substituted into the calibration curve without generating the signal locus T ′ at the time of measurement.

上記第二、第三実施形態において、図3に示すように、溶射膜22,32上に形成された非導電性の付着物として、FRP被膜を例に説明したが、これに限られるものではなく、例えば他の各種合成樹脂よりなる非導電性被膜であってもよい。   In the second and third embodiments, as shown in FIG. 3, the FRP film has been described as an example of the nonconductive deposit formed on the sprayed films 22 and 32, but the present invention is not limited to this. For example, it may be a non-conductive coating made of other various synthetic resins.

1:LNG気化器、2:伝熱管(被検査体)、2a:フィン、3:下部ヘッダー(被検査体)、4:上部ヘッダー、5:トラフ、6:配管、10:膜厚測定装置、11:センサ、12:試験コイル、13:比較コイル、21:母材、22:溶射膜、23:非導電性被膜(付着物)、31:母材、32:溶射膜、33:非導電性被膜(付着物)、40,40’:治具、41,41’:湾曲面、42,42’:当接部、43:貫通孔、44:筒状体、45:把持部、45a:カバー、46:ばね(押圧部材)、47:端部、49:ケーブル、50:渦流探傷装置、51:発振器、52:ブリッジ、53:移相器、54:自動平衡器、55:増幅器、56:同期検波器、57:フィルタ、58:A/D変換器、60:信号処理装置(パーソナルコンピューター)61:軌跡生成部、62:信号成分抽出部、63:検量線作成部、64:膜厚算出部、65:記憶部、70:表示器、100:対象物、101:母材、102:溶射膜、C,Cg,Ck:検量線、D:リフトオフ距離、G1〜G3:軌跡の基準傾き、G’:軌跡の傾き、S:信号成分、T,T1〜T6,Ta〜Tc:基準信号軌跡、T’:信号軌跡、t,ta〜tc:膜厚、W:海水 1: LNG vaporizer, 2: heat transfer tube (inspected object), 2a: fin, 3: lower header (inspected object), 4: upper header, 5: trough, 6: piping, 10: film thickness measuring device, 11: sensor, 12: test coil, 13: comparison coil, 21: base material, 22: sprayed film, 23: non-conductive coating (adhered matter), 31: base material, 32: sprayed film, 33: non-conductive Coating (attachment), 40, 40 ′: jig, 41, 41 ′: curved surface, 42, 42 ′: contact part, 43: through hole, 44: cylindrical body, 45: gripping part, 45a: cover , 46: spring (pressing member), 47: end, 49: cable, 50: eddy current flaw detector, 51: oscillator, 52: bridge, 53: phase shifter, 54: automatic balancer, 55: amplifier, 56: Synchronous detector, 57: filter, 58: A / D converter, 60: signal processing device (personal computer) 61: locus generation unit, 62: signal component extraction unit, 63: calibration curve creation unit, 64: film thickness calculation unit, 65: storage unit, 70: display, 100: object, 101: base material, 102 : Sprayed film, C, Cg, Ck: calibration curve, D: lift-off distance, G1 to G3: reference inclination of locus, G ′: inclination of locus, S: signal component, T, T1 to T6, Ta to Tc: reference Signal locus, T ′: Signal locus, t, ta to tc: Film thickness, W: Seawater

Claims (14)

管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法であって、
前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、
前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定し、これら基準渦流信号の前記リフトオフ距離が0の時の信号成分に基づいて3次多項式による検量線を予め作成しておき、
前記治具を前記被検査体の外面に当接させて渦流信号を測定し、
測定した渦流信号の前記治具が前記被検査体の外面に当接した時の信号成分と前記検量線に基づいて前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法。
A method for measuring a film thickness of a sprayed film by measuring a film thickness of the sprayed film by an eddy current flaw detection method by contacting a sensor to a test object in which a sprayed film of an aluminum alloy is formed on a tubular aluminum alloy material,
The sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected,
The reference eddy current signal is measured by changing the lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having the same material and the same shape as the object to be inspected and the film thickness of the sprayed film being different. A calibration curve by a cubic polynomial is prepared in advance based on the signal component when the lift-off distance of the signal is 0,
Measuring the eddy current signal by bringing the jig into contact with the outer surface of the object to be inspected,
A method for measuring a film thickness of a sprayed film, wherein the film thickness of the sprayed film is measured based on a signal component when the jig of the measured eddy current signal comes into contact with an outer surface of the inspection object and the calibration curve.
前記基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、前記基準信号軌跡から前記リフトオフ距離が0の時の信号成分を抽出し、前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、前記信号軌跡における前記治具が前記被検査体の外面に当接した時の信号成分を抽出する請求項1記載の溶射膜の膜厚測定方法。 The reference eddy current signal is measured and a reference signal locus of the signal is generated, a signal component when the lift-off distance is 0 is extracted from the reference signal locus, and the jig is moved from the air to the outer surface of the inspection object. Measure the eddy current signal until it comes close to contact with the outer surface, generate a signal trajectory of the signal, and extract the signal component when the jig in the signal trajectory contacts the outer surface of the object to be inspected The method for measuring a film thickness of a sprayed film according to claim 1. 前記信号成分は、前記センサのインピーダンスにおけるリアクタンス成分(Y成分)である請求項1又は2記載の溶射膜の膜厚測定方法。 The thermal spray film thickness measurement method according to claim 1, wherein the signal component is a reactance component (Y component) in the impedance of the sensor. 管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法であって、
前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、
前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から第一信号成分毎に抽出した第二信号成分に基づいて複数の検量線を予め作成しておき、
前記治具を前記被検査体の外面に当接させて渦流信号を測定し、
測定した渦流信号の第一信号成分から対応する検量線を選択し、
前記測定した渦流信号の第二信号成分と選択した検量線に基づいて前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法。
A method for measuring a film thickness of a sprayed film by measuring a film thickness of the sprayed film by an eddy current flaw detection method by contacting a sensor to a test object in which a sprayed film of an aluminum alloy is formed on a tubular aluminum alloy material,
The sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected,
The reference eddy current signal is measured while changing the lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having the same material and the same shape as the object to be inspected, and the thickness of the sprayed film is different. A plurality of calibration curves are created in advance based on second signal components extracted for each first signal component from these reference signal trajectories by generating reference signal trajectories,
Measuring the eddy current signal by bringing the jig into contact with the outer surface of the object to be inspected,
Select the corresponding calibration curve from the first signal component of the measured eddy current signal,
A method for measuring a film thickness of a sprayed film, wherein the film thickness of the sprayed film is measured based on a second signal component of the measured eddy current signal and a selected calibration curve.
前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、前記信号軌跡における前記治具が前記被検査体の外面に当接した時の第一信号成分から対応する検量線を選択する請求項4記載の溶射膜の膜厚測定方法。 An eddy current signal is measured from when the jig is brought close to the outer surface of the object to be inspected and contacted with the outer surface, and a signal trajectory of the signal is generated, and the jig in the signal trajectory is the object to be inspected. 5. The method for measuring a film thickness of a sprayed film according to claim 4, wherein a corresponding calibration curve is selected from the first signal component when contacting the outer surface of the film. 前記第一信号成分は、前記センサのインピーダンスにおける抵抗成分(X成分)であり、前記第二信号成分は、前記センサのインピーダンスにおけるリアクタンス成分(Y成分)である請求項4又は5記載の溶射膜の膜厚測定方法。 The thermal spray film according to claim 4 or 5, wherein the first signal component is a resistance component (X component) in the impedance of the sensor, and the second signal component is a reactance component (Y component) in the impedance of the sensor. Film thickness measurement method. 管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法であって、
前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、
前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から求めた軌跡の基準傾きに基づいて検量線を予め作成しておき、
前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、
生成した信号軌跡の軌跡の傾きを求め、
求めた軌跡の傾きと前記検量線に基づいて前記溶射膜の膜厚を測定する溶射膜の膜厚測定方法。
A method for measuring a film thickness of a sprayed film by measuring a film thickness of the sprayed film by an eddy current flaw detection method by contacting a sensor to a test object in which a sprayed film of an aluminum alloy is formed on a tubular aluminum alloy material,
The sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected,
The reference eddy current signal is measured while changing the lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having the same material and the same shape as the object to be inspected, and the thickness of the sprayed film is different. Generate a reference signal trajectory, create a calibration curve in advance based on the reference slope of the trajectory obtained from these reference signal trajectories,
Measure the eddy current signal from the air to the outer surface of the object to be in contact with the outer surface and generate a signal locus of the signal,
Find the slope of the generated signal trajectory,
A method for measuring a film thickness of a sprayed film, wherein the film thickness of the sprayed film is measured based on the obtained inclination of the locus and the calibration curve.
前記溶射膜上には、さらに非導電性の付着物が形成されている請求項4〜7のいずれかに記載の溶射膜の膜厚測定方法。 The method for measuring a film thickness of a sprayed film according to any one of claims 4 to 7, wherein a non-conductive deposit is further formed on the sprayed film. 前記治具は、前記センサを前記被検査体の外面に押圧する押圧部材を有する請求項1〜8のいずれかに記載の溶射膜の膜厚測定方法。 The method for measuring a film thickness of a sprayed film according to claim 1, wherein the jig includes a pressing member that presses the sensor against an outer surface of the inspection object. 前記被検査体は、LNG気化器の伝熱管である請求項1〜9のいずれかに記載の溶射膜の膜厚測定方法。 The thermal spray film thickness measuring method according to claim 1, wherein the object to be inspected is a heat transfer tube of an LNG vaporizer. 前記被検査体は、LNG気化器の下部ヘッダーである請求項1〜9のいずれかに記載の溶射膜の膜厚測定方法。 The thermal spray film thickness measuring method according to claim 1, wherein the object to be inspected is a lower header of an LNG vaporizer. 管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定装置であって、
前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、
前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定し、これら基準渦流信号の前記リフトオフ距離が0の時の信号成分に基づいて3次多項式による検量線を予め作成しておき、
前記治具を前記被検査体の外面に当接させて渦流信号を測定し、
測定した渦流信号の前記治具が前記被検査体の外面に当接した時の信号成分と前記検量線に基づいて前記溶射膜の膜厚を測定する溶射膜の膜厚測定装置。
A thermal spray film thickness measuring apparatus for measuring the thickness of the thermal spray film by an eddy current flaw detection method by contacting a sensor to an inspection object in which an aluminum alloy thermal spray film is formed on a tubular aluminum alloy material,
The sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected,
The reference eddy current signal is measured by changing the lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having the same material and the same shape as the object to be inspected and the film thickness of the sprayed film being different. A calibration curve by a cubic polynomial is prepared in advance based on the signal component when the lift-off distance of the signal is 0,
Measuring the eddy current signal by bringing the jig into contact with the outer surface of the object to be inspected,
An apparatus for measuring a film thickness of a sprayed film, which measures the film thickness of the sprayed film based on a signal component when the jig of the measured eddy current signal comes into contact with the outer surface of the inspection object and the calibration curve.
管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定装置であって、
前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、
前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、これら基準信号軌跡から第一信号成分毎に抽出した第二信号成分に基づいて複数の検量線を予め作成しておき、
前記治具を前記被検査体の外面に当接させて渦流信号を測定し、
測定した渦流信号の第一信号成分から対応する検量線を選択し、
前記測定した渦流信号の第二信号成分と選択した検量線に基づいて前記溶射膜の膜厚を測定する溶射膜の膜厚測定装置。
A thermal spray film thickness measuring apparatus for measuring the thickness of the thermal spray film by an eddy current flaw detection method by contacting a sensor to an inspection object in which an aluminum alloy thermal spray film is formed on a tubular aluminum alloy material,
The sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected,
The reference eddy current signal is measured while changing the lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having the same material and the same shape as the object to be inspected, and the thickness of the sprayed film is different. A plurality of calibration curves are created in advance based on second signal components extracted for each first signal component from these reference signal trajectories by generating reference signal trajectories,
Measuring the eddy current signal by bringing the jig into contact with the outer surface of the object to be inspected,
Select the corresponding calibration curve from the first signal component of the measured eddy current signal,
An apparatus for measuring a film thickness of a sprayed film that measures the film thickness of the sprayed film based on a second signal component of the measured eddy current signal and a selected calibration curve.
管状のアルミニウム合金材上にアルミニウム合金の溶射膜が形成された被検査体にセンサを当接させて渦流探傷法により前記溶射膜の膜厚を測定する溶射膜の膜厚測定装置であって、
前記センサは、前記被検査体の外面に合致する湾曲面を有する治具に設けられ、
前記被検査体と同一材料、同一形状で前記溶射膜の膜厚を異ならせた複数の試験片毎に前記試験片に対する前記センサのリフトオフ距離を変化させて基準渦流信号を測定すると共にその信号の基準信号軌跡を生成し、それら基準信号軌跡から求めた軌跡の基準傾きに基づいて検量線を予め作成しておき、
前記治具を空中から前記被検査体の外面に近接させて前記外面に当接するまでの渦流信号を測定すると共にその信号の信号軌跡を生成し、
前記信号軌跡から軌跡の傾きを求め、
求めた軌跡の傾きと前記検量線に基づいて前記溶射膜の膜厚を測定する溶射膜の膜厚測定装置。
A thermal spray film thickness measuring apparatus for measuring the thickness of the thermal spray film by an eddy current flaw detection method by contacting a sensor to an inspection object in which an aluminum alloy thermal spray film is formed on a tubular aluminum alloy material,
The sensor is provided in a jig having a curved surface that matches the outer surface of the object to be inspected,
The reference eddy current signal is measured while changing the lift-off distance of the sensor with respect to the test piece for each of a plurality of test pieces having the same material and the same shape as the object to be inspected, and the thickness of the sprayed film is different. Generate a reference signal trajectory, create a calibration curve in advance based on the reference slope of the trajectory obtained from the reference signal trajectory,
Measure the eddy current signal from the air to the outer surface of the object to be in contact with the outer surface and generate a signal locus of the signal,
Find the slope of the trajectory from the signal trajectory,
An apparatus for measuring a film thickness of a sprayed film that measures the film thickness of the sprayed film on the basis of the obtained inclination of the locus and the calibration curve.
JP2014178936A 2013-09-04 2014-09-03 Thermal spray film thickness measuring method and film thickness measuring apparatus Active JP6153904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178936A JP6153904B2 (en) 2013-09-04 2014-09-03 Thermal spray film thickness measuring method and film thickness measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013182703 2013-09-04
JP2013182703 2013-09-04
JP2014178936A JP6153904B2 (en) 2013-09-04 2014-09-03 Thermal spray film thickness measuring method and film thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JP2015072264A JP2015072264A (en) 2015-04-16
JP6153904B2 true JP6153904B2 (en) 2017-06-28

Family

ID=53014709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178936A Active JP6153904B2 (en) 2013-09-04 2014-09-03 Thermal spray film thickness measuring method and film thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JP6153904B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123402A (en) * 1982-01-20 1983-07-22 Toshiba Corp Contactless displacement measuring device
JP3307818B2 (en) * 1996-01-10 2002-07-24 株式会社神戸製鋼所 Apparatus and method for measuring thickness of anticorrosion film
JP4451111B2 (en) * 2003-10-20 2010-04-14 株式会社荏原製作所 Eddy current sensor
US9377287B2 (en) * 2011-11-17 2016-06-28 Caterpillar Inc. Eddy current based method for coating thickness measurement

Also Published As

Publication number Publication date
JP2015072264A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
EP1478899B1 (en) Measurement method for determining a surface profile
CN105675657B (en) Sample surface coating nondestructive testing method and system based on skin effect
Dziczkowski Elimination of coil liftoff from eddy current measurements of conductivity
CA2753424C (en) Carburization sensing method
CN110568263B (en) Multi-parameter detection method and device for conductor with metal coating
KR102049524B1 (en) Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
US20090251137A1 (en) Method for determining the layer thickness of an electrically conductive coating on an electrically conductive substrate
TW200807447A (en) Steam generator mapping system
CN111023960A (en) Non-contact paint film thickness nondestructive testing system and method based on transparent conductive film electrode material
JP4736753B2 (en) Eddy current flaw detection probe and lift-off amount evaluation method of test object, its evaluation apparatus, eddy current flaw detection method and eddy current flaw detection apparatus
CN111999378B (en) Method for measuring conductivity and thickness of metal material based on TMR sensor
CN113640369B (en) Alternating current electromagnetic field lift-off effect compensation method suitable for metal surface cracks
KR20210059924A (en) Measuring system and method of metal material property
JP6153904B2 (en) Thermal spray film thickness measuring method and film thickness measuring apparatus
US9243883B2 (en) Apparatus and method for conducting and real-time application of EC probe calibration
JP6175091B2 (en) Eddy current inspection device and eddy current inspection method
US7295003B2 (en) Non-destructive testing system and method utilizing a magnetic field to identify defects in a layer of a laminated material
CN109540053B (en) Single-coil-based method for quickly measuring thickness of metal base material and surface non-metal coating
Ansari et al. Single-frequency apparent eddy current conductivity assessment of metallic coating thicknesses over nonmagnetic metals
US6563309B2 (en) Use of eddy current to non-destructively measure crack depth
KR20180125748A (en) Method and apparatus for surface inspection surface of blade
KR100934615B1 (en) Eddy Current Testing Device and Method
Gros et al. Determining confounding sensitivities in eddy current thin film measurements
JPH0989750A (en) Method and apparatus for evaluation of porosity of conductive porous body
JP4986066B2 (en) Eddy current flaw detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6153904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250